WO1999015679A1 - Promoteur specifique des petales et procede d'obtention de plantes a fleurs sans petale - Google Patents

Promoteur specifique des petales et procede d'obtention de plantes a fleurs sans petale Download PDF

Info

Publication number
WO1999015679A1
WO1999015679A1 PCT/FR1998/002043 FR9802043W WO9915679A1 WO 1999015679 A1 WO1999015679 A1 WO 1999015679A1 FR 9802043 W FR9802043 W FR 9802043W WO 9915679 A1 WO9915679 A1 WO 9915679A1
Authority
WO
WIPO (PCT)
Prior art keywords
plants
sequence
petals
nucleotide
petal
Prior art date
Application number
PCT/FR1998/002043
Other languages
English (en)
Inventor
Inès BROCARD
Florence Charlot
Evelyne Teoule
Philippe Guerche
Original Assignee
Institut National De La Recherche Agronomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National De La Recherche Agronomique filed Critical Institut National De La Recherche Agronomique
Priority to AU92708/98A priority Critical patent/AU740911C/en
Priority to CA002304569A priority patent/CA2304569A1/fr
Priority to JP2000512968A priority patent/JP2001517450A/ja
Priority to EP98945367A priority patent/EP1017833A1/fr
Publication of WO1999015679A1 publication Critical patent/WO1999015679A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8214Plastid transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • C12N15/8225Leaf-specific, e.g. including petioles, stomata
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance

Definitions

  • the present invention relates in particular to a specific promoter for petals and to a process for obtaining flowering plants without petals.
  • the present invention therefore proposes to obtain plants whose flowers are devoid of petals. It consists in implementing a promoter region controlling expression specifically in the petals of a sequence
  • the present invention therefore relates to a nucleotide sequence of which it has been demonstrated that the corresponding gene is expressed specifically in the petal, this nucleotide sequence corresponds to SEQ ID N ° 5
  • the subject of the present invention is a nucleotide sequence which corresponds to all or part a) of the sequence according to SEQ ID No. 5, or b) of a sequence hybridizing to the sequence according to a), or c) of a sequence having at least 80% homology with a) or b)
  • the most interesting part of this nucleotide sequence is the promoter region defined as being the preceding sequence (5 ′ side) the translation start codon (ATG) Strito sensu this promoter region extends from nucleotide 1 to nucleotide 3265 (i.e.
  • this region extends preferably from nucleotide 1 to nucleotide 3233 (corresponding to the downstream site) and even more preferably from nucleotide 2911 to nucleotide 3233 of SEQ ID N ° 5
  • This promoter region therefore precedes in its natural state, an orf which is expressed specifically in the petals and in the case where this orf is replaced (by genetic manipulation) by another orf whose product is a cytotoxic molecule, the latter is susceptible to destroy only said petals
  • the replacement can also be carried out by a part of a gene capable, during its specific expression in the petal, of modifying its original characteristics
  • the present invention therefore also relates to vectors for cellular expression comprising a promoter region as described above placed upstream of a DNA sequence coding for a product capable of modifying the structure, the shape, the coloring and / or the texture of flower petals, as well as a process for obtaining ornamental plants comprising the insertion into said plants of one of these vectors.
  • the invention also includes the case where said DNA sequence codes for a cytotoxic product.
  • the cytotoxic product in question is a ribonuclease.
  • RNase expresses itself specifically in the petals, it will destroy all the RNAs, which the petal will not be able to survive.
  • RNase is bamase, whose corresponding orf was isolated from Bacillus amyloliquefasciens (Hartley RW, 1988).
  • transformation of other plants and in particular of rapeseed can be carried out by the intermediary of Agrobacterium tumefaciens and / or Agrobacterium rhizogenes using various techniques, now conventional (transformation of leaf discs, hypo- acetabulum of floral stems .%) associating a phase of co-culture of the bacterium with plant tissues, followed by the selection and regeneration of cells transformed into whole plants.
  • Other transformation techniques do not involve this bacterium and make it possible to directly transfer the cloned gene into cells or tissues (electroporation, particle cannon, etc.) and to select and obtain transformed plants (technique reviewed by Siemens and Schieder).
  • the present invention also relates to plant cells transformed with a vector in accordance with the invention as well as plants comprising said cells.
  • the invention also relates to plants whose flowers have no petals. As indicated previously, the present invention therefore makes it possible to obtain plants whose flowers have no petals; the method according to the invention comprising the insertion into plants of a vector as described above and comprising a DNA sequence coding for a cytotoxic product.
  • a possible example of such a system consists in inactivating the expression product which it is desired to control by inserting at least one stop codon at the start of the corresponding coding sequence then adding in trans into the system, a tRNA says "suppressor" which will recognize the stop codon (s) and provide the amino acid it carries instead of finishing the translation. The protein can then be fully translated and its activity restored.
  • a tRNA says "suppressor" which will recognize the stop codon (s) and provide the amino acid it carries instead of finishing the translation. The protein can then be fully translated and its activity restored.
  • Such a system has already been tested concerning the coding sequence of the GUS gene into which the amber stop codon has been inserted, the suppressor tRNA used carrying leucine.
  • the functionality of such transactivation system using a suppressor tRNA u was checked in planta in Arabidopsis thaliana and Nicotiana tabacum.
  • the present invention therefore also relates to a process for obtaining hybrid plants whose flowers do not have a petal and comprising the steps of: a) transformation of plants of line A with a vector in accordance with the invention and comprising a DNA sequence coding for cytotoxic sequence modified by the insertion of at least one stop codon, b) crossing of the plants of line A thus obtained with plants of line B expressing the gene for a suppressor tRNA, c) selection of the hybrid plants with flowers without petals.
  • plants of line A are transformed by a construction similar to pIB352 as shown in FIG. 7.
  • the plants according to the invention belong to the Brassicaceae family, preferably, it is rapeseed.
  • Figure 1 illustrates the Northem hybridization analysis of polyA + RNA (2 ⁇ g) and total RNA (10 ⁇ g) of rapeseed.
  • the membrane is hybridized with the whole 9.2 cDNA labeled with 32 P.
  • the revelation is made after 24 hours of exposure at -80 ° C. with a screen.
  • the mRNAs identified have an approximate size of 800 bp.
  • Seedling 1 one week old seedling
  • Seedling 2 two week old seedling
  • FIG. 2 illustrates the comparison of the protein sequences of Arabidopsis thaliana (top) and rapeseed (bottom) deduced from cDNA X74360 respectively (SEQ ID No. 1) and 9.2 (SEQ ID No. 2).
  • the Arabidopsis thaliana protein is 140 aa long while the rapeseed protein is 147 aa long. The homology between the two being 74.6%.
  • the stars identify the amino acids common to the two sequences and the points appearing in the cDNA of Arabidopsis thaliana have been indicated only to allow the placing in front of each other of the sequences common to the two plants, the sequence of Arabidopsis thaliana having to be read continuously, that is that is to say, ignoring said points.
  • FIG. 3 represents the alignment of the nucleotide sequences of the
  • FIG. 4 represents the partial restriction maps of the genomic clones (A Downstream, B BamHl, El EcoRl, EV EcoRW, HH ndlll, Hc H cll,? Psil, S Sacl, SI S ⁇ / l, Xb Xba ⁇ , ⁇ X Xho )
  • FIG. 5 represents the 5'- 3 'sequence of the genomic clone 4 1 1 (SEQ ED N ° 5)
  • the palindromic sequence has been underlined twice, the coding sequence has been underlined once
  • the following restriction sites have been identified BamHI (in position 1) GGATCC, Sali (in position 2911) GTCGAC and Downstream (in position 3229) CCCGAG.
  • FIG. 6 represents the constructions carried out with the promoters of the genomic clones 4 1 1 and 8 1 1 promoter region distal of the genomic clone 4 1 1 palindromic sequence promoter region proximal of the genomic clone 4 1 1 promoter region of 322 bp of the genomic clone 4.1 1 322 bp promoter region of the genomic clone 8 1 1 terminator of the nopaline synthase gene coding sequence of the reporter gene gus coding sequence of the gene 4 1 1 3 'region of the gene 4 1 1 not translated
  • FIG. 7 illustrates the constructions carried out with the 322 bp promoter of the genomic clone 4 1 1 promoter of 322 bp of the genomic clone 4.1.1 coding sequence of the reporter gene gus coding sequence of the wild barnase gene coding sequence of the mutated barnase gene terminator of the nopaline synthase gene CaS 19S terminator
  • the first step consisted in obtaining complementary DNA clones (cDNA) expressed specifically in the petal.
  • cDNA complementary DNA clones
  • CDNAs were synthesized from messenger RNA (mRNA) from rapeseed petals.
  • cDNAs were synthesized from mRNA from leaves, flower buds from which the petals were removed and stamens.
  • the cDNAs from said organs or tissues have been subtracted from the cDNAs derived from the mRNAs expressed in the rapeseed petal.
  • the molecules resulting from this subtraction were used during a differential hybridization experiment of a petal cDNA library according to a technique similar to that presented by Atanassov et al. 1996.
  • Sequences of sequence homology in the databases show a strong similarity between the protein deduced from the open reading phase (orf) of clone 9.2 and the coding sequence of a gene from Arabidopsis thaliana (X74360) coding for a putative protein of the wall whose expression is regulated by gibberellins (Phillips and Huttly, 1994) ( Figure 2).
  • the degree of homology presented by the corresponding respective cDNA sequences is greater than 80% in the first 500 bases and then disappears completely on the remaining 220 (FIG. 3).
  • the rapeseed cDNA clone 9.2 served as a probe to screen a genomic library of rapeseed. Seven genomic clones were isolated. Based on the restriction maps and sequences, these seven clones fall into two groups suggesting the existence in rapeseed of a family of at least two genes named in the rest of the text 4.1.1 and 8.1.1 ( figure 4).
  • the cDNA 9.2 is derived from the corresponding gene of the genomic clone 4.1.1.
  • constructs fall into two categories depending on the gold placed under the control of regulatory sequences: the reporter gene GUS to study the expression profiles and verify the specificity conferred by the promoter, the wild or inactivated barnase gene to prevent the formation of the petal by expression in this organ of this toxic gene (Figures 6 and 7 detail the composition of each construct).

Abstract

L'invention concerne un promoteur spécifique des pétales ainsi qu'un procédé d'obtention de plantes à fleurs sans pétale.

Description

PROMOTEUR SPECIFIQUE DES PETALES ET PROCEDE D'OBTENTION DE PLANTES A FLEURS SANS PETALE
La présente invention concerne notamment un promoteur spécifique des pétales et un procédé d'obtention de plantes à fleurs sans pétale.
L'intérêt de l'obtention de plantes dépourvues de pétales est parti de l'observation que les pétales sénescents, en tombant sur les feuilles pourraient fournir des foyers d'infection privilégiés pour les spores de certains champignons pathogènes. Dans le cas du colza, par exemple, le mode d'infection de Sclerotinia scleroiiorum suit principalement cette voie. Ce champignon est responsable en effet d'importants dommages sur les cultures de colza (Lamarque, 1983) et on ne connaît pas de résistance génétique à celui-ci ni chez le colza ni chez les espèces apparentées. Ainsi, à l'heure actuelle, seuls les traitements chimiques préventifs sont utilisés. La lutte contre Sclerotinia scleroiiorum par le biais de plantes dont les fleurs n'auraient pas de pétales permettrait de diminuer l'utilisation de fongicide et limiterait donc la pollution des sols subséquente.
Il s'agit donc de produire des plantes à fleurs sans pétale et d'éprouver ainsi une stratégie de lutte contre le susdit champignon basée sur une résistance "physique" et non pas sur l'utilisation de gènes de résistance au sens classique.
La présente invention propose donc d'obtenir des plantes dont les fleurs seraient dépourvues de pétales. Elle consiste à mettre en œuvre une région promotrice contrôlant l'expression spécifiquement dans les pétales d'une séquence
(orf) codant pour une molécule susceptible de modifier les caractéristiques naturelles du pétale voire d'en inhiber la formation.
Ainsi, on peut envisager de modifier la structure, la forme, la coloration et/ou la structure des pétales de fleurs en plaçant, en aval de la région promotrice ci-dessus décrite des gènes impliqués dans la biosynthèse des pigments ou des gènes de régulation comme les protéines MYB (Noda et al. 1994). Ce type d'expérience a déjà ete réalise (Elomma et al , 1996 , Gutterson, 1995) Toutefois, les promoteurs utilises sont plutôt de types constitutifs comme le 35S du CaMV alors qu'il serait intéressant de confiner l'expression du transgene à l'organe cible On peut donc, dans le cadre de la présente invention, envisager la création de plantes ornementales originales
La présente invention a donc pour objet une séquence nucléotidique dont il a ete démontrée que le gène correspondant s'expπme spécifiquement dans le pétale, cette séquence nucléotidique correspond à SEQ ID N° 5
Par conséquent, la présente invention a pour objet une séquence nucléotidique qui correspond à tout ou partie a) de la séquence selon SEQ ID N° 5, ou b) d'une séquence s'hybridant à la séquence selon a), ou c) d'une séquence présentant au moins 80 % d'homologie avec a) ou b) Dans le cadre de la présente invention, la partie la plus intéressante de cette séquence nucléotidique est la région promotrice définie comme étant la séquence précédant (côté 5') le codon du début de traduction (ATG) Strito sensu cette région promotrice s'étend du nucleotide 1 au nucleotide 3265 (c'est-à-dire au dernier nucleotide précédant immédiatement le codon ATG) mais, compte tenu des sites de restriction, cette région s'étend préferentiellement du nucleotide 1 au nucleotide 3233 (correspondant au site Aval) et plus préferentiellement encore du nucleotide 2911 au nucleotide 3233 de SEQ ID N° 5
Cette région promotrice précède donc à l'état naturel, un orf qui est exprimé spécifiquement dans les pétales et dans le cas où cet orf est remplacé (par manipulation génétique) par un autre orf dont le produit est une molécule cytotoxique, cette dernière est susceptible de ne détruire que lesdits pétales Le remplacement peut également être réalisé par une partie de gène susceptible, lors de son expression spécifique dans le pétale, d'en modifier les caractéristiques d'origine La présente invention a donc également pour objet des vecteurs d'expression cellulaire comprenant une région promotrice telle que ci-dessus décrite placée en amont d'une séquence d'ADN codant pour un produit capable de modifier la structure, la forme, la coloration et/ou la texture des pétales de fleurs, ainsi qu'un procédé d'obtention de plantes ornementales comprenant l'insertion dans lesdites plantes d'un de ces vecteurs. L'invention comprend également le cas où ladite séquence d'ADN code pour un produit cytotoxique.
Avantageusement, le produit cytotoxique en question est une ribonucléase. En effet, lorsque cette RNase s'exprimera spécifiquement dans les pétales, elle en détruira tous les ARN, ce à quoi le pétale ne pourra pas survivre. Préferentiellement, la RNase est la bamase, dont l'orf correspondant a été isolé de Bacillus amyloliquefasciens (Hartley RW, 1988).
Il s'agit donc d'introduire un vecteur conforme à l'invention dans une souche bactérienne susceptible de réaliser la transformation de cellules de plantes telles qu'Agrobacterium tumefaciens. Ceci peut notamment être réalisée par la méthode d'infiltration de plantes d'Arabidopsis thaliana décrite par Bechtold et al.; 1993. Cette technique consiste à introduire la bactérie dans les cellules des hampes florales par infiltration sous vide. Les plantes sont ensuite repiquées en serre et leurs graines récoltées. Environ une graine sur mille donne naissance à des plantes dont toutes les cellules portent le transgène. La transformation d'autres plantes et notamment du colza peut être réalisée par l'intermédiaire ά'Agro- bacterium tumefaciens et/ou d'Agrobacterium rhizogenes à l'aide de diverses techniques, maintenant classiques (transformation de disques foliaires, d'hypo- cotyles de hampes florales....) associant une phase de co-culture de la bactérie avec les tissus végétaux, suivie de la sélection et de la régénération des cellules transformées en plantes entières. D'autres techniques de transformation ne font pas intervenir cette bactérie et permettent de transférer directement le gène clone dans des cellules ou des tissus (électroporation, canon à particules...) et de sélectionner et d'obtenir des plantes transformées (technique revue par Siemens et Schieder). La présente invention a également pour objet des cellules de plantes transformées avec un vecteur conforme à l'invention ainsi que des plantes comprenant lesdites cellules. L'invention a également pour objet des plantes dont les fleurs n'ont pas de pétales. Comme indiqué précédemment, la présente invention permet donc l'obtention de plantes dont les fleurs n'ont pas de pétales ; le procédé conforme à l'invention comprenant l'insertion dans les plantes d'un vecteur tel que ci-dessus décrit et comprenant une séquence d'ADN codant pour un produit cytotoxique.
Dans le cadre de la présente invention, on peut également envisager d'obtenir des plantes hybrides par croisement de deux lignées dont on chercherait à associer les qualités agronomiques. Cependant, afin que la pollinisation entomophile s'opère de façon optimum, il est nécessaire que les parents de l'hybride en question portent des pétales. Un tel croisement n'est donc possible qu'au moyen d'un système d'activation du gène toxique à double composante. Le principe d'un tel système consiste à disposer de deux lignées portant chacune un constituant n'ayant pas d'activité cytotoxique. L'activité toxique spécifique est alors restaurée dans les hybrides de ces deux lignées par combinaison des deux constituants.
Un exemple possible d'un tel système consiste à inactiver le produit d'expression que l'on veut contrôler par insertion d'au moins un codon stop au début de la séquence codante correspondante puis d'ajouter en trans dans le système, un ARNt dit "suppresseur" qui va reconnaître le ou les codon(s) stop et apporter l'acide aminé qu'il porte au lieu de terminer la traduction. La protéine pourra alors être traduite intégralement et son activité restaurée. Un tel système a déjà été expérimenté concernant la séquence codante du gène GUS dans laquelle a été insérée le codon stop ambre, l'ARNt suppresseur utilisé étant porteur de la leucine. De plus, la fonctionnalité d'un tel système de transactivation utilisant un ARNt u suppresseur a été vérifié in planta dans Arabidopsis thaliana et Nicotiana tabacum. Ce modèle a été ensuite appliqué au cas de la barnase. Des gènes mutés (c'est-à-dire dans lesquels ont été insérés un codon stop) codant pour la barnase et dépendant de l'expression du gène de ARNtLcu ont été obtenus et testés en expression transitoire dans des protoplastes de tabac (Choisne Nathalie, 1997). La présente invention concerne donc également un procédé d'obtention de plantes hybrides dont les fleurs n'ont pas de pétale et comprenant les étapes de : a) transformation de plantes d'une lignée A avec un vecteur conforme à l'invention et comprenant une séquence d'ADN codant pour séquence cytotoxique modifiée par l'insertion d'au moins un codon stop, b) croisement des plantes de lignée A ainsi obtenues avec des plantes de lignée B exprimant le gène d'un ARNt suppresseur, c) sélection des plantes hybrides avec des fleurs sans pétales. Dans le cadre de la présente invention, les plantes de lignée A sont transformées par une construction similaire à pIB352 telle que représentée dans la figure 7.
Avantageusement, les plantes conformes à l'invention appartiennent à la famille des Brassicacées, préferentiellement, il s'agit du colza.
La figure 1 illustre l'analyse par hybridation de type Northem d'ARN polyA+ (2 μg) et des ARN totaux (10 μg) de colza. La membrane est hybridée avec l'ADNc 9.2 entier marqué au 32P. La révélation est faite après 24 heures d'exposition à - 80°C avec un écran. Les ARNm identifiés ont une taille approximative de 800 pb. Plantule 1 : plantule d'une semaine ; Plantule 2 : plantule de deux semaines
La figure 2 illustre la comparaison des séquences protéiques d 'Arabidopsis thaliana (en haut) et du colza (en bas) déduites respectivement de ADNc X74360 (SEQ ID N° 1) et 9.2 (SEQ ID N° 2). La protéine d 'Arabidopsis thaliana présente une longueur de 140 aa alors que la protéine de colza présente une longueur de 147 aa. L'homologie entre les deux étant de 74,6 %. Les étoiles repèrent les acides aminés communs aux deux séquences et les points figurant dans l'ADNc d 'Arabidopsis thaliana n'ont ete indiques que pour permettre de placer l'une en face de l'autre les séquences communes aux deux plantes, la séquence d 'Arabidopsis thaliana devant se lire en continu, c'est-à-dire en faisant abstraction desdits points La figure 3 représente l'alignement des séquences nucleotidiques des
ADNc 9 2 du colza (en bas) et X74360 d 'Arabidopsis thaliana (en haut), les deux séquences présentant une homologie totale de 83 %
La figure 4 représente les cartes de restriction partielles des clones genomiques (A Aval, B BamHl, El EcoRl, EV EcoRW, H H ndlll, Hc H cll, ? Psil, S Sacl, SI Sα/l, Xb Xba\, ~X Xho )
La figure 5 représente la séquence 5'- 3' du clone génomique 4 1 1 (SEQ ED N° 5) La séquence palindromique a été soulignée deux fois, la séquence codante a été soulignée une fois Les sites de restriction suivants ont été repérés BamHl (en position 1) GGATCC , Sali (en position 2911) GTCGAC et Aval (en position 3229) CCCGAG.
La figure 6 représente les constructions réalisées avec les promoteurs des clones genomiques 4 1 1 et 8 1 1 région promotrice distale du clone génomique 4 1 1 séquence palindromique région promotrice proximale du clone génomique 4 1 1 région promotrice de 322 pb du clone génomique 4.1 1 région promotrice de 322 pb du clone génomique 8 1 1 terminateur du gène de la nopaline synthase séquence codante du gène rapporteur gus séquence codante du gène 4 1 1 région 3' du gène 4 1 1 non traduite
La figure 7 illustre les constructions réalisées avec le promoteur de 322 pb du clone génomique 4 1 1 promoteur de 322 pb du clone génomique 4.1.1 séquence codante du gène rapporteur gus séquence codante du gène de la barnase sauvage séquence codante du gène de la barnase mutée teπninateur du gène de la nopaline synthase terminateur 19S du CaMV
L'invention ne se limite pas à seule description ci-dessus, elle sera mieux comprise à la lumière des exemples ci-après qui ne sont cependant donnés qu'à titre illustratif.
EXEMPLE 1 : Mise en évidence d'un promoteur spécifique des pétales
La première étape a consisté en l'obtention de clones d'ADN complémentaires (ADNc) exprimés spécifiquement dans le pétale. Pour cela, les
ADNc ont été synthétisés à partir d'ARN messagers (ARNm) de pétale de colza.
Parallèlement, des ADNc ont été synthétisés à partir d'ARNm de feuilles, de boutons floraux dont les pétales ont été enlevés et d'étamines.
Les ADNc provenant desdits organes ou tissus ont été soustraits aux ADNc dérivés des ARNm exprimés dans le pétale de colza. Les molécules résultant de cette soustraction ont été utilisées lors d'une expérience d'hybridation différentielle d'une banque d'ADNc de pétale selon une technique similaire à celle présentée par Atanassov et al. 1996.
Plusieurs clones d'ADN de colza ont été isolés à l'issue de cette expérience. Leur profil d'expression a été étudié par la technique d'hybridation moléculaire de type Northern. En l'absence de clone strictement spécifiques du pétale (au seuil de détection de la technique) le candidat le plus pertinent a été retenu pour la suite des études ; il s'agit du clone 9.2. Ce clone est fortement exprimé dans le pétale au stade jeune (bouton de 3 mm environ) et très faiblement dans les étamines (figure
1).
Les recherches d'homologie de séquences dans les banques de données montrent une forte similitude entre la protéine déduite de la phase ouverte de lecture (orf) du clone 9.2 et la séquence codante d'un gène d'Arabidopsis thaliana (X74360) codant pour une protéine putative de la paroi dont l'expression est régulée par les gibbérellines (Phillips et Huttly, 1994) (figure 2). Le degré d'homologie présenté par les séquences d'ADNc respectives correspondantes est supérieur à 80 % dans les 500 premières bases puis disparaît totalement sur les 220 restantes (figure 3).
Le clone d'ADNc 9.2 de colza a servi de sonde pour cribler une banque génomique de colza. Sept clones genomiques ont été isolés. Sur la base des cartes de restriction et des séquences, ces sept clones se répartissent en deux groupes suggérant l'existence chez le colza d'une famille d'au moins deux gènes nommés dans la suite du texte 4.1.1 et 8.1.1 (figure 4). L'ADNc 9.2 est dérivé du gène correspondant du clone génomique 4.1.1.
Une étude préliminaire par amplification PCR a été réalisée sur le clone 9.4.1 appartenant au groupe du 4.1.1. En effet, la structure du clone génomique a permis d'amplifier une région amont de 3233 pb en utilisant des techniques d'amplification de grands fragments d'ADN et de séquençage progressif par PCR. Cette région de 3233 pb s'étend du nucleotide 1 au nucleotide 3233 de la séquence représentée sur la figure 5 et elle se termine au niveau du site Aval au niveau duquel la coupure a été effectuée ainsi que le clonage pour l'obtention de "bouts francs". Puis les régions amonts susceptibles de contenir les séquences régulatrices ont été sous-clonées dans des vecteurs de clonage à partir des deux clones genomiques (4.1.1 et 8.1.1). On dispose donc actuellement, pour le clone 4.1.1, de plus de 4 kb de séquence correspondant majoritairement à l'orf et aux régions amonts (figure 5). EXEMPLE 2 : Vérification de la spécificité de la région promotrice
Différentes constructions comprenant le gène rapporteur GUS placé sous le contrôle de certaines de ces séquences ont été réalisées afin d'étudier l'expression de ces gènes chimériques (c'est-à-dire constitués de la séquence codante d'un gène connu précédé de la région promotrice conforme à l'invention) dans des plantes transformées d'Arabidopsis thaliana et de colza.
Ces constructions se regroupent en deux catégories en fonction de l'orf placée sous le contrôle des séquences régulatrices : le gène rapporteur GUS pour étudier les profils d'expression et vérifier la spécificité conférée par le promoteur, le gène de barnase sauvage ou inactivé pour empêcher la formation du pétale par expression dans cet organe de ce gène toxique (les figures 6 et 7 détaillent la composition de chaque construction).
Les profils d'expression du gène rapporteur GUS chez les transformants d'Arabidopsis obtenus dans le cas du pIBlOO montrent une certaine variabilité sur l'ensemble des plantes (voir tableau 1 ci-après qui énumère les parties des plantes transformées chez lesquelles on a observé une coloration bleue). Cependant, chez près de la moitié des plantes présentant une coloration bleue (13/30), le gène rapporteur ne s'exprime que dans les pétales (au seuil de détection de la technique). On retrouve chez certaines plantes une faible expression dans les étamines, peu surprenante du fait des résultats des hybridations de type Northern, mais aussi parfois une expression dans d'autres organes floraux ce qui pourrait suggérer l'influence d'effets de position du transgène dus à sa petite taille.
Toutefois l'existence d'une proportion significative de plantes présentant le profil attendu laisse à penser que le fragment proximal de 322 pb est capable de conférer une expression spécifique du pétale. La stabilité de cette expression a été testée sur les descendants en autofécondation de ces plantes. Pour la plupart, on retrouve bien la spécificité "pétale" (données non montrées). Des séquences promotrices plus longues ont également ete mises en œuvre par le biais des constructions pB3102 et pIB105 et les plantes transformées d'Arabidopsis thaliana ont ete observées (le tableau 2 enumere les parties des plantes transformées par pIB102 et présentant une coloration bleue, le tableau 3 enumere les parties des plantes transformées par pIB105 et présentant une coloration bleue) On ne retrouve pas la spécificité pétale dans la proportion précédemment observée car dans presque tous les cas, le gène rapporteur est effectivement exprimé dans le pétale mais également dans d'autres organes de la fleur De même, des plantes transformées de colza ont été obtenues avec une construction comportant comme séquence régulatrice le fragment amont du gène 4 1 1 de 3233 pb clone après amplification par PCR Sur les neuf plantes de colza qui ont déjà pu être observées, le gène rapporteur s'exprime dans le pétale mais aussi dans d'autres organes de la fleur (données non montrées), comme on l'observe chez Arabidops s avec ces grandes régions promotrices
Ces résultats suggèrent que ces fragments sont trop longs alors que l'on pense que le précédent (322 pb) pourrait être un peu court et donc amplifier les effets de position éventuels Ce dernier cependant donne lieu aux résultats les plus prometteurs Les promoteurs pD3351 et pD3352 (figure 7) analogues au pIBlOO mais comportant respectivement la séquence codante du gène de la barnase sauvage et cette même séquence inactivée par insertion d'un codon stop (dénommée alors barnase mutée) au eu de la séquence codante du gène rapporteur ont été introduites dans Arabidopsis thaliana (résultats non encore disponibles) TABLEAU 1
Figure imgf000013_0001
TABLEAU 2
SEPALES PETALES ETAMINES PISTILS FEUILLES SILIQUE AUTRES PLANTES (Nombre) TRANSFORMEES
(Nombre)
2 sur qq fleurs 1 4 sous papille 6 4 filet sous papille 7 bouton 4 sous papille 1 bouton 4 sac pollinique;filet sous papille 2
+ + + sauf papille - 1 bouton 4 entier bouton sauf papille âgée pointe haut Pédoncule floral 1
19 plantes
TABLEAU 3
Figure imgf000015_0001
REFERENCES
Atanassov I et al. (1996) Plant Science 118, 185-194
Bechtold N. et al (1993) Comptes-Rendus de l'Académie des Sciences 316, 1 194-1 199
Choisne Nathalie (1997). Etude de l'expression in vivo d'une gène d'ARNt leu de Phaseolus vulgaήs et l'utilisation de ce gène dans un système de suppression. Thèse de doctorat de l'université de Paris XI (N° d'ordre 4691).
Elomaa P. et al. (1996). Molecular Breeding 2 : 41-50.
Gutterson N. (1995). HortScience, Vol. 30(5), August 1995.
Hartley RW, 1988. Barnase and barstar : expression of its cloned inhibitor permits expression of a cloned ribonuclease. J. Mol. Biol, 202, 913-915.
Lamarque C. (1983) Proc. 6Λ int. Rapeseed Cong. 1983, Paris, France, pp 903- 907
Noda K-I, et al. (1994). Nature. Vol 369. 23 June 1994.
Phillips A.L. and Huttly A.K. (1994). Plant Mol Biol. 24 : 603-615
Siemens and Schieder 1996. Plant Tissue Culture and Biotechnology, 2, 66-75

Claims

REVENDICATIONS
1. Séquence nucléotidique correspondant à tout ou partie : a) de la séquence selon SEQ ID N° 5, ou b) d'une séquence s'hybridant à la séquence selon a), ou c) d'une séquence présentant au moins 80 % d'homologie avec a) ou b).
2. Séquence nucléotidique selon la revendication 1 correspondant à tout ou partie : a) de la séquence s'étendant du nucleotide 1 au nucleotide 3233 et de préférence du nucleotide 291 1 au nucleotide 3233 de SEQ ID N° 5, ou b) d'une séquence s'hybridant à la séquence selon a), ou c) d'une séquence présentant au moins 80 % d'homologie avec a) ou b).
3. Vecteur d'expression cellulaire comprenant une séquence selon la revendication 2 placée en amont d'une séquence d'ADN codant pour un produit capable de modifier la structure, la forme, la coloration et/ou la texture des pétales de fleurs.
Vecteur d'expression cellulaire comprenant une séquence selon la revendication 2 placée en amont d'une séquence d'ADN codant pour un produit cytotoxique.
5. Vecteur selon la revendication 4, caractérisé en ce que le produit cytotoxique est une ribonucléase et de préférence la barnase.
6. Cellules de plante transformées par un vecteur selon l'une des revendications 3 à 5.
7. Plantes comprenant des cellules selon la revendication 6.
8. Plantes dont les fleurs n'ont pas de pétale.
9. Procédé d'obtention de plantes ornementales comprenant l'insertion dans lesdites plantes d'un vecteur selon la revendication 3.
10. Procédé d'obtention de plantes dont les fleurs n'ont pas de pétale comprenant l'insertion dans lesdites plantes d'un vecteur selon la revendication 4 ou 5.
11. Procédé d'obtention de plantes hybrides dont les fleurs n'ont pas de pétale comprenant les étapes de : a) transformation de plantes d'une lignée A avec un vecteur selon la revendication 4 ou 5 modifié par insertion d'au moins un codon stop dans la séquence codante de l'ADN, b) croisement des plantes de lignée A obtenues en a) avec des plantes de lignées B exprimant le gène d'un ARNt suppresseur, c) sélection des plantes hybrides avec des fleurs sans pétale.
12. Plantes selon la revendication 7 ou 8 ou obtenues par la mise en œuvre du procédé selon la revendication 10 ou 11, caractérisées en ce qu'elles appartiennent à la famille des Brassicacées et de préférence en ce qu'il s'agit du colza.
PCT/FR1998/002043 1997-09-23 1998-09-23 Promoteur specifique des petales et procede d'obtention de plantes a fleurs sans petale WO1999015679A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU92708/98A AU740911C (en) 1997-09-23 1998-09-23 Petal-specific promoter and method for obtaining plants having flowers with no petals
CA002304569A CA2304569A1 (fr) 1997-09-23 1998-09-23 Promoteur specifique des petales et procede d'obtention de plantes a fleurs sans petale
JP2000512968A JP2001517450A (ja) 1997-09-23 1998-09-23 花弁特異的プロモーターおよび花弁のない花を有する植物を作出する方法
EP98945367A EP1017833A1 (fr) 1997-09-23 1998-09-23 Promoteur specifique des petales et procede d'obtention de plantes a fleurs sans petale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9711832A FR2768746B1 (fr) 1997-09-23 1997-09-23 Promoteur specifique des petales et procede d'obtention de plantes a fleurs sans petale
FR97/11832 1997-09-23

Publications (1)

Publication Number Publication Date
WO1999015679A1 true WO1999015679A1 (fr) 1999-04-01

Family

ID=9511383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/002043 WO1999015679A1 (fr) 1997-09-23 1998-09-23 Promoteur specifique des petales et procede d'obtention de plantes a fleurs sans petale

Country Status (6)

Country Link
EP (1) EP1017833A1 (fr)
JP (1) JP2001517450A (fr)
AU (1) AU740911C (fr)
CA (1) CA2304569A1 (fr)
FR (1) FR2768746B1 (fr)
WO (1) WO1999015679A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029028A2 (fr) * 2000-10-03 2002-04-11 Bayer Bioscience N.V. Brassicaceae a developpement floral modifie
WO2004027070A2 (fr) * 2002-09-03 2004-04-01 Sungene Gmbh & Co. Kgaa Cassettes d'expression transgenique destinees a l'expression d'acides nucleiques dans les tissus de fleurs non reproductifs de plantes
WO2004053134A1 (fr) 2002-12-12 2004-06-24 Bayer Cropscience S.A. Cassette d'expression codant pour la 5-enolpyruvylshikimate-3-phosphate synthase (epsps) et plantes tolerantes aux herbicides en contenant
US10138490B2 (en) 2002-09-11 2018-11-27 Michel Matringe Transformed plants tolerant to herbicides due to overexpression of prephenate dehydrogenase and p-hydroxyphenylpyruvate dioxygenase

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005348A (ja) * 2008-10-10 2012-01-12 Nagoya Univ 花弁特異的プロモーター及びその利用
CN109362562A (zh) * 2018-12-26 2019-02-22 江西省农业科学院作物研究所 一种带有桔黄花色标记性状的甘蓝型油菜恢复系选育方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0524910A2 (fr) * 1991-07-25 1993-01-27 Sandoz Ltd. Modulation des couleurs florales
WO1993014211A1 (fr) * 1992-01-09 1993-07-22 John Innes Foundation Regulation des genes des plantes
WO1994000582A2 (fr) * 1992-06-30 1994-01-06 Bruinsma Seeds B.V. Procede d'obtention d'une plante a morphologie florale modifiee, et procede de protection des plantes contre les insectes nuisibles
EP0823480A1 (fr) * 1996-08-06 1998-02-11 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Expression contrÔlée de gènes en plantes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0524910A2 (fr) * 1991-07-25 1993-01-27 Sandoz Ltd. Modulation des couleurs florales
WO1993014211A1 (fr) * 1992-01-09 1993-07-22 John Innes Foundation Regulation des genes des plantes
WO1994000582A2 (fr) * 1992-06-30 1994-01-06 Bruinsma Seeds B.V. Procede d'obtention d'une plante a morphologie florale modifiee, et procede de protection des plantes contre les insectes nuisibles
EP0823480A1 (fr) * 1996-08-06 1998-02-11 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Expression contrÔlée de gènes en plantes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A.L. PHILLIPS AND A.K. HUTTLY: "Cloning of two gibberellin-regulated cDNAs from Arabidopsis thaliana by subtractive hybridization: expression of the tonoplast water channel, gamma-TIP, is increased by GA3", PLANT MOLECULAR BIOLOGY, vol. 24, 1994, BE, pages 603 - 615, XP002070644 *
C.D. DAY ET AL.,: "Genetic ablation of petal and stamen primordia to elucidate cell interactions during floral development", DEVELOPMENT, vol. 121, 1995, CAMBRIDGE, GB, pages 2887 - 2895, XP002070645 *
N. CHOISNE ET AL.,: "Transactivation of a target gene using a suppressor tRNA in transgenic tobacco plants", THE PLANT JOURNAL, vol. 11, no. 3, 1 March 1997 (1997-03-01), GB, pages 597 - 604, XP002070646 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029028A2 (fr) * 2000-10-03 2002-04-11 Bayer Bioscience N.V. Brassicaceae a developpement floral modifie
WO2002029028A3 (fr) * 2000-10-03 2002-07-25 Aventis Cropscience Nv Brassicaceae a developpement floral modifie
WO2004027070A2 (fr) * 2002-09-03 2004-04-01 Sungene Gmbh & Co. Kgaa Cassettes d'expression transgenique destinees a l'expression d'acides nucleiques dans les tissus de fleurs non reproductifs de plantes
WO2004027070A3 (fr) * 2002-09-03 2004-07-01 Sungene Gmbh & Co Kgaa Cassettes d'expression transgenique destinees a l'expression d'acides nucleiques dans les tissus de fleurs non reproductifs de plantes
US7402733B2 (en) 2002-09-03 2008-07-22 Sungene Gmbh & Co. Kgaa Transgenic expression cassettes for expressing nucleic acids in non-reproductive floral tissues of plants
US10138490B2 (en) 2002-09-11 2018-11-27 Michel Matringe Transformed plants tolerant to herbicides due to overexpression of prephenate dehydrogenase and p-hydroxyphenylpyruvate dioxygenase
WO2004053134A1 (fr) 2002-12-12 2004-06-24 Bayer Cropscience S.A. Cassette d'expression codant pour la 5-enolpyruvylshikimate-3-phosphate synthase (epsps) et plantes tolerantes aux herbicides en contenant

Also Published As

Publication number Publication date
FR2768746B1 (fr) 2001-06-08
EP1017833A1 (fr) 2000-07-12
CA2304569A1 (fr) 1999-04-01
AU740911C (en) 2002-07-25
AU740911B2 (en) 2001-11-15
AU9270898A (en) 1999-04-12
JP2001517450A (ja) 2001-10-09
FR2768746A1 (fr) 1999-03-26

Similar Documents

Publication Publication Date Title
Sanders et al. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway
US11807860B2 (en) Compositions and methods for producing tobacco plants and products having reduced or eliminated suckers
CH689455A5 (fr) Procédé et composition pour la régulation du développement végétal.
KR101965019B1 (ko) 식물에서의 베타-다마세논의 조절
JP2008502358A (ja) 転写因子のshineクレードおよびその使用
JP2019103526A (ja) 植物における自家不和合性の操作
FR2825579A1 (fr) Methode d'obtention de plante monocotyledone contenant un gene d'interet sans sequence auxiliaire etrangere
AU2015346281A1 (en) Transgenic plants with engineered redox sensitive modulation of photosynthetic antenna complex pigments and methods for making the same
WO1999015679A1 (fr) Promoteur specifique des petales et procede d'obtention de plantes a fleurs sans petale
AU2017249365B2 (en) Seed- and funiculus-preferential promoters and uses thereof
EP3682011A1 (fr) Compositions et procédés de production de plants de tabac et de produits présentant des gourmands réduits ou éliminés
WO2007028979A1 (fr) Transformation de plantes
JP2020036591A (ja) コロラドハムシに対する抵抗性が高められた植物、及びその製造方法、並びに植物におけるコロラドハムシに対する抵抗性の判定方法
EP1017832B1 (fr) Promoteur specifique des microspores et procede d'obtention de plantes hybrides
EP3016506B1 (fr) Augmentation de la recombinaison méiotique chez les plantes par inhibition de la protéine fidg
WO2021176557A1 (fr) Plante ayant une résistance améliorée contre le doryphore de la pomme de terre et son procédé de production, et procédé d'évaluation de la résistance contre le doryphore de la pomme de terre dans une plante
JP2008212065A (ja) アルカロイド含量を調節する機能を有する遺伝子、およびそれを利用した形質転換タバコ属植物
Francom Investigating ER Body Localization and the Splice Variant Function of HOTHEAD in Arabidopsis thaliana
US20190241900A1 (en) Pigmentation Based Selection for Regenerated Plants
Hegebarth Cuticular wax analyses with high spatial and temporal resolution lead to the identification and characterization of novel wax biosynthesis genes in Arabidopsis thaliana
FR2966469A1 (fr) Utilisation de genes a domaines ankyrines et btb/poz pour la modulation de l'abscission des organes aeriens des especes vegetales
FR2828210A1 (fr) Acide nucleique regulateur permettant l'expression d'un polynucleotide d'interet specifiquement dans l'endothelium d'une graine de plante, et ses applications
WO2003100054A1 (fr) Regulation de la formation de phragmoplaste vegetal et procede de construction d'un vegetal sterile male
EP3443099A1 (fr) Promoteurs préférentiels des graines et du funicule et leurs utilisations
Yuan et al. Jing Wang, Da-Wei Yan, Ting-Ting

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2304569

Country of ref document: CA

Ref country code: CA

Ref document number: 2304569

Kind code of ref document: A

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 92708/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1998945367

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09509116

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998945367

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 92708/98

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1998945367

Country of ref document: EP