WO1999011999A1 - Procede et appareil de mesure d'un mouvement de rotation - Google Patents

Procede et appareil de mesure d'un mouvement de rotation Download PDF

Info

Publication number
WO1999011999A1
WO1999011999A1 PCT/FI1997/000519 FI9700519W WO9911999A1 WO 1999011999 A1 WO1999011999 A1 WO 1999011999A1 FI 9700519 W FI9700519 W FI 9700519W WO 9911999 A1 WO9911999 A1 WO 9911999A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
voltage
magnetic field
value
gauged
Prior art date
Application number
PCT/FI1997/000519
Other languages
English (en)
Inventor
Harri Saario
Original Assignee
Harri Saario
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FI961010A priority Critical patent/FI103215B/fi
Priority claimed from FI961010A external-priority patent/FI103215B/fi
Application filed by Harri Saario filed Critical Harri Saario
Priority to PCT/FI1997/000519 priority patent/WO1999011999A1/fr
Publication of WO1999011999A1 publication Critical patent/WO1999011999A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the invention is concerned with the method that conforms to the introduction of the patent claim 1 and with the equipment that conforms to the introduction of the patent claim 8 to gauge rotary motion.
  • a disadvantage of this solution is generating a magnetic field. Separate magnets ought to have the same strength and they ought to be in a segmental form filling the circumference of the circle. Besides, the gauging instrument must work out arithmetical operations to find out the angle value.
  • the solution is not adapted for example for a quick regulating of the angle position of the axle where the axle must be stopped in a predetermined angle position, go immediately to a new position etc.
  • the identifier has a rotating axle with a wheel or a corresponding element on which circumference there are poles with positive and negative magnets alternately in large numbers. While the axle is rotating, the magnets are passing the three Hall sensors placed one after another in the direction of rotation. Each sensor gives a variable signal output. By combining the sensor outputs it is possible to double the output frequency and to improve the accuracy.
  • the Hall sensors can be advantageously manufactured as one component.
  • a disadvantage of the US patent 5,241 ,267 is a need of a multipolar magnetic wheel or ring as well as the fact that the invention is only adapted for gauging slow rotation. With the solution it is possible to gauge the rotation of 360° when we know the number of the magnetic poles on the circumference of the wheel and when we sum up the course of the poles past the sensors. The gauging system will make rather complex.
  • Figure 1 shows a permanent magnet and the Hall sensors in its field
  • Figure 2 shows voltage signals coming from the Hall sensors by functions of the rotational position
  • Figure 3 shows the voltage signal of the sensor 1 by an ascending output
  • Figure 4 shows the block diagram of the gauging system
  • Figure 4a shows an ascending transmitting signal
  • Figure 5 shows the placing of the magnetic field and the sensors by the gauging instrument.
  • Figure 1 shows a permanent magnet 4 that has the poles N and S, and that generates a magnetic field round itself.
  • the magnetic field flux is represented by the lines of force 3.
  • the sensor 2 is in out-of-phase of approximately 90° in relation to the sensor 1.
  • the phase displacement can be selected between 80° and 160° in this method.
  • the sensor arrangement shown in the figure 1 is viewed so that the sensors 1 and 2 are in their positions and the magnet 4 is rotating parallel with the figure.
  • the magnet 4 is attached for example to a rotating axle.
  • the Hall sensor 1 In the position shown in the figure 1 the Hall sensor 1 is in the strongest field and gives a maximum output. The field by the sensor 2 is lower.
  • Figure 2 graphically shows the voltage signals 5 and 6 emitted by the sensors 1 and 2 by a function of the swing angle of the magnet 4.
  • the voltage signals are generated in a way that conforms to the invention by using normal Hall sensors to indicate the magnetic field strength.
  • This way to carry out the gauging process includes a calibration circuit of the sensor 1 in which the voltage signal of the sensor 1 is calibrated between Uz and Ux volt. In an advantageous form of performance Uz is 1 V and Ux is 2,5 V. In the position shown in the figure 1 , as the pole N of the magnet 4 is in the strongest field by the sensor 1 , the voltage signal 5 is calibrated into value Ux.
  • the voltage signal 6 emitted by the sensor 2 is calibrated to the voltage value Ux in that angle position of the magnet 4 where the signal of the sensor 1 has its maximum value Ux, and in that angle position where the voltage signal of the sensor 1 has the value Uz.
  • the former angle position is 180° and the latter one is 360°. This is possible as the voltage signal of the sensor 2 is amplified by its maximum value higher than Ux. For the value Uy is regulated just the best approximately 1 ,2 Ux.
  • the curve 6 then intersects the voltage level Ux by the angle values 180 s , 360°, 540° etc. So, the gauging equipment indicates the processed voltage signals 5 and 6 coming from the sensors 1 and 2 as shown in the figure 2 while the magnet 4 is rotating.
  • Figure 3 shows the inverting of the voltage signal 5 of the sensor 1 conforming to the invention. This way to carry out the gauging process discovers the voltage signal 5 of the sensor 1 while the magnet 4 is rotating and the voltage of the signal is passing the maximum voltage value Ux. By help of the calibration circuit it is found out if the amplified voltage 6 of the sensor 2 exceeds the value Ux. If so, the magnet 4 rotates towards a higher angle value as the figure 2 shows, that is, in the figure 1 the magnet 4 rotates clockwise from the initial position.
  • the inverter inverts the curve 5 in this respect 180 s round the voltage axis Ux to a curve 5'.
  • the inverting is carried out in the whole angular area 180 s - 360 s irrespective of which direction of rotation the area is reached from.
  • the frequency selected is just fast enough, for example 0 - 20 kHz, it is possible to get an accurate signal curve according to the figure 3 also of the quick rotation.
  • the signal in the area of full revolution can also be a descending one, like in the situation in which the magnet 4 is rotating in another direction.
  • Inverting of the curve 5 stops by the angle values 0 s , 360 s , 720 s etc while the magnet is rotating clockwise because Uy is lower than Ux.
  • the inverting begins by these angle values when the magnet 4 begins to rotate anti-clockwise, for Uy is then higher than Ux.
  • the inverting stops in anti-clockwise rotation by the angle values like 540 s and 180 s .
  • Inverting of the curve 5 (comparison Uy higher than Ux) is viewed while passing the maximum point of the curve 5 in either direction.
  • the corresponding angle values in the figure 2 are for example 180 s , 540 s etc.
  • inverting of the curve 5 is viewed while passing the Uz point of the curve 5 from either direction, too.
  • the corresponding angle values in the figure 2 are for example 0 s , 360 s , 720 s etc.
  • Figure 4 shows a way to carry out the gauging process in the form of a block diagram. It includes a part 4 that generates a magnetic field and a part 19 that gauges the magnetic field strength and consists of the Hall sensors 1 and 2.
  • the part 4 is attached to the part to be gauged like to an axle, and it rotates with the axle in the first or second direction.
  • the block 14 there is an analog switch by which is selected, controlled by the comparator, if the signal inverted by the inverter 10 or the uninverted signal before the inverter is taken to be processed.
  • the inverted signal is selected by the switch 14, if the voltage condition from the comparator 13 Uy is higher than Ux is met.
  • To the comparator 13 comes a voltage from the sensor 2 and a voltage reference from the block 12 (comparison Ux/Uy).
  • the signal of the sensor 1 comes via an amplifier 9 into the block 14, and the inverter 10 inverts the signal.
  • a revolution counter, a frequency counter or a rotational speed counter is added to the block diagram if the part to be gauged rotates more than 360° or if it is for example a rotating axle.
  • Figure 5 shows an application attached to the gauging instrument.
  • a magnetic field generator 4 according to the invention, and a part 19 with the sensors 1 and 2 gauging the strength of the field.
  • the part 19 is placed round the magnet 4.
  • the sensors 1 and 2 indicate the rotation of the axle of the analog gauge 20, and the corresponding signals are transmitted through a cable 18 to the gauging equipment that conforms to the invention.
  • the part 19 was made into a ring to protect the sensors 1 and 2. The ring is easily to be attached round the generating instruments of the magnetic field.
  • the invention can be modified in many ways within the inventive idea specified in the patent claims.
  • the method and the equipment can be adapted to indicate and gauge slow or quick rotation, as well as to slow or quick swinging motions. This can be done by a graphic curve for example according to the figure 3, or by an angle value, and the number and speed of the revolutions can be indicated by the rotary motion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Technology Law (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

La présente invention concerne un procédé et un équipement destinés à mesurer un mouvement rotatif, le dispositif d'échantillonnage de la rotation de la partie à mesurer comprenant une partie (4) qui produit un champ magnétique et une partie (19) située dans ce champ magnétique. Cette partie comprend au moins un premier (1) et un second (2) détecteurs qui mesurent l'intensité de champ provoquant la rotation des parties (4) et (19) l'une par rapport à l'autre lorsque la partie à mesurer tourne. Les informations relatives à l'intensité du champ magnétique émises par le premier détecteur sont traitées par des informations de tension dans l'unité de mesure. La valeur maximale de ces informations est enregistrée de manière à indiquer une certaine position angulaire de la rotation. Les informations relatives à l'intensité du champ magnétique émises par le second détecteur sont traitées par des informations de tension amplifiées dans l'unité de mesure. Lorsque les informations de tension du premier détecteur passent par le point de tension maximum (Ux) et lorsque les informations de tension amplifiées du second détecteur dépassent (Ux), l'unité de mesure inverse le chiffre de tension du premier détecteur de 180° autour de l'axe de tension (Ux) de manière à produire un signal de tension ascendant pour une révolution complète dans un premier sens.
PCT/FI1997/000519 1996-03-05 1997-09-04 Procede et appareil de mesure d'un mouvement de rotation WO1999011999A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FI961010A FI103215B (fi) 1996-03-05 1996-03-05 Menetelmä ja laitteisto pyörimisliikkeen mittaamiseksi
PCT/FI1997/000519 WO1999011999A1 (fr) 1996-03-05 1997-09-04 Procede et appareil de mesure d'un mouvement de rotation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI961010A FI103215B (fi) 1996-03-05 1996-03-05 Menetelmä ja laitteisto pyörimisliikkeen mittaamiseksi
PCT/FI1997/000519 WO1999011999A1 (fr) 1996-03-05 1997-09-04 Procede et appareil de mesure d'un mouvement de rotation

Publications (1)

Publication Number Publication Date
WO1999011999A1 true WO1999011999A1 (fr) 1999-03-11

Family

ID=26160130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI1997/000519 WO1999011999A1 (fr) 1996-03-05 1997-09-04 Procede et appareil de mesure d'un mouvement de rotation

Country Status (1)

Country Link
WO (1) WO1999011999A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004120A2 (fr) 2009-07-07 2011-01-13 Moving Magnet Technologies (Mmt) Capteur de position absolue et multi-périodique
US8970210B2 (en) 2009-11-06 2015-03-03 Moving Magnet Technologies (Mmt) Bidirectional magnetic position sensor having field rotation
US10041780B2 (en) 2010-09-29 2018-08-07 Moving Magnet Technologies (Mmt) Position sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0059763A1 (fr) * 1980-09-22 1982-09-15 Fanuc Ltd. Dispositif de detection de vitesse sans contact du type a generateur a courant continu
GB2169085A (en) * 1984-12-19 1986-07-02 Risto Tanner Direction indicating apparatus
US4703261A (en) * 1983-12-15 1987-10-27 Maag Gear-Wheel And Machine Company Limited Differential Hall-effect gear measure feeler
US4791366A (en) * 1985-10-31 1988-12-13 Alpine Electronics Inc. Apparatus including a pair of angularly spaced sensors for detecting angle of rotation of a rotary member
US4829248A (en) * 1984-09-20 1989-05-09 Loubier Robert J Hall effect sensing apparatus and method
DE3919926A1 (de) * 1989-06-19 1990-12-20 Vdo Schindling Verfahren zum bestimmen der absoluten position eines zeigers in einer anzeigeeinrichtung und anzeigeeinrichtung
EP0729011A1 (fr) * 1995-02-22 1996-08-28 Mikuni Corporation Capteur de position magnétique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0059763A1 (fr) * 1980-09-22 1982-09-15 Fanuc Ltd. Dispositif de detection de vitesse sans contact du type a generateur a courant continu
US4703261A (en) * 1983-12-15 1987-10-27 Maag Gear-Wheel And Machine Company Limited Differential Hall-effect gear measure feeler
US4829248A (en) * 1984-09-20 1989-05-09 Loubier Robert J Hall effect sensing apparatus and method
GB2169085A (en) * 1984-12-19 1986-07-02 Risto Tanner Direction indicating apparatus
US4791366A (en) * 1985-10-31 1988-12-13 Alpine Electronics Inc. Apparatus including a pair of angularly spaced sensors for detecting angle of rotation of a rotary member
DE3919926A1 (de) * 1989-06-19 1990-12-20 Vdo Schindling Verfahren zum bestimmen der absoluten position eines zeigers in einer anzeigeeinrichtung und anzeigeeinrichtung
EP0729011A1 (fr) * 1995-02-22 1996-08-28 Mikuni Corporation Capteur de position magnétique

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004120A2 (fr) 2009-07-07 2011-01-13 Moving Magnet Technologies (Mmt) Capteur de position absolue et multi-périodique
FR2947902A1 (fr) * 2009-07-07 2011-01-14 Moving Magnet Technologies M M T Capteur de position absolue et multi-periodique
WO2011004120A3 (fr) * 2009-07-07 2011-12-01 Moving Magnet Technologies (Mmt) Capteur de position absolue et multi-périodique
KR20120049250A (ko) * 2009-07-07 2012-05-16 무빙 마그네트 테크놀로지스 다중-주기 절대 위치 센서
CN102472642A (zh) * 2009-07-07 2012-05-23 移动磁体技术公司 多周期绝对位置传感器
US8890514B2 (en) 2009-07-07 2014-11-18 Moving Magnet Technologies (Mmt) Magnetic multi-periodic absolute position sensor
CN102472642B (zh) * 2009-07-07 2015-08-19 移动磁体技术公司 多周期绝对位置传感器
KR101721087B1 (ko) 2009-07-07 2017-03-29 무빙 마그네트 테크놀로지스 다중-주기 절대 위치 센서
US8970210B2 (en) 2009-11-06 2015-03-03 Moving Magnet Technologies (Mmt) Bidirectional magnetic position sensor having field rotation
US10041780B2 (en) 2010-09-29 2018-08-07 Moving Magnet Technologies (Mmt) Position sensor

Similar Documents

Publication Publication Date Title
US10571302B2 (en) Rotary position sensor
US6229299B1 (en) System and method for computing the angular velocity and direction of a rotational body
US4924180A (en) Apparatus for detecting bearing shaft wear utilizing rotatable magnet means
US5742160A (en) Apparatus for determining angular position and rotational speed using a rotating magnet and a directional magnetometer
RU2711716C2 (ru) Способ и устройство для динамической балансировки вращающегося тела
CN105928633A (zh) 温度检测装置以及旋转角检测装置
US11984837B2 (en) Method for determining an angular position of a rotating component, in particular of an electric motor for a clutch actuation system of a vehicle
CA2476464A1 (fr) Procedes et appareil de detection de la position angulaire d'un arbre en rotation
JP5288320B2 (ja) 高速回転体の回転バランス計測装置及び方法
KR20020007183A (ko) 회전방향을 검출하기 위한 방법 및 장치
EP0375019A1 (fr) Dispositif pour détecter le mouvement d'une pièce
US5670877A (en) Shaft rotation sensor with magnetic sensors angularly spaced apart with respect to a magnetic source
US4762007A (en) Torque measuring apparatus
US5038607A (en) Wind speed and wind direction signal generator
US20040212392A1 (en) Measuring device and measuring method for electric motors
CN106871850A (zh) 角度测量装置和用于运行角度测量装置的方法
JP2004223511A (ja) アンバランスダイナミックロード発生器
WO1999011999A1 (fr) Procede et appareil de mesure d'un mouvement de rotation
JPH0618339A (ja) 電磁リターダにより発生されるブレーキングトルクの測定装置およびトルク調整装置
JP4243902B2 (ja) ターンテーブル式加速度発生装置における加速度センサの偏心位置推定方法および偏心調整機能を備えたターンテーブル式加速度発生装置。
CN117015690A (zh) 包括永磁体的非接触式位置传感器
DE50102367D1 (de) Drehwinkelsensor
CN219736414U (zh) 单圈绝对值磁编码器
EP0606942A1 (fr) Procédé et dispositif de mesure de la vitesse de rotation et de l'angle de rotation
SU976324A1 (ru) Способ определени радиального зазора подшипников

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1997940170

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997940170

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase