WO1999024681A1 - Systeme de soutenement d'edifice et de distribution, dans cet edifice, d'air, de gaz, de liquide, ou de cables - Google Patents

Systeme de soutenement d'edifice et de distribution, dans cet edifice, d'air, de gaz, de liquide, ou de cables Download PDF

Info

Publication number
WO1999024681A1
WO1999024681A1 PCT/IB1998/001780 IB9801780W WO9924681A1 WO 1999024681 A1 WO1999024681 A1 WO 1999024681A1 IB 9801780 W IB9801780 W IB 9801780W WO 9924681 A1 WO9924681 A1 WO 9924681A1
Authority
WO
WIPO (PCT)
Prior art keywords
slab
building
conduits
support pillar
air
Prior art date
Application number
PCT/IB1998/001780
Other languages
English (en)
Inventor
Georges Spoehrle
Original Assignee
Georges Spoehrle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georges Spoehrle filed Critical Georges Spoehrle
Priority to AU96403/98A priority Critical patent/AU9640398A/en
Publication of WO1999024681A1 publication Critical patent/WO1999024681A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/43Floor structures of extraordinary design; Features relating to the elastic stability; Floor structures specially designed for resting on columns only, e.g. mushroom floors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/48Special adaptations of floors for incorporating ducts, e.g. for heating or ventilating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a distribution system in a building, of ventilation ventilation type type, stale air, air or heating water, other type of gas or liquid, as well as cables, and more particularly a system for exchanging and storing heat and / or cold of a building.
  • the present invention also relates to a support pillar and a slab used in such systems.
  • conduits and wiring allowing the distribution to the different floors of these services.
  • the distribution is generally made through false ceilings and false floors which make it possible to hide these conduits and cables.
  • the present invention relates to a pillar carrying a building structure, which has at its center a longitudinal empty space defining a duct allowing the ventilation of air, gas, liquid or the passage of cables.
  • Said pillar may have openings at predetermined heights of the support pillar, allowing communication between said sheath and the outside of the support pillar.
  • These openings may be constituted by bypass conduits projecting from the outer surface of the support pillar. These bypass conduits can be provided at their ends with means of connection with conduits.
  • this support pillar consists of a metallic cylindrical steel wall defining said covered sheath
  • the pillar according to the invention can on the other hand, be covered with an outer layer of fire and / or sound and / or thermal insulation.
  • This supporting pillar may include an external flange supporting the horizontal slabs.
  • this support pillar comprises a first metallic cylindrical wall defining said sheath and a second cylindrical concrete wall covering said first cylindrical wall.
  • This first metallic cylindrical wall may consist of an outer metallic tube, an inner metallic tube and an insulation layer.
  • This pillar can also include a rigid insulation layer between the first cylindrical wall and the second cylindrical concrete wall.
  • the present invention also relates to a building structure slab, which comprises at least one conduit embedded in its thickness and conducting air or heating water, said slab allowing the storage and exchange of heat and / or cold with its environment.
  • This slab may consist of a slab part and a screed, said screed covering said slab part, at least one duct being embedded in said screed allowing the storage and exchange of heat and / or cold with its environment.
  • the slab, the slab part and / or the screed may be made of concrete, and the ducts made of metal or of a polymeric material.
  • the present invention also relates to a service distribution system for a building, which comprises: one or a plurality of these support pillars, and one or a plurality of conduits connected to the bypass conduits of said support pillars.
  • This system can also include one or a plurality of distributors connected to said conduits, allowing the connection of said conduits to other conduits. These conduits and these distributors can be embedded in at least one slab of the building and / or a yoke covering said slab.
  • the service distributed by such a system can be renewal air, stale air, heated air, conditioned air, liquid, gas, or cables.
  • the distributed service is renewal air and / or stale air, and the system can then include conduits outside the building and buried in the ground to allow the exchange of heat between the ground and the air. of ventilation ventilated in these buried external conduits.
  • the present invention also relates to a system for exchanging and storing heat and / or cold of a building, which consists of at least one supporting pillar of the type described above, and / or of at least one slab of the type described above, and / or at least one wall of said building in which at least one duct is embedded, in which air or temperature-controlled water is ventilated.
  • FIG. 1 represents a view in vertical section of a steel pillar according to a first embodiment of the present invention
  • FIG. 2 shows a horizontal sectional view of the pillar of Figure 1
  • FIG. 3 represents a plan view of a part of a service distribution system in which the supporting pillar of FIGS. 1 and 2 is integrated as well as a slab according to the invention.
  • FIG. 4 represents a sectional view along the axis CC of the system of FIG. 3.
  • FIG. 5 represents a sectional view along the axis BB of the system of FIG. 3.
  • FIG. 7 represents a vertical section view of a concrete pillar according to a second embodiment of the present invention.
  • . 8 shows a horizontal sectional view of the pillar of Figure 7.
  • the same reference numerals denote the elements common to the different figures.
  • a support pillar 1 according to a first embodiment of the invention, of circular section supports a concrete floor slab 2 resting on a support flange 3.
  • this supporting pillar 1 consists of a cylindrical wall made of metal 4 type steel or other metal, defining a sheath
  • the internal wall 4 is preferably galvanized on at least its internal face or treated so as not to suffer damage of the corrosion type due to the humidity contained in the transported air, or diffused towards the interior of the support pillar through its walls.
  • the insulating material 6 covers the metal wall 4 of the support pillar 1 only in the areas of the building where security or thermal insulation requirements require, and leaves the metal wall free in other places.
  • the supporting pillar 1 can thus be used in these places, as a radiator or ambient air cooler.
  • the pillar can thus, store, diffuse heat and / or cold through its metal wall, reducing or increasing the temperature of its environment.
  • the fixing of the concrete slab 2 on the support flange 3 can be reinforced by one or more metal rods 28 welded to the flange 2, on which the concrete slab 2 is molded.
  • These metal rods 28 advantageously consist of a horizontal part welded on one side to the support flange 3 and the other embedded in the horizontal slab 2, and a vertical part embedded in the slab, as shown in Figure 2.
  • this wall 4 is on the other hand provided in certain places, in particular at the level of the floor slabs 2, with openings in the form of bypass conduits 7, allowing communication between the sheath 5, c ' that is to say the interior of the pillar 1, and of the horizontal conduits 8, as shown in FIG. 2.
  • These horizontal conduits 8 allow the distribution of air throughout the floor, via distributor boxes 29 and others conduits 30 as shown in FIG. 3.
  • the supporting pillar 1 is connected via conduits 8 to distributor boxes 29.
  • these boxes distribute (or collect) ventilated air, l heating or cooling air ventilated via new conduits 30 opening into the volume 34 of the building (see FIG. 5), or into conduits embedded in the walls or in other load-bearing pillars according to the invention, or the like .
  • the pillar sheath 1 can indeed communicate with others duct pillars via these horizontal conduits and distributors.
  • the distributor box 29 is connected to a conduit 8 connected to the support pillar 1, and to a plurality of conduits 30 via bypass openings 31.
  • An opening 32 is provided through the slab 2 to allow access inside the distributor box 29.
  • the horizontal conduits as well as the distributors are embedded in the concrete slab 2.
  • the openings allowing communication between the interior space of the sheath and outside the supporting pillar can also be arranged between the floor slabs at any height, in particular at breast height, flush with the ceiling or flush with the floor, and be provided with grids of the grate type ventilation or heating.
  • the weakness in the strength of the pillar created by these openings can be compensated for by slightly increasing the thickness of the supporting pillar according to the invention.
  • the floor slab known as a load-bearing or non-load-bearing slab or raw slab, consists of a layer of concrete 2 in which the horizontal conduits 8 and the distributors mentioned are embedded above.
  • This concrete layer 2 is covered with a sound insulation layer or intermediate layer 9, a concrete screed 10 and a covering layer 11 such as parquet or carpet.
  • the intermediate layer 9 has the function of separating the carrier slab 2 from the yoke 10, called the floating yoke, and thus preventing the propagation of the acoustic vibrations generated at the surface of the floating screed 10.
  • an edge strip 12 is formed between the layer of fire-resistant material 6 and the floating screed 10 in order to prevent these acoustic vibrations from propagating in the supporting slab 2 via the pillar 1.
  • a parquet type covering, carpet or equivalent, is placed on the floating screed 10.
  • the floor slab consists only of a concrete slab 2 in which are embedded heating conduits 8 without thermal insulation, and / or the intermediate layer 9 is thin and / or constituted of a material allowing heat to pass through, in order to allow storage and exchange of heat and / or cold between the concrete slab 2 and its environment.
  • This concrete slab 2 allowing the temperature regulation of its environment.
  • the horizontal conduits are made of a material allowing the exchange of heat, such as a polymer or metallic material.
  • Vertical heating air circulation ducts can also be integrated into the wall thickness (partitions or load-bearing walls) and thus define a heating system and / or a temperature control system completely integrated into the pillars, slabs and / or walls, efficient and economical.
  • the horizontal conduits can be embedded in the floating screed 10 which covers the supporting slab 2.
  • the dimensions of the various components and the materials used for the supporting pillar according to the invention must be chosen in order to be able to combine the functions of supporting the structure of the building and of service distribution sheath such as ventilation distribution or the like.
  • the pillar defines an inner cylindrical sheath 5 of 380 mm in diameter and has a steel wall 20 mm thick as well as a support flange 3 of concrete slabs 2 120 mm.
  • the supporting slab 2 consists of a layer of concrete of 260 mm which contains horizontal conduits of 100 mm in diameter. It is covered with an insulation layer 9 of 20 mm.
  • the fire-resistant layer 6 has a thickness of 40 mm.
  • the bypass openings 7 protrude 80 mm from the outer surface of the insulating layer 6 of the supporting pillar and provided at their ends with means 33 of the hermetic seal type, allowing their connections to the horizontal conduits 8, like this is shown in Figure 6.
  • pillars can advantageously be manufactured in the factory and assembled as and when the successive floor tiles of the building are constructed. They can have a section of any shape other than circular. Their outside and inside diameters vary according to the flow rates or pressure drops desired, and the imperatives of lift. On the other hand, the same pillar can define several interior sheaths by different interior walls or different conduits arranged inside the sheath 5.
  • Figures 7 and 8 show another embodiment of an air ventilation or heating system according to the present invention.
  • a support pillar 20 of circular section consists of a first cylindrical wall 21 covered on its outer side with a second cylindrical wall formed by a concrete mantle 22 on which is fixed the floor slab 2 via metal rods not shown in Figures 7 and 8.
  • the first cylindrical wall 21 defined in its interior space a sheath 23 allowing the passage of ventilated air, supply of new air and recovery of stale air (air renewal), or conditioned or heating.
  • the first wall 21 can then advantageously be made up of a well-known double coat spiro TM tube type which is readily available on the market, or equivalent.
  • a double jacket spiro TM tube consists of a first internal galvanized spiro TM tube with or without reinforcement grooves, and a second external spiro TM tube with or without reinforcement grooves enclosing a layer of rock wool insulation or equivalent.
  • the pillar 20 may comprise a rigid insulating layer of polyurethane (PIR) type supporting the pressure during the molding of the concrete mantle, disposed between the first metallic inner cylindrical wall and the concrete mantle.
  • PIR polyurethane
  • This first cylindrical wall in addition to constituting a sheath with minimum pressure drop, serves as formwork for pouring the concrete mantle 22, rather than using a lost formwork as is customary in certain manufacturing of hollow concrete parts.
  • the pillar 20 is provided with bypass openings through the first and second cylindrical walls 21 and 22, these openings having the form of bypass conduits 24 which allow communication with horizontal conduits 25 for the distribution or recovery of the air distributed by the pillars on the horizontal slabs 2.
  • These bypass conduits 24 protrude from the external surface of the pillar 20 and are provided at their ends with a means of connection to the conduits horizontal 25 of the seal type of FIG. 6.
  • the contact surfaces of the bypass conduits 24 and the walls of the pillar are advantageously constituted by a thermal insulator 27.
  • the floor slab 2 in which the horizontal conduits 25 are embedded has a thickness of 260 mm and is covered with an intermediate layer or insulation layer 9 of 20 mm.
  • a floating screed 10 of 70 mm covers this intermediate layer 9, while leaving a 20 mm edge strip along the second concrete wall 22.
  • This screed can be covered with a layer of carpet, parquet or any another coating of 10 mm, and the lower faces of the slab 2 are covered with a layer of plaster of 10 mm.
  • the first cylindrical wall 21 consists of a thin metal tube of the spiro TM type covered with a concrete mantle alone.
  • This type of sheath pillar can then be used for storage and heat exchange with its environment (heating or cooling).
  • a heating and / or cooling system completely integrated into the supporting structure of the building which allows to release a large and expensive volume in the building.
  • the first wall 21 has a thickness of 31 mm and defines an internal ventilation duct of 400 mm in diameter.
  • the outer galvanized tube of the first wall has a thickness of 0.5 mm
  • the inner galvanized tube has a thickness of 0.5 mm
  • the insulation layer has a thickness of 30 mm.
  • the concrete mantle constituting the second cylindrical wall has a thickness of 200 mm.
  • the branch conduits 24 of the pillar 20 protrude 60 mm outside the free surface of the second concrete layer 22 whose outside diameter is 860 mm.
  • Such pillars can be poured on the building construction site or in a prefabrication workshop.
  • the formwork is produced by the first insulating cylindrical wall 21 around which the concrete is poured to make the second cylindrical wall 22 or by any other equivalent manufacturing method.
  • the embodiments of the ventilation systems according to the invention have been described for the distribution of renewal air and the recovery of stale air or the storage and exchange of heat.
  • these embodiments can advantageously allow, independently or in combination, the distribution of other services of the electric cable type (telephone, telecommunications, antennas ...), gas or liquid.
  • Such a service distribution system can for example be integrated into a fire-fighting system, spraying water or an equivalent fire-resistant product, via the distribution system according to the invention.
  • pillars-ducts according to the present invention and horizontal conduits therefore makes it possible to ensure, in addition to supporting the structure of the building, the main distribution of heated, stale, conditioned, air-conditioned or renewal air, gas or cables, previously carried out by independent visible vertical conduits, and horizontal in false ceilings and false floors.
  • the costs of steel and concrete necessary for carrying out the invention are not increased, or are increased only very slightly. We can thus without additional costs and in a simple way, reduce the space occupied in the volume of the building by these services, and from there, the overall cost of the construction of the building can be greatly reduced.
  • the invention allows the reduction of energy, operating and maintenance costs of service distribution systems.
  • the service distribution systems according to the invention can coexist with other apparent conventional distribution systems (vertical ducts, horizontal ducts, false ceilings, false floors, etc.) while reducing the overall size of the distribution systems in the building.
  • the distribution systems according to the invention can be integrated into all types of buildings such as, for example, office buildings, residential buildings, industrial buildings, hospitals, laboratories, conference or show buildings.
  • the use of these systems can be particularly advantageous for the realization of bridges in which the thermal regulation via conduits buried in the ground makes it possible to limit the influence of the cold in its structures.
  • the concrete screed covering the supporting slab of the bridge or the supporting slab itself, covered by the roadway may contain buried conduits in which the ambient air is ventilated, for example from conduits buried in the ground . This allows the pavement to be frost-free or to greatly reduce the risk of ice formation on the surface thereof.
  • the ventilation of the system can be reversed and the heat of the pavement can be evacuated into the ambient air or stored in the ground.
  • an air ventilation system can advantageously integrate into its network of duct pillars, horizontal ducts and distributors, filters and ducts outside the building and buried in the ground.
  • These conduits are commonly called “Canadian wells” and allow a transfer of heat between the ground and the air ventilated in these conduits. This can allow avoid the use of artificial heating or cooling of the fresh air, and allow further reductions in investment, manufacturing and installation costs, and energy and maintenance costs for system operation .

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Building Environments (AREA)

Abstract

La présente invention concerne un système de distribution dans un édifice, de services de type ventilation d'air de renouvellement, d'air vicié, d'air ou d'eau de chauffage, d'autres types de gaz ou de liquide, ainsi que des câbles. La présente invention concerne aussi un pilier porteur (1) et une dalle (2, 9, 10) utilisés dans de tels systèmes. Un pilier porteur (1) de structure d'édifice selon l'invention comporte en son centre un espace vide longitudinal définissant une gaine (5) permettant la distribution de services de type ventilation d'air, de gaz, de liquide ou passage de câbles. La présente invention permet de réduire l'encombrement de ces services et de diminuer les coûts de fabrication et d'installation, ainsi que la consommation d'énergie et de maintenance du système de distribution de services de l'édifice.

Description

SYSTEME DE SOUTENEMENT D'EDIFICE ET DE DISTRIBUTION, DANS CET EDIFICE, D'AIR, DE GAZ, DE LIQUIDE, OU DE CABLES
5 La présente invention concerne un système de distribution dans un édifice, de services de type ventilation d'air de renouvellement, d'air vicié, d'air ou d'eau de chauffage, d'autres type de gaz ou de liquide, ainsi que des câbles, et plus particulièrement 10 un système d'échange et de stockage de chaleur et/ou de froid d'un édifice. La présente invention concerne aussi un pilier porteur et une dalle utilisés dans de tels systèmes .
15 Pour la réalisation d'un édifice, de type bâtiment d'habitations, de bureaux, ou autre, il est nécessaire de prévoir, parallèlement à sa structure propre (fondations, piliers porteurs, dalles d'étage, escaliers, cloisons, etc.), de nombreuses canalisations ou conduits pour la
20 distribution de services tels que l'électricité, le téléphone, les câbles de communication, l'eau, le gaz, le chauffage ou la ventilation d'air.
Tout bâtiment comporte ainsi des colonnes sèches ou humides (gaines verticales) , dans lesquelles sont
25 disposés les conduits et le câblage permettant la distribution aux différents étages de ces services. A chaque étage, la distribution se fait généralement au travers de faux plafonds et de faux planchers qui permettent de dissimuler ces conduits et ces câbles. Ces
30 colonnes, gaines verticales, faux plafonds et faux planchers, ont un coût de fabrication et d'installation inévitable, ainsi qu'un encombrement important du volume intérieur du bâtiment. Dans ce domaine particulier, il y a donc un grand intérêt à trouver des solutions minimisant les coûts de fabrication et d'installation du système de distributions des services et le volume qu'il occupe . La présente invention se propose de répondre à cette demande .
En effet, la présente invention concerne un pilier porteur de structure d'édifice, qui comporte en son centre un espace vide longitudinal définissant une gaine permettant la ventilation d'air, de gaz, de liquide ou le passage de câbles.
Ledit pilier peut comporter des ouvertures à des hauteurs prédéterminées du pilier porteur, permettant la communication entre ladite gaine et l'extérieur du pilier porteur.
Ces ouvertures peuvent être constituées par des conduits de dérivation en saillie à la surface extérieure du pilier porteur. Ces conduits de dérivation peuvent être munis à leurs extrémités de moyens de raccord avec des conduits.
Les surfaces de contact des conduits de dérivations et de la paroi du pilier porteur peuvent être constituées d'une couche d'isolation. Selon un premier mode de réalisation de la présente invention, ce pilier porteur est constitué d'une paroi cylindrique métallique en acier définissant ladite gaine recouverte
Le pilier selon l'invention peut d'autre part, être recouvert d'une couche extérieure d'isolation au feu et/ou phonique et/ou thermique.
Ce pilier porteur peut comporter une collerette extérieure supportant les dalles horizontales. Selon un second mode de réalisation de la présente invention, ce pilier porteur comporte une première paroi cylindrique métallique définissant ladite gaine et une seconde paroi cylindrique en béton recouvrant ladite première paroi cylindrique.
Cette première paroi cylindrique métallique peut être constituée d'un tube extérieur métallique, d'un tube intérieur métallique et d'une couche d'isolation. Ce pilier peut en outre comporter une couche d' isolation rigide entre la première paroi cylindrique et la seconde paroi cylindrique en béton.
La présente invention concerne aussi une dalle de structure d'édifice, qui comporte au moins un conduit noyé dans son épaisseur et conduisant de l'air ou de l'eau de chauffage, ladite dalle permettant le stockage et l'échange de chaleur et/ou de froid avec son environnement .
Cette dalle peut être constituée d'une partie dalle et d'une chape, ladite chape recouvrant ladite partie dalle, au moins un conduit étant noyé dans ladite chape permettant le stockage et l'échange de chaleur et/ou de froid avec son environnement. La dalle, la partie dalle et/ou la chape peuvent être en béton, et les conduits en métal ou en un matériau polymère. La présente invention concerne aussi un système de distribution de services pour un édifice, qui comporte : un ou une pluralité de ces piliers porteurs, et un ou une pluralité de conduits raccordés aux conduits de dérivation desdits piliers porteurs. Ce système peut aussi comporter un ou une pluralité de distributeurs raccordés aux dits conduits, permettant le raccord desdits conduits à d'autres conduits. Ces conduits et ces distributeurs peuvent être noyés dans au moins une dalle de l'édifice et/ou une chape recouvrant ladite dalle.
Le service distribué par un tel système peut être de l'air de renouvellement, de l'air vicié, de l'air chauffé, de l'air conditionné, du liquide, du gaz, ou des câbles .
Le service distribué est de l'air de renouvellement et/ou de l'air vicié, et le système peut alors comporter des conduits extérieurs au bâtiment et enterrés dans le sol afin de permettre l'échange de chaleur entre le sol et l'air de renouvellement ventilé dans ces conduits extérieurs enterrés.
La présente invention concerne aussi un système d'échange et de stockage de chaleur et/ou de froid d'un édifice, qui est constitué d'au moins un pilier porteur du type décrit au-dessus, et/ou d'au moins une dalle du type décrit au-dessus, et/ou d'au moins un mur dudit édifice dans lequel est noyé au moins un conduit, dans lesquels est ventilé de l'air ou de l'eau régulé en température .
Ainsi, l'utilisation des piliers porteurs en béton, habituellement pleins, ou en acier, comme gaine de ventilation ou de chauffage, permet de diminuer très largement les coûts de constructions d'édifices et de diminuer la place occupée par le système de ventilation d'air à l'intérieur du bâtiment. La présente invention présente l'avantage d'être multifonctionnelle (portage de la structure du bâtiment et distribution de la ventilation) et de dissimuler les gaines de ventilation et de chauffage de façon simple et économique. D'autres caractéristiques et avantages apparaîtront à la lecture de la description détaillée de modes de réalisation de la présente invention, illustrée par les figures suivantes : . la figure 1 représente une vue en coupe verticale d'un pilier en acier selon un premier mode de réalisation de la présente invention,
. la figure 2 représente une vue en coupe horizontale du pilier de la figure 1, . la figure 3 représente une vue en plan d'une partie d'un système de distribution de services dans lequel est intégré le pilier porteur des figures 1 et 2 ainsi qu'une dalle selon l'invention.
. la figure 4 représente une vue en coupe selon l'axe CC du système de la figure 3.
. la figure 5 représente une vue en coupe selon l'axe BB du système de la figure 3.
. la figure 6 représente une vue en coupe selon l'axe 7AA du système selon l'invention. . la figure 7 représente une vue en coupe verticale d'un pilier en béton selon un second mode de réalisation de la présente invention, et
. la figure 8 représente une vue en coupe horizontale du pilier de la figure 7. Dans ces figures, les mêmes références numériques désignent les éléments communs aux différentes figures.
Sur la figure 1, un pilier porteur 1 selon un premier mode de réalisation de l'invention, de section circulaire supporte une dalle d'étage en béton 2 reposant sur une collerette de support 3. Selon une caractéristique importante de la présente invention, ce pilier porteur 1 est constitué d'une paroi cylindrique en métal 4 type acier ou autre métal, définissant une gaine
5 permettant, notamment, la circulation d'air ventilé, chauffé ou conditionné grâce à des moyens de ventilation, de chauffage et/ou de conditionnement d'air connectés à ce pilier porteur. La résistance à la compression et à la flexion d'un pilier porteur étant assurée principalement par la périphérie du pilier, le centre du pilier peut alors être réservé au passage d'air, sans pour cela nécessiter l'augmentation de l'épaisseur de ses parois extérieures ou, selon les applications, ne nécessiter qu'une faible augmentation de celle-ci. Par ailleurs, la paroi lisse du métal permet de limiter les pertes de charge dans le transport de l'air.
Cette paroi en acier cylindrique 4 d'épaisseur suffisante pour assurer la résistance à la compression et à la flexion, est recouverte extérieurement par une couche d'un matériau 6 résistant au feu et permettant avantageusement une isolation phonique et/ou thermique. La paroi intérieure 4 est de préférence galvanisée sur au moins sa face interne ou traitée pour ne pas subir de dommages de type corrosion dus à l'humidité contenue dans l'air transporté, ou diffusée vers l'intérieur du pilier porteur au travers de ses parois.
Dans un mode de réalisation particulier de l'invention dans lequel le pilier porteur assure la distribution de chauffage et/ou de froid par air ou par eau, le matériau isolant 6 ne recouvre la paroi métallique 4 du pilier porteur 1 que dans les zones de l'édifice où des impératifs de sécurité ou d'isolation thermique l'exigent, et laisse la paroi métallique libre à d'autres endroits. Le pilier porteur 1 peut ainsi être utilisé dans ces endroits, comme radiateur ou refroidisseur d'air ambiant. En régulant la température du fluide de chauffage (air ou eau) circulant dans la gaine du pilier porteur, le pilier peut ainsi, stocker, diffuser de la chaleur et/ou du froid au travers de sa paroi métallique, diminuant ou augmentant la température de son environnement .
La fixation de la dalle de béton 2 sur la collerette de support 3 peut être renforcée par une ou plusieurs tiges métalliques 28 soudées à la collerette 2, sur lesquelles est moulée la dalle de béton 2. Ces tiges métalliques 28 sont avantageusement constituées d'une partie horizontale soudée d'un côté à la collerette de support 3 et de l'autre noyée dans la dalle horizontale 2, et d'une partie verticale noyée dans la dalle, comme cela est représenté sur la figure 2. Selon une autre caractéristique de la présente invention, cette paroi 4 est d'autre part munie à certains endroits, en particulier au niveau des dalles d'étages 2, d'ouvertures sous la forme de conduits de dérivation 7, permettant la communication entre la gaine 5, c'est à dire l'intérieur du pilier 1, et des conduits horizontaux 8, comme cela est représenté sur la figure 2. Ces conduits horizontaux 8 permettent la distribution d'air dans tout l'étage, via des caissons distributeurs 29 et d'autres conduits 30 comme cela est représenté sur la figure 3. Dans cette figure, le pilier porteur 1 est connecté via des conduits 8 à des caissons distributeurs 29. Dans notre exemple, ces caissons distribuent (ou récoltent) de l'air ventilé, de l'air de chauffage ou de refroidissement ventilé via de nouveaux conduits 30 débouchant dans le volume 34 de l'édifice (voir figure 5) , ou dans des conduits noyés dans les murs ou dans d'autres piliers porteurs selon l'invention, ou autre. Le pilier gaine 1 peut en effet communiquer avec d'autres piliers gaines via ces conduits horizontaux et distributeurs. Dans la figure 4, le caisson distributeur 29 est connecté à un conduit 8 connecté au pilier porteur 1, et à pluralité de conduits 30 via des ouvertures de dérivation 31. Une ouverture 32 est prévue au travers de la dalle 2 pour permettre l'accès à l'intérieur du caisson distributeur 29.
Comme cela est représenté sur la figure 4, et selon une autre caractéristique importante de la présente invention, les conduits horizontaux ainsi que les distributeurs sont noyés dans la dalle de béton 2. Les ouvertures permettant la communication entre l'espace intérieur de la gaine et l'extérieur du pilier porteur, peuvent aussi être disposées entre les dalles d'étage à n'importe quelle hauteur, en particulier à hauteur d'homme, au raz du plafond ou au raz du plancher, et être munies de grilles de type grilles d'aération ou de chauffage. La faiblesse dans la résistance du pilier créée par ces ouvertures peut être compensée en augmentant légèrement l'épaisseur du pilier porteur selon 1 ' invention.
Dans le mode de réalisation représenté sur les figures 1 et 2, la dalle d'étage, dite dalle porteuse ou non porteuse ou dalle brute, est constituée d'une couche de béton 2 dans lequel sont noyés les conduits horizontaux 8 et les distributeurs mentionnés au dessus. Cette couche de béton 2 est recouverte d'une couche d'isolation phonique ou couche intermédiaire 9, d'une chape de béton 10 et d'une couche de revêtement 11 type parquet ou moquette. La couche intermédiaire 9 a pour fonction de désolidariser la dalle porteuse 2 de la chape 10, dite chape flottante, et d'empêcher ainsi la propagation des vibrations acoustiques générées à la surface de la chape flottante 10. Par ailleurs, une bande de rive 12 est ménagée entre la couche de matériau anti- feu 6 et la chape flottante 10 afin d'éviter que ces vibrations acoustiques ne se propagent dans la dalle porteuse 2 via le pilier 1. Un revêtement de type parquet, moquette ou équivalent, est disposé sur la chape flottante 10.
Selon un mode de réalisation différent, la dalle d'étage n'est constituée que d'une dalle de béton 2 dans laquelle sont noyés des conduits de chauffage 8 sans isolation thermique, et/ou la couche intermédiaire 9 est mince et/ou constituée d'un matériau laissant passer la chaleur, afin de permettre le stockage et l'échange de chaleur et/ou de froid entre la dalle de béton 2 et son environnement. Cette dalle de béton 2 permettant la régulation de température de son environnement. Les conduits horizontaux sont constitués d'un matériau permettant l'échange de chaleur, tel qu'un matériau polymère ou métallique. Des conduits verticaux de circulation d'air de chauffage peuvent aussi être intégrés dans l'épaisseur de murs (cloisons ou murs porteurs) et définir ainsi un système de chauffage et/ou un système de régulation de température complètement intégré aux piliers, dalles et/ou murs, efficace et économique .
Dans l'exemple décrit, les conduits horizontaux peuvent être noyés dans la chape flottante 10 qui recouvre la dalle porteuse 2. Cela permet de ne pas se limiter en épaisseur ou en matériaux pour la couche isolante intermédiaire 9, et de limiter les conduits noyés dans la dalle porteuse 2, ces derniers n'étant plus utilisés que comme raccords aux conduits horizontaux noyés dans la chape flottante 10. Les dimensions des différents composants et les matériaux utilisés pour le pilier porteur selon l'invention doivent être choisis pour pouvoir combiner les fonctions de support de la structure du bâtiment et de gaine de distribution de service type distribution de la ventilation ou autre. Dans l'exemple particulier considéré à titre d'illustration, le pilier définie une gaine cylindrique intérieure 5 de 380 mm de diamètre et comporte une paroi en acier de 20 mm d'épaisseur ainsi qu'une collerette de support 3 de dalles de béton 2 de 120 mm. La dalle porteuse 2 est constituée d'une couche de béton de 260 mm qui contient des conduits horizontaux de 100 mm de diamètre. Elle est recouverte d'une couche d'isolation 9 de 20 mm. La couche anti-feu 6 a une épaisseur de 40 mm. Les ouvertures de dérivation 7 sont en saillie de 80 mm à la surface extérieure de la couche d'isolant 6 du pilier porteur et munies à leurs extrémités d'un moyen 33 de type joint hermétique, permettant leurs raccords aux conduits horizontaux 8, comme cela est représenté sur la figure 6.
Ces piliers peuvent avantageusement être fabriqués en usine et assemblés au fur et à mesure de la construction des dalles d'étages successives de l'édifice. Ils peuvent avoir une section de forme quelconque autre que circulaire. Leurs diamètres extérieurs et intérieurs varient en fonction des débits ou des pertes de charges désirés, et des impératifs de portance. D'autre part, un même pilier peut définir plusieurs gaines intérieures par différentes parois intérieures ou différents conduits aménagés à l'intérieur de la gaine 5. Les figures 7 et 8 représentent un autre mode de réalisation d'un système de ventilation d'air ou de chauffage selon la présente invention. Sur ces figures, un pilier porteur 20 de section circulaire est constitué d'une première paroi cylindrique 21 recouverte sur son côté extérieur d'une seconde paroi cylindrique constituée par un manteau de béton 22 sur lequel est fixée la dalle d'étage 2 via des tiges métalliques non représentées sur les figures 7 et 8. Selon une caractéristique importante de la présente invention, la première paroi cylindrique 21 définie dans son espace intérieur une gaine 23 permettant le passage d'air ventilé, apport d'air nouveau et récupération d'air vicié (renouvellement de l'air), ou conditionné ou de chauffage. La première paroi 21 peut être alors avantageusement constituée d'un tube de type spiro™ double manteau bien connu et facilement disponible sur le marché, ou équivalent . Un tube spiro™ double manteau est constitué d'un premier tube spiro™ galvanisé intérieur avec ou sans rainures de renfort, et d'un second tube spiro™ extérieur avec ou sans rainures de renfort emprisonnant une couche d'isolation en laine de roche ou équivalent.
Dans un mode de réalisation différent, le pilier 20 peut comporter une couche isolante rigide de type Polyuréthanne (PIR) supportant la pression lors du moulage du manteau de béton, disposée entre la première paroi cylindrique intérieure métallique et le manteau de béton.
Cette première paroi cylindrique, en plus de constituer une gaine à perte de charge minimum, sert de coffrage pour le coulage du manteau de béton 22, plutôt que d'utiliser un coffrage perdu comme cela est d'usage dans certaines fabrications de pièces de béton creuses. De même que dans le mode de réalisation précédent, le pilier 20 est muni d'ouvertures de dérivation au travers des première et seconde parois cylindriques 21 et 22, ces ouvertures ayant la forme de conduits de dérivation 24 qui permettent la communication avec des conduits horizontaux 25 pour la distribution ou la récupération de l'air distribué par les piliers sur les dalles horizontales 2. Ces conduits de dérivation 24 sont en saillie à la surface extérieure du pilier 20 et sont munis à leurs extrémités d'un moyen de raccord aux conduits horizontaux 25 de type joint étanche de la figure 6. Les surfaces de contact des conduits de dérivation 24 et des parois du pilier sont avantageusement constituées par un isolant thermique 27. Dans cet exemple décrit à titre d'illustration, la dalle d'étage 2 dans laquelle sont noyés les conduits horizontaux 25, a une épaisseur de 260 mm et est recouverte d'une couche intermédiaire ou couche d'isolation 9 de 20 mm. Une chape flottante 10 de 70 mm recouvre cette couche intermédiaire 9, tout en laissant une bande de rive de 20 mm le long de la seconde paroi en béton 22. Cette chape peut être recouverte d'une couche de moquette, de parquet ou de tout autre revêtement de 10 mm, et les faces inférieures de la dalle 2 sont recouvertes d'une couche de plâtre de 10 mm.
Dans un mode de réalisation particulier de la présente invention, la paroi première cylindrique 21 est constituée d'un tube métallique fin de type spiro™ recouvert d'un manteau de béton seul. Ce type de pilier gaine peut alors être utilisé pour le stockage et l'échange de chaleur avec son environnement (chauffage ou refroidissement) . Ainsi, en couplant ce type de pilier à une dalle d'étage du type décrit plus haut qui permet aussi la régulation de température, on obtient un système de chauffage et/ou de refroidissement complètement intégré à la structure porteuse de l'édifice qui permet de libérer un volume important et coûteux dans l'édifice.
Dans cet exemple particulier du second mode de réalisation de l'invention, la première paroi 21 a une épaisseur de 31 mm et définie une gaine de ventilation intérieure de 400 mm de diamètre. Le tube galvanisé extérieur de la première paroi a une épaisseur de 0,5 mm, le tube galvanisé intérieur a une épaisseur de 0,5 mm, et la couche d'isolation a une épaisseur de 30 mm. Le manteau de béton constituant la seconde paroi cylindrique a une épaisseur de 200 mm. Les conduits de dérivations 24 du pilier 20 sont en saillie de 60 mm à l'extérieur de la surface libre de la seconde couche en béton 22 dont le diamètre extérieur est de 860 mm.
De tels piliers-gaines peuvent être coulés sur le chantier de construction du bâtiment ou dans un atelier de préfabrication. Le coffrage est réalisé par la première paroi cylindrique isolante 21 autour de laquelle est coulé le béton pour réaliser la seconde paroi cylindrique 22 ou par tout autre mode de fabrication équivalent .
Les modes de réalisation des systèmes de ventilation selon l'invention ont été décrits pour la distribution d'air de renouvellement et la récupération d'air vicié ou le stockage et l'échange de chaleur. Cependant, ces modes de réalisation peuvent avantageusement permettre indépendamment ou en combinaison, la distribution d'autres services du type câbles électriques (téléphone, télécommunication, antennes...), de gaz ou de liquide. Un tel système de distribution de services peut par exemple être intégré à un système anti-incendie, vaporisant de l'eau ou un produit coupe feu équivalent, via le système de distribution selon l'invention.
Toutes les dimensions et toutes les formes décrites ci-dessus sont données à titre d'exemple, et la présente invention peut être naturellement étendue à tous les types de piliers porteurs (en métal, bois, béton, verre, ... ) dont les dimensions et les formes permettent de réaliser les fonctions de soutènement de la structure du bâtiment et de distribution de services à tous les niveaux de l'édifice.
L'utilisation de piliers-gaines selon la présente invention et des conduits horizontaux permet donc d'assurer, en plus du soutènement de la structure de l'édifice, la distribution principale d'air chauffé, vicié, conditionné, climatisé ou de renouvellement, de gaz ou de câbles, réalisée auparavant par des conduits indépendants verticaux apparents, et horizontaux dans des faux plafonds et faux planchers. Les coûts de l'acier et du béton nécessaires à la réalisation de l'invention ne sont pas augmentés, ou ne sont augmentés que très faiblement. On peut ainsi sans surcoûts et de façon simple, diminuer la place occupée dans le volume du bâtiment par ces services, et de là, le coût global de la construction de l'édifice peut être grandement réduit.
En plus de la réduction des coûts de fabrication et d'installation, l'invention permet la réduction des frais d'énergie, d'exploitation et de maintenance des systèmes de distribution de services.
Bien évidemment, les systèmes de distribution de services selon l'invention peuvent cohabiter avec d'autres systèmes de distribution conventionnels apparents (gaines verticales, gaines horizontales, faux plafonds, faux planchers, etc..) tout en diminuant l'encombrement général des systèmes de distribution dans l'édifice.
Les systèmes de distribution selon l'invention peuvent être intégrés à tous les types d'édifices comme par exemple des bâtiment de bureaux, d'habitation, des bâtiments industriels, des hôpitaux, des laboratoires, des bâtiments de conférences ou de spectacles.
L'utilisation de ces systèmes peut être particulièrement avantageuse pour la réalisation de ponts dans lesquels la régulation thermique via des conduits enterrés dans le sol permet de limiter l'influence du froid dans ses structures. En particulier, la chape de béton recouvrant la dalle porteuse du pont ou la dalle porteuse elle-même, recouverte par la chaussée, peut contenir des conduits noyés dans lequel l'air ambiant est ventilé, par exemple à partir des conduits enterrés dans le sol . Cela permet de mettre la chaussée hors gel ou de diminuer fortement les risques de formation de verglas à la surface de celle-ci. Dans les pays chauds ou pendant les saisons de fortes chaleurs, la ventilation du système peut être inversée et la chaleur de la chaussée être évacuée dans l'air ambiant ou stockée dans le sol.
Dans le cas de ventilation d'air de renouvellement, un système de ventilation d'air selon l'invention peut avantageusement intégrer à son réseau de piliers-gaines, conduits horizontaux et distributeurs, des filtres et des conduits extérieurs au bâtiment et enterrés dans le sol. Ces conduits sont appelés communément « puits canadiens » et permettent un transfert de chaleur entre le sol et l'air ventilé dans ces conduits. Cela peut permettre d'éviter le recours à des chauffages ou des refroidissement artificiels de l'air de renouvellement, et permettre de diminuer à nouveau les investissements, les coûts de fabrication et d'installation, et les frais d'énergie et de maintenance du fonctionnement du système.

Claims

REVENDICATIONS
1. Pilier porteur (1;20) de structure d'édifice, caractérisé en ce qu' il comporte en son centre un espace vide longitudinal définissant une gaine (5,-23) permettant la distribution de services de type ventilation d'air, de gaz, de liquide ou passage de câbles.
2. Pilier porteurs selon la revendication 1, caractérisé en ce qu'il comporte des ouvertures (7; 24) à des hauteurs prédéterminées du pilier porteur (1;20) permettant la communication entre ladite gaine (5,-23) et l'extérieur du pilier porteur (1;20).
3. Pilier porteur selon la revendication 2, caractérisé en ce que lesdites ouvertures sont constituées par des conduits de dérivation (7; 24) en saillie à la surface extérieure du pilier porteur (1;20).
4. Pilier porteur selon la revendication 3, caractérisé en ce que lesdits conduits de dérivation (7,-24) sont munis à leurs extrémités de moyens de raccord (33) avec des conduits (8;25).
5. Pilier porteur selon la revendication 3 ou 4 , caractérisé en ce que les surfaces de contact des conduits de dérivations et de la paroi du pilier porteur sont constituées d'une couche d'isolation (27).
6. Pilier porteur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est constitué d'une paroi cylindrique (5) métallique définissant ladite gaine.
7. Pilier porteur selon la revendication 6, caractérisé en ce que la paroi métallique est en acier.
8. Pilier porteur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que sa paroi est recouverte d'une couche extérieure (4) d'isolation au feu et/ou phonique et/ou thermique.
9. Pilier porteur selon l'une des revendications 6 à 8, caractérisé en ce qu'il comporte une collerette extérieure (3) supportant au moins une dalle (2) de l'édifice.
10. Pilier porteur selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comporte une première paroi cylindrique métallique (21) définissant ladite gaine (23) et une seconde paroi cylindrique en béton (22) recouvrant ladite première paroi cylindrique (21) .
11. Pilier porteur selon la revendication 10, caractérisé en ce que la première paroi cylindrique métallique (21) est constituée d'un tube extérieur métallique, d'un tube intérieur métallique et d'une couche d'isolation.
12. Pilier porteur selon la revendication 10, caractérisé en ce qu'il comporte en outre une couche d'isolation rigide entre la première paroi cylindrique (21) et la seconde paroi cylindrique en béton (22) .
13. Dalle (2) de structure d'édifice, caractérisée en ce qu'elle comporte au moins un conduit (8,-25) noyé dans son épaisseur et conduisant de l'air ou de l'eau de chauffage, ladite dalle porteuse (2) permettant l'échange de chaleur et/ou de froid avec son environnement ainsi que le stockage de chaleur et/ou de froid.
14. Dalle selon la revendication 14, caractérisé en ce qu'elle est constituée d'une partie dalle (2) et d'une chape (10) , ladite chape (10) recouvrant ladite partie dalle (2), au moins un conduit (8;25) étant noyé dans ladite chape (10) permettant l'échange de chaleur et/ou de froid avec son environnement ainsi que le stockage de chaleur et/ou de froid.
15. Dalle selon la revendication 13 ou 14, caractérisée en ce que ladite dalle (2) , ladite partie dalle (2) et/ou ladite chape (8,-25) sont en béton.
16. Dalle selon l'une des revendications 13 à 15, caractérisé en ce que ledit conduit (8,-25) est métallique ou en matériau plastique.
17. Système de distribution de services pour un édifice, caractérisé en ce qu'il comporte : un ou une pluralité de piliers porteurs (1;20) selon l'une quelconque des revendications 1 à 12, et un ou une pluralité de conduits (8,-25) raccordés aux conduits de dérivation (7; 24) desdits piliers porteurs (1,20) .
18. Système de distribution de services selon la revendication 17, caractérisé en ce que le ou les conduits (8,-25) sont connectés à au moins un distributeur (29) , ledit distributeur (29) permettant le raccord desdits conduits (8,-25) à un ou plusieurs autres conduits (30) .
19. Système de distribution de services selon la revendication 17 ou 18, caractérisé en ce que le ou les conduits (8;25) et le ou les distributeurs (29) sont noyés dans au moins une dalle (2) de l'édifice, ou une chape (10) recouvrant ladite partie dalle (2) .
20. Système de distribution de services selon l'une des revendication 17 à 19, caractérisé en ce que le service distribué est de l'air de renouvellement, de l'air vicié, de l'air chauffé, de l'air conditionné, du liquide, du gaz, ou des câbles.
21. Système de distribution de services selon la revendication 20, caractérisé en ce que le service distribué est de l'air de renouvellement et/ou de l'air vicié, et en ce qu'il comporte des conduits extérieurs au bâtiment et enterrés dans le sol afin de permettre l'échange de chaleur entre le sol et l'air de renouvellement ventilé dans ces conduits extérieurs enterrés .
22. Système d'échange et de stockage de chaleur et/ou de froid d'un édifice, caractérisé en ce qu'il est constitué d'au moins un pilier porteur (1;20) selon l'une quelconque des revendications 1 à 10, et/ou d'au moins une dalle (2,9,10) selon l'une quelconque des revendications 13 à 16, et/ou d'au moins un mur dudit édifice dans lequel est noyé au moins un conduit, dans lesquels est ventilé de l'air ou de l'eau régulé en température .
PCT/IB1998/001780 1997-11-07 1998-11-06 Systeme de soutenement d'edifice et de distribution, dans cet edifice, d'air, de gaz, de liquide, ou de cables WO1999024681A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU96403/98A AU9640398A (en) 1997-11-07 1998-11-06 System for supporting a building and for dispensing air, gas, liquid or for passing cables in said building

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2574/97 1997-11-07
CH257497 1997-11-07

Publications (1)

Publication Number Publication Date
WO1999024681A1 true WO1999024681A1 (fr) 1999-05-20

Family

ID=4236868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB1998/001780 WO1999024681A1 (fr) 1997-11-07 1998-11-06 Systeme de soutenement d'edifice et de distribution, dans cet edifice, d'air, de gaz, de liquide, ou de cables

Country Status (2)

Country Link
AU (1) AU9640398A (fr)
WO (1) WO1999024681A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108999305B (zh) * 2018-06-15 2020-05-12 黑龙江科技大学 可更换自复位防屈曲支撑装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2363967A1 (de) * 1973-12-21 1975-09-04 Zueblin Ag Mehrgeschossiges gebaeude in skelettbauweise
DE3218190A1 (de) * 1982-05-14 1983-11-24 Horst Dr.-Ing. 6200 Wiesbaden Witte Tragkonstruktion fuer hochbauten
US4461130A (en) * 1981-05-29 1984-07-24 Calvin Shubow Building construction using hollow core wall slabs
EP0652336A1 (fr) * 1993-11-09 1995-05-10 DLC S.r.L. Plancher industriel préfabriqué

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2363967A1 (de) * 1973-12-21 1975-09-04 Zueblin Ag Mehrgeschossiges gebaeude in skelettbauweise
US4461130A (en) * 1981-05-29 1984-07-24 Calvin Shubow Building construction using hollow core wall slabs
DE3218190A1 (de) * 1982-05-14 1983-11-24 Horst Dr.-Ing. 6200 Wiesbaden Witte Tragkonstruktion fuer hochbauten
EP0652336A1 (fr) * 1993-11-09 1995-05-10 DLC S.r.L. Plancher industriel préfabriqué

Also Published As

Publication number Publication date
AU9640398A (en) 1999-05-31

Similar Documents

Publication Publication Date Title
FR2473159A1 (fr) Dispositif de conditionnement a emmagasinage de chaleur
FR2977611A1 (fr) Module de batiment comprenant au moins un mur de refend en panneau structurel isolant, et batiment realise par assemblage de tels modules
EP0994017B1 (fr) Local d'habitation préfabriqué pour un navire et procédé d'installation de tels locaux dans un navire
WO1999024681A1 (fr) Systeme de soutenement d'edifice et de distribution, dans cet edifice, d'air, de gaz, de liquide, ou de cables
FR2949240A1 (fr) Element de construction d'une paroi murale
FR2941517A1 (fr) Installation immobiliere environnementale
IE86668B1 (en) Structural panel and a building structure formed therefrom
EP2423402B1 (fr) Elément préfabriqué hautement isolé
FR2970723A1 (fr) Bloc structurel de fondation creux prefabrique en beton a usage de puits canadien
FR2777071A1 (fr) Systeme de distribution d'air multidirectionnel integre dans le plancher d'un batiment et que l'on peut coupler a un plancher chauffant
FR2965340A1 (fr) Dispositif d'accumulation et de restitution d'energie
FR2458643A1 (fr) Element de construction
FR2866101A1 (fr) Installation destinee a temperer un local en utilisant l'inertie thermique du sol et composants de cette installation
FR2859744A1 (fr) Panneau prefabrique pour la realisation de parois porteuses chauffantes et/ou rafraichissantes de batiments, et les parois porteuses obtenues au moyen de tels panneaux
FR3015534A1 (fr) Bloc de construction isolant permettant l'integration de cable
EP1235037A2 (fr) Elément thermorégulateur préfabriqué.
FR2631054A1 (fr) Structure de mur de batiment et procede de realisation d'une telle structure
FR2511058A1 (fr) Ensemble d'elements prefabriques constituant une paroi pour le batiment
FR2962793A1 (fr) Procede de regulation thermique par ventilation forcee d'un batiment incorporant un vide sanitaire et batiment pour la realisation de ce procede
WO2024056954A1 (fr) Circuit échangeur de chaleur utilisant les hourdis et méthode d'installation d'un circuit climatiseur
EP2363649B1 (fr) Élément de stucture pour la régulation de la température d'un local et installation de chauffage comprenant un tel élément
FR2615884A1 (fr) Module de construction prefabrique, notamment pour ouvrages enterres
FR2955126A1 (fr) Dispositif de collecte, de stockage et de distribution de l'eau de pluie
FR2543992A1 (fr) Procede de climatisation d'une paroi en beton formant, par exemple, un mur ou une dalle de plancher
FR2483577A1 (fr) Installation de chauffage par rayonnement des conduites a circulation d'air

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA