WO1999005775A1 - Convertisseur auto-compense - Google Patents

Convertisseur auto-compense Download PDF

Info

Publication number
WO1999005775A1
WO1999005775A1 PCT/FR1998/001637 FR9801637W WO9905775A1 WO 1999005775 A1 WO1999005775 A1 WO 1999005775A1 FR 9801637 W FR9801637 W FR 9801637W WO 9905775 A1 WO9905775 A1 WO 9905775A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminals
capacitor
polarized
voltage
current
Prior art date
Application number
PCT/FR1998/001637
Other languages
English (en)
Other versions
WO1999005775A8 (fr
Inventor
Henri Courier De Mere
Original Assignee
Snc H.B. Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snc H.B. Industries filed Critical Snc H.B. Industries
Priority to US09/463,617 priority Critical patent/US6185117B1/en
Priority to EP98940326A priority patent/EP1000459A1/fr
Publication of WO1999005775A1 publication Critical patent/WO1999005775A1/fr
Publication of WO1999005775A8 publication Critical patent/WO1999005775A8/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4275Arrangements for improving power factor of AC input by adding an auxiliary output voltage in series to the input
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to so-called “self-compensated” electronic converters, which, supplied from the AC network, are capable of outputting a high frequency signal of substantially constant amplitude, while the current taken from said network remains substantially sinusoidal and in phase with the voltage thanks to the recovery carried out according to the so-called energy transfer mode (in English "energy transfer”) of a suitable portion of the energy at high frequency previously converted.
  • FIG. 1, attached hereto represents the most interesting embodiment which has been claimed in US Patent No. 5,134,556.
  • the output terminal B of the converter A delivers the energy converted at high frequency through the galvanic isolation capacitor C, the value of which is chosen so that the impedance that it offers at said high frequency does not substantially disturb the resonant frequency of the oscillating output circuit, which comprises the inductance D, the output load E and the phase-shifting capacitor F.
  • the capacitor F must offer this high switching frequency a suitable impedance, so that the amplitude of the alternating signal developed between its terminals reaches a chosen value.
  • This signal applied to one of the non-polarized input terminals of the rectifier bridge I, makes it possible to recover between the terminals of the capacitor H the envelope of a rectified signal at low frequency.
  • the polarized outputs of the rectifier bridge I are connected in series with the polarized outputs of the sector rectification bridge J, so that the aforementioned low-frequency envelope present between the terminals of the capacitor H, is added to the rectified sector signal, which improves the power factor of the current taken from the network.
  • This circuit includes the capacitor G, the impedance of which, chosen as a function of the above high frequency, allows the delivery of a voltage signal of suitable amplitude on the second non-polarized input terminal of the rectifier bridge I. After erection , a new low frequency envelope is then available between the terminals of the capacitor H where it is added to the current envelope previously recovered.
  • FIG. 1 illustrates a general embodiment of the device according to the present invention.
  • This device comprises a high frequency self-oscillator using a structure known as a "capacitor half-bridge" which is supplied with direct current from the common polarized terminals 8a and 8b, which are shunted by a decoupling capacitor 8.
  • the active branch of this bridge converter comprises the switching means 1 ′ and 1 ", which are connected in series.
  • the free terminals of the series circuit thus formed are connected, respectively, to terminals 8a and 8b.
  • the passive branch of this converter in bridge comprises capacitors 3a and 3b which are also connected in series.
  • the free terminals of the series circuit thus formed are connected, respectively, to terminals 8a and 8b.
  • the output load 2 which must receive the energy at converted high frequency.
  • a high frequency switching current can then tr pour the load 2 to close through the capacitors 3a and 3b whose reactance at the above high frequency is calculated so that the alternating voltage developed between the midpoint 3 and any one of the terminals 8a and 8b is not null, but presents, on the contrary, an amplitude of selected value.
  • the high frequency alternating voltage thus developed between the midpoint 3 and one of the common polarized terminals is then applied, via the DC voltage buffer source 4, to the non-polarized input terminal 5 of the full-wave rectifier bridge comprising the Sa and Sb diodes, This is made possible by the fact that the impedance which the buffer DC voltage source 4. opposes the high frequency alternating current thus generated, is negligible, even though the DC voltage of almost constant amplitude present between the terminals 3 and 5 can be considerable.
  • the polarized output circuit of said doubler bridge which is shunted by the decoupling capacitor 6, after having been suitably oriented, is connected in series with the polarized output circuit of the mains rectifier bridge 7 whose non-polarized input terminals 7a and 7b are connected to the sector. As soon as the terminals 7a and 7b are energized, the rectified mains current can charge the decoupling capacitor 8 through the diodes Sa and 5b, suitably polarized.
  • This low frequency envelope is then added, between terminals 7c and 8b, with the low frequency envelope from the rectified mains current.
  • the value of the voltage V3 is in direct relation with that of the direct voltage V2 developed between the midpoint 1 and one of the common terminals 8a or
  • This value can be approximated t calculated by the relation V3 as (V2 - V-t).
  • the decoupling capacitor 8 is charged at a direct voltage VI of 370V
  • the voltage V2 is then substantially equal to: 370V 4- 2, i.e. 185V,
  • the DC voltage V5 present between the terminals 7c and 8b is approximately 160V.
  • the DC voltage developed between terminals 5 and 8b is substantially equal to 160V 4 2, or approximately 80V.
  • the mean DC voltage V3 which must be maintained between terminals 3 and 5 of buffer source 4 will then be: 185V - 80V, or approximately OS.
  • the present device allows, without requiring any particular adjustment, to typically obtain for the current taken from the network, a power factor 0.995 and a total harmonic distortion rate of 7%, while the voltage present between the terminals 8a and 8b is affected only by a negligible modulation rate,
  • the low modulation of the voltage present between the common terminals 8a and 8b results in a low rate of modulation of the envelope of the current at high frequency passing through the output load 2 as well as by the very limited amplitude of the current passing in capacitor 8.
  • FIG. 3 illustrates a practical mode of application of the present invention, which differs from the above as indicated below.
  • a capacitor i-bridge converter having, on the one hand, the active transistors 1a and 1b, or any other semiconductor which can make office switching means, connected in series and, on the other hand, for passive branch capacitors 3a and 3b connected in series, which provide a reactance given to the above high frequency alternating current.
  • the primary 9a which, coupled to the magnetic circuit 9 takes the place of the aforesaid output load 2.
  • the control of the alternating cyclic conduction of the transistors a and 1b is maintained by the secondary 9b and 9c which, suitably oriented, are coupled to the magnetic circuit 9.
  • Said secondaries deliver, respectively, via the limiting resistors 11a and 11b, a suitable amplitude and phase signal on the control junction of the transistors a and lb, which is capable of ensuring the alternating cyclic conduction of these half er s.
  • the high recovery AC voltage developed between terminal 3 and any of the common polarized terminals 8a or 8b is applied, via the high capacity eur capacitor S, suitably polarized, to the non-polarized input terminal 5 of the doubling rectifier bridge comprising the diodes Sa and Sb, suitably polarized.
  • the polarized output terminals 7c and Sb of said rectifier bridge are shunted by the filtering capacitor.
  • the high frequency current thus rectified and recovered is in the form of a low frequency envelope which, after addition, as indicated above, with the envelope corresponding to the mains current rectified by the rectifier bridge 7, allows compensation of the current taken from the sector from the non-polarized input terminals 7a and 7b.
  • the diodes 10a and 10b suitably polarized, connected respectively in ant i -para 11 è 1 e with the transistors la and lb, ensure the double circulation of the current between the midpoint 1 and any one of the common polarized terminals Sa or Sb .
  • the initiation of the cyclic conduction of the thus formed converter is ensured in a conventional manner by the trigger device grouping the resistor 1 .a, the capacitor 14d, the inhibition diode 14b and the device at voltage only 14c, such that the control electrode of the transistor lb is excited by a suitable signal.
  • the winding 9d coupled to the magnetic circuit 9, delivers the energy converted to the receiver 12 connected between its terminals, according to a voltage transfer mode, called "voltage transfer".
  • the capacitor 13 mounted in parallel with the receiver 12 performs the following functions. Firstly, in the case where the magnetic circuit 9 is designed to have only as small an air gap as possible, the capacitor 13 will have the function of limiting the effects of the leakage inductance affecting the transformer thus formed.
  • the capacitor 13 will have the function of constituting with the secondary inductor 9d a parallel resonant circuit whose overvoltage effects may be used in the power supply of the receiver 12,
  • the energization of the high-capacity capacitor 15 which takes the place of the aforesaid buffer DC voltage source 4 is automatically obtained from the rectified mains voltage which is present between the polarized output terminals 8a and 7c of the bridge rectifier 7, because the charge of capacitor 15 can thus be carried out through the series circuit comprising the transistor, the primary 9a, the resistance 15a which limits the initial charge overcurrent and diode 5a which maintains the voltage present between terminals 3 and 5 at a constant value cor esponding to the above voltage V3.
  • the DC voltage present between terminals 3 and 5 will be affected by a low frequency ripple whose rate depends essentially on the continuous charge that the capacitor 15 can accumulate.
  • the high capacity capacitor 15 then behaves as a buffer continuous voltage source whose amplitude, almost constant, allows the adaptation of the different potentials developed in such a device.
  • the capacitor 15 then perfectly fulfills the function which is assigned to the aforesaid buffer continuous voltage source 4.
  • the device according to the invention per and to obtain excellent compensation for the power factor of the current taken from the network and an extremely reduced level of the rate of harmonic currents affecting the latter.
  • the low frequency ripple affecting the DC voltage present between the common terminals Sa and Sb occurs at a very low level which ultimately results in a low ripple rate of the envelope of the current to high frequency applied to the receiver 12 as well as by a small excursion in the amplitude of the low frequency ripple current passing through the capacitor 8,
  • FIG. 4 illustrates another practical embodiment of the device which is the subject of the invention, This latter mode, in accordance with what has been described above, differs from the previous one by the points indicated below.
  • the inductance of the primary 9a constitutes with the capacitor 16 which is connected to it in series a series oscillating circuit whose resonance occurs at a frequency close to that at which the alternating cyclic conduction maintained by the transistors is maintained. la and 1 b.
  • the extraction of energy converted at high frequency is obtained from the so-called "energy transfer” mode.
  • the receiver 12 which is directly connected between the terminals of the capacitor 16, is subjected to the alternating potential at high frequency developed between the terminals of the latter.
  • this receiver derives a suitable portion of the high frequency current flowing between terminal 1 and terminal 3.
  • the portion of converted energy thus applied to the receiver 12, the impedance of which is known, will then be limited to a suitable value which is determined by the impedance of the primary 9a and the reactance of the capacitor 16.
  • the resistor 17, connected in parallel with the receiver 12 and the capacitor 16, has the function of ensuring the passage of the direct current required by the charge of the capacitor 15, in the event that said receiver includes a dielectric barrier.
  • the resistor 17 could also be connected between the terminal 8a and the terminal 3, which would allow, as before, the continuous charging of the capacitor 15.
  • This resistor could still be replaced by the bridge of the resistors 17a and 17b which is established between the common terminals 8a and 8b and whose midpoint is common with the terminal 3. In this way, could also be obtained the DC voltage charge, at a substantially constant amplitude, of the capacitor 15 acting as a source continuous buffer 4.
  • the diode 18, suitably polarized, connected in parallel with the capacitor 15 has the optional role of improving the transmission of the alternating current at high frequency passing between the terminals 3 and 5.
  • this diode allows the capacitor 15 to be crossed only by a single half-wave of said current recovered at high frequency.
  • FIG. 5 illustrates another embodiment of the device object of the invention.
  • This embodiment differs from the previous ones by the fact that an additional inductor 19 is connected in series with the capacitor 16 to form with the latter a series oscillating circuit.
  • the impedance of the primary 9a no longer plays a significant role in the resonance frequency of said oscillating circuit because, this primary, associated with the secondary 9b and 9c, has no other function than to constitute an independent transformer. which ensures the control of the alternating cyclic conduction of the transistors la and lb.
  • the capacitors 3a and 3b are replaced by a single capacitor 3c whose own capacity is double the unit capacity of each of the first two, thus, at said high frequency, the reactance of this single capacitor remains substantially identical to the result of the other two capacitors, which makes it possible to obtain similar performances while achieving the economy of a component.
  • the resistor 17 makes it possible to charge from the terminals 8a and 7c the voltage reservoir capacitor 15 while overcoming the galvanic isolation or the non-linear characteristics which the output receiver 12 could have.
  • the resistor 15a for limiting the inrush current caused by the charging of the voltage reservoir capacitor 15 when the mains input terminals 7a and 7b are energized is, here, connected in series with the transistors la and lb constituting the above-mentioned active bridge branch.
  • FIG. 6 illustrates a final embodiment of the device 1 according to the invention.
  • This embodiment differs from the embodiment previously illustrated in FIG. 2, appended hereto, in that the voltage reservoir capacitor IS, acting as a buffer continuous source 4, is no longer mounted between terminals 3 and 5 , but between terminals 1 and 3, in series with the output load 2.
  • terminal 3 and terminal 5 are connected together, - 15 -
  • the high-value reservoir capacitor 15 has only a very low impedance at the low frequency of the rectified sector, the converted high frequency alternating current which passes through it is practically free from any modulation at 100 or 120 Hz of the
  • This characteristic essentially differentiates the function of the capacitor 15, used as a non-modulable DC voltage buffer, from the function occupied by the capacitor C of FIG. 1, attached, which has only a barrier role. galvanic between the terminals of which the converted high frequency current undergoes a modulation at 100 or 120Hz whose amplitude can equal that of the rectified mains voltage available between the output terminals of the diode bridge J.
  • the device according to the invention makes it possible to correct the power factor as well as the harmonic distortion rate affecting the current taken on the 1st sector almost completely.
  • the device according to the invention makes it possible to eliminate, between the terminals of the capacitors 8 and 6, the dangerous overvoltages which the capacitors H and K bear, the main cause of which is is to be sought in a very excessive overmodulation at 100 or 120Hz of the converted current.
  • the device according to the invention which is simple to construct and does not require any tedious adjustment, makes it possible to correct the drawbacks presented by the devices according to the prior art.
  • the device according to the invention can be advantageously used in all inexpensive applications which must meet the standards relating to the current taken from the network, such as mains supplies, electronic transformers, electronic ballasts, compact fluorescent lamps, etc ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Ce convertisseur, alimenté par le réseau alternatif, prélève sur celui-ci un courant offrant un facteur de puissance proche de l'unité et un taux de distorsion harmonique totale voisin de 5 %, tandis que l'amplitude du courant appliqué à la charge de sortie (2) demeure sensiblement constante. Il comprend une structure en pont faisant appel à des moyens commutateurs (1', 1'') et à des condensateurs (3a, 3b) dont la réactance à la fréquence de découpage est choisie de telle sorte qu'une portion de l'énergie convertie, après redressement, s'additionne entre les bornes d'un condensateur (6) au courant secteur redressé par un pont (7). Une source tampon (4) a une tension continue d'amplitude sensiblement constante, qui permet d'équilibrer les potentiels mis en jeu et d'éliminer ainsi tout risque de destruction par des surtensions incontrôlables.

Description

CONVERTISSEUR AUTO-COMPENSE
La présente invention se rapporte aux convertisseurs électroniques dits "auto-compensés", lesquels, alimentés à partir du réseau alternatif, sont capables de fournir en sortie un signal à fréquence élevée d'amplitude sensiblement constante, tandis que le courant pris sur ledit réseau demeure sensiblement sinusoïdal et en phase avec la tension grâce à la récupération effectuée selon le mode dit de transfert d'énergie (en anglais "energy transfer") d'une portion convenable de l'énergie à fréquence élevée préalablement convertie.
Le plus performant des dispositifs de ce genre déjà décrit par l'art antérieur est illustré par la figure 1, ci- annexée, laquelle représente le mode de réalisation le plus intéressant qui ait été revendiqué dans le Brevet US n° 5,134,556. Selon ce mode de réalisation, représentatif de l'art antérieur, la borne de sortie B du convertisseur A délivre l'énergie convertie à fréquence élevée à travers le condensateur d'isolation galvanique C dont la valeur est choisie de telle sorte que l'impédance qu'il offre à ladite fréquence élevée ne perturbe sensiblement pas la fréquence de résonance du circuit oscillant de sortie, lequel comprend l'inductance D, la charge de sortie E et le condensateur déphaseur F. A la différence du condensateur C, le condensateur F doit offrir à cette fréquence élevée de découpage une impédance convenable, de telle sorte que l'amplitude du signal alternatif développé entre ses bornes atteigne une valeur choisie. Ce signal, appliqué à l'une des bornes d'entrée non polarisées du pont redresseur I, permet de récupérer entre les bornes du condensateur H l'enveloppe d'un signal redressé à basse fréquence. Les sorties polarisées du pont redresseur I sont montées en série avec les sorties polarisées du pont de redressement secteur J, de telle sorte que la susdite enveloppe à basse fréquence présente entre les bornes du condensateur H, s'additionne au signal secteur redressé, ce qui permet d'améliorer le facteur de puissance du courant pris sur le réseau. En récupérant ainsi, proportionnelleme t au courant transitant dans la charge de sortie E, une portion de l'énergie à fréquence élevée convertie, l'on ne peut obtenir, qu'une compensation très appro im ti e du facteur de puissance du courant pris sur le réseau ainsi qu'une réduction illusoire du taux des courants harmoniques affectant ce dernier. Pour cette raison, il est est donc nécessaire de recourir à un circuit supplémentaire lequel permettra d'ajouter au susdit signal proportionnel au courant transitant dans la charge de sortie E, un second signal redressé qui sera, quant à lui, proportionnel à la tension à fréquence élevée présente entre les bornes de la charge de sortie E.
Ce circuit comprend le condensateur G, dont l'impédance, choisie en fonction de la susdite fréquence élevée, permet la délivrance d'un signal de tension d'amplitude convenable sur la seconde borne d'entrée non polarisée du pont redresseur I. Après edressement, une nouvelle enveloppe à basse fréquence est alors disponible entre les bornes du condensateur H où elle s'additionne à l'enveloppe de courant précédemment récupérée.
Seule, l'addition de ces trois enveloppes permettra à un tel dispositif de satisfaire aux normes concernant le courant pris sur le réseau. Malgré son bon rendement énergétique et son apparente simplicité, un tel dispositif souffre de certains inconvénients, lesquels sont évoqués ci-après. 1*> Nécessité d'ajuster avec précision l'amplitude respective des enveloppes de courant et de tension qui sont ainsi récupérées entre les bornes du condensateur H.
2*> Nécessité de faire appel à un dispositif supplémentaire de protection qui devra être capable d'absorber les surtensions transitoires qui pourraient se développer entre les bornes du condensateur H, spécialement, lors de la mise en route du convertisseur A et dont l'énergie, dans certains cas, peut entraîner la destruction immédiate de c e demi er .
Le dispositif selon l'invention permet, tout en palliant à ces inconvénients, d'obtenir avec des moyens très simples, un facteur de puissance du courant pris sur le réseau proche de l'unité tandis que la distorsion harmonique totale, dite "THD", affectant celui-ci se situe à environ SX, valeur qui, actuellement, est bien loin d'être respectée par les dispositifs les plus sophistiqués construits selon l'art antér ieur . La Figure 2, ci-annexée, illustre un mode général de réalisation du dispositif selon la présente i nvent ion . Ce disposi tif comprend un auto-oscillateur à fréquence élevée faisant appel à une structure dite en "demi-pont à condensateurs" laquelle est alimentée en courant continu à partir des bornes communes polarisées 8a et 8b, lesquelles se trouvent shuntées par un condensateur de découplage 8. La branche active de ce convertisseur en pont comprend les moyens commutateurs 1 ' et 1", lesquels sont montés en série. Les bornes libres du circuit série ainsi constitué sont raccordées, respectivement, aux bornes 8a et 8b, La branche passive de ce convertisseur en pont comprend les condensateurs 3a et 3b lesquels sont également montés en série. Lés bornes libres du circuit série ainsi constitué sont raccordées, respectivement, aux bornes 8a et 8b. Entre le point milieu 1 de la susdite branche active et le point milieu 3 de la susdite branche passive est connecté la charge de sortie 2 qui doit recevoir l'énergie à fréquence élevée convertie. Dans ces conditions, dès qu'une tension continue d'amplitude suffisante est appliquée entre les bornes 8a et 8b et que la conduction cyclique alternée des moyens commutateurs 1 ' et I" est entretenue par un dispositif de commande qui n'a pas été représenté ici, un courant de découpage à fréquence élevée peut alors traverser la charge 2 pour se refermer à travers les condensateurs 3a et 3b dont la réactance à la susdite fréquence élevée est calculée de telle sorte que la tension alternative développée entre le point milieu 3 et l'une quelconque des bornes 8a et 8b ne soit pas nulle, mais présente, au contraire, une amplitude de valeur choisie.
La tension alternative à fréquence élevée ainsi développée entre le point milieu 3 et l'une des bornes communes polarisées est alors appliquée, via la source tampon à tension continue 4, sur la borne d'entrée non polarisée 5 du pont redresseur double alternance comprenant les diodes Sa et Sb , Ceci est rendu possible par le fait que l'impédance qu'oppose la source à tension continue tampon 4. au courant alternatif à fréquence élevée ainsi généré, est négligeable, alors même que la tension continue d'amplitude quasiment constante présente entre les bornes 3 et 5 peut être considérable.
Le circuit de sortie polarisé dudit pont doubleur qui est shunté par le condensateur de découplage 6, après avoir été convenablement orienté, est connecté en série avec le circuit de sortie polarisé du pont redresseur secteur 7 dont les bornes d'entrée non polarisées 7a et 7b sont reliées au secteur. Dès la mise sous tension des bornes 7a et 7b, le courant secteur redressé peut charger le condensateur de découplage 8 à travers les diodes Sa et 5b, convenablement polarisées.
Une fois que s'est établie la conduction cyclique alternée des moyens commutateurs 1 ' et 1", un courant alternatif â fréquence élevée traverse alors la charge de sortie 2.
La fraction prédéter inée de ce courant qui ne peut s'écouler à travers les condensateurs 3a et 3b du fait de leur réactance à la susdite fréquence élevée, charge, via la source tampon à tension continue 4, la borne d'entrée 5 du susdit pont doubleur.
Après redressement de ce courant, se trouve alors récupérée entre les bornes du condensateur de découplage 6, une enveloppe à basse fréquence dont l'amplitude est proportionnelle au courant à fréquence élevée traversant la charge 2.
Cette enveloppe à basse fréquence s'additionne alors, entre les bornes 7c et 8b, avec l'enveloppe à basse fréquence issue du courant secteur redressé.
Figure imgf000008_0001
La valeur de la tension V3 est en relation directe avec celle de la tension continue V2 développée entre le point milieu 1 et l'une des bornes communes 8a ou
8b et avec celle de la tension continue V4. développée entre la borne S et la borne commune 8b.
Cette valeur peut être approximativeme t calculée au moyen de la relation V3 as (V2 - V-t).
Pour fixer les idées, nous admettrons, par exemple, que le condensateur de découplage 8 se trouve chargé à une tension continue VI de 370V,
Comme VI s. 2 x V2 , la tension V2 est alors sensiblement égale à: 370V 4- 2, soit 185V,
Dans ces conditions, la tension continue V5 présente entre les bornes 7c et 8b est d'environ 160V. Comme V5 ≈ V4. x 2, la tension continue développée entre les bornes 5 et 8b est sensiblement égale à 160V 4 2, soit environ 80V.
La tension moyenne continue V3 qu'il faudra maintenir entre les bornes 3 et 5 de la source tampon 4 sera alors: 185V - 80V, soit environ OS .
En observant cette règle simple, il est possible de réaliser une adaptation parfaite du dispositif selon l'invention et d'obtenir, sans circuit supplémentaire, une correction quasi parfaite du facteur de puissance et de la distorsion harmonique du courant pris sur le réseau.
Ainsi construit, le présent dispositif permet, sans nécessiter aucun réglage particulier, d'obtenir typiquement pour le courant pris sur le réseau, un facteur de puissance 0,995 et un taux de distortion harmonique totale de 7% , tandis que la tension présente entre les bornes communes 8a et 8b n'est affectée que d'un taux de modulation négligeable, La faible modulation de la tension présente entre les bornes communes 8a et 8b se traduit par un faible taux de modulation de l'enveloppe du courant à fréquence élevée transitant à travers la charge de sortie 2 ainsi que par l'amplitude très limitée du courant transitant dans le condensateur 8.
La Figure 3, ci-annexée, illustre un mode d'application pratique de la présente invention, lequel se distingue du précèdent comme cela est indiqué ci-après.
Dans ce mode de réalisation du dispositif objet de l'invention, il est fait appel à un convertisseur en de i-pont à condensateurs ayant, d'une part, pour branche active les transistors la et lb, ou tous autres semicondu teurs pouvant faire office de moyens commutateurs, montés en série et, d'autre part, pour branche passive les condensateurs 3a et 3b montés en série, lesquels offrent une réactance donnée au susdit courant alternatif à fréquence élevée. Entre les points milieux 1 et 3 de ces branches de pont se trouve connecté le primaire 9a qui, couplé au circuit magnétique 9, tient lieu de la susdite charge de sor t i e 2. La commande de la conduction cyclique alternée des transistors a et 1b est entretenue par les secondaires 9b et 9c qui, convenablement orientés, sont couplés au circuit magnétique 9.
Lesdits secondaires délivrent, respectivement, via les résistances de limitation lia et 11b, un signal d'amplitude et de phase convenable sur la jonction de commande des transistors a et lb, lequel est apte à assurer la mise en conduction cyclique alternée de c es demi er s . La tension alternative a f réquence élevée de récupération développée entre la borne 3 et l 'une quelconque des bornes communes polarisées 8a ou 8b est appliquée, via le condens eur de forte capacité S , convenablement polarisé, à la borne d'entrée non polar isée 5 du pont redresseur doubleur comportant les diodes Sa et Sb , convena lement polarisées. Comme pardevant, les bornes de sortie polarisées 7c et Sb dudit pont redresseur sont shuntées par le condensateur de f iltrage.
Le courant a f réquence élevée ainsi redressé et récupéré se présente sous la forme d'une enveloppe a basse f réquence qui , après addition, comme indiqué plus haut, avec l 'enveloppe correspondant au courant secteur redressé par le pont redresseur 7, permet la compensation du courant pris sur le secteur a partir des bornes d'entrées non polarisées 7a et 7b. Les diodes 10a et 10b, convenablement polarisées, connectées respectivement en ant i -para 11 è 1 e avec les transistors la et lb, assurent la double circulation du courant entre le point milieu 1 et l 'une quelconque des bornes communes polarisées Sa ou Sb . Après mise sous tension du dispositif , l ' initiation de la conduction cyclique du conver isseur ainsi constitué est assurée de manière classique par le dispositif de déclenchement regroupant la résistance 1 .a, le condensateur 14d, la diode d' inhibition 14b et le dispositif à seui l de tension 14c , de telle f açon que l 'électrode de commande du transistor lb soit excitée par un signal convenable.
Dans ces conditions, l ' enroulement 9d, couplé au c i rcuit magnétique 9, dél ivre l 'énergie convertie au récepteur 12 connecté entre ses bornes, selon un mode de transfert de tension, dit "voltage transfer". Le condensateur 13 monté en parallèle avec le récepteur 12 remplit les fonctions suivantes. En premier lieu, dans le cas où le circuit magnétique 9 est conçu pour ne présenter qu'un entrefer aussi réduit que possible, le condensateur 13 aura pour fonction de limiter les effets de l'inductance de fuite affectant le transform teur ainsi constitué. En second lieu, dans le cas où le circuit magnétique S est doté, à dessein, d'un entrefer important, le condensateur 13 aura pour fonction de constituer avec l'inductance du secondaire 9d un circuit résonnant parallèle dont les effets de surtension pourront être mis à profit dans l'alimentation du récepteur 12, Oans ce montage, la mise sous tension du condensateur de forte capacité 15 qui tient lieu de la susdite source de tension continue tampon 4 est automati uement obtenue à partir de la tension secteur redressée qui est présente entre les bornes de sorties polarisées 8a et 7c du pont redresseur 7, En effet, la charge du condensateur 15 peut ainsi s'effectuer à travers le circuit série comprenant le transistor la, le primaire 9a, la résistance 15a qui permet de limiter le surcourant initial de charge et la diode 5a qui maintient la tension présente entre les bornes 3 et 5 à une valeur constante cor espondant à la susdite tension V3.
Oans ces conditions, la tension continue présente entre les bornes 3 et 5 sera affectée d'une ondulation à basse fréquence dont le taux dépend essentiellement de la charge continue que peut accumuler le condensateur 15.
Il sera donc avantageux de donner au condensateur 15 une capacité aussi élevée que possible, Ce condensateur doit transmettre sans l'atténuer, l'enveloppe redressée du secteur.
Concernant des applications courantes de faible puissance, en donnant au condensateur 15 une valeur de plusieurs dizaines de microfarads, le taux d'ondulation de la tension continue V3 présente entre les bornes 3 et 5 demeure pratiquement négligeable. Conc omm i tammen t , 1 ' impédance qu'offre un condensateur de cette valeur au courant récupéré à fréquence élevée qui transite de la borne 1 à la borne 5 demeure également négligeable.
Le condensateur de forte capacité 15, se comporte alors comme une source de tension continue tampon dont l'amplitude, quasiment constante, permet l'adaptation des différents potentiels développés dans un tel dispositif.
Dans ces conditions, le condensateur 15 remplit alors parfaitement la fonction qui est dévolue à la susdite source de tension continue tampon 4. Ainsi construit le dispositif selon l'invention per et d'obtenir une excellente compensation du facteur de puissance du courant pris sur le réseau ainsi qu'un niveau extrêmement réduit du taux des courants harmoniques affectant ce dernier. En outre, l'ondulation à basse fréquence affectant la tension continue présente entre les bornes communes Sa et Sb se aintient à un niveau très faible ce qui se traduit, en définitive, par un faible taux d'ondulation de l'enveloppe du courant à fréquence élevée appliqué au récepteur 12 ainsi que par une faible excursion de l'amplitude du courant ondulé à basse fréquence transitant dans le condensateur 8,
La Figure 4, ci-annexée, illustre un autre mode de réalisation pratique du dispositif objet de 1 ' i nvent ion, Ce dernier mode, conforme à ce qui a été décrit plus haut, se distingue du précèdent par les points indiqués ci-après. En premier lieu, l ' inductance du primaire 9a constitue avec le condensateur 16 qui lui est connecté en série un circuit oscillant série dont la résonnance se produit à une f réquence voisine de celle à laquelle est entretenue la conduction cyclique alternée qu'assurent les transistors la et 1 b.
Oans ce dispositif, l'extraction de l'énergie convertie à fréquence élevée est obtenue à partir du mode dit "energy transfer". En effet, ici, le récepteur 12 qui est directement connecté entre les bornes du condensateur 16, se trouve soumis au potentiel alternatif à fréquence élevée développé entre les bornes de ce dernier. Ainsi connecté, ce récepteur dérive une portion convenable du courant à fréquence élevée transitant entre la borne 1 et la borne 3.
La portion d'énergie convertie ainsi appliquée au récepteur 12 dont l'impédance est connue sera alors limitée à une valeur convenable que détermine l'impédance du primaire 9a et la réactance du condensateur 16.
Par un choix judicieux des valeurs affectant ces deux composants, l'on obtiendra aisément un ajustement précis de l'amplitude de ce courant, La résistance 17, connectée en parallèle avec le récepteur 12 et le condensateur 16, a pour fonction d'assurer le passage du courant continu que nécessite la charge du condensateur 15, dans le cas où ledit récepteur comporterait une barrière diélectrique. Dans ce cas, la résistance 17 pourrait, également, être connectée entre la borne 8a et la borne 3, ce qui permettrait, comme pardevant, la charge en continu du condensateur 15. Cette résistance pourrait encore être remplacée par le pont des résistances 17a et 17b qui est établi entre les bornes communes 8a et 8b et dont le point milieu est commun avec la borne 3. De cette manière, pourrait aussi être obtenue la charge à tension continue, sous une amplitude sensiblement constante, du condensateur 15 faisant office de source continue tampon 4.
La diode 18, convenablement polarisée, connectée en parallèle avec le condensateur 15 a pour rôle facultatif d'améliorer la transmission du courant alternatif à fréquence élevée transitant entre les bornes 3 et 5.
En effet, cette diode permet que le condensateur 15 ne soit traversé que par une seule alternance dudit courant récupéré à fréquence élevée.
La Figure 5, ci-annexée, illustre un autre exemple de réalisation du dispositif objet de l'invention. Ce mode de réalisation se distingue des précédents par le fait qu'une inductance supplémentaire 19 est montée en série avec le condensateur 16 pour former avec ce dernier un circuit oscillant série. Dans ce cas de figure, l'impédance du primaire 9a n'intervient plus sensiblement dans la fréquence de résonnance dudit circuit oscillant car, ce primaire, associé aux secondaires 9b et 9c, n'a d'autre fonction que de constituer un transformateur indépendant qui assure la commande de la conduction cyclique alternée des transistors la et lb. Dans ce mode de réalisation, les condensateurs 3a et 3b sont rempla és par un condensateur unique 3c dont la capacité propre est double de la capacité unitaire de chacun des deux premiers, Ainsi, à ladite fréquence élevée, la réactance de ce condensateur unique demeure sensiblement identique à la résultante des deux autres c apac i tanc es , ce qui permet d'obtenir des performances similaires tout en réalisant l'économie d'un composant. Ici, comme indiqué plus haut, la résistance 17 permet de charger à partir des bornes 8a et 7c le condensateur réservoir de tension 15 en palliant à l'isolation galvanique ou aux caractéristiques non linéaires que pourrait présenter le récepteur de sor tie 12.
La résistance 15a de limitation du courant d'appel que provoque la charge du condensateur réservoir de tension 15 à la mise sous tension des bornes d'entrée secteur 7a et 7b est, ici, connectée en série avec les transistors la et lb constituant la susdite branche de pont active.
La Figure 6, ci-annexée, illustre un dernier exemple de réalisation du dispositif selon 1 ' i nvention . Ce mode de réalisation se distingue du mode de réalisation précédemment illustré par la Figure 2, ci-annexée, en ce que le condensateur réservoir de tension IS, tenant lieu de source continue tampon 4, n'est plus monté entre les bornes 3 et 5, mais entre les bornes 1 et 3, en série avec la charge de sortie 2.
Dans ce cas, la borne 3 et la borne 5 sont connectées ensembl , - 15 -
Figure imgf000017_0001
- 1 6 -
Ainsi, du fait que le condensateur réservoir 15 de forte valeur ne présente qu'une très faible impédance à la basse fréquence du secteur redressé, le courant alternatif à fréquence élevée converti qui le traverse est pratiquement exempt de toute modulation à 100 ou 120Hz du
Cette caractéristique différencie essentiellement la fonction du condensateur 15, utilisé comme une sour e tampon de tension continue non modulable, de la fonction qu'occupe le condensateur C de la Figure 1, ci-annexée, lequel n'a qu'un rôle de barrière galvanique entre les bornes de laquelle le courant à fréquence élevée converti subit une modulation à 100 ou 120Hz dont l'amplitude peut égaler celle de la tension secteur redressée disponible entre les bornes de sortie du pont de diodes J.
Tel qu'il vient d'être décrit, le dispositif selon l'invention permet de corriger de manière quasiment parfaite le facteur de puissance ainsi que le taux de distorsion harmonique affectant le courant pris sur 1 e sec teur .
Ce résultat est obtenu en n'additionnant à la susdite enveloppe de courant secteur redressé qu'une seule et unique enveloppe à basse fréquence provenant du redressement d'une portion donnée d'énergie à fréquence élevée convertie, à la différence des dispositifs selon l'art antérieur qui, pour atteindre un résultat inférieur, nécessitent l'addition de deux enveloppes à basse fréquence distinctes lesquelles sont respectivement issues du redressement d'un signal de courant et d'un signal de tension, tous deux prélevés sur l'énergie à fréquence élevée conver t i e . En outre, à la différence du dispositif illustré par la Figure 1, ci-annexée, le dispositif selon l'invention permet de supprimer, entre les bornes des condensateurs 8 et 6 les surtensions dangereuses que supportent les condensateurs H et K dont la cause principale est à rechercher dans une surmodulation à 100 ou 120Hz très excessive du courant converti.
Le dispositif selon l'invention qui est simple à construire et ne nécessite aucun ajustemen fastidieux permet de corriger les inconvénients que présentent les dispositifs selon l'art antérieur.
Le dispositif selon l'invention peut être avantageusement utilisé dans toutes les applications à bon marché qui doivent satisfaire aux normes concernant le courant pris sur le réseau, telles que les ali entations secteur, les transformateurs éle troniques, les ballasts électroniques, les lampes fluocompactes, etc ...
Comme il va de soi, et comme il résulte d'ailleurs de ce qui précède, l'invention ne selimite nullement aux modes d'application et de réalisation qui ont été plus particulièrement envisagés, elle embrasse, au contraire, toutes les variantes.

Claims

REVENDICATIONS
1. Dispositif alimenté par le secteur alternatif comprenant un convertisseur en pont dont la branche active comprend des moyens commutateurs (!') et (1") et la branche passive comprend des condensateurs (3a) et (3b) , ce demi- pont délivrant sur une charge de sortie (2) un courant alternatif à fréquence élevée d'amplitude sensiblement constante tandis que le courant pris sur le réseau demeure sensiblement sinusoïdal et en phase avec la tension grâce à la récupération effectuée selon le mode . de transfert d'énergie d'une portion de l'énergie à fréquence élevée se développant entre le point milieu (3) de ladite branche passive et des bornes communes polarisées (8a) et (8b) du fait de la réactance qu'oppose ladite branche passive, ceci permettant, après redressement de cette portion d'énergie par un pont redresseur double alternance comprenant des diodes (5a) et (5b), d'obtenir, entre les bornes d'un condensateur de découplage (6) , une enveloppe à basse fréquence, dont l'addition au signal du courant secteur redressé présent entre une borne de sortie polarisée (7c) d'un pont redresseur secteur (7) et une des bornes communes polarisées (8a) permet de compenser les effets de la faible impédance d'un condensateur de découplage (8), ceci se traduisant par un faible taux d'ondulation résiduelle entre les bornes communes polarisées (8a) et (8b) ainsi que par une compensation quasi parfaite du facteur de puissance et de la distorsion harmonique du courant pris sur le réseau, caractérisé en ce qu'une source tampon de tension continue (4) d'amplitude sensiblement constante forme avec la charge de sortie (2) un circuit série qui se trouve connecté entre le point milieu de la branche active (1) et une borne d'entrée non polarisée (5) du pont redresseur double alternance (5a, 5b), cette source de tension (4) ne présentant qu'une impédance négligeable au passage du susdit courant alternatif à fréquence élevée.
2 . Dispositif selon la revendication 1, caractérisé en ce que l'amplitude (V3) de la tension continue développée entre le point milieu de la branche passive (3) et la borne d'entrée non polarisée (5) du pont redresseur double alternance (5a, 5b), qui constituent les bornes de la source tampon (4), est approximativement égale à la différence existant entre l'amplitude (V2) de la tension développée entre le point milieu de la branche active (1) et l'une des bornes communes polarisées (8a, 8b) et l'amplitude (V4) de la tension entre la borne d'entrée non polarisée (5) et l'une desdites bornes communes polarisées, ceci permettant une bonne adaptation des différents potentiels mis en jeu par le susdit dispositif.
3. Dispositif selon les revendications 1 et 2, caractérisé en ce que la source tampon à tension continue (4) est constituée par un condensateur réservoir de forte capacité (15) dont la charge s'effectue à partir d'une des bornes communes polarisées (8a) et de la borne de sortie polarisée (7c) du pont redresseur secteur (7) .
4. Dispositif selon les revendications 1, 2 et 3, caractérisé en ce qu'une résistance de faible valeur (15a) est montée en série avec le circuit de charge du condensateur réservoir (15) afin de limiter le courant d'appel que provoque ce dernier à la mise sous tension de ce dispositif.
5. Dispositif selon les revendications 1, 2, 3 et 4, caractérisé en ce qu'une résistance (17) de forte valeur ou un pont de résistances de forte valeur (17a) et (17b) dérivent une partie du potentiel correspondant au secteur redressé présent entre les bornes polarisées (8a) ou (7c) et les bornes du condensateur réservoir (15) de telle sorte que le courant de fuite affectant ce condensateur soit compensé en permanence et que la tension continue présente entre les bornes de ce dernier demeure sensiblement constante.
6. Dispositif selon les revendications i, 2, 3, 4 et 5, caractérisé en ce que le condensateur réservoir (15) , ou la source tampon à tension continue (4), forment avec la charge de sortie (2) un circuit série qui se trouve connecté entre le point milieu de la branche active (1) et le point milieu de la branche passive (3) .
7. Dispositif selon les revendications 1, 2, 3, 4, 5 et 6, caractérisé en ce que les condensateurs (3a) et (3b) constituant la susdite branche passive de pont se réduisent à un condensateur unique (3c) dont la capacité propre est sensiblement double de la capacité unitaire des deux premiers.
8. Dispositif selon les revendications 1, 2, 3, 4, 5, 6 et 7, caractérisé en ce que les moyens commutateurs
(1') et (1") sont des semiconducteurs d'un type quelconque apte à être utilisé en commutation.
9. Dispositif selon les revendications 1, 2, 3, 4, 5, 6, 7 et 8, caractérisé en ce que la charge (2) est constituée par le primaire (9a) d'un transformateur dont les secondaires (9b) et (9c) assurent la commande de la conduction cyclique alternée de moyens commutateurs (la) et (lb) et dont le secondaire (9d) assure l'évacuation de l'énergie convertie à fréquence élevée sur un récepteur de sortie (12), selon le mode de transfert de tension.
10. Dispositif selon la revendication 9, caractérisé en ce qu'un condensateur (13), connecté entre les bornes du secondaire (9d), constitue avec ce dernier un circuit oscillant parallèle résonnant sur la susdite fréquence élevée.
11. Dispositif selon les revendications 1, 2, 3, 4, 5, 6, 7 et 8, caractérisé en ce que l'inductance du primaire (9a) et la capacitance d'un condensateur (16), montées en série, constituent un circuit oscillant série résonnant sur la susdite fréquence élevée, à partir duquel est prélevée, selon le mode de transfert d'énergie, l'énergie convertie, laquelle est appliquée au récepteur de sortie (12), connecté entre les bornes du condensateur (16) , tandis que les secondaires (9b) et (9c), couplés au primaire (9a) par le moyen d'un circuit magnétique (9), assurent la commande de la conduction cyclique alternée des moyens commutateurs (la) et (lb).
12. Dispositif selon la revendication 11, caractérisé en ce que le circuit magnétique (9) ne constitue plus, avec le primaire (9a) et les secondaires (9b) et (9c), qu'un transformateur propre à n'assurer que la commande de la conduction cyclique alternée des moyens commutateurs (la) et (lb), une inductance indépendante (19) étant chargée de constituer avec le condensateur (16) le susdit circuit oscillant série résonnant sur la susdite fréquence élevée.
13. Dispositif selon la revendication 3, caractérisé en ce qu'une diode (18), convenablement polarisée, est connectée entre les bornes du condensateur réservoir (15) .
14. Dispositif selon la revendication 3, caractérisé en ce que le condensateur réservoir (15) est d'un type dit électrolytique .
PCT/FR1998/001637 1997-07-28 1998-07-23 Convertisseur auto-compense WO1999005775A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/463,617 US6185117B1 (en) 1997-07-28 1998-07-23 Self-compensating converter
EP98940326A EP1000459A1 (fr) 1997-07-28 1998-07-23 Convertisseur auto-compense

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9709580A FR2766636B1 (fr) 1997-07-28 1997-07-28 Convertisseur auto-compense
FR97/09580 1997-07-28

Publications (2)

Publication Number Publication Date
WO1999005775A1 true WO1999005775A1 (fr) 1999-02-04
WO1999005775A8 WO1999005775A8 (fr) 1999-04-15

Family

ID=9509713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/001637 WO1999005775A1 (fr) 1997-07-28 1998-07-23 Convertisseur auto-compense

Country Status (5)

Country Link
US (1) US6185117B1 (fr)
EP (1) EP1000459A1 (fr)
CN (1) CN1266548A (fr)
FR (1) FR2766636B1 (fr)
WO (1) WO1999005775A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386959C (zh) * 2004-12-16 2008-05-07 西安交通大学 五电平高频直流变换装置
US8736189B2 (en) * 2006-12-23 2014-05-27 Fulham Company Limited Electronic ballasts with high-frequency-current blocking component or positive current feedback
US9899905B2 (en) * 2016-06-15 2018-02-20 Det International Holding Limited Ripple compensation circuit of power supply and compensation method thereof
CN111147149B (zh) * 2019-12-17 2022-09-02 上海交通大学 基于被动相位补偿的光学频率传递装置与传递方法
WO2021120485A1 (fr) 2019-12-17 2021-06-24 上海交通大学 Dispositif de transfert de fréquence optique basé sur une compensation de phase passive et procédé de transfert
CN111147150B (zh) * 2019-12-18 2023-02-07 上海交通大学 基于被动相位补偿的分布式光学频率传递装置与传递方法
CN113014127B (zh) * 2021-02-23 2022-06-24 海南大学 一种电子设备及其电源缓冲保护电路

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2696291A1 (fr) * 1992-09-30 1994-04-01 Courier De Mere Henri Adaptateur secteur à sortie démodulée.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469028A (en) * 1978-03-20 1995-11-21 Nilssen; Ole K. Electronic ballast drawing sinusoidal line current
US4322789A (en) * 1979-06-29 1982-03-30 Mere, Malleray & Cie Static converter of symmetrical type
US5010277A (en) * 1990-03-16 1991-04-23 Courier De Mere Henri Electronic converter supplied by an alternating current distribution network

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2696291A1 (fr) * 1992-09-30 1994-04-01 Courier De Mere Henri Adaptateur secteur à sortie démodulée.

Also Published As

Publication number Publication date
FR2766636A1 (fr) 1999-01-29
FR2766636B1 (fr) 1999-10-01
CN1266548A (zh) 2000-09-13
US6185117B1 (en) 2001-02-06
WO1999005775A8 (fr) 1999-04-15
EP1000459A1 (fr) 2000-05-17

Similar Documents

Publication Publication Date Title
FR2471695A1 (fr) Dispositif redresseur a tension de sortie filtree
FR2695584A1 (fr) Dispositif de soudure à l'arc.
WO2020183076A1 (fr) Convertisseur de puissance isole et reconfigurable
WO1999005775A1 (fr) Convertisseur auto-compense
EP0918449B1 (fr) Circuit de commande de lampe fluorescente
FR2514585A1 (fr) Dispositif d'alimentation electronique absorbant sur le reseau alternatif un courant sinusoidal phase avec la tension
FR2811823A1 (fr) Convertisseur a compensation serie/parallele
CA1121890A (fr) Equipement d'alimentation et de recuperation de courant continu pour materiel de traction electrique
EP0211764B2 (fr) Alimentation à découpage à fréquence fixe modulable
FR2625642A1 (fr) Ballast electronique a haut facteur de puissance
FR2740275A1 (fr) Dispositif de conversion alternatif-continu a absorption sinusoidale de courant, et procede mis en oeuvre dans celui-ci
FR2696311A1 (fr) Ballast jetable auto-compensé.
FR2696291A1 (fr) Adaptateur secteur à sortie démodulée.
FR2675000A1 (fr) Procede et dispositif pour attenuer l'effet du radioparasitage par conduction sur le reseau alternatif polyphase.
FR2738418A1 (fr) Dispositif electrique a transformateur dont le primaire est alimente sous controle d'un hacheur
BE477237A (fr)
FR2664777A1 (fr) Convertisseur assurant la transformation reversible avec isolement, d'une tension continue en une tension continue et onduleur d'appel telephonique en faisant application.
FR2527412A1 (fr) Ballast de reglage de puissance pour lampe a incandescence
FR3131131A1 (fr) Module de conversion comprenant un circuit de récupération d’énergie électrique
FR2631508A1 (fr) Circuit pour fournir du courant actif a une lampe fluorescente
FR2710207A1 (fr) Convertisseur auto-compensé à faible facteur de crête du courant de sortie.
FR3008258A1 (fr) Convertisseur ac/dc a isolement galvanique et correcteur de signal
FR2700426A1 (fr) Convertisseur électronique à haut rendement.
FR2700434A1 (fr) Ballast électronique perfectionné.
FR2485289A1 (fr) Alimentation secteur a haut rendement pour tubes fluorescents

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98807692.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN ID JP MX SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: C1

Designated state(s): BR CA CN ID JP MX SG US VN

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998940326

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09463617

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998940326

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1998940326

Country of ref document: EP