WO1999017373A1 - Halbleiter-leistungsbauelement mit erhöhter latch-up-festigkeit - Google Patents

Halbleiter-leistungsbauelement mit erhöhter latch-up-festigkeit Download PDF

Info

Publication number
WO1999017373A1
WO1999017373A1 PCT/DE1998/002859 DE9802859W WO9917373A1 WO 1999017373 A1 WO1999017373 A1 WO 1999017373A1 DE 9802859 W DE9802859 W DE 9802859W WO 9917373 A1 WO9917373 A1 WO 9917373A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
power component
semiconductor power
charge carrier
carrier recombination
Prior art date
Application number
PCT/DE1998/002859
Other languages
English (en)
French (fr)
Inventor
Heinrich Brunner
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to EP98958170A priority Critical patent/EP1019967A1/de
Priority to JP2000514338A priority patent/JP2001518717A/ja
Publication of WO1999017373A1 publication Critical patent/WO1999017373A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions

Definitions

  • the invention relates to a semiconductor power component with increased latch-up strength by suppressing a parasitic thyristor, with a semiconductor body of one conduction type forming a base zone, in which a further base zone of the other conduction type is provided.
  • IGBT bipolar transistor with an insulated gate
  • the parasitic thyristor is formed from an n source zone, a p antenna, an n base zone and a p collector zone.
  • the latch-up strength is previously increased by P + regions, which are disposed below the n + emitter region. As a result of this p + zone, the
  • Source zone flowing hole current caused lateral voltage drop. This considerably reduces the risk that this voltage drop will approximately reach the value of the diffusion voltage between the n-source zone and the p-well and could lead to the parasitic thyristor snapping into place.
  • a semiconductor power component of the type mentioned at the outset is distinguished according to the invention by a charge carrier recombination zone arranged in the further base zone.
  • This charge carrier recombination zone can consist of metal or highly doped polycrystalline silicon.
  • a titanium alloy is suitable as the metal.
  • the charge carrier recombination zone can penetrate the further base zone or can only be embedded in a surface area of the further base zone. It is particularly advantageous if the charge carrier recombination zone is provided in a highly doped zone of one line type arranged in the further base zone. This one line type is preferably the n line type.
  • the charge carrier recombination zone for example embedded in the further p-base zone, causes a large part of the hole current to recombine in the charge carrier recombination zone, and this current is then carried on to the emitter zone as an electron current in the MOS channel.
  • the hole current flowing underneath the N source is considerably reduced, which leads to a significant increase in the latch-up strength.
  • the hole recombination is controlled by the highly doped n + zone provided between the charge carrier recombination zone and the n base zone.
  • the high recombination speed on the metal of the charge carrier recombination zone therefore does not have as great an effect on the n-base zone.
  • the hole concentration in the adjacent area of the n-base zone can thereby be influenced, this hole concentration again affects the conductivity modulation in the n-base zone.
  • an insulator layer is preferably provided below the charge carrier recombination zone.
  • This insulator layer keeps the MOS part of the semiconductor power component, for example an IGBT, completely free of holes. As a result, a latch-up risk can practically be ruled out.
  • the insulator layer also acts as a hole congestion zone, which further increases the conductivity modulation in the n-base zone.
  • MCT MOS-controlled thyristor
  • the highly doped zone of the one line type is then a p + semiconductor zone.
  • EST emitter-switched thyristor
  • the present invention can increase the latch-up strength by avoiding the latch-up problems of the parasitic MOSFET.
  • Preferred application possibilities of the present invention consist in a MOSFET / diode cascode, a MOSFET / thyristor cascode, a transistor / diode cascode and a transistor / thyristor cascode.
  • FIG. 1 shows an IGBT according to a first exemplary embodiment of the present invention
  • FIG. 2 shows a MOSFET / diode cascode according to a second exemplary embodiment of the invention
  • FIG. 3 shows a MOSFET / thyristor cascode according to a third exemplary embodiment of the invention
  • FIG. 4 shows a transistor / diode cascode according to a fourth exemplary embodiment of the present invention
  • Figure 5 is a side view of a fifth embodiment of the present invention.
  • Figure 6 shows a MOSFET / thyristor cascode according to a sixth embodiment of the invention.
  • FIG. 1 shows, as a first exemplary embodiment of the invention, an IGBT with a p + -conducting collector zone 1, an n ⁇ semiconductor layer 2, a p-semiconductor well 3, an n + - emitter zone 4, a silicon dioxide layer 5, one in the silicon dioxide layer 5 embedded gate electrode ⁇ and a potential electrode 7 also embedded in the silicon dioxide layer 5.
  • a charge carrier recombination zone 8 for example made of a titanium alloy, is additionally embedded in the p-type semiconductor trough 3, an n + semiconductor zone 9 being arranged between the n " semiconductor layer 2 and this charge carrier recombination zone 8.
  • the charge carrier recombination zone 8 which is embedded in the p-semiconductor trough 3 serving as a p-base, acts as a hole recombination zone. Much of the stream of holes combines in this charge carrier recombination zone 8, and the current thus obtained is further passed to the n + emitter zone 4 in
  • the hole recombination can be controlled by the n + semiconductor zone 9 provided between the charge carrier recombination zone 8 and the n " semiconductor layer 2.
  • This causes the high recombination speed on the metal, for example a titanium alloy, or polycrystalline silicon of the charge carrier recombination zone 8 to have a high effect Recombination speed does not affect the base zone of the n " semiconductor layer 2 so strongly. It can thus, the hole concentration in the n "-type semiconductor layer 2 being affected, whereby the conductivity modulation in the n ⁇ -Halblei- ter harsh controlled.
  • FIG. 2 shows a second exemplary embodiment of the present invention using a MOSFET / diode cascode.
  • an insulator layer 10 made of, for example, silicon dioxide or silicon nitride below the p-type semiconductor trough 3 or the charge carrier recombination zone 8 and a p + semiconductor zone 11 are also provided here.
  • the charge carrier recombination zone 8 here extends through the p-type semiconductor trough 3 to the insulator layer 10 and is surrounded by the n + semiconductor zone 9.
  • a metallization 14 made of aluminum is provided on the insulator layer 10 and contacts the emitter zone 4 and the semiconductor trough 3.
  • the insulator layer 10 arranged below the charge carrier recombination zone 8 keeps the MOS part completely free of holes, as a result of which the risk of latch-up can be practically completely eliminated.
  • the suction effect on the charge carriers with the opposite charge to the semiconductor layer 2 can be controlled by means of the size of the slot formed by the semiconductor trough 3 and the insulator layer 10.
  • a highly doped n + zone 13 also serves to control this suction effect.
  • n + emitter zone 4 need not be designed in a ring shape, but can fill a full circle. The same also applies to the insulator layer 10 and to the p + semiconductor zone 11.
  • FIG. 3 shows a further exemplary embodiment of the present invention on the basis of a MOSFET / thyristor cascode, in which case the metallization 14 forms an emitter electrode 15. A part of the n + emitter zone 4 does not need to reach the insulator layer 10, as is indicated by a broken line 16.
  • FIG. 4 shows a further exemplary embodiment of the invention using a transistor / diode cascode
  • FIG. 5 shows an exemplary embodiment of the invention in which the n " semiconductor layer 2 is guided" channel-shaped "to the n + semiconductor zone 9. 4, which also shows an emitter electrode 15 and a base electrode 17, the conductive connection 12 can also be provided. This conductive connection 12 can also be provided in the embodiment of Figure 5.
  • FIG. 6 shows a MOSFET / thyristor cascode, which is constructed similarly to the exemplary embodiment from FIG. 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Thyristors (AREA)

Abstract

Die Erfindung betrifft ein Halbleiter-Leistungsbauelement mit erhöhter Latch-up-Festigkeit durch Unterdrücken eines parasitären Thyristors, mit einem eine Basiszone bildenden Halbleiterkörper (2) des einen Leitungstyps, in welchem eine weitere Basiszone (3) des anderen Leitungstyps vorgesehen ist. In diese weitere Basiszone (3) ist eine Ladungsträger-Rekombinationszone (8) aus Metall oder polykristallinem Silizium eingebettet, wobei zwischen der Ladungsträger-Rekombinationszone (8) und der Basiszone (2) eine hochdotierte Zone (9) des einen Leitungstyps vorgesehen ist. Unterhalb der weiteren Basiszone (3) kann noch eine Isolatorschicht (10) angeordnet sein.

Description

Beschreibung
Halbleiter-Leistungsbauelement mit erhöhter Latch-up- Festigkeit
Die Erfindung betrifft ein Halbleiter-Leistungsbauelement mit erhöhter Latch-up-Festigkeit durch Unterdrücken eines parasitären Thyristors, mit einem eine Basiszone bildenden Halbleiterkorper des einen Leitungstyps, in welchem eine weitere Ba- siszone des anderen Leitungstyps vorgesehen ist.
Unter "Latch-up" wird das Zünden eines parasitären Thyristors bei beispielsweise einem IGBT (IGBT = Bipolartransistor mit isoliertem Gate) verstanden. Bei einem solchen IGBT wird der parasitäre Thyristor aus einer n-Sourcezone, einer p- anne, einer n-Basiszone und einer p-Kollektorzone gebildet.
Bei IGBTs wird bisher die Latch-up-Festigkeit durch p+-Zonen erhöht, die unterhalb der n+-Emitterzone angeordnet sind. In- folge dieser p+-Zone sinkt der durch den unterhalb der n-
Sourcezone fließende Löcherstrom verursachte laterale Spannungsabfall. Damit wird die Gefahr, daß dieser Spannungsabfall den Wert der Diffusionsspannung zwischen der n-Sourcezone und der p-Wanne annähernd erreicht und zum Einrasten des parasitären Thyristors führen könnte, erheblich reduziert.
Dennoch hat sich gezeigt, daß durch die obigen üblichen Maßnahmen, also das Anordnen einer p^-Zone unterhalb der n+-Zone speziell bei IGBTs die Latch-up-Festigkeit nicht in dem ge- wünschten Maß erreicht werden kann.
Im übrigen gibt es auch allgemein bei planaren und trenchar- tigen MOS-Zellen die verschiedensten Ausgestaltungsformen zur Reduzierung der DurchlaßSpannung. Es ist daher Aufgabe der vorliegenden Erfindung, ein Halbleiter-Leistungsbauelement zu schaffen, das sich durch eine besonders hohe Latch-up-Festigkeit auszeichnet.
Zur Lösung dieser Aufgabe zeichnet sich ein Halbleiter-Leistungsbauelement der eingangs genannten Art erfindungsgemäß durch eine in der weiteren Basiszone angeordnete Ladungsträ- ger-Rekombinationszone aus. Diese Ladungsträger-Rekombinationszone kann aus Metall oder hochdotiertem polykristallinem Silizium bestehen. Als Metall ist beispielsweise eine Titanlegierung geeignet. Die Ladungsträger-Rekombinationszone kann dabei die weitere Basiszone durchsetzen oder aber nur in einen Oberflächenbereich der weiteren Basiszone eingebettet sein. Besonders vorteilhaft ist es, wenn die Ladungsträger- Rekombinationszone in einer in der weiteren Basiszone angeordneten hochdotierten Zone des einen Leitungstyps vorgesehen ist. Dieser eine Leitungstyp ist vorzugsweise der n-Leitungs- typ.
Die beispielsweise in die weitere p-Basiszone eingelagerte Ladungsträger-Rekombinationszone bewirkt, daß ein Großteil des Löcherstromes in der Ladungsträger-Rekombinationszone rekombiniert, und dieser Strom wird sodann weiter bis hin zu der Emitterzone als Elektronenstrom im MOS-Kanal geführt. Der unterhalb der N-Source fließende Löcherstrom wird dadurch erheblich reduziert, was zu einer wesentlichen Steigerung der Latch-up-Festigkeit führt.
Durch die zwischen der Ladungsträger-Rekombinationszone und der n-Basiszone vorgesehene hochdotierte n+-Zone wird die Löcherrekombination gesteuert. Damit wirkt sich die hohe Rekombinationsgeschwindigkeit am Metall der Ladungsträger-Rekombinationszone nicht so stark auf die n-Basiszone aus. Dadurch kann die Löcherkonzentration im angrenzenden Bereich der n- Basiszone beeinflußt werden, wobei diese Löcherkonzentration wiederum die Leitfähigkeitsmodulation in der n-Basiszone beeinflußt.
Weiterhin ist in bevorzugter Weise unterhalb der Ladungsträ- ger-Rekombinationszone eine Isolatorschicht vorgesehen. Durch diese Isolatorschicht wird der MOS-Teil des Halbleiter-Leistungsbauelements, beispielsweise eines IGBTs, vollständig frei von Löchern gehalten. Als Folge hiervon kann ein Latch- up-Risiko praktisch ausgeschlossen werden. Auch wirkt die Isolatorschicht zusätzlich als Löcherstauzone, wodurch die Leitfähigkeitsmodulation in der n-Basiszone weiter erhöht wird.
Die oben angegebenen Leitfähigkeitstypen können auch umge- kehrt werden: in diesem Fall wirkt die Ladungsträger-Rekombinationszone als Elektronen-Rekombinationszone, wenn sie in eine n-Wanne, wie beispielsweise bei einem MCT (MCT = MOS- gesteuerter Thyristor) eingebettet ist. Die hochdotierte Zone des einen Leitungstyps ist dann eine p+-Halbleiterzone. Eine andere Anwendungsmöglichkeit besteht in einem EST (EST = emittergeschalteter Thyristor) , bei dem durch die vorliegende Erfindung die Latch-up-Festigkeit erhöht werden kann, indem Latch-up-Probleme des parasitären MOSFETs vermieden werden.
Bevorzugte Anwendungsmöglichkeiten der vorliegenden Erfindung bestehen in einer MOSFET/Dioden-Kaskode, einer MOSFET/Thyri- stor-Kaskode, einer Transistor/Dioden-Kaskode und einer Tran- sistor/Thyristor-Kaskode .
Nachfolgend wird die Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:
Figur 1 einen IGBT nach einem ersten Ausführungsbeispiel der vorliegenden Erfindung, Figur 2 eine MOSFET/Dioden-Kaskode nach einem zweiten Ausfüh- rungsbeispiel der Erfindung,
Figur 3 eine MOSFET/Thyristor-Kaskode nach einem dritten Aus- führungsbeispiel der Erfindung,
Figur 4 eine Transistor/Dioden-Kaskode nach einem vierten Ausführungsbeispiel der vorliegenden Erfindung,
Figur 5 eine Seitenansicht eines fünften Ausführungsbeispiels der vorliegenden Erfindung und
Figur 6 eine MOSFET/Thyristor-Kaskode nach einem sechsten Ausführungsbeispiel der Erfindung.
In den Figuren werden sich einander jeweils entsprechende Teile mit den gleichen Bezugszeichen versehen.
Fig. 1 zeigt als erstes Ausführungsbeispiel der Erfindung ei- nen IGBT mit einer p+-leitenden Kollektorzone 1, einer n~- Halbleiterschicht 2, einer p-Halbleiterwanne 3, einer n+- Emitterzone 4, einer Siliziumdioxidschicht 5, einer in die Siliziumdioxidschicht 5 eingelagerten Gateelektrode β und einer ebenfalls in die Siliziumdioxidschicht 5 eingelagerten Potentialelektrode 7.
Erfindungsgemäß ist in der p-Halbleiterwanne 3 zusätzlich noch eine Ladungsträger-Rekombinationszone 8, aus beispielsweise einer Titanlegierung eingelagert, wobei zwischen der n" -Halbleiterschicht 2 und dieser Ladungsträger-Rekombinationszone 8 noch eine n+-Halbleiterzone 9 angeordnet ist.
Die Ladungsträger-Rekombinationszone 8, die in die als p- Basis dienende p-Halbleiterwanne 3 eingelagert ist, wirkt als Löcher-Rekombinationszone. Ein Großteil des Löcherstromes re- kombiniert in dieser Ladungsträger-Rekombinationszone 8, und der so erhaltene Strom wird weiter zu der n+-Emitterzone 4 im
MOS-Kanal in der p-Halbleiterwanne 3 geführt. Der unterhalb der n-Source fließende Löcherstrom wird dadurch bedeutend re- duziert, was das Latch-up-Risiko erheblich vermindert.
Durch die zwischen der Ladungsträger-Rekombinationszone 8 und der n"-Halbleiterschicht 2 vorgesehene n+-Halbleiterzone 9 kann die Löcherrekombination gesteuert werden. Dadurch wirkt sich die hohe Rekombinationsgeschwindigkeit am Metall, beispielsweise einer Titanlegierung, oder polykristallinem Silizium der Ladungsträger-Rekombinationszone 8 bewirkte hohe Rekombinationsgeschwindigkeit nicht so stark auf die Basiszone der n"-Halbleiterschicht 2 aus. Es kann also so die Löcher- konzentration in der n"-Halbleiterschicht 2 beeinflußt werden, wodurch die Leitfähigkeitsmodulation in der n~-Halblei- terschicht steuerbar ist.
Fig. 2 zeigt ein zweites Ausführungsbeispiel der vorliegenden Erfindung anhand einer MOSFET/Dioden-Kaskode. Zusätzlich zum Ausführungsbeispiel der Fig. 1 sind hier noch eine Isolatorschicht 10 aus beispielsweise Siliziumdioxid oder Siliziumnitrid unterhalb der p-Halbleiterwanne 3 bzw. der Ladungsträger-Rekombinationszone 8 und eine p+-Halbleiterzone 11 vorge- sehen. Die Ladungsträger-Rekombinationszone 8 erstreckt sich hier durch die p-Halbleiterwanne 3 hindurch bis zu der Isolatorschicht 10 und ist von der n+-Halbleiterzone 9 umgeben. Auf der Isolatorschicht 10 ist eine Metallisierung 14 aus Aluminium vorgesehen, die die Emitterzone 4 und die Halblei- terwanne 3 kontaktiert.
Durch die. unterhalb der Ladungsträger-Rekombinationszone 8 angeordnete Isolatorschicht 10 wird der MOS-Teil vollkommen frei von Löchern gehalten, wodurch das Latch-up-Risiko prak- tisch vollkommen ausgeschlossen werden kann. Hierzu dient auch die bis unterhalb die Zone 4 gezogene Metallisierung 14 aus Aluminium (ggf. auch ein anderes Metall möglich).
Durch eine leitende Verbindung 12 zwischen der Potentialelek- trode 7 aus polykristallinem Silizium und der Ladungsträger- Rekombinationszone 8 aus Metall haben die „floatenden" Zonen im Chip gleiches Potential.
Mittels der Größe des durch die Halbleiterwanne 3 und die Isolatorschicht 10 gebildeten Schlitzes kann die Absaugwir- kung auf die Ladungsträger mit entgegengesetzter Ladung zur Halbleiterschicht 2 gesteuert werden. Eine hochdotierte n+- Zone 13 dient zusätzlich zur Steuerung dieser Absaugwirkung.
Die n+-Emitterzone 4 braucht nicht ringförmig gestaltet zu sein, sondern kann einen Vollkreis ausfüllen. Gleiches gilt auch für die Isolatorschicht 10 sowie für die p+- Halbleiterzone 11.
Fig. 3 zeigt ein weiteres Ausführungsbeispiel der vorliegen- den Erfindung anhand einer MOSFET/Thyristor-Kaskode, wobei hier die Metallisierung 14 eine Emitterelektrode 15 bildet. Ein Teil der n+-Emitterzone 4 braucht nicht bis zu der Isolatorschicht 10 zu reichen, wie dies durch eine Strichlinie 16 angedeutet ist.
Fig. 4 zeigt ein weiteres Ausführungsbeispiel der Erfindung anhand einer Transistor/Dioden-Kaskode, während in Fig. 5 ein Ausführungsbeispiel der Erfindung gezeigt ist, bei dem die n" -Halbleiterschicht 2 "kanalförmig" zu der n+-Halbleiterzone 9 geführt ist. Beim Ausführungsbeispiel der Fig. 4, das auch eine Emitterelektrode 15 und eine Basiselektrode 17 zeigt, kann auch. die leitende Verbindung 12 vorgesehen werden. Diese leitende Verbindung 12 kann auch beim Ausführungsbeispiel der Fig. 5 vorgesehen werden. Schließlich zeigt Fig. 6 eine MOSFET/Thyristor-Kaskode, die ähnlich zu dem Ausführungsbeispiel von Fig. 2 aufgebaut ist.

Claims

Patentansprüche
1. Halbleiter-Leistungsbauelement mit erhöhter Latch-up- Festigkeit durch Unterdrücken eines parasitären Thyristors mit einer ersten und einer zweiten Seite mit
- einer einen Kollektor bildenden Schicht (1) vom ersten Leitfähigkeitstyp auf der erste Seite,
- einer eine Basiszone bildende Schicht (2) vom zweiten, entgegengesetzten Leitfähigkeitstyp, die an die zweite Seite des Halbleiterbauelements reicht, und in welcher eine weitere, an die zweite Seite reichende Basiszone (3) des ersten Leitfähigkeitstyp eingebracht ist,
- einem in der weiteren Basiszone (3) eingebrachten Emitterschicht (4) des zweiten Leitfähigkeitstyp und - auf der zweiten Seite aufgebrachten Anschlüssen, gekennzeichnet durch eine in der weiteren Basiszone (3) angeordnete Ladungsträgerrekombinationszone (8) .
2. Halbleiter-Leistungsbauelement nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Ladungsträger-Rekombinationszone (8) aus Metall oder hochdotiertem polykristallinem Silizium besteht.
3. Halbleiter-Leistungsbauelement nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß das Metall eine Titanlegierung ist.
4. Halbleiter-Leistungsbauelement nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die Ladungsträger-Rekombinationszone (8) die weitere Basiszone (3) durchsetzt.
5. Halbleiter-Leistungsbauelement nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die Ladungsträger-Reko binationszone (8) in einem Oberflächenbereich der weiteren Basiszone (3) vorgesehen ist.
6. Halbleiter-Leistungsbauelement nach einem der Ansprüche 1 bis 5, g e k e n n z e i c h n e t d u r c h eine unter der weiteren Basiszone (3) vorgesehene Isolatorschicht (10) .
7. Halbleiter-Leistungsbauelement nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , daß die Isolatorschicht (10) aus Siliziumdioxid besteht.
8. Halbleiter-Leistungsbauelement nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , daß zwischen der Ladungsträger-Rekombinationszone (8) und der Basiszone (2) eine hochdotierte Zone (9) des einen Leitung- styps vorgesehen ist.
9. Halbleiter-Leistungsbauelement nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , daß der eine Leitungstyp der n-Leitungstyp ist.
10. Halbleiter-Leistungsbauelement nach einem der Ansprüche 1 bis 9, g e k e n n z e i c h n e t d u r c h eine im Bereich oberhalb der Ladungsträger-Rekombinationszone (8) in eine Isolatorschicht (5) eingebettete Potentialelektrode (7) ,
11. Halbleiter-Leistungsbauelement nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , daß eine leitende Verbindung (12) zwischen der Potentialelektrode (7) und der Ladungsträger-Rekombinationszone (8) vorgesehen ist.
PCT/DE1998/002859 1997-09-30 1998-09-24 Halbleiter-leistungsbauelement mit erhöhter latch-up-festigkeit WO1999017373A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP98958170A EP1019967A1 (de) 1997-09-30 1998-09-24 Halbleiter-leistungsbauelement mit erhöhter latch-up-festigkeit
JP2000514338A JP2001518717A (ja) 1997-09-30 1998-09-24 高められたラッチアップ耐性を備えたパワー半導体素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19743265.4 1997-09-30
DE1997143265 DE19743265A1 (de) 1997-09-30 1997-09-30 Halbleiter-Leistungsbauelement mit erhöhter Latch-up-Festigkeit

Publications (1)

Publication Number Publication Date
WO1999017373A1 true WO1999017373A1 (de) 1999-04-08

Family

ID=7844194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/002859 WO1999017373A1 (de) 1997-09-30 1998-09-24 Halbleiter-leistungsbauelement mit erhöhter latch-up-festigkeit

Country Status (4)

Country Link
EP (1) EP1019967A1 (de)
JP (1) JP2001518717A (de)
DE (1) DE19743265A1 (de)
WO (1) WO1999017373A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043200A1 (de) * 1999-12-06 2001-06-14 Infineon Technologies Ag Steuerbares in beide richtungen sperrendes halbleiterschaltelement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10055765A1 (de) 2000-11-10 2002-05-23 Infineon Technologies Ag Verfahren zur Herstellung eines MOS-Feldeffekt-Transistors mit Rekombinationszone

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189967A (ja) * 1984-03-12 1985-09-27 Nippon Telegr & Teleph Corp <Ntt> 半導体装置
US4620211A (en) * 1984-08-13 1986-10-28 General Electric Company Method of reducing the current gain of an inherent bipolar transistor in an insulated-gate semiconductor device and resulting devices
EP0323549A2 (de) * 1987-12-28 1989-07-12 Motorola Inc. Bipolare Halbleiteranordnung mit einer leitenden Rekombinationsschicht
US4901124A (en) * 1988-04-22 1990-02-13 Fuji Electric Co., Ltd. Conductivity modulated MOSFET
EP0615292A1 (de) * 1993-03-10 1994-09-14 Hitachi, Ltd. Bipolartransistor mit isoliertem Gate
US5396087A (en) * 1992-12-14 1995-03-07 North Carolina State University Insulated gate bipolar transistor with reduced susceptibility to parasitic latch-up

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3618166A1 (de) * 1986-05-30 1987-12-03 Telefunken Electronic Gmbh Lateraltransistor
EP0405200A1 (de) * 1989-06-30 1991-01-02 Asea Brown Boveri Ag MOS-gesteuertes, bipolares Leistungshalbleiter-Bauelement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189967A (ja) * 1984-03-12 1985-09-27 Nippon Telegr & Teleph Corp <Ntt> 半導体装置
US4620211A (en) * 1984-08-13 1986-10-28 General Electric Company Method of reducing the current gain of an inherent bipolar transistor in an insulated-gate semiconductor device and resulting devices
EP0323549A2 (de) * 1987-12-28 1989-07-12 Motorola Inc. Bipolare Halbleiteranordnung mit einer leitenden Rekombinationsschicht
US4901124A (en) * 1988-04-22 1990-02-13 Fuji Electric Co., Ltd. Conductivity modulated MOSFET
US5396087A (en) * 1992-12-14 1995-03-07 North Carolina State University Insulated gate bipolar transistor with reduced susceptibility to parasitic latch-up
EP0615292A1 (de) * 1993-03-10 1994-09-14 Hitachi, Ltd. Bipolartransistor mit isoliertem Gate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 032 (E - 379) 7 February 1986 (1986-02-07) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043200A1 (de) * 1999-12-06 2001-06-14 Infineon Technologies Ag Steuerbares in beide richtungen sperrendes halbleiterschaltelement
US6864535B2 (en) 1999-12-06 2005-03-08 Infineon Technologies Ag Controllable semiconductor switching element that blocks in both directions

Also Published As

Publication number Publication date
JP2001518717A (ja) 2001-10-16
DE19743265A1 (de) 1999-04-08
EP1019967A1 (de) 2000-07-19

Similar Documents

Publication Publication Date Title
EP0833386B1 (de) Durch Feldeffekt steuerbares, vertikales Halbleiterbauelement
EP0360036B1 (de) Planarer pn-Übergang hoher Spannungsfestigkeit
EP1320133B1 (de) IGBT mit Trench-Gate-Struktur
DE3689680T2 (de) Mittels Steuerelektrode abschaltbarer Thyristor mit unabhängigen Zünd-/Lösch-Kontrolltransistoren.
DE69821105T2 (de) Bipolar mos-leistungstransistor ohne latch-up
DE3856480T2 (de) MOS-Feldeffekt-Transistor mit Leitfähigkeitsmodulation
DE102019202117B4 (de) Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung
EP1051756A1 (de) Mos-feldeffekttransistor mit hilfselektrode
WO1999036961A1 (de) Leistungs-mosfet
EP1181712B1 (de) Niederohmiges vdmos-halbleiterbauelement
DE3787484T2 (de) Verdrahtungsentwurf für bipolare und unipolare Transistoren mit isoliertem Gate.
EP0913000B1 (de) Durch feldeffekt steuerbares halbleiterbauelement
EP1264350B1 (de) Vertikales hochvolt-halbleiterbauelement
DE19816448C1 (de) Universal-Halbleiterscheibe für Hochspannungs-Halbleiterbauelemente, ihr Herstellungsverfahren und ihre Verwendung
EP0750351A2 (de) MOS-Halbleiterbauelement mit verbesserten Durchlasseigenschaften
DE68904343T2 (de) Bipolarer transistor mit isolierter steuerelektrode.
WO2000005768A1 (de) J-fet-halbleiteranordnung
DE4310606C2 (de) GTO-Thyristoren
DE69937665T2 (de) Halbleiterbauelement mit isoliertem Gate und dessen Betriebsverfahren
WO2009150636A1 (de) Hochvolt leistungstransistor in soi-technologie
WO1999017373A1 (de) Halbleiter-leistungsbauelement mit erhöhter latch-up-festigkeit
DE69333544T2 (de) Statischer Induktionsthyristor
DE19902749A1 (de) Leistungstransistoranordnung mit hoher Spannungsfestigkeit
WO1998006136A1 (de) Durch feldeffekt steuerbares halbleiterbauelement
EP0658940A1 (de) Durch Feldeffekt steuerbares Halbleiterbauelement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998958170

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09538796

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998958170

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998958170

Country of ref document: EP