WO1999016924A1 - Ion plating apparatus - Google Patents

Ion plating apparatus

Info

Publication number
WO1999016924A1
WO1999016924A1 PCT/JP1997/003436 JP9703436W WO9916924A1 WO 1999016924 A1 WO1999016924 A1 WO 1999016924A1 JP 9703436 W JP9703436 W JP 9703436W WO 9916924 A1 WO9916924 A1 WO 9916924A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
permanent magnet
ion plating
plating apparatus
annular permanent
Prior art date
Application number
PCT/JP1997/003436
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Sakemi
Masaru Tanaka
Original Assignee
Sumitomo Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP6861796A priority Critical patent/JP2946404B2/en
Application filed by Sumitomo Heavy Industries, Ltd. filed Critical Sumitomo Heavy Industries, Ltd.
Priority to US09/269,737 priority patent/US6160350A/en
Priority to PCT/JP1997/003436 priority patent/WO1999016924A1/en
Publication of WO1999016924A1 publication Critical patent/WO1999016924A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Definitions

  • the present invention relates to an ion plating device provided with a plurality of plasma guns.
  • an ion plating apparatus using a pressure gradient plasma gun can form a high-quality film on a substrate. Since the plasma beam generated by the plasma gun is twisted, the thickness of the film formed on the substrate is not uniform. Therefore, the present inventors have proposed an ion plating apparatus in which an annular permanent magnet is provided around a hearth acting as an anode to reduce the twist of a plasma beam.
  • the pressure gradient type plasma gun 101 has a cathode 102, a first intermediate electrode 103, and a second intermediate electrode 104.
  • the first intermediate electrode 103 incorporates an annular permanent magnet
  • the second intermediate electrode 104 incorporates an electromagnet coil.
  • a steering coil 105 is provided around the plasma gun 101.
  • a substrate 107 to be processed is arranged in the upper part of the vacuum vessel 106.
  • a hearth 108 serving as an anode is provided in a lower portion of the vacuum vessel 106.
  • an annular permanent magnet 109 is provided.
  • the magnetic poles of the plasma gun 101, the steering coil 105, and the annular permanent magnet 109 will be described with reference to FIG.
  • the electromagnet coil built in the second intermediate electrode 104 the side from which the line of magnetic force emerges from the center of the coil is called the N pole.
  • the second intermediate electrode 104 side of the first intermediate electrode 103 is referred to as “S pole”, and the second intermediate electrode 104 and the first intermediate electrode 103 side of the steering coil 105 are connected to each other. "S pole”.
  • the upper side of the permanent magnet 109 is the "S pole”. Such a type is called an S type.
  • the first intermediate electrode 103, the second intermediate electrode 104, the steering coil 1 The type in which each of the magnetic poles of the magnetic poles 5 and 10 and the magnetic poles of the permanent magnets 10 are exactly the same as the above-mentioned S type is called the N type.
  • the twist of the plasma beam is smaller than that of a conventional ion plating apparatus having no annular permanent magnet 109.
  • the plasma beam is deviated from the center of the plasma gun 101 to the left in the figure as shown in FIG.
  • the plasma beam is shifted to the right. This is due to the phenomenon peculiar to plasma that torsional deformation appears in the plasma column when an electric current is applied to the plasma column in a magnetic field.
  • Japanese Patent Application Laid-Open No. 63-47332 discloses an ion plating apparatus in which a plurality of plasma guns are arranged side by side in one vacuum vessel.
  • a plurality of lines of magnetic force such as a plasma gun and a steering coil interfere with each other.
  • the plasma beam is greatly twisted as compared to an ion plating apparatus provided with one plasma gun.
  • an object of the present invention is to provide an ion plating apparatus that can reduce the twist of a plurality of plasma beams even when a plurality of plasma guns are arranged side by side.
  • a plurality of plasma guns having magnet means are provided in a vacuum vessel, a steering coil is provided in each of the plurality of plasma guns, and a plurality of plasma guns are provided in the vacuum vessel. Therefore, several hearths are provided.
  • An annular permanent magnet is provided around each of the plurality of hearths. The directions of the magnetic poles of the two magnet means, the directions of the magnetic poles of the two steering coils, and the directions of the magnetic poles of the two annular permanent magnets in two adjacent plasma guns are opposite to each other. Oriented.
  • FIG. 1 is a longitudinal sectional view of a conventional ion plating apparatus in which an annular permanent magnet is provided around a hearth.
  • FIG. 2 is a cross-sectional view taken along line AA ′ of FIG.
  • FIG. 3 is a view for explaining the relationship among the plasma gun, the steering coil, and the magnetic poles of the ring-shaped permanent magnet on the housing side of the apparatus shown in FIG.
  • FIG. 4 is a cross-sectional view of the ion plating apparatus according to the present invention.
  • FIG. 5 is a cross-sectional view taken along line BB ′ of FIG.
  • FIG. 6 is a cross-sectional view taken along line CC ′ of FIG.
  • FIG. 7 is a diagram showing an example of a combination of the annular permanent magnet and the electromagnet coil shown in FIG.
  • FIGS. 1 and 2 An ion plating apparatus according to a preferred embodiment of the present invention will be described with reference to FIGS.
  • This ion plating apparatus is suitable for forming a film by attaching evaporated particles to a substrate.
  • a case where two plasma guns 1A and 1B are provided in a vacuum vessel 11 will be described.
  • a pressure gradient type plasma gun 1B is mounted on a cylindrical portion 12b provided on a side wall of the vacuum vessel 11.
  • the plasma gun 1B includes a glass tube 15b one end of which is closed by a cathode 14b. In the glass tube 15b, L a B.
  • a cylinder 18b made of molybdenum Mo containing a disk 16b made of a material and a pipe 17b made of tantalum Ta is fixed to the cathode 14b.
  • the pipe 17b is for introducing a carrier gas 18 made of an inert gas such as argon Ar or helium He into the plasma gun 1B.
  • first and second intermediate electrodes 19 b. 20 b are concentrically arranged. ing.
  • An annular permanent magnet 21 b for converging the plasma beam is built in the first intermediate electrode (first dalide) 19 b.
  • An electromagnet coil 22b for converging the plasma beam is also built in the second intermediate electrode 2Ob (second grid).
  • the electromagnetic coil 22b is supplied with power from a power source 23b.
  • a steering coil 24 b for guiding a plasma beam into the vacuum container 11 is provided.
  • the steering coil 24b is excited by the power supply 25b.
  • a variable voltage type main power supply 28 b Power is connected.
  • the main hearth 3 Ob has a concave portion into which the plasma beam from the plasma gun IB is incident, and stores an evaporating substance such as an ITO (indium oxide) tablet.
  • Both the main hearth 30b and the auxiliary hearth 31b are made of a conductive material having good thermal conductivity, for example, copper.
  • the auxiliary hearth 31b is attached to the main hearth 30b via an insulator.
  • the main hearth 3 Ob and the auxiliary hearth 3 lb are connected via a resistor 48 b.
  • the main hearth 30b is connected to the positive side of the main power supply 28b. Therefore, the main hearth 30b constitutes an anode for sucking the plasma beam generated from the plasma gun 1B.
  • An annular permanent magnet 35b and an electromagnet coil 36b are accommodated in the auxiliary hearth 31b.
  • the electromagnetic coil 36 b is supplied with power from the hearth coil power supply 38 b.
  • the direction of the center-side magnetic field in the excited electromagnet coil 36b is configured to be the same as the center-side magnetic field generated by the annular permanent magnet 35b.
  • the hearth coil power supply 38 b is a variable voltage power supply, and the current supplied to the electromagnet coil 36 b can be changed by changing the voltage.
  • a substrate holder 42 for holding a substrate 41 on which evaporating particles are deposited is provided above the main hearth 30b.
  • the substrate holder 42 is provided with a heater 43.
  • the heater 43 is supplied with power from a heater power supply 44.
  • the substrate holder 42 is supported electrically insulated from the vacuum vessel 11.
  • a bias power supply 45 is connected between the vacuum vessel 11 and the substrate holder 42. As a result, the substrate holder 42 is biased to a negative potential with respect to the vacuum vessel 11 connected to the zero potential.
  • the auxiliary hearth 31b is connected to the positive side of the main power supply 28b via the switching switch 46b. Has been continued.
  • a drooping resistor 29b and an auxiliary discharge power supply 47b are connected in parallel with the main power supply 28b via a switch S1b.
  • a discharge force is generated between the cathode of the plasma gun 1B and the main hearth 30b in the vacuum vessel 11, thereby generating a plasma beam (not shown).
  • This plasma beam is guided by the magnetic field determined by the steering coil 24b and the annular permanent magnet 35b in the auxiliary hearth 31b, and reaches the main heart 30b.
  • the evaporating substance contained in the main hearth 30b is heated and evaporated by the plasma beam.
  • the evaporated particles are ionized by the plasma beam, adhere to the surface of the substrate 41 to which the negative voltage is applied, and a film is formed on the substrate 41.
  • the substrate 41 is a common member to be processed by the two plasma guns 1A and 1B
  • the substrate holder 42, the heater 43, the heater power supply 44, and the bias power supply 45 also have two plasma guns 1A. , IB, and the configuration of the plasma gun 1A side is the same as that of the plasma gun 1B.
  • the plasma gun shown in Fig. 3 (the first and second intermediate electrodes 103 and 104 and the magnetic poles of the permanent magnet 109 are arranged as described in Fig. 3) is the S type. Then, the type in which the magnetic poles of the first and second intermediate electrodes 103, 104 and the permanent magnet 109 are opposite to the S type is the N type.
  • the present invention is characterized in that an S-type plasma gun and an N-type plasma gun are arranged side by side.
  • auxiliary hearths 3 l a and 3 1 b may be provided with only annular permanent magnets.
  • the plasma gun 1A alone, as described in Fig. 2 once protrudes from the left side in the figure due to the twist of the plasma beam before entering the hearth, and The light enters the hearth 108 from directly above. For this reason, if the plasma gun and Haas with the same magnetic pole direction are applied twice, the plasmas will inflate to the left in the figure and then enter Haas.
  • an S-type plasma gun 1A is arranged on the right side of the figure, and an N-type plasma gun 1B is arranged on the left side of the figure to reverse the direction of the magnetic poles.
  • the plasma becomes symmetrical.
  • the plasma guns 1A and IB are arranged as shown in Fig. 5, the two plasma beams once approach each other and spread so that they are centered with each other, and then the hearths 30a and 30 Incident at b.
  • high-density plasma can be generated also in a region between the two plasma beams, and ion plating using high-density plasma over a wide area becomes edible.
  • the plasma density between plasma beams can be changed depending on the position of the S-type and N-type plasmas.
  • a permanent magnet or iron core is provided inside or outside the vacuum vessel to reduce the plasma density. You can also control it.
  • the auxiliary hearth 3la and 31b can be separated.
  • the magnetic poles of the permanent magnets 10 are arranged such that the upper magnetic poles of the permanent magnets 10 of the auxiliary hearths 31a and 31b are opposite to the magnetic poles opposite to the upper magnetic poles.
  • the electromagnet coil 36b is mounted on the annular permanent magnet 35b with the N pole facing upward. They are arranged one above the other. As shown in FIG. 7 (b), the electromagnet coil 36b may be placed on the ring magnet 35b with the south pole facing upward. In this case, the current flowing through the electromagnet coil 36b is reversed from that in Fig. 7 (a).
  • the electromagnet coil 36b may be disposed so as to overlap the lower side of the annular permanent magnet 35b with the N pole facing upward. Further, as shown in FIG. 7 (d), the electromagnet coil 36 b may be arranged so as to overlap the lower side of the annular permanent magnet 35 b with the S pole facing upward. In these cases, as described above, the direction of the magnetic field on the center side of the excited electromagnet coil 36b is the same as the magnetic field on the center side generated by the annular permanent magnet 35b. A current is flowing so as to be oriented.
  • the interference force of the magnetic force lines generated from each of them is ⁇ And the twisting of the plasma beam is reduced. Therefore, it is possible to provide an ion plating apparatus that can perform ion plating using high-density plasma over a wide area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Auxiliary hearths (31a and 31b) in which annular permanent magnets are built are placed around hearths (30a and 30b) provided in a vacuum chamber (11). The directions of the poles of annular permanent magnets (21a and 21b) provided on adjacent two plasma guns (1A and 1B), electromagnet coils (22a and 22b), steering coils (24a and 24b), and the two annular permanent magnets built in the two hearts are alternatingly opposite to each other.

Description

明 細 書 イオンプレーティ ング装置 技術分野  Description Ion plating equipment Technical field
本発明は複数のプラズマガンを備えたイオンプレーティ ング装置に関する。 背景技術  The present invention relates to an ion plating device provided with a plurality of plasma guns. Background art
圧力勾配型のプラズマガンを用いたイオンプレーティング装置は、 基板に良質 の膜を形成できること力知られている。 し力、し、 プラズマガンで発生されるブラ ズマビームがねじれるため、 基板に形成される膜の厚さが一様ではない。 そこで、 本発明者らは、 陽極として作用するハースの周囲に環状永久磁石を設けて、 ブラ ズマビームのねじれを少なく したイオンプレーティ ング装置を提案した。  It is well known that an ion plating apparatus using a pressure gradient plasma gun can form a high-quality film on a substrate. Since the plasma beam generated by the plasma gun is twisted, the thickness of the film formed on the substrate is not uniform. Therefore, the present inventors have proposed an ion plating apparatus in which an annular permanent magnet is provided around a hearth acting as an anode to reduce the twist of a plasma beam.
第 1図、 第 2図を参照して、 このイオンプレーティ ング装置について説明する。 圧力勾配型のプラズマガン 1 0 1は、 陰極 1 0 2、 第 1の中間電極 1 0 3、 第 2 の中間電極 1 0 4を有している。 第 1の中間電極 1 0 3は環状の永久磁石を内蔵 し、 第 2の中間電極 1 0 4は電磁石コイルを内蔵している。 プラズマガン 1 0 1 の周囲にはステアリングコイル 1 0 5力く設けられる。 真空容器 1 0 6内の上部に は、 処理されるべき基板 1 0 7が配置される。 真空容器 1 0 6内の下部には、 陽 極となるハース 1 0 8が設けられる。 ハース 1 0 8の周囲には、 環状永久磁石 1 0 9が設けられる。  The ion plating apparatus will be described with reference to FIG. 1 and FIG. The pressure gradient type plasma gun 101 has a cathode 102, a first intermediate electrode 103, and a second intermediate electrode 104. The first intermediate electrode 103 incorporates an annular permanent magnet, and the second intermediate electrode 104 incorporates an electromagnet coil. A steering coil 105 is provided around the plasma gun 101. A substrate 107 to be processed is arranged in the upper part of the vacuum vessel 106. A hearth 108 serving as an anode is provided in a lower portion of the vacuum vessel 106. Around the hearth 108, an annular permanent magnet 109 is provided.
第 3図をも参照して、 プラズマガン 1 0 1及びステアリングコイル 1 0 5、 環 状永久磁石 1 0 9の磁極について説明する。 なお、 第 2の中間電極 1 0 4に内蔵 された電磁石コイルにおいては、 コイルの中心から磁力線が出る側を N極と呼ぶ こととする。  The magnetic poles of the plasma gun 101, the steering coil 105, and the annular permanent magnet 109 will be described with reference to FIG. In the electromagnet coil built in the second intermediate electrode 104, the side from which the line of magnetic force emerges from the center of the coil is called the N pole.
第 1の中間電極 1 0 3の第 2の中間電極 1 0 4側を " S極" とし、 第 2の中間 電極 1 0 4及びステアリングコイル 1 0 5の第 1の中間電極 1 0 3側を " S極" とする。 永久磁石 1 0 9の上側は " S極" である。 このようなタイプを S型と呼 ぶこととする。  The second intermediate electrode 104 side of the first intermediate electrode 103 is referred to as “S pole”, and the second intermediate electrode 104 and the first intermediate electrode 103 side of the steering coil 105 are connected to each other. "S pole". The upper side of the permanent magnet 109 is the "S pole". Such a type is called an S type.
一方、 第 1の中間電極 1 0 3、 第 2の中間電極 1 0 4、 ステアリングコイル 1 0 5、 及び永久磁石 1 0 9の各磁極が上記 S型の場合とまったく逆のタイプは N 型と呼ぶこととする。 On the other hand, the first intermediate electrode 103, the second intermediate electrode 104, the steering coil 1 The type in which each of the magnetic poles of the magnetic poles 5 and 10 and the magnetic poles of the permanent magnets 10 are exactly the same as the above-mentioned S type is called the N type.
上記のイオンプレーティング装置によれば、 プラズマガン 1 0 1からプラズマ ビームを発生させると、 環状永久磁石 1 0 9を有しない従来のイオンプレーティ ング装置に比べプラズマビームのねじれが少ない。 ところ力 第 2図に示す如く、 S型の場合、 プラズマビームがプラズマガン 1 0 1の中心から図中左側に偏よつ てしまう。 一方、 N型の場合は、 プラズマビームは、 右側に偏ってしまう。 これ は、 磁場中のプラズマ柱に電流を流すと、 プラズマ柱にねじれ変形が現れるとい うプラズマ特有の現象によるものである。  According to the ion plating apparatus described above, when a plasma beam is generated from the plasma gun 101, the twist of the plasma beam is smaller than that of a conventional ion plating apparatus having no annular permanent magnet 109. However, as shown in FIG. 2, in the case of the S type, the plasma beam is deviated from the center of the plasma gun 101 to the left in the figure as shown in FIG. On the other hand, in the case of N-type, the plasma beam is shifted to the right. This is due to the phenomenon peculiar to plasma that torsional deformation appears in the plasma column when an electric current is applied to the plasma column in a magnetic field.
上記のイオンプレーティング装置とは別に、 特開昭 6 3 - 4 7 3 6 2号公報に は、 1つの真空容器にプラズマガンを複数個並設したイオンプレーティング装置 が開示されている。 しかし、 このイオンプレーティング装置の場合、 複数のブラ ズマガンやステアリングコィル等の磁力線が干渉し合う。 その結果、 プラズマガ ンを 1個設けたイオンプレーティング装置に比べてプラズマビームが大きくねじ れてしまう。  Apart from the above-mentioned ion plating apparatus, Japanese Patent Application Laid-Open No. 63-47332 discloses an ion plating apparatus in which a plurality of plasma guns are arranged side by side in one vacuum vessel. However, in the case of this ion plating apparatus, a plurality of lines of magnetic force such as a plasma gun and a steering coil interfere with each other. As a result, the plasma beam is greatly twisted as compared to an ion plating apparatus provided with one plasma gun.
それ故、 本発明の目的は、 複数のプラズマガンを並設した場合でも、 複数のプ ラズマビームのねじれを少なくできるイオンプレーティ ング装置を提供すること あ 。  Therefore, an object of the present invention is to provide an ion plating apparatus that can reduce the twist of a plurality of plasma beams even when a plurality of plasma guns are arranged side by side.
発明の開示 Disclosure of the invention
本発明によるイオンプレーティ ング装置は、 真空容器に、 磁石手段を有する複 数のプラズマガンを設け、 複数のプラズマガンにはそれぞれステアリングコイル を設け、 真空容器内には、 複数のプラズマガンに対応させて複数のハースを設け ている。 前記複数のハースの周囲にそれぞれ環状永久磁石が設けられる。 隣接す る 2つのプラズマガンにおける 2つの前記磁石手段の磁極の向き、 2つの前記ス テアリングコイルの磁極の向き、 及び 2つの前記環状永久磁石の磁極の向きがそ れぞれ互 L、に逆向きにされる。  In the ion plating apparatus according to the present invention, a plurality of plasma guns having magnet means are provided in a vacuum vessel, a steering coil is provided in each of the plurality of plasma guns, and a plurality of plasma guns are provided in the vacuum vessel. Therefore, several hearths are provided. An annular permanent magnet is provided around each of the plurality of hearths. The directions of the magnetic poles of the two magnet means, the directions of the magnetic poles of the two steering coils, and the directions of the magnetic poles of the two annular permanent magnets in two adjacent plasma guns are opposite to each other. Oriented.
このイオンプレーティング装置の変形例及び実施の形態は、 その従属請求項 2 〜 4に記載されている。  Modifications and embodiments of this ion plating apparatus are described in the dependent claims 2 to 4.
図面の簡単な説明 第 1図は、 ハースの周囲に環状永久磁石を設けた従来のイオンプレーティング 装置の縦断面図である。 BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a longitudinal sectional view of a conventional ion plating apparatus in which an annular permanent magnet is provided around a hearth.
第 2図は、 第 1図の A— A' 線による断面図である。  FIG. 2 is a cross-sectional view taken along line AA ′ of FIG.
第 3図は、 第 1図に示された装置のプラズマガン、 ステアリングコイル、 ハ一 ス側の環状永久磁石の磁極の関係を説明するための図である。  FIG. 3 is a view for explaining the relationship among the plasma gun, the steering coil, and the magnetic poles of the ring-shaped permanent magnet on the housing side of the apparatus shown in FIG.
第 4図は、 本発明によるイオンプレーティング装置の横断面図である。  FIG. 4 is a cross-sectional view of the ion plating apparatus according to the present invention.
第 5図は、 第 4図の B— B ' 線による断面図である。  FIG. 5 is a cross-sectional view taken along line BB ′ of FIG.
第 6図は、 第 4図の C— C ' 線による断面図である。  FIG. 6 is a cross-sectional view taken along line CC ′ of FIG.
第 7図は、 第 5図に示された環状永久磁石と電磁石コィルの組み合わせの例を 示した図である。  FIG. 7 is a diagram showing an example of a combination of the annular permanent magnet and the electromagnet coil shown in FIG.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
第 4図〜第 6図を参照して、 本発明の好ましい実施例によるイオンプレーティ ング装置について説明する。 このイオンプレーティング装置は、 基板に蒸発粒子 を付着させて膜を形成するのに適している。 この実施例では、 真空容器 1 1に 2 つのプラズマガン 1 A, 1 Bを設けた場合について説明する。  An ion plating apparatus according to a preferred embodiment of the present invention will be described with reference to FIGS. This ion plating apparatus is suitable for forming a film by attaching evaporated particles to a substrate. In this embodiment, a case where two plasma guns 1A and 1B are provided in a vacuum vessel 11 will be described.
第 6図を参照して、 プラズマガン 1 B側の構成について説明する。 真空容器 1 1の側壁に設けられた筒状部 1 2 bには圧力勾配型のプラズマガン 1 Bが装着さ れている。 プラズマガン 1 Bは、 陰極 1 4 bにより一端が閉塞されたガラス管 1 5 bを備えている。 ガラス管 1 5 b内では、 L a B。 材料による円盤 1 6 bと、 タンタル T aによるパイプ 1 7 bとを内蔵したモリブデン M oによる円筒 1 8 b が陰極 1 4 bに固定されている。 パイプ 1 7 bは、 アルゴン A r、 ヘリウム H e 等の不活性ガスからなるキヤリアガス 1 8をプラズマガン 1 B内に導入するため のものである。  The configuration of the plasma gun 1B will be described with reference to FIG. A pressure gradient type plasma gun 1B is mounted on a cylindrical portion 12b provided on a side wall of the vacuum vessel 11. The plasma gun 1B includes a glass tube 15b one end of which is closed by a cathode 14b. In the glass tube 15b, L a B. A cylinder 18b made of molybdenum Mo containing a disk 16b made of a material and a pipe 17b made of tantalum Ta is fixed to the cathode 14b. The pipe 17b is for introducing a carrier gas 18 made of an inert gas such as argon Ar or helium He into the plasma gun 1B.
ガラス管 1 5 bの陰極 1 4 bと反対側の端部と筒状部 1 2 bとの間には、 第 1、 第 2の中間電極 1 9 b . 2 0 bが同心的に配置されている。 第 1の中間電極 (第 1のダリッ ド) 1 9 b内にはプラズマビームを収束するための環状永久磁石 2 1 bが内蔵されている。 第 2の中間電極 2 O b (第 2のグリッド) 内にもプラズマ ビームを収束するための電磁石コイル 2 2 bが内蔵されている。 この電磁石コィ ル 2 2 bは電源 2 3 bから給電される。 プラズマガン 1 Bが装着された筒状部 1 2 bの周囲には、 プラズマビームを真 空容器 1 1内に導くためのステアリングコイル 2 4 b力設けられている。 ステア リングコイル 2 4 bは、 電源 2 5 bにより励磁される。 陰極 1 4 bと第 1、 第 2 の中間電極 1 9 b、 2 0 bとの間にはそれぞれ、 垂下抵抗器 2 6 b , 2 7 bを介 して、 可変電圧型の主電源 2 8 b力接続されている。 Between the end of the glass tube 15 b opposite to the cathode 14 b and the cylindrical portion 12 b, first and second intermediate electrodes 19 b. 20 b are concentrically arranged. ing. An annular permanent magnet 21 b for converging the plasma beam is built in the first intermediate electrode (first dalide) 19 b. An electromagnet coil 22b for converging the plasma beam is also built in the second intermediate electrode 2Ob (second grid). The electromagnetic coil 22b is supplied with power from a power source 23b. Around the cylindrical portion 12 b on which the plasma gun 1 B is mounted, a steering coil 24 b for guiding a plasma beam into the vacuum container 11 is provided. The steering coil 24b is excited by the power supply 25b. Between the cathode 14 b and the first and second intermediate electrodes 19 b and 20 b, respectively, via a drooping resistor 26 b and 27 b, a variable voltage type main power supply 28 b Power is connected.
真空容器 1 1内の底部には、 主ハース 3 O bとその周囲に配置された環状の捕 助ハース 3 1 b力 <設置されている。 主ハース 3 O bは、 プラズマガン I Bからの プラズマビームが入射する凹部を有し、 I T O (インジウムースズ酸化物) タブ レツ 卜のような蒸発物質を収納している。  At the bottom in the vacuum vessel 11, a main hearth 3Ob and an annular auxiliary hearth 31b arranged around the main hearth 3Ob are provided. The main hearth 3 Ob has a concave portion into which the plasma beam from the plasma gun IB is incident, and stores an evaporating substance such as an ITO (indium oxide) tablet.
主ハース 3 0 b及び補助ハース 3 1 bはいずれも熱伝導率の良い導電性材料、 例えば、 銅で作られる。 主ハース 3 0 bに対して、 補助ハース 3 1 bは、 絶縁物 を介して取り付けられている。 また、 主ハ一ス 3 O bと補助ハース 3 l bは、 抵 抗 4 8 bを介して接続されている。 主ハース 3 0 bは、 主電源 2 8 bの正側に接 続されている。 従って、 主ハース 3 0 bは、 プラズマガン 1 Bから発生されるプ ラズマビームを吸引するための陽極を構成している。  Both the main hearth 30b and the auxiliary hearth 31b are made of a conductive material having good thermal conductivity, for example, copper. The auxiliary hearth 31b is attached to the main hearth 30b via an insulator. The main hearth 3 Ob and the auxiliary hearth 3 lb are connected via a resistor 48 b. The main hearth 30b is connected to the positive side of the main power supply 28b. Therefore, the main hearth 30b constitutes an anode for sucking the plasma beam generated from the plasma gun 1B.
補助ハース 3 1 b内には環状永久磁石 3 5 bと電磁石コイル 3 6 bとが収容さ れている。 電磁石コイル 3 6 bは、 ハースコイル電源 3 8 bから給電される。 こ の場合、 励磁された電磁石コイル 3 6 bにおける中心側の磁界の向きは、 環状永 久磁石 3 5 bにより発生する中心側の磁界と同じ向きになるように構成される。 ハースコイル電源 3 8 bは電圧可変型の電源であり、 電圧を変化させることによ り、 電磁石コイル 3 6 bに供給する電流を変化できる。  An annular permanent magnet 35b and an electromagnet coil 36b are accommodated in the auxiliary hearth 31b. The electromagnetic coil 36 b is supplied with power from the hearth coil power supply 38 b. In this case, the direction of the center-side magnetic field in the excited electromagnet coil 36b is configured to be the same as the center-side magnetic field generated by the annular permanent magnet 35b. The hearth coil power supply 38 b is a variable voltage power supply, and the current supplied to the electromagnet coil 36 b can be changed by changing the voltage.
真空容器 1 1の内部にはまた、 主ハース 3 0 bの上部に蒸発粒子が蒸着される 基板 4 1を保持するための基板ホルダ 4 2が設けられている。 基板ホルダ 4 2に はヒータ 4 3が設けられている。 ヒータ 4 3はヒータ電源 4 4から給電される。 基板ホルダ 4 2は、 真空容器 1 1に対しては電気的に絶縁して支持されている。 真空容器 1 1と基板ホルダ 4 2との間にはバイアス電源 4 5力接続されている。 このことにより、 基板ホルダ 4 2はゼロ電位に接続された真空容器 1 1に対して 負電位にバイアスされている。  Inside the vacuum vessel 11, a substrate holder 42 for holding a substrate 41 on which evaporating particles are deposited is provided above the main hearth 30b. The substrate holder 42 is provided with a heater 43. The heater 43 is supplied with power from a heater power supply 44. The substrate holder 42 is supported electrically insulated from the vacuum vessel 11. A bias power supply 45 is connected between the vacuum vessel 11 and the substrate holder 42. As a result, the substrate holder 42 is biased to a negative potential with respect to the vacuum vessel 11 connected to the zero potential.
補助ハース 3 1 bは切り替えスィツチ 4 6 bを介して主電源 2 8 bの正側に接 続されている。 主電源 2 8 bには、 これと並列に垂下抵抗器 2 9 bと補助放電電 源 4 7 bとがスィツチ S 1 bを介して接続されている。 The auxiliary hearth 31b is connected to the positive side of the main power supply 28b via the switching switch 46b. Has been continued. To the main power supply 28b, a drooping resistor 29b and an auxiliary discharge power supply 47b are connected in parallel with the main power supply 28b via a switch S1b.
このイオンプレーティ ング装置においては、 プラズマガン 1 Bの陰極と真空容 器 1 1内の主ハース 3 0 bとの間で放電力生じ、 これによりプラズマビーム (図 示せず) が生成される。 このプラズマビームは、 ステアリングコイル 2 4 bと補 助ハース 3 1 b内の環状永久磁石 3 5 bにより決定される磁界に案内されて主ハ —ス 3 0 bに到達する。 主ハース 3 0 bに収納された蒸発物質はプラズマビーム により加熱されて蒸発する。 蒸発した粒子はブラズマビームによりイオン化され、 負電圧が印加された基板 4 1の表面に付着し、 基板 4 1に被膜が形成される。 基板 4 1は、 2つのプラズマガン 1 A、 1 Bに共通の被処理部材であるので、 基板ホルダ 4 2、 ヒータ 4 3、 ヒータ電源 4 4、 及びバイアス電源 4 5も 2つの プラズマガン 1 A、 I Bに共通であり、 プラズマガン 1 A側の構成はプラズマガ ン 1 Bと同様である。  In this ion plating apparatus, a discharge force is generated between the cathode of the plasma gun 1B and the main hearth 30b in the vacuum vessel 11, thereby generating a plasma beam (not shown). This plasma beam is guided by the magnetic field determined by the steering coil 24b and the annular permanent magnet 35b in the auxiliary hearth 31b, and reaches the main heart 30b. The evaporating substance contained in the main hearth 30b is heated and evaporated by the plasma beam. The evaporated particles are ionized by the plasma beam, adhere to the surface of the substrate 41 to which the negative voltage is applied, and a film is formed on the substrate 41. Since the substrate 41 is a common member to be processed by the two plasma guns 1A and 1B, the substrate holder 42, the heater 43, the heater power supply 44, and the bias power supply 45 also have two plasma guns 1A. , IB, and the configuration of the plasma gun 1A side is the same as that of the plasma gun 1B.
第 3図で示したプラズマガン (第 1, 第 2の中間電極 1 0 3, 1 0 4、 永久磁 石 1 0 9の磁極が第 3図で説明した配置になっている。 ) を S型とすると、 第 1, 第 2の中間電極 1 0 3 , 1 0 4、 永久磁石 1 0 9の磁極が S型と逆になる型が N 型である。 本発明では、 S型のプラズマガンと N型のプラズマガンとを隣り合わ せにして並設する点に特徴を有する。  The plasma gun shown in Fig. 3 (the first and second intermediate electrodes 103 and 104 and the magnetic poles of the permanent magnet 109 are arranged as described in Fig. 3) is the S type. Then, the type in which the magnetic poles of the first and second intermediate electrodes 103, 104 and the permanent magnet 109 are opposite to the S type is the N type. The present invention is characterized in that an S-type plasma gun and an N-type plasma gun are arranged side by side.
第 4図、 第 5図に示されるように、 S型のプラズマガンと, N型のプラズマガ ンとの違いにより、 ステアリングコイル 2 4 a , 2 4 b、 捕助ハース 3 1 a , 3 1 bの磁極もそれぞれが逆向きになっている。 なお、 補助ハース 3 l a , 3 1 b は環状永久磁石のみを備えたものでも良い。  As shown in Figs. 4 and 5, due to the difference between the S-type plasma gun and the N-type plasma gun, the steering coils 24a and 24b, the trapping hearths 31a and 31b Are also reversed. The auxiliary hearths 3 l a and 3 1 b may be provided with only annular permanent magnets.
例えば、 プラズマガン 1 Aは単独では、 第 2図で説明したように、 プラズマビ —ムはハースに入射する前はプラズマビームのねじれのため、 一旦、 図中左側に はみ出してからハース 1 0 8の直上よりハース 1 0 8内に入射する。 このため、 同じ磁極の向きのプラズマガン、 ハースを 2 «ベると、 互いにプラズマは図中 左側にふくらんでからハースに入射することになる。  For example, as described in Fig. 2, the plasma gun 1A alone, as described in Fig. 2, once protrudes from the left side in the figure due to the twist of the plasma beam before entering the hearth, and The light enters the hearth 108 from directly above. For this reason, if the plasma gun and Haas with the same magnetic pole direction are applied twice, the plasmas will inflate to the left in the figure and then enter Haas.
これに対し、 第 5図に示すように、 図中右側に S型のプラズマガン 1 Aを配置 し、 図中左側には N型のプラズマガン 1 Bを配置して磁極の向きを逆にすること により、 プラズマのふく らみは左右対称となる。 特に、 プラズマガン 1 A、 I B を第 5図に示すように並べた場合は、 2つのプラズマビームは一旦、 近付いて互 いに中央に合わさる様に広がり、 その後それぞれのハース 3 0 a、 3 O bに入射 する。 On the other hand, as shown in Fig. 5, an S-type plasma gun 1A is arranged on the right side of the figure, and an N-type plasma gun 1B is arranged on the left side of the figure to reverse the direction of the magnetic poles. thing As a result, the plasma becomes symmetrical. In particular, when the plasma guns 1A and IB are arranged as shown in Fig. 5, the two plasma beams once approach each other and spread so that they are centered with each other, and then the hearths 30a and 30 Incident at b.
この場合は、 2つのプラズマビーム間の領域にも高密度のプラズマを発生させ ることができ、 広い面積で高密度のプラズマを用いたイオンプレーティ ングが可 食 となる。  In this case, high-density plasma can be generated also in a region between the two plasma beams, and ion plating using high-density plasma over a wide area becomes edible.
逆に、 プラズマによるダメージを少しでも軽減する場合には、 第 5図とは逆の 磁極関係、 すなわち第 5図の右側に Ν型のプラズマガン 1 Βを配置し、 左側に S 型のプラズマガン 1 Αを配置して並べる。 その結果、 中央付近のプラズマを薄く することが可能となる。  Conversely, if the damage due to the plasma is to be reduced even a little, the magnetic pole relationship opposite to that in Fig. 5, that is, the プ ラ ズ マ -type plasma gun 1Β is placed on the right side of Fig. 5, and the S-type plasma gun on the left side 1 Place Α and arrange. As a result, the plasma near the center can be thinned.
前記したように、 S型、 N型のプラズマの配置位置によりプラズマビーム間の ブラズマ密度を変えることができるが、 真空容器の内あるいは外に永久磁石又は 鉄芯を配設してプラズマの密度をコントロールすることもできる。  As described above, the plasma density between plasma beams can be changed depending on the position of the S-type and N-type plasmas. However, a permanent magnet or iron core is provided inside or outside the vacuum vessel to reduce the plasma density. You can also control it.
例えば、 第 4図、 第 5図に示されるように、 捕助ハース 3 1 a , 3 1 bの間に プラズマ分離用の永久磁石 1 0を設けることにより、 補助ハース 3 l a , 3 1 b 間のプラズマを分離することもできる。 この場合、 永久磁石 1 0の磁極の向きは、 補助ハース 3 1 a , 3 1 bの永久磁石 1 0の上側磁極と逆の磁極が向き合うよう に配設される。  For example, as shown in FIGS. 4 and 5, by providing a permanent magnet 10 for plasma separation between the trapping hearths 31a and 31b, the auxiliary hearth 3la and 31b Can be separated. In this case, the magnetic poles of the permanent magnets 10 are arranged such that the upper magnetic poles of the permanent magnets 10 of the auxiliary hearths 31a and 31b are opposite to the magnetic poles opposite to the upper magnetic poles.
なお、 上記の実施の形態では、 プラズマガン 1 B側について言えば、 図 7 ( a ) に示すように、 N極を上に向けた環状永久磁石 3 5 bの上に電磁石コイル 3 6 b を重ねて配置している。 し力、し、 図 7 ( b ) に示すように、 S極を上に向けた環 ^久磁石 3 5 bの上に電磁石コイル 3 6 bを重ねて配置しても良い。 この場合、 電磁石コイル 3 6 bに流す電流は、 図 7 ( a ) の場合と逆にする。  In the above embodiment, as for the plasma gun 1B side, as shown in FIG. 7 (a), the electromagnet coil 36b is mounted on the annular permanent magnet 35b with the N pole facing upward. They are arranged one above the other. As shown in FIG. 7 (b), the electromagnet coil 36b may be placed on the ring magnet 35b with the south pole facing upward. In this case, the current flowing through the electromagnet coil 36b is reversed from that in Fig. 7 (a).
—方、 図 7 ( c ) に示すように、 N極を上に向けた環状永久磁石 3 5 bの下側 に電磁石コイル 3 6 bを重ねて配置しても良い。 更に、 図 7 ( d ) に示すように、 S極を上に向けた環状永久磁石 3 5 bの下側に電磁石コイル 3 6 bを重ねて配置 してもよい。 これらの場合、 前述したように、 励磁された電磁石コイル 3 6 bの 中心側の磁界の向きは、 環状永久磁石 3 5 bにより発生する中心側の磁界と同じ 向きになるように電流が流されている。 On the other hand, as shown in FIG. 7 (c), the electromagnet coil 36b may be disposed so as to overlap the lower side of the annular permanent magnet 35b with the N pole facing upward. Further, as shown in FIG. 7 (d), the electromagnet coil 36 b may be arranged so as to overlap the lower side of the annular permanent magnet 35 b with the S pole facing upward. In these cases, as described above, the direction of the magnetic field on the center side of the excited electromagnet coil 36b is the same as the magnetic field on the center side generated by the annular permanent magnet 35b. A current is flowing so as to be oriented.
産業上の利用可能性 Industrial applicability
本発明によれば、 複数のプラズマガンのうちの互いに隣接し合う 2つのプラズ マガンにおけるステアリングコイル、 捕助ハースの磁極の向きを逆にすることに より、 それぞれから発生される磁力線の干渉力 <少なくなり、 プラズマビームのね じれが少なくなる。 従って、 高密度のプラズマを用いたイオンプレーティングを 広い面積に対して行うことができるイオンプレーティ ング装置を提供できる。  According to the present invention, by reversing the direction of the magnetic poles of the steering coil and the assisting hearth in two plasma guns adjacent to each other among a plurality of plasma guns, the interference force of the magnetic force lines generated from each of them is < And the twisting of the plasma beam is reduced. Therefore, it is possible to provide an ion plating apparatus that can perform ion plating using high-density plasma over a wide area.

Claims

請求の範囲 The scope of the claims
1. 真空容器に、 磁石手段を有する複数のプラズマガンを設け、 複数のブラ ズマガンにはそれぞれステアリングコイルを設け、 真空容器内には、 複数のブラ ズマガンに対応させて複数のハースを設けたィォンプレ一ティング装置において、 前記複数のハースの周囲にそれぞれ環状永久磁石を設け、 隣接する 2つのプラズ マガンにおける 2つの前記磁石手段の磁極の向き、 2つの前記ステアリングコィ ルの磁極の向き、 及び 2つの前記環状永久磁石の磁極の向きをそれぞれ互いに逆 向きにしたことを特徴とするイオンプレーティング装置。 1. A plurality of plasma guns having magnet means are provided in a vacuum vessel, a steering coil is provided in each of the plurality of plasma guns, and a plurality of hearths are provided in the vacuum vessel in correspondence with the plurality of plasma guns. An annular permanent magnet is provided around each of the plurality of hearths, the directions of the magnetic poles of the two magnet means in two adjacent plasma guns, the directions of the magnetic poles of the two steering coils, and two An ion plating apparatus, wherein the magnetic poles of the annular permanent magnet are made to be opposite to each other.
2. 請求項 1記載のイオンプレーティング装置において、 前記真空容器の内 側ある ゝは外側に永久磁石又は鉄芯を設けて前記複数のプラズマガンから発生さ れるプラズマの分布を調整するようにしたことを特徴とするイオンプレーティン  2. In the ion plating apparatus according to claim 1, ゝ on the inner side of the vacuum vessel is provided with a permanent magnet or an iron core on the outer side to adjust the distribution of plasma generated from the plurality of plasma guns. Ion plating characterized by the following:
3. 請求項 1記載のイオンプレーティング装置において、 隣接する 2つの前 記ハース間にはブラズマ分離用永久磁石を設け、 前記環状永久磁石のブラズマガ ン側の磁極と前記プラズマ分離用永久磁石の環状永久磁石側の磁極とを逆向きに したことを特徴とするイオンプレーティング装置。 3. The ion plating apparatus according to claim 1, wherein a permanent magnet for plasma separation is provided between the two adjacent hearths, and a magnetic pole of the annular permanent magnet on the plasma gun side and a ring of the permanent magnet for plasma separation. An ion plating apparatus characterized in that the magnetic pole on the permanent magnet side is reversed.
4. 請求項 1〜3のいずれかに記載のイオンプレーティング装置において、 前記環状永久磁石に電磁石コイルを重ねたことを特徴とするイオンプレーティ ン  4. The ion plating apparatus according to claim 1, wherein an electromagnet coil is superimposed on the annular permanent magnet.
PCT/JP1997/003436 1996-03-25 1997-09-26 Ion plating apparatus WO1999016924A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6861796A JP2946404B2 (en) 1996-03-25 1996-03-25 Ion plating device
US09/269,737 US6160350A (en) 1996-03-25 1997-09-26 Ion plating apparatus
PCT/JP1997/003436 WO1999016924A1 (en) 1996-03-25 1997-09-26 Ion plating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6861796A JP2946404B2 (en) 1996-03-25 1996-03-25 Ion plating device
PCT/JP1997/003436 WO1999016924A1 (en) 1996-03-25 1997-09-26 Ion plating apparatus

Publications (1)

Publication Number Publication Date
WO1999016924A1 true WO1999016924A1 (en) 1999-04-08

Family

ID=26409821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003436 WO1999016924A1 (en) 1996-03-25 1997-09-26 Ion plating apparatus

Country Status (2)

Country Link
JP (1) JP2946404B2 (en)
WO (1) WO1999016924A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199017A (en) * 2011-03-18 2012-10-18 Stanley Electric Co Ltd Pressure gradient plasma generating device and deposition device using the same
JP5989601B2 (en) * 2013-05-29 2016-09-07 住友重機械工業株式会社 Plasma evaporator
JP6013279B2 (en) * 2013-06-13 2016-10-25 住友重機械工業株式会社 Deposition equipment
JP6342291B2 (en) * 2014-10-16 2018-06-13 住友重機械工業株式会社 Deposition equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580555B2 (en) * 1986-08-15 1993-11-09 Tobi Co Ltd
JPH06340967A (en) * 1993-06-02 1994-12-13 Asahi Glass Co Ltd Vapor deposition device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580555B2 (en) * 1986-08-15 1993-11-09 Tobi Co Ltd
JPH06340967A (en) * 1993-06-02 1994-12-13 Asahi Glass Co Ltd Vapor deposition device

Also Published As

Publication number Publication date
JP2946404B2 (en) 1999-09-06
JPH09256147A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JP2556637B2 (en) Deposition system on substrate by magnetron cathode
JP3363919B2 (en) Apparatus for depositing a reactive film on a substrate
EP0045822B1 (en) Cylindrical magnetron sputtering cathode
US6160350A (en) Ion plating apparatus
US4929321A (en) Method and apparatus for coating workpieces
US4169031A (en) Magnetron sputter cathode assembly
US5427665A (en) Process and apparatus for reactive coating of a substrate
JPH0676773A (en) Method for generation and ignition of low- pressure discharge, vacuum working apparatus and cathode chamber for avobe apparatus
EP0720206B1 (en) Plasma processing method and plasma processing apparatus
JP5232190B2 (en) Source for vacuum processing process
EP0163445B1 (en) Magnetron sputter device having planar and concave targets
US8157976B2 (en) Apparatus for cathodic vacuum-arc coating deposition
US20140042023A1 (en) Magnetron design for extended target life in radio frequency (rf) plasmas
US6361663B1 (en) Vacuum arc evaporator
WO1999016924A1 (en) Ion plating apparatus
JP2011179061A (en) Sputtering thin film deposition system
JP2000073167A (en) Device for coating substrate in vacuum chamber
JP2946402B2 (en) Plasma processing method and plasma processing apparatus
JPH09176840A (en) Vacuum coating apparatus
KR100359302B1 (en) Ion plating apparatus
JPS6112866A (en) Plasma concentration type high-speed sputtering device
JP2000026953A (en) Plasma treating method and plasma treating device
JP2000208298A (en) Inductive coupling type plasma generator
JP3564677B2 (en) Metal oxide coating method
JP2000034560A (en) Ion plating device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97198505.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

WWE Wipo information: entry into national phase

Ref document number: 1019997004114

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09269737

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1019997004114

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997004114

Country of ref document: KR