WO1999023748A1 - Device and method for controlling converter and converter - Google Patents

Device and method for controlling converter and converter Download PDF

Info

Publication number
WO1999023748A1
WO1999023748A1 PCT/JP1997/003989 JP9703989W WO9923748A1 WO 1999023748 A1 WO1999023748 A1 WO 1999023748A1 JP 9703989 W JP9703989 W JP 9703989W WO 9923748 A1 WO9923748 A1 WO 9923748A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
pwm
power
switching element
chopper
Prior art date
Application number
PCT/JP1997/003989
Other languages
French (fr)
Japanese (ja)
Inventor
Keijiro Sakai
Kenji Kubo
Toshihiko Yamamoto
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1997/003989 priority Critical patent/WO1999023748A1/en
Publication of WO1999023748A1 publication Critical patent/WO1999023748A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/125Avoiding or suppressing excessive transient voltages or currents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a method for starting a PWM converter.
  • the power supply current amplitude command which is the PI-compensated output of this deviation, is started to be reduced. This prevents the power supply current from becoming excessive.
  • the power supply current amplitude command is reduced to a small value, so the power supply current for charging the smoothing capacitor is suppressed while charging to a predetermined DC voltage. it can.
  • an excessive power supply current may flow if the maximum voltage on the AC side of the converter is low.
  • the conditions for reducing the maximum voltage on the AC side of the converter include (1) when the DC voltage at startup is small, and (2) when the voltage drop due to the dead time is set so that the power element is not short-circuited. In these cases.
  • the AC side power supply of the converter is controlled by the current control Although it works to increase the voltage command, the AC voltage of the converter is considerably lower than the power supply voltage because the underlying DC voltage is small. Thus, the difference voltage between the power supply voltage and the converter AC side voltage is applied to the AC reactor having relatively small impedance, and an excessive current flows.
  • the voltage on the AC side of the comparator is V dc Z 2-14 1.5 V.
  • the effective value of the line voltage is 3/2 times, that is, 173 V, so that a difference voltage of 27 V is applied to the AC reactor. As a result, an excessive power supply current flows.
  • the present invention has been made in consideration of the above-described problems in the conventional technology.
  • the converter control device generates a chopper drive signal for operating the converter in a cantilever manner and a PWM drive signal for operating the converter in PWM, and constructs a main circuit of the converter by using one of the drive signals. Output to the switching element.
  • the chopper operation and the PWM operation can be appropriately switched and the converter can be operated while using the same converter main circuit. For this reason, when starting the converter, the present control device can output the Chituba drive signal to the switching element, and can output the PWM drive signal to the switching element after the DC output voltage is boosted. Therefore, when switching to PWM operation, the voltage across the AC reactor can be reduced, so that no excessive power supply current flows to the AC side.
  • the converter control method when the converter is started, the converter is operated in a chopper, and after the DC output voltage is boosted, the converter is operated in PWM.
  • the voltage across the AC reactor can be reduced, so that an excessive power supply current does not flow to the AC side.
  • the converter according to the present invention is operated by the control device or the control method as described above. Therefore, at the time of startup, there is no inconvenience that the switching element is destroyed or malfunctions due to an excessive power supply current.
  • FIG. 1 is a control block diagram showing one embodiment of the present invention.
  • FIG. 2 is a detailed block diagram of the PWM converter control means shown in FIG. Figure 3 shows an example of supplying a one-phase chopper gate voltage to the converter main circuit.
  • FIG. 4 is a diagram showing a method of creating the one-phase chopper signal shown in FIG.
  • FIG. 5 is an operation mode diagram of how the power supply current ir flows in FIG.
  • FIG. 6 is a diagram showing how a main circuit current flows in each mode of FIG.
  • FIG. 7 is a simulation diagram of the boosting operation at the time of the one-phase filter control in FIG.
  • FIG. 8 is a flowchart showing a control sequence in the embodiment of the present invention.
  • FIG. 9 is an operation waveform diagram of an operation mode and a DC voltage in the embodiment of the present invention.
  • FIG. 10 is a flowchart showing a control sequence in another embodiment of the present invention.
  • FIG. 11 is an operation waveform diagram of an operation mode and a DC voltage in another embodiment of the present invention.
  • FIG. 12 is a diagram showing an example of supplying a three-phase Chiborg gate voltage to the converter main circuit.
  • FIG. 13 is a diagram showing a method of creating the three-phase chitsubasa signal shown in FIG.
  • FIG. 14 is a simulation diagram of the boosting operation when the three-phase shared control shown in FIG. 12 is performed.
  • FIG. 15 is a configuration diagram of a single-phase PWM converter to which the present invention is applied.
  • FIG. 16 is a configuration diagram of an active filter to which the present invention is applied.
  • AC power is supplied from an AC power supply 1 to a converter 3 via an AC reactor 2, and this AC power is converted into DC power in the converter 3, and is supplied to a smoothing capacitor 4 and a load 5. Supplied.
  • the contactor 6 is in the open state, and the charging current flows to the smoothing capacitor via the inrush current suppression resistor 7.
  • the DC voltage V dc When charged to or near the diode rectified voltage, contactor 6 closes and shorts inrush current suppression resistor 7. That is, the rush current to the smoothing capacitor when charging up to the diode rectified voltage is suppressed by the contactor 6 and the rush current suppressing resistor 7.
  • the control circuit 8 including a microcomputer starts operating.
  • the switch 10 is switched to the chopper signal by the gate signal switching means 9.
  • the converter 3 is operated by the chopper operation through the gate circuit 12 by the chopper operation gate signal generation means 11 to perform the boost operation.
  • the chopper operation is performed from the beginning, but the contactor 6 is in the open state, and the charging current flows to the smoothing capacitor via the inrush current suppressing resistor 7.
  • the contactor 6 closes and short-circuits the inrush current suppressing resistor 7, and thereafter the voltage is increased only by the chopper control.
  • the voltage across the smoothing capacitor is detected by the DC voltage detector 13 and this output is monitored.
  • the DC voltage reaches the DC voltage during the normal operation of the PWM converter, all the gate signals are cut off once.
  • Switch switch 10 to PWM signal This switches to the PWM converter operation control.
  • the PWM converter operation control means 14 creates the power supply current amplitude command so that the actual DC voltage detection value matches the DC voltage command Vdc *.
  • the voltage detector 15 that insulates and detects the AC voltage and the power phase detection means 16 detects the R-phase power voltage phase ⁇ r and creates a current command with a power factor of 1 based on this. are doing.
  • a PWM signal is output so that the actual power supply current detected by the current detector 17 matches the current command.
  • the embodiment described above is an example in which the fever control is started immediately after the power is turned on. As described above, the same operation is performed even after the diode is rectified and the control is performed.
  • the insulated gate bipolar transistor (hereinafter referred to as IGBT) of converter 3 is turned off, so that a diode rectifier circuit is formed. It becomes a three-phase rectified voltage.
  • the smoothing capacitor is charged through the inrush current suppression resistor 7, and when the DC voltage V dc is charged to near the diode rectification voltage, the contactor 6 closes and the inrush current suppression resistor 7 is activated. Short circuit.
  • the gate signal switching means 9 switches the switch 10 to the chopper signal and operates the converter 3 as a chopper to increase the DC voltage.
  • the gate signal is temporarily cut off and switch 10 is switched to the PWM signal. This switches to PWM converter operation control.
  • the amplitude command I * of the power supply current is output via the compensation means 18 for the DC voltage deviation (proportional + integral).
  • the current command generating means 19 calculates the following equation and outputs three-phase instantaneous current commands i u *, iv *, i w *.
  • i w * — (i u * + i v *)
  • the current control means 20 outputs a voltage command Vc * of the three-phase converter so that the actual power supply current ir, is, it matches the current command, and outputs a PWM signal corresponding to the voltage command to the PWM command. Output by the signal generation means 21.
  • the chimney driving gate signal generating means 11 which is a main part of the present invention will be described in detail.
  • FIG. 3 shows a detailed circuit configuration diagram of the converter 3.
  • the IGBTT UP of the positive arm and the reflux diode D UP are connected in parallel in opposite directions.
  • the negative arm has IGBTT UN and reflux diode D UN connected in parallel in opposite directions.
  • the positive arm element and the negative arm element are connected in series. The same applies to the V and W phases. Therefore, given a gate voltage of Chiyotsuba only T UN, driving all other IGBT is in a state of OFF.
  • Figure 4 shows the gate signal output method.
  • a gate signal is output by comparing a triangular wave and a modulated wave.
  • the butterfly gate signal S UN is created.
  • the gate signal of OFF is generated by setting the modulation wave level of the other transistors smaller than the lower limit of the triangular wave.
  • FIG. 5 shows the operation mode of the flow of the R-phase power supply current ir when the gate signal shown in FIG. 3 is given
  • FIG. 6 shows the flow of the main circuit current in each mode.
  • the operation mode changes according to the three phases of the power supply voltage. For example T UN-on in mode 1, to flow from the power supply voltage V R in the direction of the low supply voltage V s, V R _ Lu- T UN -D VN - L v - AC in the path of V s _ V R Riata torr Lu, current flows in the L v, energy is stored.
  • Fig. 7 shows the simulation results of the boosting operation in the modes shown in Figs.
  • the DC voltage is approximately 280 V in the diode rectification mode.
  • the chopper operation is started from 40 ms to increase the pressure.
  • the simulation conditions are as follows: the Chitsubasa frequency is 1 kHz, the Chioppa on section is 100 ⁇ , and the off period is
  • the inductance of the AC reactor is 2 mH and the capacitance of the smoothing capacitor is 1800 ⁇ F, which is a value for several kW load.
  • the power supply current ir flows in the mode shown in FIG. In addition, in Fig. 7, the DC voltage during PWM
  • the power supply current can be suppressed by shortening the on-period of the chopper signal (reducing the conduction ratio) in one cycle section at the start of the chopper control.
  • FIG. 8 shows a flowchart of the control sequence in this embodiment
  • FIG. 9 shows the relationship between the operation waveform of the DC voltage and the operation mode.
  • the chopper control is started when the AC power is turned on. Also, the DC voltage V dc rises to almost the diode rectified voltage via the inrush current suppressing resistor 7 and thereafter is boosted by the chopper control. Therefore, at the start of the control of the butterfly, the inrush current suppressing resistor 7 can prevent an excessive charging current from flowing.
  • FIG. 10 shows a flowchart of a control sequence in another starting method
  • FIG. 11 shows the relationship between the operation waveform of the DC voltage and the operation mode.
  • the AC power is turned on with all gate signals turned off, and the DC voltage is first increased to the diode rectified voltage via the inrush current suppression resistor 7.
  • the start command is turned on, the chitsubasa operation starts and the pressure rises.
  • the DC voltage is monitored, and when the voltage exceeds 340 V, all gate signals are temporarily turned off, and thereafter, the control is switched to PWM converter control.
  • the operation may be switched to the PWM operation before the DC voltage is boosted to 34V.
  • the Chitsubasa operation may be started before the DC voltage becomes 280 V.
  • the converter AC voltage at the start of the PWM converter operation is equivalent to the power supply voltage.
  • Large output can be obtained.
  • switching to PWM control has the effect of enabling smooth start-up without excessive current flow.
  • FIG. 3 has been Chiyotsuba controlled negative arm of T UN as a method of boosting, the same effect even if the T UP of positive arms off the T UN of Faichi beam is Chiyoppa operation.
  • FIG. 3 has been Chiyotsuba controlled negative arm of T UN as a method of boosting, the same effect even if the T UP of positive arms off the T UN of Faichi beam is Chiyoppa operation.
  • the chopper operates only in one phase, but the same effect can be obtained by operating the chopper in two or three phases, and the self-extinguishing of one of the positive and negative arms is performed.
  • the arc element is operated as a squirt, and the self-extinguishing element of the other arm is turned off to raise the temperature.
  • Fig. 12 shows the main circuit configuration when the three-phase chopper signals are given, and Fig. 13 shows how to create the gate signals.
  • Negative arms of the T UN, TVN, given gate voltage of Chiyotsuba to T WN, Trang register positive arm operates at all the off state.
  • the gate signal is output by setting the modulation wave levels of the transistors T UN , T VN , and T WN to be greater than the lower limit of the triangular wave, and comparing the output with the triangular wave to output the gate signal.
  • the gate signal is turned off by setting the modulation wave level of the positive transistor to be smaller than the lower limit of the triangular wave.
  • Fig. 14 shows the simulation result when the gate signal is controlled by this gate signal.
  • the major difference from the one-phase fever in Fig. 7 is that the fundamental wave of the power supply current becomes a sine wave at a power supply power factor of 1, which has the effect of boosting the voltage with less power supply harmonics and no DC component. is there.
  • the chamber control was started from the DC voltage after the diode rectification.However, the chamber control may be performed when the AC power supply 1 is turned on. basically, before starting the PWM converter control at the time of steady operation. After the DC voltage between the smoothing capacitors is increased by chopper control of the converter, it is switched to PWM converter control.
  • the present invention has been described with reference to the three-phase PWM converter.
  • the general single-phase PWM converter shown in FIG. 15 and the general active filter for compensating the load side harmonic current shown in FIG. The same effect can be obtained by applying it to a general method of starting a voltage-source converter.
  • the switching operation is performed in the converter main circuit before switching to the PWM converter control, and after the DC voltage is increased, the switching to the PWM converter control is performed.
  • switching to PWM control is performed with the DC voltage being large, so that the converter AC side voltage equivalent to the power supply voltage can be output. Since the voltage between the current reactors can be reduced, there is an effect that switching to regular PWM control is performed without excessive power supply current flowing.
  • one of the positive or negative arms of the converter main circuit is operated by the chopper operation to boost the voltage.
  • the chopper operation boost the voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

A converter which converts AC power into DC power by turning on/off a switching element is operated with a chopper at the time of starting the converter and, after the DC output voltage of the converter is boosted, with a PWM. When the converter is operated in such a way, no excessively large power supply current flows to the AC side, because the voltage across both ends of an AC reactor can be made lower.

Description

明 細 書  Specification
コンバータの制御装置及び制御方法並びにコンバータ 技術分野  Converter control device and control method, and converter
本発明は、 P W Mコンバータの起動方法に関する。 背景技術  The present invention relates to a method for starting a PWM converter. Background art
パルス幅変調 (P W M ) コンパ一タにおいては、 ダイオー ド整流モ一 ドから P W Mコンバータ制御へ切り替える起動時において過大な電源電 流が流れるため、 コンバータ主回路素子の破損や過電流保護回路の誤動 作という問題が有る。 この解決方法として、 特開平 1— 160364 号公報に 記載されている技術が有る。 これは、 コンバータ起動前はコンパ一タ出 力側における直流電圧検出値を直流電圧指令とし、 起動後はコンバータ 定常運転時の直流電圧指令まで徐々に直流電圧指令を大きく している。 このような処理によリ、 直流電圧指令と検出値の偏差を小さくすること で、 この偏差を P I補償した出力である電源電流振幅指令を小さく して 起動している。 これにより、 電源電流が過大にならないようにしている < この従来例は、 電源電流振幅指令を小さく絞って起動するので平滑コ ンデンサを充電するための電源電流を抑制しながら所定の直流電圧まで 充電できる。 しかし、 電源電流振幅指令を小さく して起動しても、 コン バータ交流側の最大電圧が小さい場合は過大電源電流が流れる場合があ る。 コンバータ交流側の最大電圧が小さくなる条件としては、 ( 1 ) 起 動時の直流電圧が小さい場合、 ( 2 ) パワー素子が短絡しないように設 けたデッ ドタイムによる電圧降下が大きい場合等がある。 これらの場合. 電流制御手段により電源電流が小さくなるようにコンバータの交流側電 圧指令をより大きく しょうと動作するが、 基になる直流電圧が小さいた めコンバータの交流側電圧が電源電圧よりかなり小さくなる。 そこで、 電源電圧とコンバータ交流側電圧との差電圧が比較的ィンピーダンスが 小さい交流リァク トルに加わり過大電流が流れる。 In a pulse width modulation (PWM) converter, an excessive power supply current flows at the start of switching from the diode rectification mode to the PWM converter control, so that the converter main circuit element is damaged and the overcurrent protection circuit malfunctions. There is a problem of work. As a solution to this problem, there is a technique described in Japanese Patent Application Laid-Open No. 1-160364. In this method, the DC voltage detection value at the output side of the converter is used as the DC voltage command before starting the converter, and the DC voltage command is gradually increased after starting up to the DC voltage command during steady-state operation of the converter. By reducing the deviation between the DC voltage command and the detected value by such processing, the power supply current amplitude command, which is the PI-compensated output of this deviation, is started to be reduced. This prevents the power supply current from becoming excessive. <In this conventional example, the power supply current amplitude command is reduced to a small value, so the power supply current for charging the smoothing capacitor is suppressed while charging to a predetermined DC voltage. it can. However, even if the power supply current amplitude command is reduced and the converter is started, an excessive power supply current may flow if the maximum voltage on the AC side of the converter is low. The conditions for reducing the maximum voltage on the AC side of the converter include (1) when the DC voltage at startup is small, and (2) when the voltage drop due to the dead time is set so that the power element is not short-circuited. In these cases. The AC side power supply of the converter is controlled by the current control Although it works to increase the voltage command, the AC voltage of the converter is considerably lower than the power supply voltage because the underlying DC voltage is small. Thus, the difference voltage between the power supply voltage and the converter AC side voltage is applied to the AC reactor having relatively small impedance, and an excessive current flows.
例えば、 2 0 0 V受電の場合、 ダイォー ド整流電圧は電源電圧のピー クまで充電するので V d c = 2 8 3 Vとなる。 この直流電圧で振幅比 1 (搬送波ピーク値に対する変調波ピーク値の比が 1 ) におけるコンパ一 タ交流側の電圧は、 正弦波変調の場合、 相電圧のピーク値が V d c Z 2 - 1 4 1 . 5 V となる。 なお、 線間電圧の実効値では 3 / 2倍とな り 1 7 3 Vとなるので 2 7 Vの差電圧が交流リアク トルに加わることに なる。 これにより、 過大電源電流が流れる。 又、 振幅比を 1以上に大き く してもパワー素子が短絡しないように設けたデッ ドタイムによる電圧 降下が大きいと、 コンバータの交流側電圧が小さくなリ、 過大な電源電 流が流れやすい。 なお、 直流電圧が上昇していく とコンバータ交流側電 圧が大きくなり差電圧が小さくなるので過大電流が収束する。 このよう なことから、 デッ ドタイムによる電圧降下が大きい場合等、 電源電流振 幅指令を小さく して起動するだけでは過大電源電流の抑制効果は十分で ない場合がある。 発明の開示  For example, in the case of receiving 200 V, the diode rectified voltage charges up to the peak of the power supply voltage, so that V dc = 283 V. In this DC voltage, when the amplitude ratio is 1 (the ratio of the peak value of the modulated wave to the peak value of the carrier wave is 1), the voltage on the AC side of the comparator is V dc Z 2-14 1.5 V. Note that the effective value of the line voltage is 3/2 times, that is, 173 V, so that a difference voltage of 27 V is applied to the AC reactor. As a result, an excessive power supply current flows. Also, if the voltage drop due to the dead time provided so that the power element is not short-circuited even if the amplitude ratio is increased to 1 or more, the AC side voltage of the converter becomes small, and excessive power supply current tends to flow. When the DC voltage increases, the converter AC side voltage increases and the difference voltage decreases, so that the excess current converges. For this reason, when the voltage drop due to the dead time is large, the effect of suppressing the excessive power supply current may not be sufficient simply by starting with a small power supply current amplitude command. Disclosure of the invention
本発明は、 従来技術における上述したような問題点を考慮してなされ たものである。  The present invention has been made in consideration of the above-described problems in the conventional technology.
本発明によるコンバータの制御装置は、 コンバータをチヨツバ運転す るためのチヨッパ駆動信号及びコンパ一タを P W M運転するための PWM 駆動信号を発生し、 どちらか一方の駆動信号をコンバータの主回路を構 成するスイッチング素子に出力する。 本制御装置によれば、 同じコンパ —タ主回路を用いながらも、 チヨッパ運転と P W M運転とを適宜切り替 えて、 コンパ一タを動作させることができる。 このため、 本制御装置は、 コンバータの起動時には、 チヨツバ駆動信号をスィツチング素子に出力 し、 直流出力電圧が昇圧された後で、 P W M駆動信号をスイッチング素 子に出力することができる。 従って、 P W M運転へ切り替わるときに、 交流リァク トル両端の電圧を小さくできるので、 交流側に過大な電源電 流が流れない。 The converter control device according to the present invention generates a chopper drive signal for operating the converter in a cantilever manner and a PWM drive signal for operating the converter in PWM, and constructs a main circuit of the converter by using one of the drive signals. Output to the switching element. According to this control device, the chopper operation and the PWM operation can be appropriately switched and the converter can be operated while using the same converter main circuit. For this reason, when starting the converter, the present control device can output the Chituba drive signal to the switching element, and can output the PWM drive signal to the switching element after the DC output voltage is boosted. Therefore, when switching to PWM operation, the voltage across the AC reactor can be reduced, so that no excessive power supply current flows to the AC side.
次に、 本発明によるコンバータの制御方法は、 起動時にはコンバータ をチヨッパ運転し、 直流出力電圧が昇圧された後、 P W M運転する。 本 制御方法によれば、 本発明によるコンバータの制御装置と同様に、 PWM 運転へ切り替わるときに、 交流リアク トル両端の電圧を小さくできるの で、 交流側に過大な電源電流が流れない。  Next, in the converter control method according to the present invention, when the converter is started, the converter is operated in a chopper, and after the DC output voltage is boosted, the converter is operated in PWM. According to this control method, similarly to the converter control device according to the present invention, when switching to the PWM operation, the voltage across the AC reactor can be reduced, so that an excessive power supply current does not flow to the AC side.
さらに、 本発明によるコンバータは、 上述したような制御装置または 制御方法により運転される。 従って、 起動時において、 過大な電源電流 によってスィツチング素子が破壊されたりあるいは誤動作したりするよ うな不都合が起こらない。 図面の簡単な説明  Further, the converter according to the present invention is operated by the control device or the control method as described above. Therefore, at the time of startup, there is no inconvenience that the switching element is destroyed or malfunctions due to an excessive power supply current. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の一実施例を示す制御プロック図。  FIG. 1 is a control block diagram showing one embodiment of the present invention.
第 2図は第 1 図に示す P WMコンバータ制御手段の詳細プロック図。 第 3図はコンバータ主回路への 1相チヨッパゲ一ト電圧の供給例を示 す図。  FIG. 2 is a detailed block diagram of the PWM converter control means shown in FIG. Figure 3 shows an example of supplying a one-phase chopper gate voltage to the converter main circuit.
第 4図は第 3図に示す 1相チヨッパ信号の作成方法を示す図。  FIG. 4 is a diagram showing a method of creating the one-phase chopper signal shown in FIG.
第 5図は第 3図における電源電流 i rの流れ方の動作モー ド図。 第 6図は第 5図の各モ一 ドにおける主回路電流の流れ方を示す図。 第 7図は第 3図における 1相チヨツバ制御時の昇圧動作のシミュレ一 シヨン図。 FIG. 5 is an operation mode diagram of how the power supply current ir flows in FIG. FIG. 6 is a diagram showing how a main circuit current flows in each mode of FIG. FIG. 7 is a simulation diagram of the boosting operation at the time of the one-phase filter control in FIG.
第 8図は本発明の実施例における制御シーケンスを示すフローチヤ一 卜図。  FIG. 8 is a flowchart showing a control sequence in the embodiment of the present invention.
第 9図は本発明の実施例における運転モー ドと直流電圧の動作波形図 第 1 0図は本発明の他の実施例における制御シーケンスを示すフロ一 チヤ一 卜図。  FIG. 9 is an operation waveform diagram of an operation mode and a DC voltage in the embodiment of the present invention. FIG. 10 is a flowchart showing a control sequence in another embodiment of the present invention.
第 1 1 図は本発明の他の実施例における運転モー ドと直流電圧の動作 波形図。  FIG. 11 is an operation waveform diagram of an operation mode and a DC voltage in another embodiment of the present invention.
第 1 2図はコンバータ主回路への 3相チヨッバゲ一 卜電圧の供給例を 示す図。  FIG. 12 is a diagram showing an example of supplying a three-phase Chiborg gate voltage to the converter main circuit.
第 1 3図は第 1 2図に示す 3相チヨツバ信号の作成方法を示す図。 第 1 4図は第 1 2図に示す 3相共チヨツバ制御した時の昇圧動作のシ ミュレ一シヨン図。  FIG. 13 is a diagram showing a method of creating the three-phase chitsubasa signal shown in FIG. FIG. 14 is a simulation diagram of the boosting operation when the three-phase shared control shown in FIG. 12 is performed.
第 1 5図は本発明の応用対象である単相 P W Mコンバータの構成図。 第 1 6図は本発明の応用対象であるァクティブフィルタの構成図。 発明を実施すめための最良の形態  FIG. 15 is a configuration diagram of a single-phase PWM converter to which the present invention is applied. FIG. 16 is a configuration diagram of an active filter to which the present invention is applied. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を図面に基づいて説明する。 第 1 図において、 交流電源 1 から交流電力が交流リァク トル 2 を介して、 コンバータ 3に 供給されており、 この交流電力はコンバータ 3において、 直流電力に変 換され、 平滑コンデンサ 4 と負荷 5に供給されている。 なお、 交流電源 1 を投入後はコンタクタ 6がオープン状態であリ突入電流抑制抵抗 7 を 介して平滑コンデンサへ充電電流が流れる。 この後、 直流電圧 V d cが ダイォー ド整流電圧またはその近くまで充電されるとコンタクタ 6が閉 じて突入電流抑制抵抗 7 を短絡する。 すなわち、 コンタクタ 6及び突入 電流抑制抵抗 7により、 ダイォー ド整流電圧まで充電する際の平滑コン デンサへの突入電流が抑制される。 一方、 制御装置の方は電源 1 の投入 によりマイクロコンピュータから成る制御回路 8が動作を開始する。 次 に、 最初から起動指令をオンしていると、 ゲー ト信号切替手段 9により スィッチ 1 0はチヨッパ信号の方へ切り替わつている。 又チヨッパ運転 ゲー 卜信号発生手段 1 1 によりゲー ト回路 1 2 を介してコンバータ 3 を チヨツバ運転し昇圧動作を行う。 このように最初からチヨッパ動作を行 うが、 コンタクタ 6がオープン状態であり突入電流抑制抵抗 7 を介して 平滑コンデンサへ充電電流が流れることになる。 この後、 直流電圧 Vdc がダイォー ド整流電圧またはその近くまで充電されるとコンタクタ 6が 閉じて突入電流抑制抵抗 7 を短絡するのでこの後はチヨッパ制御のみに より昇圧する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, AC power is supplied from an AC power supply 1 to a converter 3 via an AC reactor 2, and this AC power is converted into DC power in the converter 3, and is supplied to a smoothing capacitor 4 and a load 5. Supplied. After the AC power supply 1 is turned on, the contactor 6 is in the open state, and the charging current flows to the smoothing capacitor via the inrush current suppression resistor 7. After this, the DC voltage V dc When charged to or near the diode rectified voltage, contactor 6 closes and shorts inrush current suppression resistor 7. That is, the rush current to the smoothing capacitor when charging up to the diode rectified voltage is suppressed by the contactor 6 and the rush current suppressing resistor 7. On the other hand, in the case of the control device, when the power supply 1 is turned on, the control circuit 8 including a microcomputer starts operating. Next, when the start command is turned on from the beginning, the switch 10 is switched to the chopper signal by the gate signal switching means 9. In addition, the converter 3 is operated by the chopper operation through the gate circuit 12 by the chopper operation gate signal generation means 11 to perform the boost operation. Thus, the chopper operation is performed from the beginning, but the contactor 6 is in the open state, and the charging current flows to the smoothing capacitor via the inrush current suppressing resistor 7. Thereafter, when the DC voltage Vdc is charged to or near the diode rectified voltage, the contactor 6 closes and short-circuits the inrush current suppressing resistor 7, and thereafter the voltage is increased only by the chopper control.
次に、 平滑コンデンサ両端の電圧は直流電圧検出器 1 3で検出してお り、 この出力を監視し P W Mコンバータ定常運転時の直流電圧に到達す ると、 いったんゲ一 ト信号を全て遮断しスィツチ 1 0を P WM信号の方 へ切り替える。 これにより P WMコンバータ運転制御に切り替える。 P WMコンバータ運転制御手段 1 4では、 直流電圧指令 V dc* に実際の 直流電圧検出値が一致するように電源電流振幅指令を作成している。 又、 交流電圧を絶縁して検出する電圧検出器 1 5 と電源位相検出手段 1 6に より、 R相の電源電圧位相 Θ r を検出し、 これを基に電源力率 1の電流 指令を作成している。 更には、 電流指令に電流検出器 1 7で検出した実 際の電源電流が一致するように P WM信号を出力している。  Next, the voltage across the smoothing capacitor is detected by the DC voltage detector 13 and this output is monitored.When the DC voltage reaches the DC voltage during the normal operation of the PWM converter, all the gate signals are cut off once. Switch switch 10 to PWM signal. This switches to the PWM converter operation control. The PWM converter operation control means 14 creates the power supply current amplitude command so that the actual DC voltage detection value matches the DC voltage command Vdc *. In addition, the voltage detector 15 that insulates and detects the AC voltage and the power phase detection means 16 detects the R-phase power voltage phase Θr and creates a current command with a power factor of 1 based on this. are doing. Further, a PWM signal is output so that the actual power supply current detected by the current detector 17 matches the current command.
以上述べた実施例は電源投入直後からチヨツバ制御を開始する例で説 明したがダイォ一 ド整流後からチヨツバ制御しても同様な動作となる。 まず、 コンバータ 3のゲー ト信号を全て遮断した状態で電源を投入する とコンバータ 3の絶縁ゲー 卜バイポーラ トランジスタ (以下 I G B Tと 記す) がオフしているのでダイオー ド整流回路となり、 直流電圧 V d c は三相整流電圧となる。 この場合も交流電源 1 を投入後は突入電流抑制 抵抗 7 を介して平滑コンデンサへ充電し、 直流電圧 V d cがダイォー ド 整流電圧近くまで充電されるとコンタクタ 6が閉じて突入電流抑制抵抗 7 を短絡している。 The embodiment described above is an example in which the fever control is started immediately after the power is turned on. As described above, the same operation is performed even after the diode is rectified and the control is performed. First, when the power is turned on while all the gate signals of converter 3 are cut off, the insulated gate bipolar transistor (hereinafter referred to as IGBT) of converter 3 is turned off, so that a diode rectifier circuit is formed. It becomes a three-phase rectified voltage. In this case as well, after the AC power supply 1 is turned on, the smoothing capacitor is charged through the inrush current suppression resistor 7, and when the DC voltage V dc is charged to near the diode rectification voltage, the contactor 6 closes and the inrush current suppression resistor 7 is activated. Short circuit.
次に、 起動指令が入ることでゲ一 卜信号切替手段 9によリスィツチ 1 0をチヨッパ信号の方へ切り替えコンバータ 3 をチヨッパ運転して直 流電圧を昇圧する。 次に、 平滑コンデンサ両端の電圧が PWMコンパ一 タ定常運転時の直流電圧に到達すると、 いったんゲー 卜信号を全て遮断 しスィッチ 1 0 を PWM信号の方へ切り替える。 これにより PWMコン バ一タ運転制御に切リ替えている。  Next, when a start command is input, the gate signal switching means 9 switches the switch 10 to the chopper signal and operates the converter 3 as a chopper to increase the DC voltage. Next, when the voltage between both ends of the smoothing capacitor reaches the DC voltage at the time of the steady operation of the PWM comparator, the gate signal is temporarily cut off and switch 10 is switched to the PWM signal. This switches to PWM converter operation control.
次に、 PWMコンバータ運転制御手段 1 4の詳細ブロック図を第 2図 に示す。 直流電圧の偏差を (比例 +積分) 補償手段 1 8 を介して電源電 流の振幅指令 I * を出力している。 又、 電流指令発生手段 1 9では下式 の演算を行い、 三相の瞬時電流指令 i u*, iv*, i w*を出力している。 Next, a detailed block diagram of the PWM converter operation control means 14 is shown in FIG. The amplitude command I * of the power supply current is output via the compensation means 18 for the DC voltage deviation (proportional + integral). The current command generating means 19 calculates the following equation and outputs three-phase instantaneous current commands i u *, iv *, i w *.
i u*= I * « sin0 r  i u * = I * «sin0 r
i v*= I * . sin ( Θ r - 2 π / 3 )  i v * = I * .sin (Θ r-2 π / 3)
i w* =— ( i u* + i v*)  i w * = — (i u * + i v *)
次に、 電流制御手段 2 0では電流指令に実際の電源電流 i r, i s, i tがー致するように三相コンバータの電圧指令 Vc*を出力し、 この電 圧指令に対応した PWM信号を PWM信号発生手段 2 1 により出力して いる。 次に、 本発明の主要部であるチヨツバ運転ゲー ト信号発生手段 1 1の 実施例と動作について詳細に述べる。 Next, the current control means 20 outputs a voltage command Vc * of the three-phase converter so that the actual power supply current ir, is, it matches the current command, and outputs a PWM signal corresponding to the voltage command to the PWM command. Output by the signal generation means 21. Next, an embodiment and operation of the chimney driving gate signal generating means 11 which is a main part of the present invention will be described in detail.
コンバータ 3の詳細回路構成図を第 3図に示す。 ( i =U, V, W, j =N, P ) は I G B T Ti をオンオフ制御する駆動信号を作成 するためのゲー 卜信号である。 U相は正アームの I G B T TUPと還流ダ ィォー ド D UPを逆方向に並列接続している。 負アームも同様に I G B T TUNと還流ダイオー ド DUNを逆方向に並列接続している。 又、 正アーム 素子と負アーム素子は直列に接続している。 なお、 V相, W相も同様で ある。 そこで、 TUNのみチヨツバのゲー ト電圧を与え、 他の I G B Tは 全てオフした状態で運転する。 FIG. 3 shows a detailed circuit configuration diagram of the converter 3. (i = U, V, W, j = N, P) are gate signals used to create a drive signal for controlling IGBT Ti on / off. In the U phase, the IGBTT UP of the positive arm and the reflux diode D UP are connected in parallel in opposite directions. Similarly, the negative arm has IGBTT UN and reflux diode D UN connected in parallel in opposite directions. The positive arm element and the negative arm element are connected in series. The same applies to the V and W phases. Therefore, given a gate voltage of Chiyotsuba only T UN, driving all other IGBT is in a state of OFF.
ゲー ト信号の出力方法を第 4図に示す。 第 4図では、 三角波と変調波 を比較することでゲ一 卜信号を出力する。 トランジスタ TUNの変調波レ ベルを三角波下限値より大きく設定することでチヨツバゲー ト信号 SUN を作成している。 又、 他のトランジスタの変調波レベルは三角波下限値 より小さく設定することでオフのゲー 卜信号を作っている。 Figure 4 shows the gate signal output method. In Fig. 4, a gate signal is output by comparing a triangular wave and a modulated wave. By setting the modulation wave level of the transistor T UN to be larger than the lower limit of the triangular wave, the butterfly gate signal S UN is created. Also, the gate signal of OFF is generated by setting the modulation wave level of the other transistors smaller than the lower limit of the triangular wave.
第 3図に示すゲー 卜信号を与えた時における R相電源電流 i rの流れ 方の動作モー ドを第 5図に示し、 各モ一 ドにおける主回路電流の流れ方 を第 6図に示す。 電源電圧の 3毎の位相に応じて動作モー ドが変わ る。 例えばモー ド 1で TUNオン時は、 電源電圧 VR から低い電源電圧 Vsの方向へ流れるため、 VR_ Lu— TUN—DVN— Lv— Vs_ VRの経路 で交流リアタ トル Lu, Lvに電流が流れ、 エネルギーが蓄えられる。 次 に、 チヨッパをオフすると VR— Lu— DUP— C— DVN— Lv— Vs— VR の経路で平滑コンデンサ Cへ充電電流が流れ昇圧する。 又、 第 5図に示 すようにモ一 ド 1からモ一 ド 4まで充電電流が流れ、 モ一 ド 5とモー ド 6は流れない。 次に、 第 5図, 第 6図のモー ドによる昇圧動作のシミュレーション結 果を第 7図に示す。 三相 2 0 0 V受電で 4 0 m sまでの区間はダイォー ド整流モー ドであリ直流電圧は約 2 8 0 Vとなっている。 この後 4 0 m sからチヨッパ運転を行い昇圧している。 シミュレーションの条件は チヨツバ周波数が 1 k H zでチヨッパオン区間が 1 0 0 με、 オフ期間がFIG. 5 shows the operation mode of the flow of the R-phase power supply current ir when the gate signal shown in FIG. 3 is given, and FIG. 6 shows the flow of the main circuit current in each mode. The operation mode changes according to the three phases of the power supply voltage. For example T UN-on in mode 1, to flow from the power supply voltage V R in the direction of the low supply voltage V s, V R _ Lu- T UN -D VN - L v - AC in the path of V s _ V R Riata torr Lu, current flows in the L v, energy is stored. Lu- D UP - - C- D VN - Lv- V s - V routes the charging current to the smoothing capacitor C of the R boosts flows to the next, V R when off Chiyoppa. In addition, as shown in FIG. 5, the charging current flows from mode 1 to mode 4, and mode 5 and mode 6 do not flow. Next, Fig. 7 shows the simulation results of the boosting operation in the modes shown in Figs. In the section up to 40 ms when receiving three-phase 200 V, the DC voltage is approximately 280 V in the diode rectification mode. Thereafter, the chopper operation is started from 40 ms to increase the pressure. The simulation conditions are as follows: the Chitsubasa frequency is 1 kHz, the Chioppa on section is 100 με, and the off period is
9 0 0 である。 又、 交流リアタ トルのインダクタンスは 2 m H、 平滑 コンデンサ容量 1 8 0 0 μ Fであり、 これは数 k W負荷用の値である。 又、 電源電流 i rは第 5図に示すモー ドで流れるため 2 4 0度区間で流 れている。 又、 第 7図において、 実際は P W M定常運転時の直流電圧9 0 0. The inductance of the AC reactor is 2 mH and the capacitance of the smoothing capacitor is 1800 μF, which is a value for several kW load. The power supply current ir flows in the mode shown in FIG. In addition, in Fig. 7, the DC voltage during PWM
(約 3 4 0 V ) まで昇圧した時点で P W Mコンバータ制御へ切り替える ものである。 なお、 第 7図においてチヨツバ制御開始時の 1サイクル区 間約 1 7 Aピークの電源電流が流れている。 これに対し従来技術ではWhen the voltage is raised to about (340 V), the control is switched to PWM converter control. In FIG. 7, a power supply current of about 17 A peak flows during one cycle at the time of the start of the control of the fever. In contrast, in the prior art
1 0 0 A程度の電源電流が流れるので、 本実施例によれば過大電流を十 分抑えることができる。 これにより、 数 k W負荷用コンバータの場合Since a power supply current of about 100 A flows, an excessive current can be sufficiently suppressed according to the present embodiment. As a result, in the case of a converter for several kW load,
5 0 A定格のパワー素子が使用することができる。 又、 チヨツバ制御開 始時の 1サイクル区間、 チヨッパ信号のオン期間を小さく (通流率を小 さく) すれば電源電流を抑制できる。 50 A rated power elements can be used. Also, the power supply current can be suppressed by shortening the on-period of the chopper signal (reducing the conduction ratio) in one cycle section at the start of the chopper control.
次に、 本実施例における制御シーケンスのフローチヤ一 卜図を第 8図 に示し、 直流電圧の動作波形と運転モー ドとの関係を第 9図に示す。 交 流電源の投入と共にチヨッパ制御を開始している。 又、 直流電圧 V d c は突入電流抑制抵抗 7 を介してほぼダイォ一 ド整流電圧まで上がりその 後はチヨッパ制御により昇圧する。 従ってチヨツバ制御開始時に、 突入 電流抑制抵抗 7により、 過大な充電電流が流れることが防止できる。 次 に、 直流電圧を監視しておき 3 4 0 Vを超えた時点で全てのゲー ト信号 をいつたんオフし、 その後 P W Mコンバータ制御に切り替える。 これに より、 約 V d c = 3 4 0 V—定で P W Mコンバータ制御を継続する。 な お、 P W M運転切替時に流れる電源電流がコンバータ主回路のスィツチ ング素子の定格電流よりも小さくなるのであれば、 直流電圧が 3 4 0 V まで昇圧される前に、 チヨツバ運転から P WM運転に切り替えても良レ、。 次に、 他の起動方法における制御シーケンスのフローチヤ一 卜図を第 1 0に示し、 直流電圧の動作波形と運転モー ドとの関係を第 1 1 図に示 す。 これは全ゲ一 ト信号をオフした状態で交流電源を投入し、 直流電圧 をまず突入電流抑制抵抗 7 を介してダイォー ド整流電圧まで上げる。 そ の後、 起動指令がオンするとチヨツバ運転を開始し昇圧する。 次に、 直 流電圧を監視しておき 3 4 0 Vを超えた時点で全てのゲ一 卜信号をいつ たんオフし、 その後 P WMコンバータ制御に切り替えている。 Next, FIG. 8 shows a flowchart of the control sequence in this embodiment, and FIG. 9 shows the relationship between the operation waveform of the DC voltage and the operation mode. The chopper control is started when the AC power is turned on. Also, the DC voltage V dc rises to almost the diode rectified voltage via the inrush current suppressing resistor 7 and thereafter is boosted by the chopper control. Therefore, at the start of the control of the butterfly, the inrush current suppressing resistor 7 can prevent an excessive charging current from flowing. Next, the DC voltage is monitored, and when it exceeds 340 V, all the gate signals are turned off, and then the control is switched to PWM converter control. to this Therefore, the PWM converter control is continued at about V dc = 340 V—constant. If the power supply current flowing at the time of PWM operation switching is smaller than the rated current of the switching element of the converter main circuit, before the DC voltage is boosted up to 340 V, the operation switches from Chituba operation to PWM operation. It is good to switch, Next, FIG. 10 shows a flowchart of a control sequence in another starting method, and FIG. 11 shows the relationship between the operation waveform of the DC voltage and the operation mode. In this method, the AC power is turned on with all gate signals turned off, and the DC voltage is first increased to the diode rectified voltage via the inrush current suppression resistor 7. After that, when the start command is turned on, the chitsubasa operation starts and the pressure rises. Next, the DC voltage is monitored, and when the voltage exceeds 340 V, all gate signals are temporarily turned off, and thereafter, the control is switched to PWM converter control.
なお、 第 8図, 第 9図の場合と同様に、 直流電圧が 3 4 0 Vまで昇圧 される前に、 P W M運転に切り替えても良い。 また、 直流電圧が 2 8 0 Vになる前にチヨツバ運転を開始しても良い。  As in the case of FIGS. 8 and 9, the operation may be switched to the PWM operation before the DC voltage is boosted to 34V. In addition, the Chitsubasa operation may be started before the DC voltage becomes 280 V.
以上述べたように本発明の一実施例によればチヨッパ制御によリ直流 電圧を昇圧した後、 P WM制御に切り替えるので、 P W Mコンバータ動 作を開始する時のコンバータ交流側電圧を電源電圧相当まで大きく出力 できる。 この結果、 交流リアク トルに過大な電圧が加わらないため PWM 制御に切り替えた際、 過大な電流が流れることもなくスムーズに起動で きると言う効果がある。 又、 第 3図では昇圧する方法として負アームの T U Nをチヨツバ制御したが、 正アームの T U Pをチヨッパ動作させ負ァ一 ムの T U Nをオフにしても同様の効果がある。 又、 第 3図では 1相のみチ ョッパ動作させたが、 2相又は 3相でチヨッパ動作しても同様な効果が あり、 正又は負ァ一ムのうち、 いずれか一方のアームの自己消弧素子を チヨツバ動作させ、 他アームの自己消弧素子をオフ状態にすることで昇 圧させるものである。 3相共チヨッパ信号を与えた場合の主回路構成図 を第 1 2図に示し、 ゲー ト信号の作成方法を第 1 3図に示す。 負アーム の TUN, TVN, TWNにチヨツバのゲー ト電圧を与え、 正アームのトラン ジスタは全てオフした状態で運転する。 ゲー ト信号の出力方法は、 トラ ンジスタ TUN, TVN, TWNの変調波レベルを三角波下限値より大きく設 定し、 三角波と比較することでゲー ト信号を出力している。 又、 正ァ一 ム卜ランジスタの変調波レベルは三角波下限値よリ小さく設定すること でオフのゲ一 卜信号を作っている。 このゲー ト信号でチヨツバ制御した 時のシミュレーション結果を第 1 4図に示す。 第 7図の 1相チヨツバと 大きく異なる部分は、 電源電流の基本波が電源力率 1 で正弦波となる点 であり、 電源高調波が少なく直流分を含まない状態で昇圧できると言う 効果がある。 又、 シミュレ一シヨンはダイオー ド整流後の直流電圧から チヨツバ制御を開始したが、 交流電源 1 の投入時点からチヨツバ制御し ても良く、 基本的に定常運転時の PWMコンバータ制御を開始する前に、 コンバータをチヨッパ制御することで平滑コンデンサ間の直流電圧を昇 圧した後、 PWMコンバータ制御へ切り替えるものである。 As described above, according to the embodiment of the present invention, after the DC voltage is boosted by the chopper control and then switched to the PWM control, the converter AC voltage at the start of the PWM converter operation is equivalent to the power supply voltage. Large output can be obtained. As a result, since excessive voltage is not applied to the AC reactor, switching to PWM control has the effect of enabling smooth start-up without excessive current flow. Further, in FIG. 3 has been Chiyotsuba controlled negative arm of T UN as a method of boosting, the same effect even if the T UP of positive arms off the T UN of Faichi beam is Chiyoppa operation. In addition, in FIG. 3, the chopper operates only in one phase, but the same effect can be obtained by operating the chopper in two or three phases, and the self-extinguishing of one of the positive and negative arms is performed. The arc element is operated as a squirt, and the self-extinguishing element of the other arm is turned off to raise the temperature. Pressure. Fig. 12 shows the main circuit configuration when the three-phase chopper signals are given, and Fig. 13 shows how to create the gate signals. Negative arms of the T UN, TVN, given gate voltage of Chiyotsuba to T WN, Trang register positive arm operates at all the off state. The gate signal is output by setting the modulation wave levels of the transistors T UN , T VN , and T WN to be greater than the lower limit of the triangular wave, and comparing the output with the triangular wave to output the gate signal. The gate signal is turned off by setting the modulation wave level of the positive transistor to be smaller than the lower limit of the triangular wave. Fig. 14 shows the simulation result when the gate signal is controlled by this gate signal. The major difference from the one-phase fever in Fig. 7 is that the fundamental wave of the power supply current becomes a sine wave at a power supply power factor of 1, which has the effect of boosting the voltage with less power supply harmonics and no DC component. is there. In the simulation, the chamber control was started from the DC voltage after the diode rectification.However, the chamber control may be performed when the AC power supply 1 is turned on.Basically, before starting the PWM converter control at the time of steady operation. After the DC voltage between the smoothing capacitors is increased by chopper control of the converter, it is switched to PWM converter control.
次に、 本発明は三相 PWMコンバータで説明したが第 1 5図に示す一 般的な単相 PWMコンバータや、 第 1 6図に示す負荷側の高調波電流を 補償する一般的なァクティブフィルタ等の一般的な電圧形コンバータの 起動方法に適用しても同様な効果がある。  Next, the present invention has been described with reference to the three-phase PWM converter. However, the general single-phase PWM converter shown in FIG. 15 and the general active filter for compensating the load side harmonic current shown in FIG. The same effect can be obtained by applying it to a general method of starting a voltage-source converter.
本発明は、 PWMコンパ一タ制御に切リ替える前にコンバータ主回路 でチヨツバ運転を行い、 直流電圧が昇圧した後、 PWMコンバータ制御 へ切り替えるようにした。 これにより、 デッ ドタイムによるコンパ一タ 入力電圧降下が大きい場合等でも、 直流電圧が大きい状態で PWM制御 に切り替えるので電源電圧相当のコンバータ交流側電圧が出力でき、 交 流リアク トル間の電圧を小さくできるので過大な電源電流が流れないで、 定常時の P W M制御に切り替わると言う効果がある。 According to the present invention, the switching operation is performed in the converter main circuit before switching to the PWM converter control, and after the DC voltage is increased, the switching to the PWM converter control is performed. As a result, even when the input voltage drop of the converter due to the dead time is large or the like, switching to PWM control is performed with the DC voltage being large, so that the converter AC side voltage equivalent to the power supply voltage can be output. Since the voltage between the current reactors can be reduced, there is an effect that switching to regular PWM control is performed without excessive power supply current flowing.
又、 チヨッパ運転により直流電圧を昇圧する方法として、 コンバータ 主回路の正又は負アームの内、 片方のアームのトランジスタをチヨッパ 運転し昇圧するようにしたもので主回路部品の追加もなく簡単に昇圧で きると言う効果もある。  In addition, as a method of boosting the DC voltage by the chopper operation, one of the positive or negative arms of the converter main circuit is operated by the chopper operation to boost the voltage. There is also an effect that it can be done.

Claims

請 求 の 範 囲 The scope of the claims
1 . スィツチング素子とダイォ一 ドを逆並列に接続した並列回路を有し、 該スィツチング素子を駆動信号によってオン · オフ制御することによリ 交流電力を直流電力に変換するコンバータの制御装置において、  1. A control device for a converter having a parallel circuit in which a switching element and a diode are connected in anti-parallel, and turning on and off the switching element by a drive signal to convert AC power to DC power.
前記コンバータをチヨッパ運転するためのチヨツバ駆動信号及び前記 コンバータを P W M運転するための P W M駆動信号を発生して、 どちら か一方の駆動信号を前記スィツチング素子に出力することを特徴とする コンバータの制御装置。  A converter driving signal for operating the converter in a chopper and a PWM driving signal for operating the converter in a PWM manner, and outputting one of the driving signals to the switching element. .
2 . 請求項 1記載のコンバータの制御装置において、 前記コンバータの 起動時にはチヨツバ駆動信号を前記スィツチング素子に出力し、 直流出 力電圧が昇圧された後、 P WM駆動信号を前記スィツチング素子に出力 することを特徴とするコンバータの制御装置。  2. The converter control device according to claim 1, wherein at startup of the converter, a drive signal is output to the switching element, and after a DC output voltage is boosted, a PWM drive signal is output to the switching element. A control device for a converter.
3 . 請求項 1記載のコンバータの制御装置において、  3. The converter control device according to claim 1,
前記チヨツバ駆動信号を出力するためのチヨッパ用ゲー ト信号を発生 するチヨツバ運転ゲ一 卜信号発生手段と、 前記 P WM駆動信号を出力す るための P W M用ゲー ト信号を発生する P WMコンパ一タ運転制御手段 と、 前記チヨッパ用ゲ一ト信号と前記 P WM用ゲ一 ト信号のいずれかを 選択するスィッチ手段と、 を有する制御回路と、  A gutter operation gate signal generating means for generating a chopper gate signal for outputting the chopper drive signal, and a PWM comparator for generating a PWM gate signal for outputting the PWM drive signal A control circuit comprising: switch operation control means; and switch means for selecting any of the chopper gate signal and the PWM gate signal.
前記スィツチ手段によって選択されたゲー ト信号を入力して、 前記チ ョッパ駆動信号と前記 P WM駆動信号のいずれか一方を出力するゲー ト 回路と、  A gate circuit that receives a gate signal selected by the switch means and outputs one of the chopper drive signal and the PWM drive signal;
を備えることを特徴とするコンバータの制御装置。 A converter control device, comprising:
4 . 請求項 3記載のコンバータの制御装置において、 前記スィッチ手段 カ^ 前記コンバータの起動時には前記チヨッパ用ゲー 卜信号を選択し、 直流出力電圧が昇圧された後、 前記 P W M用ゲー 卜信号を選択すること を特徴とするコンバータの制御装置。 4. The converter control device according to claim 3, wherein the switch means selects the gate signal for the chopper when the converter is started, and selects the gate signal for the PWM after the DC output voltage is boosted. To do A converter control device characterized by the above-mentioned.
5 . 請求項 2記載のコンバータの制御装置において、 前記起動時に、 前 記直流出力電圧が、 前記チヨツバ駆動信号を遮断して前記スィツチング 素子をオフ状態とし、 ダイオー ド整流により昇圧された後、 前記チヨッ パ駆動信号を前記スィツチング素子に出力することを特徴とするコンパ 一タの制御装置。  5. The converter control device according to claim 2, wherein, at the time of the startup, the DC output voltage is boosted by diode rectification after turning off the switching element by shutting off the drive signal, and boosting the switching element by diode rectification. A converter control device for outputting a chopper drive signal to said switching element.
6 . 請求項 2記載のコンバータの制御装置において、 前記起動時に、 交 流電源投入直後から前記チヨツバ駆動信号を前記スィツチング素子に出 力することを特徴とするコンバータの制御装置。  6. The converter control device according to claim 2, wherein the starter drive signal is output to the switching element immediately after the AC power is turned on at the time of starting.
7 . 請求項 1記載のコンバータの制御装置において、 前記コンバータが 3相交流電力を直流電力に変換するコンパ一タであり、 前記チヨッパ駆 動信号が、 3相の内のいずれか 1相の上アーム及び下アームのいずれか のスィツチング素子のみに出力されることを特徴とするコンバータの制 御装置。  7. The converter control device according to claim 1, wherein the converter is a converter for converting three-phase AC power into DC power, and the chopper driving signal is output from one of three phases. A control device for a converter, wherein the output is provided to only one of the switching elements of the arm and the lower arm.
8 . 請求項 1記載のコンバータの制御装置において、 前記コンバータが 3相交流電力を直流電力に変換するコンバータであり、 前記チヨッパ駆 動信号が、 複数相の上アーム及び下アームのいずれかのスィツチング素 子に出力されることを特徴とするコンバータの制御装置。  8. The converter control device according to claim 1, wherein the converter is a converter that converts three-phase AC power into DC power, and the chopper driving signal is a switching signal of one of an upper arm and a lower arm of a plurality of phases. A converter control device characterized by being output to a device.
9 . スィツチング素子とダイォ一 ドを逆並列に接続した並列回路を有し、 該スィツチング素子をオン ♦ オフ制御することによリ交流電力を直流電 力に変換するコンバータの制御方法において、  9. A method of controlling a converter, which has a parallel circuit in which a switching element and a diode are connected in anti-parallel and converts ON / OFF of the switching element to convert AC power to DC power.
前記コンバータの起動時には前記コンバータをチヨツバ運転し、 直流 出力電圧が昇圧された後、 P W M運転することを特徴とするコンバータ の制御方法。  A method of controlling a converter, comprising: operating the converter at a start-up time when the converter is started; and performing a PWM operation after a DC output voltage is increased.
1 0 . 請求項 9記載のコンバータの制御方法において、 前記起動時に、 前記直流出力電圧がダイォー ド整流により昇圧された後、 チヨツバ運転 することを特徴とするコンバータの制御方法。 10. The method of controlling a converter according to claim 9, wherein at the time of starting, After the DC output voltage is boosted by diode rectification, a chitsubasa operation is performed.
1 1 . 請求項 9記載のコンバータの制御方法において、 前記起動時に、 交流電源投入直後からチヨッパ運転することを特徴とするコンバータの 制御方法。  11. The converter control method according to claim 9, wherein a chopper operation is performed immediately after the AC power is turned on at the time of starting.
1 2 . 請求項 9記載のコンバータの制御方法において、 前記コンバータ が 3相交流電力を直流電力に変換するコンバータであり、 チヨツバ運転 時に、 3相の内のいずれか 1相の上アーム及び下アームのいずれかのス ィ ツチング素子のみをオン · オフ制御することを特徴とするコンバータ の制御方法。  12. The control method of a converter according to claim 9, wherein the converter is a converter for converting three-phase AC power into DC power, and the upper arm and the lower arm of any one of the three phases during the operation of the chitsubasa. A control method for a converter, characterized in that only one of the switching elements is turned on / off.
1 3 . 請求項 9記載のコンパ一タの制御方法において、 前記コンバータ が 3相交流電力を直流電力に変換するコンバータであり、 チヨッパ運転 時に、 複数相の上アーム及び下アームのいずれかのスィツチング素子を ォン · オフ制御することを特徴とするコンパ一タの制御方法。  13. The method of controlling a converter according to claim 9, wherein the converter is a converter that converts three-phase AC power into DC power, and when the chopper is operated, any one of the upper arm and the lower arm of the multi-phase is switched. A method for controlling a computer, comprising: performing on / off control of an element.
1 4 . スイッチング素子とダイオー ドを逆並列に接続した並列回路を有 し、 該スィ ツチング素子を駆動信号によってオン * オフ制御することに より交流電力を直流電力に変換するコンバータにおいて、  14. A converter that has a parallel circuit in which a switching element and a diode are connected in anti-parallel, and that converts the AC power into DC power by controlling the switching element on / off by a drive signal.
前記コンバータをチヨツバ運転するためのチヨッパ駆動信号及び前記 コンパ一タを P W M運転するための P W M駆動信号を発生して、 どちら か一方の駆動信号を前記スィツチング素子に出力する制御装置を備える ことを特徴とするコンバータ。  A controller that generates a chopper drive signal for operating the converter in a cantilever manner and a PWM drive signal for operating the converter in a PWM manner and outputs one of the drive signals to the switching element. And a converter.
1 5 . 請求項 1 4記載のコンパ一タにおいて、 前記制御装置が前記コン バ一タの起動時にはチヨツバ駆動信号を前記スィツチング素子に出力し、 直流出力電圧が昇圧された後、 P W M駆動信号を前記スィツチング素子 に出力することを特徴とするコンバータ。  15. The converter according to claim 14, wherein the control device outputs a drive signal to the switching element when the converter is started, and outputs a PWM drive signal after the DC output voltage is increased. A converter for outputting to the switching element.
PCT/JP1997/003989 1997-10-31 1997-10-31 Device and method for controlling converter and converter WO1999023748A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/003989 WO1999023748A1 (en) 1997-10-31 1997-10-31 Device and method for controlling converter and converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/003989 WO1999023748A1 (en) 1997-10-31 1997-10-31 Device and method for controlling converter and converter

Publications (1)

Publication Number Publication Date
WO1999023748A1 true WO1999023748A1 (en) 1999-05-14

Family

ID=14181416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003989 WO1999023748A1 (en) 1997-10-31 1997-10-31 Device and method for controlling converter and converter

Country Status (1)

Country Link
WO (1) WO1999023748A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099098A1 (en) * 2011-12-28 2013-07-04 ダイキン工業株式会社 Converter circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585691B2 (en) * 1988-03-04 1997-02-26 富士電機株式会社 Control method for semiconductor power converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585691B2 (en) * 1988-03-04 1997-02-26 富士電機株式会社 Control method for semiconductor power converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099098A1 (en) * 2011-12-28 2013-07-04 ダイキン工業株式会社 Converter circuit
JP2013138561A (en) * 2011-12-28 2013-07-11 Daikin Ind Ltd Converter circuit

Similar Documents

Publication Publication Date Title
JP3162639B2 (en) Power supply
KR100823922B1 (en) Apparatus and method for supplying dc power source
WO1997025766A1 (en) Multilevel power converting apparatus
US7042194B1 (en) Controller for a wound-rotor induction motor
JP3284266B2 (en) INVERTER DEVICE AND START-UP METHOD THEREOF
JPH0568192B2 (en)
KR20070101476A (en) Apparatus and method for supplying dc power source
JPH0728538A (en) System interconnection type inverter controller
JP3307814B2 (en) DC power supply
JP3516601B2 (en) Converter circuit
JP3196554B2 (en) Current mode switching stabilized power supply
WO1999023748A1 (en) Device and method for controlling converter and converter
JP2990867B2 (en) Forward converter
JP3690558B2 (en) Multiphase voltage source converter
JPH11299244A (en) Power converter system
JP2001145382A (en) Motor controller
JP5400956B2 (en) Power converter
JP3407550B2 (en) Start-up circuit of PWM converter device
JPH09163751A (en) Pwm controlled self-excited rectifier
JP2585691B2 (en) Control method for semiconductor power converter
JPH09289776A (en) Inverter circuit of power supply device
JPH10127046A (en) Control circuit for step-up converter
JPH10304668A (en) Pwm converter device
JPH10304669A (en) Pwm converter device
JP3524626B2 (en) Static power converter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase