WO1999017126A1 - Procede et dispositif pour la surveillance de courants d'arbre ou de tensions d'arbre dans un arbre de generateur - Google Patents

Procede et dispositif pour la surveillance de courants d'arbre ou de tensions d'arbre dans un arbre de generateur Download PDF

Info

Publication number
WO1999017126A1
WO1999017126A1 PCT/DE1998/002717 DE9802717W WO9917126A1 WO 1999017126 A1 WO1999017126 A1 WO 1999017126A1 DE 9802717 W DE9802717 W DE 9802717W WO 9917126 A1 WO9917126 A1 WO 9917126A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
wave current
generator
frequency
current
Prior art date
Application number
PCT/DE1998/002717
Other languages
German (de)
English (en)
Inventor
Jürgen Klaar
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1999017126A1 publication Critical patent/WO1999017126A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation

Definitions

  • the invention relates to a method for monitoring shaft currents and / or a method for monitoring shaft voltages in a generator shaft.
  • the invention further relates to a corresponding device.
  • EP 0 271 678 AI describes that shaft voltages, in particular in the generator shaft of a turbogenerator, represent a potential danger for numerous components of the generator.
  • the formation of uncontrolled circuits can damage components enclosed in this circuit by the effects of current and spark erosion. This is counteracted by introducing insulating sections on the one hand and grounding the generator shaft on the other.
  • voltage peaks in this excitation system lead to capacitive coupling of wave currents and wave voltages.
  • the aim is to reduce such capacitively coupled-in wave voltages and wave currents to a harmless value.
  • the object of the invention is to provide a method for monitoring and diagnosing a shaft current and / or a method for monitoring and diagnosing a shaft voltage in a generator shaft or in the shaft of a turboset. Another task is the specification of a corresponding device.
  • the task of specifying a method for monitoring and diagnosing a wave current is solved by a method for monitoring a wave current in the generator shaft of a generator which is grounded to an earth, in particular a turbogenerator with a line. Stung greater than 10 MVA, the wave current is measured and a frequency of the wave current is determined, from which frequency the cause of the wave current is derived.
  • the shaft current does not necessarily have to be monitored on the generator shaft itself.
  • a current can also be determined through the shaft of a turbine, which forms a turbine set with the generator.
  • a turbo set comprises at least one turbogenerator and a turbine with a turbine shaft, the generator shaft and the turbine shaft being connected to one another.
  • the invention is based on the finding that it is essential for safe and meaningful monitoring of shaft currents and shaft voltages in a generator to determine the cause of the shaft current or shaft voltage that occurs in each case. This cause comes from the frequency of the
  • the respective cause characteristically results in a frequency for the wave current or the wave voltage.
  • the causes of wave currents or wave voltages can essentially be divided into four categories:
  • Magnetic remanence can cause self-amplifying direct wave currents in the rotating generator shaft. They only occur under very specific conditions: There must be two electrical contact points on the generator shaft so that the magnetic field nes current induced by the remanence in the rotating generator shaft, the magnetic field caused by this remanence is amplified and self-excitation is thus made possible.
  • Wave voltages and wave currents in these different categories have characteristic frequencies. DC voltages and currents are characterized by an infinitely low frequency and are therefore also identifiable. By determining the cause of the shaft current or the shaft voltage, conclusions can be drawn about possible errors and repair measures to be initiated. In particular, statements about a possible lack of insulation or poor grounding of the generator shaft are possible.
  • the cause is preferably only derived after a selected period of time during which the wave current occurs has been exceeded. This prevents short-term shaft currents, which are harmless with regard to possible damage to the generator or the turboset, leading to unnecessary determination of the cause or unnecessary warning messages.
  • the generator shaft of the generator preferably rotates at a rotational frequency, the shaft current then being identified as an asymmetry shaft current which is caused by a magnetic asymmetry of the rotor environment when the frequency corresponds to the rotational frequency or a harmonic to the rotational frequency.
  • the rotor environment means, in particular, the stator, which surrounds the rotor and can have, for example, an asymmetrical winding. Because the rotor rotates with a machine-typical frequency in the asymmetrical environment, an asymmetry wave current with this machine-typical frequency or a harmonic thereof is induced. An asymmetry wave current can therefore be identified by having a frequency that is typical of the machine.
  • a warning signal is further preferably displayed when a selected upper limit value for the asymmetry wave current is exceeded.
  • a warning signal can be a simple optical or acoustic signal, but also or in addition a more detailed error message, for example as a text message on a monitor. This ensures that a cause-specific warning message is displayed as a function of a selectable limit value for the asymmetry wave current.
  • a warning message can already contain an indication of a possible control or repair measure. If the generator shaft of a non-water-cooled generator is properly insulated, no asymmetry wave current should flow. Accordingly, if the limit value is exceeded, for example, a message such as: "Asymmetry wave current too high, check insulation" could occur.
  • a lower limit value for the amplitude of the asymmetry wave current is preferably specified, a warning signal being displayed when the amplitude of the asymmetry wave current is below the lower limit value.
  • water cooling means that a certain asymmetry wave current usually flows during normal operation of the generator. Falling below the lower limit value can be an indication of inadequate earthing of the generator shaft, since in this case the asymmetry wave current flows at least partially via a different current path than via the earthing.
  • a warning signal is preferably displayed when a selected upper limit value for the direct wave current is exceeded.
  • the determination of a DC wave current allows conclusions to be drawn about an electrostatic charge or a unipolar DC wave current. Too much electrostatic charge means that the generator shaft is not adequately grounded.
  • the occurrence of a unipolar direct wave current can mean that impermissible contact points have formed through which the generator shaft comes into electrical contact with its surroundings. Such a point of contact could be formed, for example, by an impacting turbine blade.
  • the warning signal can already contain a corresponding note.
  • the generator preferably has a static excitation device which generates an electric field with characteristic frequencies, the wave current then being identified as an excitation wave current which is caused by a capacitive coupling through the electric field if the frequency corresponds to one of the characteristic frequencies.
  • the potential of the generator shaft is raised by the electric field and specific wave currents can flow to earth.
  • a warning signal is further preferably issued when the value falls below a selected, lower limit for the amplitude of the excitation wave current, measured on the ground.
  • a capacitively coupled excitation wave current is dissipated through the earth in normal operation. If the excitation wave current measured at the earthing is too small, this indicates that the earthing is insufficient. This means that the excitation shaft current flows out in an uncontrolled and possibly damaging way through bearings or other components.
  • the object directed to a method for monitoring a shaft voltage is achieved according to the invention by a method for monitoring a shaft voltage in the generator shaft of a generator which is grounded to a ground, in particular a turbogenerator with a power greater than 10 MVA, the shaft voltage being particularly insulated End of the generator wave against earth is measured and a frequency of the wave voltage is determined, and the frequency is used to determine the cause of the wave voltage.
  • a method for monitoring a shaft voltage in the generator shaft of a generator which is grounded to a ground, in particular a turbogenerator with a power greater than 10 MVA the shaft voltage being particularly insulated End of the generator wave against earth is measured and a frequency of the wave voltage is determined, and the frequency is used to determine the cause of the wave voltage.
  • the generator shaft of the generator preferably rotates at a rotational frequency, the shaft voltage then being identified as an asymmetry shaft voltage, which is caused by a magnetic asymmetry of the rotor environment when the frequency corresponds to the rotational frequency or an harmonic of the rotational frequency.
  • Monitoring a shaft current and / or a shaft voltage is achieved by a device for monitoring a shaft current and / or a shaft voltage in the generator shaft of a generator, in particular a turbine generator with a power greater than 10 MVA, which generator shaft is grounded to a ground, wherein a) a measuring device for measuring a wave current and / or for measuring a wave voltage is provided and b) an evaluation unit is connected to the measuring device, which evaluation unit for determining the frequency of the wave current or wave voltage and for determining the cause of the wave current or the wave voltage from the frequency provided.
  • a signaling system for displaying warning signals is preferably connected to the evaluation unit.
  • the method and device are explained in more detail in an exemplary embodiment with reference to the drawing. Show it:
  • 1 shows a turbogenerator and 2 shows a schematic representation of the method
  • FIG. 1 schematically shows a longitudinal section through a turbogenerator 4. This is connected to a turbine 6 on a turbine side TS and to a static excitation device 5 on an exciter side ES.
  • the turbogenerator 4 has a stator 4A with an electrical stator winding 4B.
  • a generator shaft 2 is arranged in the stator 4A.
  • the generator shaft 2 carries an electrical winding 2A.
  • the generator shaft 2 is connected on the turbine side TS via a clutch 23 to a turbine shaft 6A of the turbine 6.
  • Excitation side ES 2 slip rings 5B are arranged on the generator shaft, which are connected to the electrical winding 2A.
  • a carbon brush 22 is arranged on each of the slip rings 5B, from which an electrical line 22A leads to the excitation device 5.
  • the generator shaft 2 is mounted on the excitation side ES in a bearing 9ES, which is insulated from earth potential by an insulating section 8.
  • the turbine shaft 6A is supported on its side facing the generator in a bearing 9TS and on the other side of the turbine 6 in a bearing 9T.
  • the generator shaft 2 is grounded by a grounding device 1, a carbon brush 21 grinding on the generator shaft 2 on the turbine side TS.
  • a line 21A leads from the carbon brush 21 to the turbine foundation 15.
  • a current measuring device 10 is arranged in the line 21A and is connected to an evaluation unit 11, not shown, which is explained in more detail in FIG. 2.
  • the turbine 6 sets the generator shaft 2 in rotation with a rotational frequency DF.
  • An electrical current is conducted in the electrical winding 2A via the excitation device 5. This electric current creates a magnetic field, which induces a voltage in the stator winding 4B of the stator 4A due to the rotational movement of the generator shaft 2.
  • the voltage thus induced can be fed into a power network.
  • FIG. 2 shows a generator shaft 2 directed along an axis 25.
  • a water-cooled winding 3A for water cooling the generator shaft 2 is arranged on this, parallel to the axis 25.
  • An electrical conductor 21A connects the carbon brushes 21 and leads into a current measuring device 10.
  • a high-impedance shaft voltage measuring device 27 is arranged via an electrical conductor 26. Both the current measuring device 10 and the voltage measuring device 27 are connected to an evaluation unit 11.
  • This evaluation unit 11 comprises a frequency and amplitude analysis module 11A, an evaluation module 11B and a time barrier module 11C.
  • a reporting system 12 is connected to the evaluation unit 11.
  • a wave current I which is caused in the generator shaft 2 rotating at the rotational frequency DF, flows through the
  • This current I is through the current measuring device 10 measurable, for example via an inductive coupling or a resistor.
  • the measurement signal is forwarded to the evaluation unit 11.
  • the amplitude A of the wave current I and its frequency F or its frequency spectrum are determined in the evaluation unit 11, for example by a Fourier analysis.
  • the frequency F determined in the evaluation module 11B evaluates the cause of the wave current I.
  • there could be an asymmetry wave current AI which is induced by a magnetic asymmetry in the vicinity of the generator shaft 2 with a frequency F which is equal to the rotational frequency DF or to a harmonic of the rotational frequency DF.
  • the insulating section 8 of the bearing 9ES (see FIG. 1) normally prevents this for non-water-cooled generators
  • an asymmetry wave current AI flows continuously due to the conductivity of the water.
  • a permissible range can be defined within which the amplitude A of the asymmetry wave current AI must lie in normal operation.
  • This permitted range is determined by an upper limit value OW and a lower limit value UW.
  • Exceeding the amplitude A above the upper limit value OW is an indication of insufficient insulation 8.
  • falling below the lower limit value UW means that the asymmetry wave current AI is no longer completely via the grounding device 1, i.e. flows off via the carbon brushes 21, but partly uncontrolled e.g. via the bearing 9TS on the turbine side TS of the generator shaft 2. If the upper limit value OW or the lower limit value UW is exceeded or undershot, a corresponding warning signal W1 or W2 is output via the signaling system 12.
  • a DC current IG is also determined in the evaluation module 11B. If this DC current exceeds IG an upper limit value OIG, a warning signal W3 is output via the reporting system 12.
  • Such a direct current IG can be caused by electrostatic charges or by a unipolar self-excitation, as already explained above.
  • the excitation device 5 causes an electric field with characteristic frequencies. If the analysis of the wave current I in the evaluation module 11C yields one of these characteristic frequencies for the frequency F, the wave current I is identified as an excitation wave current EI. If this excitation wave current EI falls below a lower limit value UEI, a warning message W5 is output via the reporting system 12. Falling below the lower limit value UEI for the excitation wave current EI means defective grounding of the generator wave 2, so that the excitation wave current EI is uncontrolled, e.g. flows through the bearing 9TS or 9T on the turbine side TS of the generator shaft 2.
  • a shaft voltage U is measured via the voltage measuring device 27.
  • the measurement result is forwarded to the evaluation unit 11.
  • a frequency F or a frequency spectrum and an amplitude A are also determined for the wave voltage U in the frequency and amplitude module 11A.
  • the evaluation module 11B checks whether the frequency F of the shaft voltage U coincides with the rotational frequency DF of the generator shaft 2 or one of its harmonics. If the frequency F matches the rotational frequency DF or one of its harmonics, the wave voltage U is identified as the asymmetry wave voltage AU. If an upper limit value OAU for the asymmetry wave voltage AU is exceeded, a warning signal W4 is output.
  • a time barrier is selected in the time barrier module 11C which stipulates how long the current I must flow for at least one Warning message W is issued.
  • a time limit for wave currents I with an amplitude A of a few tenths of an ampere could be, for example, about 15 minutes, while for wave currents I with an amplitude of the order of magnitude the time limit could be about a few seconds.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Eletrric Generators (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

L'invention concerne un procédé pour la surveillance de courants d'arbre (I) et de tensions d'arbre (U) dans l'arbre (2) d'un générateur (4). La cause du courant d'arbre (I) ou de la tension d'arbre (U) est déterminée par l'intermédiaire de la fréquence (F) dudit courant d'arbre (I) ou de ladite tension d'arbre (U). L'invention concerne également un dispositif correspondant.
PCT/DE1998/002717 1997-09-26 1998-09-14 Procede et dispositif pour la surveillance de courants d'arbre ou de tensions d'arbre dans un arbre de generateur WO1999017126A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19742622.0 1997-09-26
DE1997142622 DE19742622A1 (de) 1997-09-26 1997-09-26 Verfahren und Vorrichtung zur Überwachung von Wellenströmen und Wellenspannungen in einer Generatorwelle

Publications (1)

Publication Number Publication Date
WO1999017126A1 true WO1999017126A1 (fr) 1999-04-08

Family

ID=7843777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/002717 WO1999017126A1 (fr) 1997-09-26 1998-09-14 Procede et dispositif pour la surveillance de courants d'arbre ou de tensions d'arbre dans un arbre de generateur

Country Status (2)

Country Link
DE (1) DE19742622A1 (fr)
WO (1) WO1999017126A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904999A (zh) * 2019-03-26 2019-06-18 山东大学 抑制分数槽永磁电机固有轴电压的转子分段斜极设计方法及系统
US11569712B2 (en) 2021-04-05 2023-01-31 General Electric Renovables Espana, S.L. System and method for detecting bearing insulation and ground brush health in a generator

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460013B1 (en) * 1999-05-06 2002-10-01 Paul I. Nippes Shaft voltage current monitoring system for early warning and problem detection
EP1280249B1 (fr) 2001-07-27 2019-03-13 General Electric Technology GmbH Dispositif de protection et de surveillance d'un générateur et utilisation d'un tel dispositif
JP2005538674A (ja) * 2002-09-10 2005-12-15 アルストム テクノロジー リミテッド 電気機械におけるブラシスパークおよびスパーク侵食を捕捉する方法および装置
AU2003297314A1 (en) * 2002-09-10 2004-04-30 Alstom (Switzerland) Ltd Method and device for detecting oscillations of the shafting of an electric machine
US7649470B2 (en) 2002-09-10 2010-01-19 Alstom Technology Ltd. Method and apparatus for detection of brush sparking and spark erosion on electrical machines
EP1537427B1 (fr) 2002-09-10 2008-08-06 Alstom Technology Ltd Dispositif et procede pour surveiller et/ou analyser des machines electriques en cours de fonctionnement
MX2008009738A (es) 2006-03-17 2008-10-27 Vestas Wind Sys As Sistema de proteccion para generador electrico, turbina eolica y uso de la misma.
DE102008043103A1 (de) * 2008-10-22 2010-04-29 Alstrom Technology Ltd. Vorrichtung und Verfahren zur Überwachung und/oder Analyse von Rotoren von elektrischen Maschinen im Betrieb
DE102010005458A1 (de) * 2010-01-23 2011-07-28 Oerlikon Leybold Vacuum GmbH, 50968 Wälzlageranordnung sowie Verfahren zur frühzeitigen Detektion von Lagerschäden bei einer Wälzlageranordnung
BR112012021890A2 (pt) 2010-03-01 2016-05-24 Siemens Ag máquina elétrica para a qual a função de aterramento é monitorada e método
ES2488392T3 (es) 2011-06-17 2014-08-27 Areva Wind Gmbh Disposición y método para evitar corrientes parásitas en plantas de generación eólica
DE202013009385U1 (de) 2013-10-22 2015-01-26 Liebherr-Components Biberach Gmbh Labyrinth-Dichtung für Drehstrommaschinen
CN108490238B (zh) * 2018-03-09 2020-09-22 中广核核电运营有限公司 汽轮发电机轴电流报警数据处理装置及方法
CN109120107B (zh) * 2018-10-30 2020-11-13 英格(阳江)电气股份有限公司 一种电动机轴电流抑制装置及方法
DE102021109375A1 (de) 2021-04-14 2022-10-20 Ziehl-Abegg Se Verfahren zur elektrischen Detektion eines Schadensereignisses sowie zugehöriger Elektromotor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3831160A (en) * 1973-10-01 1974-08-20 Gen Electric Voltage and current monitoring system
JPS61149873A (ja) * 1984-12-25 1986-07-08 Toshiba Corp 回転機の軸電圧監視方法およびその装置
EP0271678A1 (fr) * 1986-11-19 1988-06-22 BBC Brown Boveri AG Dispositif pour réduire les tensions d'arbre aux machines dynamo-électriques
EP0391181A2 (fr) * 1989-04-05 1990-10-10 Asea Brown Boveri Ag Dispositif pour la détection de courts-circuits dans les bobines de rotor de machines électriques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3831160A (en) * 1973-10-01 1974-08-20 Gen Electric Voltage and current monitoring system
JPS61149873A (ja) * 1984-12-25 1986-07-08 Toshiba Corp 回転機の軸電圧監視方法およびその装置
EP0271678A1 (fr) * 1986-11-19 1988-06-22 BBC Brown Boveri AG Dispositif pour réduire les tensions d'arbre aux machines dynamo-électriques
EP0391181A2 (fr) * 1989-04-05 1990-10-10 Asea Brown Boveri Ag Dispositif pour la détection de courts-circuits dans les bobines de rotor de machines électriques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 351 (P - 520) 27 November 1986 (1986-11-27) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904999A (zh) * 2019-03-26 2019-06-18 山东大学 抑制分数槽永磁电机固有轴电压的转子分段斜极设计方法及系统
CN109904999B (zh) * 2019-03-26 2020-01-17 山东大学 抑制分数槽永磁电机固有轴电压的转子分段斜极设计方法及系统
US11569712B2 (en) 2021-04-05 2023-01-31 General Electric Renovables Espana, S.L. System and method for detecting bearing insulation and ground brush health in a generator

Also Published As

Publication number Publication date
DE19742622A1 (de) 1999-04-08

Similar Documents

Publication Publication Date Title
WO1999017126A1 (fr) Procede et dispositif pour la surveillance de courants d'arbre ou de tensions d'arbre dans un arbre de generateur
EP1280249B1 (fr) Dispositif de protection et de surveillance d'un générateur et utilisation d'un tel dispositif
EP1537427B1 (fr) Dispositif et procede pour surveiller et/ou analyser des machines electriques en cours de fonctionnement
EP0391181B1 (fr) Dispositif pour la détection de courts-circuits dans les bobines de rotor de machines électriques
EP0271678B1 (fr) Dispositif pour réduire les tensions d'arbre aux machines dynamo-électriques
EP1537390B1 (fr) Procede pour saisir des oscillations de la ligne d'arbres d'une machine electrique
EP1537428B1 (fr) Procede et dispositif pour detecter des etincelles aux balais et de l'erosion par etincelles dans des machines electriques
DE60301329T2 (de) Elektromotor-überwachungssystem
DE3543927A1 (de) Verfahren zur teilentladungserfassung und abreissfunkenmessung bei dynamoelektrischen hochspannungsmaschinen sowie einrichtung zu seiner durchfuehrung
EP1643259B1 (fr) Procédé et dispositif pour la détection des points de contact dans des machines tournantes
DE102008043103A1 (de) Vorrichtung und Verfahren zur Überwachung und/oder Analyse von Rotoren von elektrischen Maschinen im Betrieb
EP2526384B1 (fr) Procede et dispositif pour la détermination précoce de la formation de dommages dans un palier
DE3526149A1 (de) Ankopplungseinheit zur betriebsmaessigen ueberwachung der hochspannungswicklungen und der angeschlossenen ableitungen bei elektrischen hochspannungs-maschinen und -apparaten, mittels teilentladungserfassung und abreissfunkenmessung
EP1090303B1 (fr) Procede et dispositif pour la surveillance d'une ligne d'electrode d'une installation bipolaire de transport de courant continu a haute tension (c.c.h.t)
DE102015210911A1 (de) Verfahren und Vorrichtung zum Erkennen von Veränderungen in einem elektrisch betriebenen Antrieb
Nassar The use of partial discharge and impulse voltage testing in the evaluation of interturn insulation failure of large motors
EP1001270B1 (fr) Procédé pour tester une connexion à la terre
EP3577476A1 (fr) Procédé de détection d'un défaut sur un générateur et système de test de générateur
DE102022208636B3 (de) Vorrichtung und Verfahren zum Bestimmen einer verbleibenden Nutzungsdauer einer elektrischen Maschine
DE3918116C2 (fr)
EP1093202A1 (fr) Procédé pour détecter des conducteurs mises à la masse pour arrêter une perceuse
DE377580C (de) Verfahren und Einrichtung zur Messung von Leitungs- oder Kabellaengen bzw. zur Fehlerort- und Fehlerartbestimmung
WO1994007151A1 (fr) Decouplage d'un signal d'erreur haute frequence dans une grosse machine electrique, refroidie par liquide
EP2814168A1 (fr) Procédé destiné au fonctionnement d'une machine synchrone
DE621798C (de) Anordnung zur Erfassung von Gestellschluessen im Erregerstromkreis elektrischer Maschinen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN CZ HU JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase