WO1999018654A1 - Procede et dispositif de commande d'un moteur synchrone a aimant permanent - Google Patents

Procede et dispositif de commande d'un moteur synchrone a aimant permanent Download PDF

Info

Publication number
WO1999018654A1
WO1999018654A1 PCT/CH1998/000421 CH9800421W WO9918654A1 WO 1999018654 A1 WO1999018654 A1 WO 1999018654A1 CH 9800421 W CH9800421 W CH 9800421W WO 9918654 A1 WO9918654 A1 WO 9918654A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
phase
rotor
speed
supply
Prior art date
Application number
PCT/CH1998/000421
Other languages
English (en)
Inventor
Laurent Cardoletti
Yves Perriard
Original Assignee
Micro-Beam S.A.R.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro-Beam S.A.R.L. filed Critical Micro-Beam S.A.R.L.
Priority to US09/529,039 priority Critical patent/US6326760B1/en
Priority to DE69805641T priority patent/DE69805641T2/de
Priority to EP98944947A priority patent/EP1020019B1/fr
Priority to JP2000515326A priority patent/JP2001519640A/ja
Priority to AU92497/98A priority patent/AU9249798A/en
Publication of WO1999018654A1 publication Critical patent/WO1999018654A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators

Definitions

  • the present invention relates to a method for controlling a synchronous motor with permanent magnet, without direct sensor, comprising at least one phase, a winding and a rotor.
  • the invention also relates to a device for controlling a synchronous motor with a permanent magnet, without direct sensor, comprising at least one phase, this device being powered by a source of electrical energy.
  • Synchronous permanent magnet motors such as stepping motors, hybrid motors or DC motors without a collector
  • Synchronous permanent magnet motors such as stepping motors, hybrid motors or DC motors without a collector
  • phase switching electronics are necessary to replace the function of the collector. Since this type of motor is synchronous, the speed of the rotor is the same as that of the stator rotating field. By removing the collector and replacing it with electronics, the control unit must know the position of the rotor in order to be able to switch at the right time. This is usually done using Hall effect probes or an optical sensor, called a direct sensor.
  • the presence of this type of sensor leads to various drawbacks.
  • their cost has a significant impact on the cost of the engine.
  • their installation implies that a certain volume must be provided not only for the sensors themselves, but also for the passage of electrical connection wires. They therefore complicate the assembly and increase its duration.
  • the reliability of the system is thereby reduced.
  • the present invention proposes to overcome these drawbacks by eliminating the direct sensors and by using the information given by the motor to carry out the phase switching.
  • Each motor having a single-phase or multi-phase winding on the stator creates an induced voltage due to the movement of the rotor magnets. The zero crossings of this voltage induced from the non-supplied phase make it possible to know precisely the position of the rotor and thus to control the motor in speed and / or in torque.
  • European patent No. EP-B-0449 687 describes a method for controlling a DC motor without a collector. More particularly, this method is only applicable to a bipolar three-phase motor.
  • the supply of the motor windings is controlled by an inverter, the conduction and extinction of this supply being controlled by pulse width modulation at fixed frequency.
  • the position of the rotor is determined by the detection of the passage through zero of the electromotive force induced in the non-powered winding of the motor.
  • the signal taken from the terminals of the unpowered winding is sampled in synchronized fashion with the modulation frequency of the inverter.
  • the present invention proposes to overcome these drawbacks and to provide a method and a device for controlling a synchronous motor with permanent magnet used in motor or generator mode, this motor being able to be single-phase or polyphase, unipolar or bipolar, and being able to be controlled with or without pulse width modulation.
  • the motor winding can be supplied unidirectionally or bidirectionally.
  • the position and the speed of the motor rotor are determined from the voltage of each phase of the motor.
  • the speed of rotation of the rotor is determined by introducing the voltage of at least one phase of the motor into a comparator and by measuring the time interval which separates two changes of signs of the signals leaving the comparator.
  • the speed of rotation of the motor rotor is determined by calculating the sum of the squares of the voltages of each phase and by extracting the square root from this sum.
  • the supply of the motor is switched as a function of the number of phases of the motor, of the type of supply of the phases, of the type of motor and of its operating mode.
  • variable frequency used to sample the output signals originating from the measurement of the voltage of each phase is preferably fixed at a predetermined value greater than the maximum frequency of rotation of the motor rotor.
  • the actual rotation speed of the motor rotor is repeatedly determined, this real rotation speed is compared with a predefined threshold speed, the supply of each phase of the motor is controlled by momentarily cutting off the supply of each phase when the actual speed is lower than the threshold speed, and the supply of each phase of the motor is controlled by measuring the voltage induced by the movement of the rotor on a non-supplied phase, when the actual speed of rotation is greater than the threshold speed.
  • the object of the invention is also achieved by a device implementing the above method and characterized in that it comprises a power bridge supplying the motor winding, a control unit for supplying the winding, a circuit for measuring the voltage of each phase of the motor and means for sampling, at variable frequency, signals from this measurement circuit.
  • the device advantageously comprises a control unit arranged to control the switching of the supply of each phase of the motor, this control unit comprising at least one control program depending on the type of motor, on the number of phases, on the type of phase supply and motor operating mode.
  • the device preferably includes a comparator per phase, arranged to measure the sign of the voltage of each phase.
  • the voltage of each phase is introduced into the control unit in the form of analog signals.
  • FIG. 1 is a block diagram illustrating the control device according to the present invention.
  • FIG. 2 shows a first embodiment of part of the device according to the present invention
  • FIG. 3 shows a second embodiment of part of the device of Figure 2;
  • - Figure 4 shows in the form of a block diagram the switching process in high speed mode;
  • FIG. 5 shows in the form of a block diagram the switching process in low speed mode
  • FIG. 6 is a block diagram illustrating the operation of the engine from its start until it has reached the desired speed.
  • the device according to the present invention is used to power a permanent magnet synchronous motor 10 such as, for example, a three-phase motor, and comprises a source of electrical power 11, a converter 12, a power bridge 13 making it possible to supply the motor, a circuit 14 for measuring the total current of the phases of the motor, a control unit 15 formed by a microprocessor 16, comparison means 17 making it possible to compare an instantaneous value of the total current of the motor to a set value, and detection means 18 making it possible to determine the real position of the motor rotor as a function of the voltage induced due to the displacement of the motor rotor.
  • a permanent magnet synchronous motor 10 such as, for example, a three-phase motor
  • a source of electrical power 11 such as, for example, a three-phase motor
  • a converter 12 a power bridge 13 making it possible to supply the motor
  • a circuit 14 for measuring the total current of the phases of the motor a control unit 15 formed by a microprocessor 16
  • comparison means 17 making it possible to compare an
  • the electric power source 11 can be a source of alternating or direct current.
  • the current is, on the one hand, supplied to the power bridge 13 and, on the other hand, to an electronic card 19 on which all the above components are placed, except for the motor 10 and the source d power supply 11. Before being transmitted to the electronic card, this current is transformed by the converter 12 into direct current having a given logic voltage.
  • the power bridge 13 is intended to supply each phase of the motor and thus makes it possible, with the control unit 15, to control the switching on and off of the supply of each phase.
  • Two embodiments of the means 18 for detecting the position of the motor rotor are illustrated in detail in FIGS. 2 and 3.
  • FIG. 2 represents a first embodiment of these detection means 18, used in particular in high speed mode, that is to say when the speed of rotation of the rotor of the motor is greater than approximately 10% of its speed of maximum rotation.
  • the motor 10 comprises three phases, respectively 20, 21 and 22. Each phase is directly supplied by the current coming from the power bridge 13. If the motor has an accessible neutral point N, the voltage of each phase can be measured directly between neutral and phase. However, generally the neutral is not accessible.
  • a voltage measurement circuit 23 is put in place.
  • This circuit includes resistors 24, 25 and 26 of high ohmic value having terminals 24 ', 25' and 26 'connected together and terminals 24 ", 25" and 26 "connected respectively to phases 20, 21 and 22 of the motor .
  • the voltage measurement circuit 23 includes three resistors connected to a common point
  • This voltage measurement circuit comprises three comparators 27, 28 and 29 each having two inputs, respectively 27'-27 “, 28'-28", 29'-29 ", and an output 30, 31 and 32. L one of the inputs 27 “, 28" and 29 “of each comparator is connected to point M, and the other input of each comparator is connected to one of the phases 20, 21 and 22. Each comparator thus delivers a signal of output representative of the voltage sign of each phase.
  • each signal leaving comparators 27, 28 and 29 is stored in memory by means of a flip-flop 33, 34 and 35.
  • the flip-flops are controlled according to a sampling frequency varying according to the engine speed and load, such as this will be explained in more detail below.
  • Each flip-flop generates an output signal CA, CB, CC which is transmitted to the control unit 15.
  • FIG. 3 illustrates an example of a voltage measurement circuit 36 usable when the motor is running at low speed.
  • this measurement circuit does not include flip-flops and the comparators are replaced by operational amplifiers 37, 38 and 39.
  • Each amplifier has two inputs 37'-37 “, 38'- 38 ", 39'-39” and an output 40, 41 and 42 and is connected in the same way as the comparators of circuit 23 of FIG. 2.
  • the output signals of these operational amplifiers are therefore no longer only representative of the sign of the voltage on each phase, but also of its amplitude These signals are transmitted directly to the control unit 15 in which they are processed.
  • the control unit reads the signals from the operational amplifiers by sampling them at very low frequency.
  • the supply of all phases is temporarily cut off. During this cut, the induced voltage is measured, which makes it possible to deduce the speed and the position of the rotor. Power is then restored.
  • the control unit 15 advantageously has twice as many inputs as the motor has phases.
  • the control unit 15 comprises six inputs and the voltage measurement circuit includes three comparators and three amplifiers.
  • the signals from the comparators 27, 28 and 29 are used by the control unit to determine the position of the rotor.
  • the signals from the operational amplifiers 37, 38 and 39 are used.
  • the signals from the comparators and amplifiers are continuously transmitted to the inputs of the control unit. This determines, depending on the engine speed, the signals that will be used.
  • circuit as illustrated in FIG. 2 can also be used in low speed mode.
  • the operational amplifiers are not necessary and the control unit can have digital inputs only.
  • the switching process is based on the principle of interrupts.
  • the microprocessor 16 is equipped with inputs, called “interrupts", which trigger a programmed process.
  • the microprocessor contains several programs.
  • the first step 40 of the method consists in choosing, from all the programs available, the appropriate program. This depends on the operating mode of the motor or generator, the number of phases, the direction of rotation and the type of unipolar or bipolar supply to the motor.
  • the second step 41 of the method consists in reading the signals CC, CB, CA leaving the flip-flops 33, 34 and 35.
  • the microprocessor determines, in a step 42, that it is the next authorized interruption.
  • step 44 When the signal linked to the next authorized interruption occurs, the programmed process is effectively carried out. This corresponds to step 44.
  • step 45 The speed of the motor rotor is calculated in step 45. How to calculate this speed will be described in detail below.
  • the program finally returns to step 42 which makes it possible to determine the next authorized interruption.
  • the three signals CA, CB and CC are connected to three interrupts 11, 12 and 13 of the microprocessor.
  • a direct sensor such as Hall effect probes
  • Interrupt 11 is activated on the rising edge of CA.
  • the phase switching is then carried out during the interruption and the possible DC interference, due to the extinction of the current in phase 22 and the inversion of phase voltage 22, is prevented.
  • the interruption 13 is authorized to be activated as soon as the falling edge of CC appears.
  • Interrupt 13 is activated on the falling edge of CC. The phase switching is performed during this interruption and possible interference due to CB is prevented. At the end of this operation, the interruption 12 is authorized to be activated as soon as the rising edge of CB appears.
  • Interrupt 12 is activated on the rising edge of CB. Phase switching is performed during this interruption and possible interference from AC is prevented. At the end of this operation, the interrupt 11 is authorized to be activated as soon as the falling edge of CA appears.
  • Interrupt 11 is activated on the falling edge of CA. Phase switching is performed during this interruption and possible interference from DC is prevented. At the end of this operation, the interrupt 13 is authorized to be activated as soon as the rising edge of CC appears.
  • Interrupt 12 is activated on the rising edge of CC. The phase switching is performed during this interruption and possible interference due to CB is prevented. At the end of this operation, the interrupt 12 is authorized to be activated as soon as the falling edge of CB appears.
  • Interrupt 11 is activated on the falling edge of CB. Phase switching is performed during this interruption and possible interference from AC is prevented. At the end of this operation, the interruption 11 is authorized to be activated as soon as the rising edge of CA appears. Thanks to this process, only an interruption is authorized. The zero crossings due to the conduction of diodes in the power bridge therefore do not disturb the switching.
  • each time the modulation signal is turned off interference is created.
  • the effect of this interference is suppressed as follows.
  • the output signal of each of the flip-flops 33, 34 and 35 illustrated in FIG. 2 is equal to the signal coming from the measurement of the voltage across the resistors 24, 25 and 26 when a clock signal reaches the flip-flop .
  • the creation of this clock signal at the right time eliminates the disturbances due to the stops of the modulation signal.
  • a signal is transmitted to a monostable rocker (not shown).
  • the duration for which this flip-flop gives a high signal is conventionally adjusted by means of an RC filter.
  • the clock signal transmitted to the flip-flops is given by each falling edge of the signal from the monostable flip-flop.
  • the sampling frequency given by the frequency of the clock signal transmitted to the flip-flops, is equal to the frequency of the pulse width modulation which is variable as a function of the speed of rotation and the load of the motor.
  • an external frequency is used to inhibit the clock signal of the monostable flip-flops. This external frequency is greater than the maximum frequency of rotation of the motor. It is generally at least five times greater than this maximum rotation frequency and, in the example described, it can be equal to 100 Khz. This frequency is determined empirically.
  • step 50 The power supply to the power bridge is triggered, which implies that, in step 50, no phase is supplied.
  • step 51 of the method a variable waiting time is introduced so that the phase currents cancel each other out.
  • the control unit measures the voltages induced by the movement of the rotor on each of the phases. This is measured in step 52 of the method. Using these induced voltages, the speed and position of the rotor are calculated. How to calculate the rotor speed is explained below. These calculations are carried out in step 53 of the method. Based on these values, the switching is carried out and the power bridge is reset to supply the desired phases. This corresponds to step 54 of the process.
  • step 55 a variable waiting time is imposed depending on the speed of rotation of the motor rotor, between the end of the speed measurement and the moment at which the supply is switched.
  • the time which elapses between the appearance of two flanks is measured.
  • Flanks can be detected on any of the CA, CB or CC signals, so that the time between the appearance of two flanks on the same signal or on two different signals can be measured.
  • This time makes it possible to determine the time necessary for the rotor to carry out an electrical period and, consequently, the speed of rotation of the rotor of the motor. This corresponds to step 44 of the process illustrated in FIG. 4.
  • a setpoint current is introduced into the control unit 15.
  • This setpoint current makes it possible, on the one hand, to fix the torque generated by the engine and, on the other hand, to protect the motor against a current value which could damage it.
  • the motor rotor is then positioned so that it is not placed in an unstable position. This is done in a step 60 of the method illustrated in FIG. 6.
  • at least one of the phases of the motor is supplied so as to position the rotor correctly.
  • the motor is then started in a step 61 of the method until the voltage induced by the movement of the rotor is sufficient to be detected.
  • the motor is controlled in low speed mode, as described above.
  • This step corresponds to a step 62 of the method.
  • the speed of rotation of the motor is measured and compared with a threshold speed, corresponding to the border between the low speed mode and the high speed mode. This threshold is generally close to 10% of the maximum engine speed.
  • the motor is controlled in high speed mode, as described above.
  • the measurement of the speed of rotation of the rotor is regularly compared with the threshold speed in a step 65 of the method. If the rotor speed is lower than the threshold speed, the motor is controlled in low speed mode. Otherwise, it is controlled in high speed mode.
  • Motor control in high speed or low speed mode can be performed with or without pulse width modulation.
  • the method and the regulation device according to the present invention allow regulation of mono- or polyphase, uni- or multipolar motors, with or without amplitude regulation modulation, without using direct sensors, in motor or generator mode.
  • the present invention is not limited to the embodiments described, but extends to all variants obvious to those skilled in the art.
  • the type of motor that can be used is varied. It is possible to enter different setpoints such as torque, speed, current or voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Le dispositif selon l'invention est utilisé pour alimenter un moteur synchrone à aimant permanent (10), et comporte une source d'alimentation (11), un convertisseur (12), un pont de puissance (13), un circuit de mesure (14) du courant total des phases du moteur, une unité de commande (15) formée d'un microprocesseur (16), des moyens de comparaison (17) d'une valeur instantanée du courant total du moteur à une valeur de consigne, et des moyens de détection (18) permettant de déterminer la position réelle du rotor du moteur en fonction de la tension induite due à sa rotation. Le procédé de commande comporte les opérations de contrôle de l'alimentation de chacune des phases du moteur, mesure simultanée de la tension de chaque phase, détermination d'une fréquence variable à partir de la vitesse de rotation du rotor et de la charge du moteur, échantillonnage à cette fréquence de signaux provenant de la mesure de la tension de chaque phase, et commande de l'alimentation des phases en fonction des signaux échantillonnés.

Description

PROCEDE ET DISPOSITIF DE COMMANDE D'UN MOTEUR SYNCHRONE
A AIMANT PERMANENT
La présente invention concerne un procédé de commande d'un moteur synchrone à aimant permanent, sans capteur direct, comportant au moins une phase, un enroulement et un rotor.
L'invention concerne également un dispositif de commande d'un moteur synchrone à aimant permanent, sans capteur direct, comportant au moins une phase, ce dispositif étant alimenté par une source d'énergie électrique.
Les moteurs synchrones à aimant permanent, tels que les moteurs pas-à-pas, les moteurs hybrides ou les moteurs à courant continu sans collecteur, sont actuellement bien connus et utilisés en remplacement des moteurs à courant continu avec collecteur, ceux-ci ayant une durée de vie relativement faible à cause des frottements générés sur le collecteur par les charbons.
Dans ces moteurs à aimant permanent, une électronique de commutation des phases est nécessaire pour remplacer la fonction du collecteur. Puisque ce type de moteur est synchrone, la vitesse du rotor est la même que celle du champ tournant statorique. En supprimant le collecteur et en le remplaçant par une électronique, la logique de commande doit connaître la position du rotor pour pouvoir réaliser la commutation au bon moment. Ceci est habituellement réalisé à l'aide de sondes à effet Hall ou d'un capteur optique, appelé capteur direct.
La présence de ce type de capteurs entraîne différents inconvénients. Tout d'abord, leur coût a une répercussion non négligeable sur le coût du moteur. De plus, leur mise en place implique qu'un certain volume doit être prévu non seulement pour les capteurs eux-mêmes, mais également pour le passage de fils électriques de connexion. Ils compliquent donc le montage et augmentent sa durée. Enfin, la fiabilité du système s'en trouve amoindrie. La présente invention se propose de pallier ces inconvénients en supprimant les capteurs directs et en utilisant les informations données par le moteur pour réaliser la commutation des phases. Chaque moteur possédant un bobinage monophasé ou polyphasé au stator crée une tension induite due au mouvement des aimants rotoriques. Les passages par zéro de cette tension induite de la phase non-alimentée permettent de connaître avec précision la position du rotor et ainsi d'asservir le moteur en vitesse et/ou en couple.
Cette caractéristique a été utilisée notamment dans deux inventions décrites dans le brevet européen publié sous le No. EP-B-0 449 687 et dans la demande de brevet européen publiée sous le No. EP-A-0 735 662.
Le brevet européen No. EP-B-0449 687 décrit un procédé de commande d'un moteur à courant continu sans collecteur. Plus particulièrement, ce procédé est uniquement applicable à un moteur triphasé bipolaire. Dans ce procédé, l'alimentation des enroulements du moteur est commandée par un onduleur, la conduction et l'extinction de cette alimentation étant commandées en modulation de largeur d'impulsion à fréquence fixe. La position du rotor est déterminée par la détection du passage par zéro de la force électromotrice induite dans l'enroulement non alimenté du moteur. Afin d'éliminer l'effet des perturbations qui génèrent des "faux" passages par zéro de la force électromagnétique induite, le signal prélevé aux bornes de l'enroulement non alimenté est échantillonné de façon synchronisée avec la fréquence de modulation de l'onduleur.
Un tel procédé présente différents inconvénients. Tout d'abord, il ne s'applique qu'à des moteurs triphasés et de plus bipolaires. Il ne peut pas être transposé à d'autres types de moteurs, ce qui limite son champ d'application possible. De plus, l'utilisation d'une fréquence fixe comme fréquence d'échantillonnage ne donne pas un rendement optimal. Enfin, un délai est créé entre la détection d'un passage par zéro et la commutation de l'alimentation. Ce délai est fixe, ce qui génère un bruit. La demande de brevet européen publiée sous le No. EP-A-0 735 662 décrit un circuit et un procédé pour alimenter un moteur à courant continu polyphasé sans collecteur. L'invention décrite dans ce document a pour but principal de diminuer les perturbations générées par la modulation de largeur d'impulsion. Comme dans le cas précédent, un délai de commutation fixe est utilisé, ce qui génère un bruit.
Par ailleurs, un tel procédé ne peut s'appliquer qu'à des moteurs polyphasés bipolaires et utilise toujours la modulation de largeur d'impulsion.
La présente invention se propose de pallier ces inconvénients et de réaliser un procédé et un dispositif de commande d'un moteur synchrone à aimant permanent utilisé en mode moteur ou générateur, ce moteur pouvant être monophasé ou polyphasé, unipolaire ou bipolaire, et pouvant être commandé avec ou sans modulation de largeur d'impulsion.
Ce but est atteint par un procédé tel que défini en préambule et caractérisé en ce qu'il comporte les opérations de:
- contrôle de l'alimentation de chaque phase du moteur, - mesure simultanée de la tension de chaque phase du moteur,
- détermination d'une fréquence variable à partir de la vitesse de rotation du rotor et de la charge du moteur,
- échantillonnage à cette fréquence variable de signaux de sortie provenant de la mesure de la tension de chaque phase, et - commande de l'alimentation des phases en fonction des signaux échantillonnés.
L'enroulement du moteur peut être alimenté de façon unidirectionnelle ou bidirectionnelle.
De préférence, la position et la vitesse du rotor du moteur sont déterminée à partir de la tension de chaque phase du moteur. Selon une forme de réalisation, la vitesse de rotation du rotor est déterminée en introduisant la tension d'au moins une phase du moteur dans un comparateur et en mesurant l'intervalle de temps qui sépare deux changements de signes des signaux sortant du comparateur.
Avantageusement, la vitesse de rotation du rotor du moteur est déterminée en calculant la somme des carrés des tensions de chaque phase et en extrayant la racine carrée de cette somme.
De préférence, l'alimentation du moteur est commutée en fonction du nombre de phases du moteur, du type d'alimentation des phases, du type de moteur et de son mode de fonctionnement.
Selon une forme de réalisation préférée, en fonction de la position du rotor du moteur, un seul type de commutation est autorisé.
Lorsque le temps séparant deux actions successives du contrôle de l'alimentation de chaque phase du moteur dépasse une valeur de seuil prédéfinie, la fréquence variable utilisée pour échantillonner des signaux de sortie provenant de la mesure de la tension de chaque phase est, de préférence, fixée à une valeur prédéterminée supérieure à la fréquence de rotation maximale du rotor du moteur.
Selon un mode de réalisation préféré, on détermine de façon répétée la vitesse de rotation réelle du rotor du moteur, on compare cette vitesse de rotation réelle à une vitesse de seuil prédéfinie, on contrôle l'alimentation de chaque phase du moteur en coupant momentanément l'alimentation de chaque phase lorsque la vitesse réelle est inférieure à la vitesse de seuil, et on contrôle l'alimentation de chaque phase du moteur en mesurant la tension induite par le mouvement du rotor sur une phase non alimentée, lorsque la vitesse de rotation réelle est supérieure à la vitesse de seuil. Le but de l'invention est également atteint par un dispositif mettant en œuvre le procédé ci-dessus et caractérisé en ce qu'il comporte un pont de puissance alimentant l'enroulement du moteur, une unité de commande de l'alimentation de l'enroulement, un circuit de mesure de la tension de chaque phase du moteur et des moyens pour échantillonner, à fréquence variable, des signaux provenant de ce circuit de mesure.
Le dispositif selon l'invention comporte avantageusement une unité de commande agencée pour commander la commutation de l'alimentation de chaque phase du moteur, cette unité de commande comportant au moins un programme de commande dépendant du type de moteur, du nombre de phases, du type d'alimentation des phases et du mode de fonctionnement du moteur.
Le dispositif comporte, de préférence, un comparateur par phase, agencé pour mesurer le signe de la tension de chaque phase.
Selon une forme de réalisation préférée, la tension de chaque phase est introduite dans l'unité de commande sous forme de signaux analogiques.
La présente invention et ses avantages apparaîtront mieux en référence à la description d'un mode de réalisation et aux dessins annexés dans lesquels :
- la figure 1 est un schéma-bloc illustrant le dispositif de commande selon la présente invention;
- la figure 2 montre un premier mode de réalisation d'une partie du dispositif selon la présente invention;
- la figure 3 montre un deuxième mode de réalisation d'une partie du dispositif de la figure 2; - la figure 4 représente sous forme de schéma-bloc le procédé de commutation en mode haute vitesse;
- la figure 5 représente sous forme de schéma-bloc le procédé de commutation en mode basse vitesse; et
- la figure 6 est un schéma-bloc illustrant le fonctionnement du moteur depuis son démarrage jusqu'à ce qu'il ait atteint la vitesse voulue.
En référence aux figures 1 à 3, le dispositif selon la présente invention est utilisé pour alimenter un moteur synchrone à aimant permanent 10 tel que, par exemple, un moteur triphasé, et comporte une source d'alimentation électrique 11 , un convertisseur 12, un pont de puissance 13 permettant d'alimenter le moteur, un circuit de mesure 14 du courant total des phases du moteur, une unité de commande 15 formée d'un microprocesseur 16, des moyens de comparaison 17 permettant de comparer une valeur instantanée du courant total du moteur à une valeur de consigne, et des moyens de détection 18 permettant de déterminer la position réelle du rotor du moteur en fonction de la tension induite due au déplacement du rotor du moteur.
La source d'alimentation électrique 11 peut être une source de courant alternatif ou continu. Le courant est, d'une part, fourni au pont de puissance 13 et, d'autre part, à une carte électronique 19 sur laquelle sont placés tous les composants ci-dessus, à l'exception du moteur 10 et de la source d'alimentation électrique 11. Avant d'être transmis à la carte électronique, ce courant est transformé par le convertisseur 12 en courant continu ayant une tension logique donnée.
Le pont de puissance 13 est destiné à alimenter chaque phase du moteur et permet ainsi, avec l'unité de commande 15, de contrôler l'enclenchement et le déclenchement de l'alimentation de chaque phase. Deux modes de réalisation des moyens de détection 18 de la position du rotor du moteur sont illustrés en détail par les figures 2 et 3.
La figure 2 représente un premier mode de réalisation de ces moyens de détection 18, utilisés en particulier en mode haute vitesse, c'est-à-dire lorsque la vitesse de rotation du rotor du moteur est supérieure à environ 10 % de sa vitesse de rotation maximale.
Dans le mode de réalisation représenté, le moteur 10 comporte trois phases, respectivement 20, 21 et 22. Chaque phase est directement alimentée par le courant provenant du pont de puissance 13. Si le moteur a un point neutre N accessible, la tension de chaque phase peut être mesurée directement entre le neutre et la phase. Toutefois, généralement le neutre n'est pas accessible.
Dans ce cas, un circuit de mesure de tension 23 est mis en place. Ce circuit comporte des résistances 24, 25 et 26 de grande valeur ohmique ayant des bornes 24', 25' et 26' reliées entre elles et des bornes 24", 25" et 26" reliées respectivement aux phases 20, 21 et 22 du moteur.
Dans le cas illustré par la figure 2, le moteur étant triphasé, le circuit de mesure de tension 23 comporte trois résistances reliées à un point commun
M. Ce circuit de mesure de tension comporte trois comparateurs 27, 28 et 29 ayant chacun deux entrées, respectivement 27'-27", 28'-28", 29'-29", et une sortie 30, 31 et 32. L'une des entrées 27", 28" et 29" de chaque comparateur est reliée au point M, et l'autre entrée de chaque comparateur est reliée à l'une des phases 20, 21 et 22. Chaque comparateur délivre ainsi un signal de sortie représentatif du signe de la tension de chaque phase.
Afin d'éviter les perturbations, chaque signal sortant des comparateurs 27, 28 et 29 est mis en mémoire au moyen d'une bascule bistable 33, 34 et 35. Les bascules bistables sont commandées selon une fréquence d'échantillonnage variant en fonction de la vitesse de rotation et de la charge du moteur, comme cela sera expliqué plus en détail ci-dessous. Chaque bascule bistable génère un signal de sortie CA, CB, CC qui est transmis à l'unité de commande 15.
Dans le cas où le moteur est utilisé à basse vitesse, c'est-à-dire lorsque la vitesse de rotation réelle du moteur est inférieure à environ 10 % de sa vitesse maximale, la tension induite par la rotation du rotor du moteur devient très faible. L'amplitude des signaux mesurés aux bornes des résistances 24, 25 et 26 est faible et les comparateurs font trop d'erreurs pour que ces signaux soient utilisables.
La figure 3 illustre un exemple de circuit de mesure de tension 36 utilisable lorsque le moteur tourne à basse vitesse. En fait, comparativement au circuit de la figure 2, ce circuit de mesure ne comporte pas de bascules bistables et les comparateurs sont remplacés par des amplificateurs opérationnels 37, 38 et 39. Chaque amplificateur comporte deux entrées 37'-37", 38'-38", 39'-39" et une sortie 40, 41 et 42 et est connecté de la même façon que les comparateurs du circuit 23 de la figure 2. Les signaux de sortie de ces amplificateurs opérationnels ne sont donc plus seulement représentatifs du signe de la tension sur chaque phase, mais également de son amplitude. Ces signaux sont transmis directement à l'unité de commande 15 dans laquelle ils sont traités. L'unité de commande lit les signaux des amplificateurs opérationnels en les échantillonnant à très basse fréquence.
Afin de permettre une mesure précise de la tension induite par le mouvement du rotor du moteur en mode basse vitesse, on coupe momentanément l'alimentation de toutes les phases. Pendant cette coupure, la tension induite est mesurée, ce qui permet de déduire la vitesse et la position du rotor. L'alimentation est ensuite rétablie.
En pratique, l'unité de commande 15 comporte avantageusement deux fois plus d'entrées que le moteur ne comporte de phases. Dans le cas illustré, comme le moteur comporte trois phases, l'unité de commande 15 comporte six entrées et le circuit de mesure de tension comporte trois comparateurs et trois amplificateurs. En mode haute vitesse, les signaux provenant des comparateurs 27, 28 et 29 sont utilisés par l'unité de commande pour déterminer la position du rotor. En mode basse vitesse, les signaux provenant des amplificateurs opérationnels 37, 38 et 39 sont utilisés. Les signaux provenant des comparateurs et des amplificateurs sont transmis en continu aux entrées de l'unité de commande. Celle-ci détermine, en fonction de la vitesse de rotation du moteur, les signaux qui vont être utilisés.
II est clair que, lorsque le circuit comporte plus ou moins de trois phases, il doit être adapté en fonction de ce nombre de phases.
Il est à noter que le circuit tel qu'illustré par la figure 2 peut également être utilisé en mode basse vitesse. Dans ce cas, les amplificateurs opérationnels ne sont pas nécessaires et l'unité de commande peut comporter des entrées numériques uniquement.
Le principe de fonctionnement en mode haute vitesse sans utiliser de modulation de largeur d'impulsion est décrit ci-dessous en référence aux figures 2 et 4.
Le procédé de commutation est basé sur le principe des interruptions. En effet, le microprocesseur 16 est équipé d'entrées, appelées "interruptions", qui déclenchent un processus programmé. En fait, le microprocesseur contient plusieurs programmes. La première étape 40 du procédé consiste à choisir, parmi tous les programmes disponibles, le programme adéquat. Celui-ci dépend du mode de fonctionnement moteur ou générateur, du nombre de phases, du sens de rotation et du type d'alimentation uni- ou bipolaire du moteur.
La deuxième étape 41 du procédé consiste à lire les signaux CC, CB, CA sortant des bascules bistables 33, 34 et 35. En fonction du programme utilisé, du dernier signal CA, CB ou CC ayant changé d'état et du sens de ce changement d'état, le microprocesseur détermine, dans une étape 42, qu'elle est la prochaine interruption autorisée.
Un délai d'attente, entre le moment où le passage par zéro de la tension induite est détecté et celui où l'alimentation des phases est commutée, est introduit. Ce délai est variable en fonction de la vitesse de rotation du rotor. Cette opération correspond à l'étape 43.
Lorsque le signal lié à la prochaine interruption autorisée se produit, le processus programmé est effectivement réalisé. Ceci correspond à l'étape 44.
La vitesse du rotor du moteur est calculée dans l'étape 45. La manière de calculer cette vitesse sera décrite en détail ci-dessous.
Le programme retourne enfin à l'étape 42 qui permet de déterminer la prochaine interruption autorisée.
Dans le cas d'un moteur triphasé bipolaire, pour un sens de rotation donné, les trois signaux CA, CB et CC sont reliés à trois interruptions 11 , 12 et 13 du microprocesseur. Comme dans le cas d'un capteur direct, tel que des sondes à effet Hall, on réalise les étapes suivantes :
1. Sur le flanc montant de CA, on fait l'interruption 11. 2. Sur le flanc descendant de CC, on fait l'interruption 13.
3. Sur le flanc montant de CB, on fait l'interruption 12.
4. Sur le flanc descendant de CA, on fait l'interruption 11.
5. Sur le flanc montant de CC, on fait l'interruption 13.
6. Sur le flanc descendant de CB, on fait l'interruption 12. 7. Retour au point 1. 1. L'interruption 11 est activée au flanc montant de CA. La commutation des phases est alors réalisée pendant l'interruption et l'interférence possible de CC, due à l'extinction du courant dans la phase 22 et à l'inversion de la tension de phase 22, est empêchée. A la fin de cette opération, on autorise l'interruption 13 à être activée dès l'apparition du flanc descendant de CC.
2. L'interruption 13 est activée au flanc descendant de CC. La commutation des phases est réalisée durant cette interruption et les interférences possibles dues à CB sont empêchées. A la fin de cette opération, on autorise l'interruption 12 à être activée dès l'apparition du flanc montant de CB.
3. L'interruption 12 est activée au flanc montant de CB. La commutation des phases est réalisée durant cette interruption et les interférences possibles dues à CA sont empêchées. A la fin de cette opération on autorise l'interruption 11 à être activée dès l'apparition du flanc descendant de CA.
4. L'interruption 11 est activée au flanc descendant de CA. La commutation des phases est réalisée durant cette interruption et les interférences possibles dues à CC sont empêchées. A la fin de cette opération on autorise l'interruption 13 à être activée dès l'apparition du flanc montant de CC.
5. L'interruption 12 est activée au flanc montant de CC. La commutation des phases est réalisée durant cette interruption et les interférences possibles dues à CB sont empêchées. A la fin de cette opération on autorise l'interruption 12 à être activée dès l'apparition du flanc descendant de CB.
6. L'interruption 11 est activée au flanc descendant de CB. La commutation des phases est réalisée durant cette interruption et les interférences possibles dues à CA sont empêchées. A la fin de cette opération on autorise l'interruption 11 à être activée dès l'apparition du flanc montant de CA. Grâce à ce procédé, seule une interruption est autorisée. Les passages par zéro dus à la conduction de diodes du pont de puissance ne perturbent donc pas la commutation.
En utilisant une modulation de largeur d'impulsion, à chaque extinction du signal de modulation, des interférences se créent. L'effet de ces interférences est supprimé de la façon suivante. Le signal de sortie de chacune des bascules bistables 33, 34 et 35 illustrées par la figure 2 est égal au signal provenant de la mesure de la tension aux bornes des résistances 24, 25 et 26 lorsqu'un signal d'horloge parvient à la bascule. La création de ce signal d'horloge au bon moment permet d'éliminer les perturbations dues aux arrêts du signal de modulation.
A chaque enclenchement du pont de puissance 13, un signal est transmis à une bascule monostable (non représentée). La durée pendant laquelle cette bascule donne un signal haut est réglée de façon conventionnelle au moyen d'un filtre RC. Le signal d'horloge transmis aux bascules bistables est donné par chaque flanc descendant du signal provenant de la bascule monostable.
La fréquence d'échantillonnage, donnée par la fréquence du signal d'horloge transmis aux bascules bistables, est égale à la fréquence de la modulation de largeur d'impulsion qui est variable en fonction de la vitesse de rotation et de la charge du moteur.
En mode haute vitesse et basse vitesse, si la durée entre deux enclenchements successifs du pont de puissance augmente de façon trop importante, la fréquence d'échantillonnage devient trop basse et la position du rotor du moteur ne peut plus être détectée de façon fiable. Dans ce cas, une fréquence externe est utilisée pour inhiber le signal d'horloge des bascules monostables. Cette fréquence externe est plus grande que la fréquence de rotation maximale du moteur. Elle est généralement au moins cinq fois plus grande que cette fréquence de rotation maximale et, dans l'exemple décrit, elle peut être égale à 100 Khz. Cette fréquence est déterminée de façon empirique.
Le principe de fonctionnement en mode basse vitesse est expliqué ci-dessous en référence à la figure 5.
L'alimentation du pont de puissance est déclenchée, ce qui implique que, dans l'étape 50, aucune phase n'est alimentée. Dans l'étape 51 du procédé, un temps d'attente variable est introduit de façon à ce que les courants de phases s'annulent. L'unité de commande mesure les tensions induites par le mouvement du rotor sur chacune des phases. Ceci est mesuré dans l'étape 52 du procédé. A l'aide de ces tensions induites, on calcule la vitesse et la position du rotor. La manière de calculer la vitesse du rotor est expliquée ci- dessous. Ces calculs sont effectués dans l'étape 53 du procédé. En fonction de ces valeurs, on effectue la commutation et on réenclenche le pont de puissance pour alimenter les phases voulues. Ceci correspond à l'étape 54 du procédé. Enfin, dans l'étape 55, on impose un temps d'attente variable dépendant de la vitesse de rotation du rotor du moteur, entre la fin de la mesure de la vitesse et le moment auquel l'alimentation est commutée.
Lorsque les signaux numériques provenant des bascules bistables 33, 34 et 35 sont utilisés, on mesure le temps qui s'écoule entre l'apparition de deux flancs. Il est possible de détecter des flancs sur n'importe lesquels des signaux CA, CB ou CC, de sorte que l'on peut mesurer le temps entre l'apparition de deux flancs sur un même signal ou sur deux signaux différents.
Ce temps permet de déterminer le temps nécessaire au rotor pour effectuer une période électrique et, par conséquent, la vitesse de rotation du rotor du moteur. Ceci correspond à l'étape 44 du procédé illustré par la figure 4.
Lorsque l'on utilise les signaux analogiques sortant des amplificateurs opérationnels 37, 38, 39 pour mesurer la vitesse de rotation du moteur, on calcule la somme des carrés des tensions sur chaque phase et l'on extrait la racine carrée de cette somme. Ceci donne l'amplitude de la tension, qui est directement proportionnelle à la vitesse de rotation du moteur. Il est ainsi possible de connaître la vitesse de rotation du rotor du moteur en mode basse vitesse. Ceci correspond à l'étape 53 du procédé illustré par la figure 5. Il est à noter que ce mode de calcul est utilisable en particulier lorsque le moteur comporte deux ou trois phases. Dans d'autres modes de réalisations, la vitesse de rotation du moteur peut être calculée en utilisant d'autres fonctions mathématiques.
Le procédé de commande selon la présente invention est expliqué ci-dessous en référence à la figure 6.
Lorsque l'on enclenche le moteur, un courant de consigne est introduit dans l'unité de commande 15. Ce courant de consigne permet, d'une part, de fixer le couple généré par le moteur et, d'autre part, de protéger le moteur contre une valeur de courant qui pourrait l'endommager. Le rotor du moteur est ensuite positionné de telle façon qu'il ne soit pas placé dans une position instable. Ceci est fait dans une étape 60 du procédé illustré par la figure 6. En pratique, au moins l'une des phases du moteur est alimentée de façon à positionner le rotor correctement. Le moteur est alors mis en marche dans une étape 61 du procédé jusqu'à ce que la tension induite par le mouvement du rotor soit suffisante pour être détectée.
A la fin de cette phase de mise en marche, le moteur est commandé en mode basse vitesse, comme cela a été décrit ci-dessus. Cette étape correspond à une étape 62 du procédé. Dans une étape 63 du procédé, la vitesse de rotation du moteur est mesurée et comparée à une vitesse de seuil, correspondant à la frontière entre le mode basse vitesse et le mode haute vitesse. Ce seuil est généralement proche de 10 % de la vitesse de rotation maximale du moteur. Dès que la vitesse de rotation réelle du moteur a dépassé la valeur de seuil, le moteur est commandé en mode haute vitesse, comme décrit ci-dessus. Ceci correspond à une étape 64 du procédé. Dans le cas contraire, il est commandé en mode basse vitesse.
La mesure de la vitesse de rotation du rotor est régulièrement comparée à la vitesse de seuil dans une étape 65 du procédé. Si la vitesse du rotor est inférieure à la vitesse de seuil, le moteur est commandé en mode basse vitesse. Dans le cas contraire, il est commandé en mode haute vitesse.
La commande du moteur en mode haute vitesse ou basse vitesse peut être réalisée avec ou sans modulation de largeur d'impulsion.
Le procédé et le dispositif de régulation selon la présente invention permettent une régulation de moteurs mono- ou polyphasés, uni- ou multipolaires, avec ou sans modulation de régulation d'amplitude, sans utiliser de capteurs directs, en mode moteur ou générateur.
En outre, en utilisant une modulation de la largeur d'impulsion à fréquence variable, on obtient un meilleur rendement de l'entraînement électrique.
La présente invention n'est pas limitée aux modes de réalisations décrits, mais s'étend à toutes variantes évidentes pour l'homme du métier. En particulier, le type de moteur utilisable est varié. Il est possible d'introduire des valeurs de consigne différentes telles que le couple, la vitesse, le courant ou la tension.

Claims

REVENDICATIONS
1. Procédé de commande d'un moteur synchrone à aimant permanent sans capteur direct comportant au moins une phase, un enroulement et un rotor, caractérisé en ce qu'il comporte les opérations de:
- contrôle de l'alimentation de chaque phase du moteur,
- mesure simultanée de la tension de chaque phase du moteur,
- détermination d'une fréquence variable à partir de la vitesse de rotation du rotor et de la charge du moteur, - échantillonnage à ladite fréquence variable de signaux de sortie provenant de la mesure de la tension de chaque phase, et
- commande de l'alimentation des phases en fonction des signaux échantillonnés.
2. Procédé selon la revendication 1 , caractérisé en ce que ledit enroulement est alimenté de façon unidirectionnelle.
3. Procédé selon la revendication 1 , caractérisé en ce que ledit enroulement est alimenté de façon bidirectionnelle.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comporte l'opération de détermination de la position et de la vitesse du rotor à partir de la tension de chaque phase du moteur.
5. Procédé selon la revendication 4, caractérisé en ce que la vitesse de rotation du rotor est déterminée en introduisant la tension d'au moins une phase du moteur dans un comparateur (33, 34, 35) et en mesurant l'intervalle de temps qui sépare deux changements de signes des signaux sortant dudit comparateur.
6. Procédé selon la revendication 4, caractérisé en ce que la vitesse de rotation du rotor est déterminée en calculant la somme des carrés des tensions de chaque phase et en extrayant la racine carrée de cette somme.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'alimentation du moteur est commutée en fonction du nombre de phases du moteur, du type d'alimentation des phases, du type de moteur et de son mode de fonctionnement.
8. Procédé selon la revendication 7, caractérisé en ce que, en fonction de la position du rotor, un seul type de commutation est autorisé.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que, lorsque le temps séparant deux actions successives du contrôle de l'alimentation de chaque phase du moteur dépasse une valeur de seuil prédéfinie, la fréquence variable d'échantillonnage est fixée à une valeur prédéterminée supérieure à la fréquence de rotation maximale du rotor.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comporte les opérations de: - détermination de façon répétée de la vitesse de rotation réelle du rotor,
- comparaison de cette vitesse de rotation réelle à une vitesse de seuil prédéfinie,
- contrôle de l'alimentation de chaque phase du moteur en la coupant momentanément, lorsque la vitesse réelle est inférieure à la vitesse de seuil,
- contrôle de l'alimentation de chaque phase du moteur en mesurant la tension induite par le mouvement du rotor sur une phase non alimentée, lorsque la vitesse réelle est supérieure à la vitesse de seuil.
11. Dispositif de commande d'un moteur synchrone à aimant permanent, mettant en œuvre le procédé selon l'une des revendications précédentes, ce dispositif étant alimenté par une source d'alimentation électrique, caractérisé en ce qu'il comporte un pont de puissance (13) alimentant l'enroulement du moteur, une unité de commande de l'alimentation de l'enroulement, un circuit de mesure de la tension de chaque phase du moteur et des moyens pour échantillonner à fréquence variable des signaux provenant de ce circuit de mesure.
12. Dispositif selon la revendication 11, caractérisé en ce qu'il comporte une unité de commande agencée pour commander la commutation de l'alimentation de chaque phase du moteur, et en ce que cette unité de commande comporte au moins un programme de commande dépendant du type de moteur, du nombre de phases, du type d'alimentation des phases et du mode de fonctionnement du moteur.
13. Dispositif selon la revendication 11 , caractérisé en ce qu'il comporte un comparateur par phase agencé pour mesurer le signe de chaque phase.
14. Dispositif selon la revendication 11 , caractérisé en ce que la tension de chaque phase est introduite dans l'unité de commande sous forme de signaux analogiques.
PCT/CH1998/000421 1997-10-06 1998-10-02 Procede et dispositif de commande d'un moteur synchrone a aimant permanent WO1999018654A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/529,039 US6326760B1 (en) 1997-10-06 1998-10-02 Method and device for controlling a synchronous motor with permanent magnet
DE69805641T DE69805641T2 (de) 1997-10-06 1998-10-02 Gerät und verfahren zur steuerung eines synchronmotors mit permanentmagnet
EP98944947A EP1020019B1 (fr) 1997-10-06 1998-10-02 Procede et dispositif de commande d'un moteur synchrone a aimant permanent
JP2000515326A JP2001519640A (ja) 1997-10-06 1998-10-02 永久磁石付きの同期電動機を制御する制御方法及び制御装置
AU92497/98A AU9249798A (en) 1997-10-06 1998-10-02 Method and device for controlling a synchronous motor with permanent magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9712575A FR2769428B1 (fr) 1997-10-06 1997-10-06 Procede et dispositif de commande d'un moteur synchrone a aimant permanent
FR97/12575 1997-10-06

Publications (1)

Publication Number Publication Date
WO1999018654A1 true WO1999018654A1 (fr) 1999-04-15

Family

ID=9511992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1998/000421 WO1999018654A1 (fr) 1997-10-06 1998-10-02 Procede et dispositif de commande d'un moteur synchrone a aimant permanent

Country Status (7)

Country Link
US (1) US6326760B1 (fr)
EP (1) EP1020019B1 (fr)
JP (1) JP2001519640A (fr)
AU (1) AU9249798A (fr)
DE (1) DE69805641T2 (fr)
FR (1) FR2769428B1 (fr)
WO (1) WO1999018654A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE517013C2 (sv) * 1999-10-12 2002-04-02 Abb Ab Anordning och förfarande för att uppskatta hastigheten hos en släpringad asynkronmaskin samt användning
FR2802034A1 (fr) * 1999-12-07 2001-06-08 Koninkl Philips Electronics Nv Procede pour alimenter un moteur polyphase offrant un rendement energetique accru
FR2806551B1 (fr) 2000-03-15 2002-05-10 Valeo Electronique Procedes et dispositifs pour le suivi de la rotation de moteurs electriques a courant continu
US6972957B2 (en) 2002-01-16 2005-12-06 Rockwell Automation Technologies, Inc. Modular power converter having fluid cooled support
US7061775B2 (en) 2002-01-16 2006-06-13 Rockwell Automation Technologies, Inc. Power converter having improved EMI shielding
US7142434B2 (en) * 2002-01-16 2006-11-28 Rockwell Automation Technologies, Inc. Vehicle drive module having improved EMI shielding
US6865080B2 (en) * 2002-01-16 2005-03-08 Rockwell Automation Technologies, Inc. Compact fluid cooled power converter supporting multiple circuit boards
US6965514B2 (en) * 2002-01-16 2005-11-15 Rockwell Automation Technologies, Inc. Fluid cooled vehicle drive module
US6898072B2 (en) 2002-01-16 2005-05-24 Rockwell Automation Technologies, Inc. Cooled electrical terminal assembly and device incorporating same
US7032695B2 (en) 2002-01-16 2006-04-25 Rockwell Automation Technologies, Inc. Vehicle drive module having improved terminal design
JP3813587B2 (ja) * 2003-01-30 2006-08-23 東芝エルエスアイシステムサポート株式会社 モータ制御回路、半導体集積回路、指示装置及びモータ制御方法
US7288910B2 (en) * 2003-12-01 2007-10-30 Pratt & Whitney Canada Corp. Sensorless control in a permanent magnet machine
ATE434862T1 (de) * 2004-02-06 2009-07-15 Micro Beam Sa Verfahren und einrichtung zur steuerung eines synchronmotors mit permanentmagneten
CA2641994C (fr) * 2006-02-08 2015-03-31 Andreiy Vladimirovich Sagalovskiiy Procede de commande d'un moteur electrique et dispositif pour l'executer
DE102006039127A1 (de) * 2006-08-21 2008-03-06 Robert Bosch Gmbh Verfahren und Vorrichtung zum selbstkommutierenden Betrieb eines elektronisch kommutierten Gleichstrommotors
JP4279886B2 (ja) * 2007-02-28 2009-06-17 株式会社日立製作所 同期モータ駆動装置および方法
JP5358081B2 (ja) * 2007-10-26 2013-12-04 株式会社日立製作所 モータ制御装置及びモータ装置
US8076882B2 (en) 2007-12-26 2011-12-13 Pratt & Whitney Canada Corp. Motor drive architecture with active snubber
DE102008054197A1 (de) * 2008-10-31 2010-10-07 Lenze Drives Gmbh Steuerungssystem und Steuerungsverfahren zum geberlosen Betrieb von Asynchronmaschinen
CN101738536B (zh) * 2008-11-21 2011-07-20 上海电机学院 用于永磁同步电机的电流测量值的量化装置及其量化方法
US8241240B2 (en) * 2009-11-09 2012-08-14 Medtronic Xomed, Inc. Adjustable valve setting with motor control
US8813757B2 (en) 2011-01-27 2014-08-26 Medtronic Xomed, Inc. Reading and adjusting tool for hydrocephalus shunt valve
US8298168B2 (en) 2011-01-27 2012-10-30 Medtronic Xomed, Inc. Adjustment for hydrocephalus shunt valve
EP3663872B1 (fr) * 2018-12-06 2022-06-08 The Swatch Group Research and Development Ltd Procédé de commande d'un moteur électrique à courant continu

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990010973A1 (fr) * 1989-03-15 1990-09-20 International Business Machines Corporation Demarrage d'un motor a courant continu sans balais
US5245256A (en) * 1991-02-15 1993-09-14 Seagate Technology, Inc. Closed loop control of a brushless DC motor at nominal speed
EP0735662A2 (fr) * 1992-12-17 1996-10-02 STMicroelectronics, Inc. Méthode et appareil pour la commande de moteurs à courant continu polyphasés utilisant un signal à modulation par largeur d'impulsions dans la détermination du passage par zéro

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328589B2 (fr) * 1972-12-18 1978-08-15
US4409534A (en) * 1980-04-09 1983-10-11 General Electric Company Microcomputer-based pulse width modulated inverter fed machine drive system
FR2660126B1 (fr) * 1990-03-26 1995-06-16 Peugeot Procede de commande d'un moteur synchrone autopilote et dispositif pour sa mise en óoeuvre.
WO1994011945A1 (fr) * 1992-11-06 1994-05-26 Georgia Tech Research Corporation Procede de commande base sur l'observation de moteurs synchrones a aimants permanents
US5440219A (en) * 1993-05-21 1995-08-08 Wilkerson; Alan W. Induction motor speed control having improved sensing of motor operative conditions
US5345156A (en) * 1993-12-30 1994-09-06 Whirlpool Corporation Control for high speed operation of brushless permanent magnet motor
JP3240888B2 (ja) * 1995-09-04 2001-12-25 株式会社日立製作所 モータ制御装置、モータ制御方法、およびそれを用いた電気車
JP3485726B2 (ja) * 1996-06-24 2004-01-13 トヨタ自動車株式会社 電気角検出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990010973A1 (fr) * 1989-03-15 1990-09-20 International Business Machines Corporation Demarrage d'un motor a courant continu sans balais
US5245256A (en) * 1991-02-15 1993-09-14 Seagate Technology, Inc. Closed loop control of a brushless DC motor at nominal speed
EP0735662A2 (fr) * 1992-12-17 1996-10-02 STMicroelectronics, Inc. Méthode et appareil pour la commande de moteurs à courant continu polyphasés utilisant un signal à modulation par largeur d'impulsions dans la détermination du passage par zéro

Also Published As

Publication number Publication date
FR2769428A1 (fr) 1999-04-09
FR2769428B1 (fr) 1999-12-24
EP1020019A1 (fr) 2000-07-19
AU9249798A (en) 1999-04-27
US6326760B1 (en) 2001-12-04
DE69805641D1 (de) 2002-07-04
JP2001519640A (ja) 2001-10-23
EP1020019B1 (fr) 2002-05-29
DE69805641T2 (de) 2003-01-30

Similar Documents

Publication Publication Date Title
EP1020019B1 (fr) Procede et dispositif de commande d'un moteur synchrone a aimant permanent
EP0579948B1 (fr) Dispositif de commande d'un moteur asynchrone
FR2747521A1 (fr) Commande d'un moteur sans collecteur
EP1974455B1 (fr) Dispositif de pilotage d'une machine tournante polyphasee
FR2532490A1 (fr) Dispositif de commande d'un moteur a courant continu sans balais
FR2901647A1 (fr) Dispositif et procede de commande de puissance pour une machine dynamo electrique du type a enroulement de champ
FR2875345A1 (fr) Systeme de detection de defaillance pour onduleur
EP1972051B1 (fr) Procédé de détermination de la position d'un rotor d'une machine synchrone muni d'au moins un enroulement d'excitation
EP3014758B1 (fr) Dispositif de contrôle d'un moteur
FR3001039A1 (fr) Procede de detection d'un defaut electrique d'un dispositif de generateur et moyens pour sa mise en oeuvre
EP1847839A2 (fr) Procédé de dépistage d'un court-circuit résistif, systéme module et support d'enregistrement pour ce procédé
FR2729256A1 (fr) Methode et dispositif de controle d'un moteur synchrone monophase a aimants permanents apte a optimiser les parametres de fonctionnement meme en presence de fluctuations de la tension ou de la charge
EP2756592B1 (fr) Procédé de commande d'un interrupteur commande pilotant l'alimentation d'un moteur électrique
EP0936728B1 (fr) Commande d'un moteur sans collecteur susceptible de comporter des dissymétries
CA2371322C (fr) Procede et dispositif de commande et de regulation d'une machine electrique tournante a courant alternatif, en particulier synchrone
EP2605400B1 (fr) Procédé de commande d'un onduleur pour l'alimentation électrique d'un moteur, et module de commande associé
FR2660126A1 (fr) Procede de commande d'un moteur synchrone autopilote et dispositif pour sa mise en óoeuvre.
EP1285490B1 (fr) Procede de determination de la position du rotor d'un moteur electromagnetique sans collecteur et dispositif pour sa mise en oeuvre
EP3167543B1 (fr) Procédé de génération de signaux de commande pour gérer le fonctionnement d'un moteur synchrone, dispositif de contrôle et actionneur
FR3027748A1 (fr) Procede et dispositif de commande d'une machine electrique tournante synchrone polyphasee, et machine electrique reversible de vehicule automobile correspondant
EP3766169A1 (fr) Procédé de commande d'un onduleur
EP0823776B1 (fr) Procédé de freinage pour un moteur électrique et dispositif de mise en oeuvre
FR2744301A1 (fr) Onduleur d'alimentation d'un moteur electrique de traction d'un vehicule
EP4387084A1 (fr) Procédé de commande d'une machine électrique pilotée par un onduleur pourvu d'une pluralité de bras de commutation
WO2023105140A1 (fr) Procédé de pilotage d'un onduleur d'alimentation d'un moteur comprenant au moins deux bobinages lors d'une défaillance de type court-circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998944947

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09529039

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

WWP Wipo information: published in national office

Ref document number: 1998944947

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1998944947

Country of ref document: EP