WO1999005004A1 - Verfahren und anordnung zum ermitteln der inertiallage eines fahrzeugs - Google Patents

Verfahren und anordnung zum ermitteln der inertiallage eines fahrzeugs Download PDF

Info

Publication number
WO1999005004A1
WO1999005004A1 PCT/DE1998/000739 DE9800739W WO9905004A1 WO 1999005004 A1 WO1999005004 A1 WO 1999005004A1 DE 9800739 W DE9800739 W DE 9800739W WO 9905004 A1 WO9905004 A1 WO 9905004A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
acceleration
position angle
respect
window
Prior art date
Application number
PCT/DE1998/000739
Other languages
English (en)
French (fr)
Inventor
Markus Pantle
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP11509147A priority Critical patent/JP2001501315A/ja
Priority to EP98923999A priority patent/EP0928258B1/de
Priority to US09/147,905 priority patent/US6259999B1/en
Priority to DE59803186T priority patent/DE59803186D1/de
Publication of WO1999005004A1 publication Critical patent/WO1999005004A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R21/01332Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value by frequency or waveform analysis
    • B60R21/01338Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value by frequency or waveform analysis using vector analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/08Means for compensating acceleration forces due to movement of instrument
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0002Type of accident
    • B60R2021/0018Roll-over
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R2021/01306Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over monitoring vehicle inclination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R2021/01322Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value comprising variable thresholds, e.g. depending from other collision parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R2021/01325Vertical acceleration

Definitions

  • the inertial position ie the starting position of the vehicle relative to the earth-fixed coordinate system must be known.
  • Dynamic vehicle movements such as cornering or braking or accelerating, can interfere with the Impact determination of the inertial position.
  • the invention is therefore based on the object of specifying a method and an arrangement for determining the inertial position of a vehicle, interference from dynamic vehicle movements being excluded as far as possible.
  • Acceleration vector is formed and this amount is compared by threshold value decisions with a window which is limited by a threshold above and below the acceleration due to gravity.
  • the current position angle of the vehicle in relation to it is compared by threshold value decisions with a window which is limited by a threshold above and below the acceleration due to gravity.
  • the longitudinal axis and / or the current position angle with respect to its transverse axis is only determined if the magnitude of the acceleration vector lies within the window. However, if the magnitude of the acceleration vector lies outside the window, then a previously determined position angle with respect to the longitudinal axis and / or position angle with respect to the transverse axis is retained.
  • the upper threshold of the window is approximately 10% larger and the lower threshold is approximately 10% lower than the acceleration due to gravity. According to one subclaim, disturbance variables in the determination of the inertial position can be suppressed even more effectively if the threshold value decisions are made with two acceleration vectors formed in succession. The fact that the current position angle recursively determined from a portion of an earlier
  • Position angle and a portion of the position angle derived from the currently measured accelerations are advantageously suppressed short-term disturbances very well.
  • Roll-over processes involve very rapid changes in the vehicle's position, which can best be determined by measuring the rotation rate.
  • the position angles are then derived from the measured rotation rates by integration and on the basis of these position angles it is decided whether the vehicle will roll over or not. So that the integration of the measured rotation rates does not include non-critical dynamic vehicle movements for a rollover process and the resulting position angles do not lead to a wrong decision regarding a rollover process, it is expedient to integrate the rotation rates only with the inertial position angles derived according to the invention start. drawing
  • FIG. 2 shows a functional diagram for deriving the inertial position of the vehicle and FIG. 3 shows a window function.
  • Gravitational acceleration g acts in the direction of the z axis.
  • a vehicle-fixed coordinate system x 1 , y 1 , z 'of a vehicle is drawn in FIG. 1, which has a certain inclination with respect to the earth-fixed coordinate system.
  • x ' is the longitudinal axis
  • y' the transverse axis
  • Acceleration sensors are located in the vehicle, which measure the acceleration components of the vehicle in the direction of its longitudinal axis x ', its transverse axis y 1 and its vertical axis z 1 .
  • the gravitational acceleration g is divided into the individual acceleration components ax ', ay 1 and az' according to the position of the coordinate system x 1 , y ', z 1 fixed to the vehicle. If one or more further acceleration components are now superimposed on the gravitational acceleration g as a result of dynamic vehicle movements, the actual position angles of the vehicle relative to the earth-fixed coordinate system can no longer be determined without error from the measured acceleration components ax ', ay 1 and az'.
  • the position angle ⁇ x that is the angle of rotation of the vehicle-fixed coordinate system around the x- Axis of the earth-fixed coordinate system
  • the position angle ⁇ y that is the angle of rotation of the vehicle-fixed coordinate system about the y-axis of the earth-fixed coordinate system
  • the two position angles ⁇ x and ⁇ y can be derived from the acceleration components ax ', ay' and az 'and the acceleration due to gravity g by trigonometric functions. If the acceleration components ax ', ay', az 'are superposed by dynamic vehicle movements, this leads to incorrect position angles ⁇ x and ⁇ y of the vehicle.
  • function block 1 the measured acceleration components ax ', ay' and az 'are subjected to filtering.
  • the filtering serves to avoid small disturbances of the individual
  • a suitable filter is e.g. a median filter or another digital filter with low-pass characteristics.
  • each acceleration component ax ', ay', az ' is sampled over a certain period of time and all sampled values are divided into several data groups. The mean sample value is determined from each data group. Assuming that i have data tuple from everyone
  • Acceleration component ax ', ay' and az ', the filtered acceleration components ax' (i), ay '(i) and az' (i) are present at the outputs of the filter 1.
  • the filtered acceleration components ax '(i), ay' (i) and az '(i) become a resulting acceleration vector and the amount thereof
  • this window function has an upper threshold co and a lower threshold cu.
  • the upper threshold co is approximately 10% greater than the acceleration due to gravity g and the lower threshold cu is approximately 10% less than the acceleration due to gravity g.
  • This window function thus determines whether the magnitude of the acceleration vector corresponds approximately to that of gravitational acceleration g. If the amount of the acceleration vector deviates from the gravitational acceleration g by a certain amount, which is predetermined by the thresholds co and cu, it must be assumed that the acceleration components ax 1 , ay 'and az' measured in the vehicle due to interference components dynamic vehicle movements are superimposed.
  • the switching block 3 sets its output signal h to 1 if the magnitude of the acceleration vector lies within the window and sets its output signal h to 0 if the magnitude of the acceleration vector lies outside the window.
  • Acceleration components ax 'and ay' derived the position angles ⁇ x and ⁇ y. Equation (3) shows the trigonometric relationship between the acceleration components ax 1 , ay ', az' measured in the vehicle and the acceleration components with respect to the earth-fixed coordinate system x, y, z. Since the acceleration due to gravity g only acts in the direction of the z-axis of the earth-fixed coordinate system, the acceleration ax and ay are in the direction of the x-axis and the y-axis of the earth-fixed coordinate system 0. Therefore:
  • ⁇ x new cl ⁇ x old + c2 ⁇ x ⁇ 7 >
  • a function block 5 which, by integrating measured rotation rates G) x ', ö) y', CO z 'about the longitudinal axis x', the transverse axis y 'and the vertical axis z 1 of the vehicle the rotation angles ⁇ x and ⁇ y of the vehicle around the earth-fixed x and y axis are determined. So that minor dynamic changes in the position of the vehicle are not included in the integration, the integration is started with the previously determined position angles ⁇ x and ⁇ y; because these position angles ⁇ x and ⁇ y are largely unaffected by disturbing dynamic vehicle movements (e.g. cornering, acceleration and braking).

Abstract

Die Inertiallage kann unabhängig von dynamischen Fahrzeugbewegungen dadurch ermittel werden, daß die Beschleunigungen (ax', ay', az') des Fahrzeugs in Richtung seiner Längs- (x'), seiner Quer- (y') und seiner Hochachse (z') gemessen werden, daß der Betrag (|a'(i)|) eines aus den drei Beschleunigungskomponenten (ax', ay', az') resultierenden Beschleunigungsvektor gebildet wird und der Betrag (|a'(i)|) des Beschleunigungsvektors durch Schwellenwertentscheidungen (3) mit einem Fenster verglichen wird, das durch eine oberhalb und eine unterhalb der Erdbeschleunigung (g) liegende Schwelle (co, cu) begrenzt ist. Ein aktueller Lagewinkel (ζx) des Fahrzeugs bezüglich seiner Längsachse und/oder den aktuellen Lagewinkel (ζy) bezüglich seiner Querachse wird nur dann bestimmt, wenn der Betrag (|a'(i)|) des Beschleunigungsvektors innerhalb des Fensters liegt, ansonsten wird aber an den zuvor ermittelten Lagewinkeln festgehalten.

Description

Verfahren und Anordnung zum Ermitteln der Inertiallaαe eines Fahrzeugs
Stand der Technik
In der nicht vorveröffentlichten deutschen Patentanmeldung 196 09 717.1 ist eine Anordnung zum Erkennen von ÜberrollVorgängen bei Fahrzeugen beschrieben. Falls es zu einem Überschlag eines Fahrzeugs kommt, müssen rechtzeitig alle im Fahrzeug installierten Insassen-Schutzvorrichtungen ausgelöst werden; dazu gehören beispielsweise Überrollbügel, Gurtstraffer und verschiedene Airbags. Damit all diese Schutzvorrichtungen rechtzeitig ausgelöst werden können, muß möglichst früh erkannt werden, ob Drehungen des Fahrzeugs um seine Hochachse, seine Längsachse oder seine Querachse zu einem Überschlag führen. Fehlentscheidungen eines
Überrollvorganges müssen soweit wie möglich ausgeschlossen werden, so daß die Rückhalteeinrichtungen dann nicht ausgelöst werden, wenn z.B. das Fahrzeug an einem steilen Hang steht oder langsame Drehvorgänge bei Kurvenfahrten erfährt. Damit es nicht zu Fehlentscheidungen bei der
Überrollsesierung kommt, muß die Inertiallage, d.h. die Ausgangslage des Fahrzeugs relativ zum erdfesten Koordinatensystem, bekannt sein. Dynamische Fahrzeugbewegungen, wie z.B. Kurvenfahrten oder Brems- oder Beschleunigungsvorgänge können sich störend bei der Ermittlung der Inertiallage auswirken. Deshalb liegt der Erfindung die Aufgabe zugrunde, ein Verfahren und eine Anordnung zum Ermitteln der Inertiallage eines Fahrzeugs anzugeben, wobei Störeinflüsse durch dynamische Fahrzeugbewegungen möglichst weitgehend ausgeschlossen werden.
Vorteile der Erfindung
Die genannte Aufgabe wird mit den Merkmalen des Anspruchs 1 bzw. des Anspruchs 6 dadurch gelöst, daß zunächst die Beschleunigungen des Fahrzeugs in Richtung seiner Längs-, seiner Quer- und seiner Hochachse gemessen werden. Darauf wird der Betrag eines aus den drei Beschleunigungskomponenten resultierenden
Beschleunigungsvektors gebildet und dieser Betrag durch Schwellenwertentscheidungen mit einem Fenster verglichen, das durch eine oberhalb und eine unterhalb der Erdbeschleunigung liegende Schwelle begrenzt ist. Der aktuelle Lagewinkel des Fahrzeugs bezüglich seiner
Längsachse und/oder der aktuellen Lagewinkel bezüglich seiner Querachse wird nur dann ermittelt, wenn der Betrag des Beschleunigungsvektors innerhalb des Fensters liegt. Liegt aber der Betrag des Beschleunigungsvektors außerhalb des Fensters, so wird an einem zuvor ermittelten Lagewinkel bezüglich der Längsachse und/oder Lagewinkel bezüglich der Querachse festgehalten.
Bei diesem Verfahren bzw. einer entsprechenden Anordnung zur Durchführung dieses Verfahrens werden mit Hilfe der
Fensterfunktion dynamische Beschleunigungskomponten des Fahrzeugs bei der Ermittlung der Inertiallage ausgeschlossen. Die Lagewinkel der Inertiallage können dann korrekt gemessen werden mit den drei Beschleunigungssensoren, wenn entweder das Fahrzeug sich gar nicht oder gleichförmig bewegt. Unterliegt das Fahrzeug dynamischen Lageveränderungen, so werden keine neuen aktuellen Lagewinkel ermittelt, sondern es wird auf vorhergehend ermittelte, von dynamischen LageVeränderungen unbeeinflußte Lagewinkel zurückgegriffen.
Gemäß einem Unteranspruch ist es vorteilhaft, daß die obere Schwelle des Fensters etwa um 10 % größer und die untere Schwelle etwa 10 % niedriger als die Erdbeschleunigung ist. Störgrößen bei der Ermittlung der Inertiallage lassen sich gemäß einem Unteranspruch noch effektiver unterdrücken, wenn mit jeweils zwei zeitlich nacheinander gebildeten Beschleunigungsvektoren die Schwellenwertentscheidungen durchgeführt werden. Dadurch, daß der aktuelle Lagewinkel rekursiv aus einem Anteil eines früher ermittelten
Lagewinkels und einem Anteil des aus den aktuell gemessenen Beschleunigungen hergeleiteten Lagewinkels gebildet wird, lassen sich vorteilhafterweise kurzzeitige Störungen sehr gut unterdrücken.
Bei Überrollvorgängen handelt es sich um sehr schnelle Lageänderungen des Fahrzeugs, die am besten durch Drehratenmessungen erfaßt werden können. Aus den gemessenen Drehraten werden dann die Lagewinkel durch Integration abgeleitet und anhand dieser Lagewinkel entschieden, ob es zu einem Überschlag des Fahrzeugs kommt oder nicht . Damit bei der Integration der gemessenen Drehraten nicht auch für einen Überrollvorgang unkritische dynamische Fahrzeugbewegungen mit einfließen und die daraus folgenden Lagewinkel nicht zu einer Fehlentscheidung bezüglich eines ÜberrollVorgangs führen, ist es zweckmäßig, die Integration der Drehraten erst mit den nach der Erfindung hergeleiteten Inertial-Lagewinkeln zu starten. Zeichnung
Anhand eines in der Zeichnung dargestellten Ausführungsbeispiels wird nachfolgend die Erfindung näher erläutert. Es zeigen:
Figur 1 ein erdfestes und ein fahrzeugfestes Koordinatensystem,
Figur 2 ein Funktionsdiagramm für die Herleitung der Inertiallage des Fahrzeugs und Figur 3 eine Fensterfunktion.
Beschreibung eines Ausführungsbeispiels
In der Figur 1 ist ein erdfestes Koordinatensystem x, y, z eingezeichnet, daß so orientiert ist, daß die
Erdbeschleunigung g in Richtung der z-Achse wirkt. Ebenfalls ist in Figur 1 ein fahrzeugsfestes Koordinatensystem x1 , y1 , z' eines Fahrzeugs einzeichnet, das eine gewisse Schräglage gegenüber dem erdfesten Koordinatensystem aufweist . Bei dem fahrzeugfesten Koordinatensystem ist x' die Längsachse, y' die Querachse und z ' die Hochachse des Fahrzeugs . In dem Fahrzeug befinden sich Beschleunigungssensoren, welche die Beschleunigungskomponenten des Fahrzeugs in Richtung seiner Längsachse x' , seiner Querachse y1 und seiner Hochachse z1 messen. Die Erdbeschleunigung g teilt sich entsprechend der Lage des fahrzeugfesten Koordinatensystems x1, y' , z1 auf die einzelnen Beschleunigungskomponenten ax' , ay1 und az ' auf . Wenn nun der Erdbeschleunigung g infolge von dynamischen Fahrzeugbewegungen ein oder mehrere weitere Beschleunigungskomponenten überlagert sind, so können aus den gemessenen Beschleunigungskomponenten ax' , ay1 und az ' nicht mehr fehlerfrei die tatsächlichen Lagewinkel des Fahrzeugs relativ zum erdfesten Koordinatensystem bestimmt werden. In der Regel werden der Lagewinkel φx, das ist der Drehwinkel des fahrzeugfesten Koordinatensystems um die x- Achse des erdfesten Koordinatensystems, und der Lagewinkel φy, daß ist der Drehwinkel des fahrzeugfesten Koordinatensystems um die y-Achse des erdfesten Koordinatensystems, benötigt, um die Inertiallage des Fahrzeugs zu beschreiben. Wie anhand von Figur 4 noch erläutert wird, können die beiden Lagewinkel φx und φy durch trigonometrische Funktionen aus den Beschleunigungskomponenten ax' , ay' und az ' und der Erdbeschleunigung g hergeleitet werden. Sind nun den Beschleunigungskomponenten ax', ay' , az ' Störgrößen durch dynamische Fahrzeugbewegungen überlagert, führt das zu verfälschten Lagewinkeln φx und φy des Fahrzeugs.
Anhand des in der Figur 2 dargestellten Funktionsdiagramms wird nun eine Methode beschrieben, wie aus den im Fahrzeug gemessenen Beschleunigungskomponenten ax ' , ay1 und az ' Lagewinkel φx und φy ermittelt werden können, die weitestgehend von Störgrößen durch dynamische Fahrzeugbewegungen unbeeinflußt sind. Im Funktionsblock 1 werden die gemessenen Beschleunigungskomponenten ax', ay' und az ' einer Filterung unterzogen. Die Filterung dient dazu, um kleine Störungen der einzelnen
Beschleunigungskomponenten herauszufiltern. Ein geeignetes Filter ist z.B. ein Medianfilter oder ein anderes digitales Filter mit Tiefpaßcharakteristik. Bei einem Medianfilter wird jeder Beschleunigungskomponente ax', ay' , az ' über eine gewisse Zeitdauer abgetastet und sämtliche Abtastwerte werden in mehrere Datentuppel unterteilt. Von jedem Datentuppel wird der mittlere Abtastwert bestimmt. Unter der Annahme, daß es i Datentuppel von jeder
Beschleunigungskomponente ax', ay' und az ' gibt, liegen an den Ausgängen des Filters 1 die gefilterten Beschleunigungskomponenten ax' (i) , ay' (i) und az' (i) an. Im zweiten Funktionblock 2 wird aus den gefilterten Beschleunigungskomponenten ax' (i) , ay' (i) und az' (i) ein resultiertender Beschleunigungsvektor und von diesem der Betrag
|a'(i)| = Va '(i)2 +ay'(i)2+az,(i)2 (1)
gebildet .
Im Schaltblock 3 wird der Betragung des Beschleungigsvektors |a'(i)| einer Schwellenwertentscheidung unterzogen. Wie in der Figur 3 dargestellt, handelt es sich hierbei um eine Fensterfunktion. Dieses Fenster hat eine obere Schwelle co und eine untere Schwelle cu. Dabei ist die obere Schwelle co um etwa 10 % größer als die Erdbeschleunigung g und die untere Schwelle cu um etwa 10 % kleiner als die Erdbeschleunigung g. Durch diese Fensterfunktion wird also festgestellt, ob der Betrag des Beschleunigungsvektors etwa dem der Erdbeschleunigung g entspricht. Weicht nämlich der Betrag des Beschleunigungsvektors um ein gewisses Maß, das durch die Schwellen co und cu vorgegeben ist, von der Erdbeschleunigung g ab, so muß davon ausgegangen werden, daß den im Fahrzeug gemessenen Beschleunigungskomponenten ax1, ay' und az ' Störkomponenten aufgrund von dynamischen Fahrzeugbewegungen überlagert sind. Der Schaltblock 3 setzt sein Ausgangssignal h auf 1, wenn der Betrag des Beschleunigungsvektors innerhalb des Fensters liegt und setzt sein Ausgangssignal h auf 0, wenn der Betrag des Beschleunigungsvektors außerhalb des Fensters liegt. Man kann auch, wie in Figur 3 dargestellt, jeweils zwei zeitlich nacheinander am Schaltblock 3 anliegende Beschleunigungsvektoren bezüglich ihrer Lage in dem vorgegebenen Fenster betrachten. Das heißt, nur wenn die Beträge der zum Zeitpunkt i und zum Zeitpunkt i - 1 anliegenden Beschleunigungsvektoren beide innerhalb des vorgegebenen Fensters liegen, wird das Signal h auf 1 gesetzt, andernfalls auf 0.
1, wenn |a'(i)| und |a'(i — 1)| innerhalb des Fensters h = { (2)
0 sonst
Im Funktionsblock 4 werden mit Hilfe der nachfolgend beschriebenen Rechenprozedur aus den
Beschleunigungskomponenten ax' und ay' die Lagewinkel φx und φy hergeleitet. In der Gleichung (3) ist der trigonometrische Zusammenhang zwischen den im Fahrzeug gemessenen Beschleunigungskomponenten ax1, ay' , az ' und den Beschleunigungskomponenten bezüglich des erdfesten Koordinantensystems x, y, z dargestellt. Da die Erdbeschleunigung g nur in Richtung z-Achse des erdfesten Koordinatensystem wirkt, sind Beschleunigung ax und ay in Richtung der x-Achse und der y-Achse des erdfesten Koordinatensystems 0. Es gilt daher:
ax' cosφy 0 -sinφy 0 ay' sinφxsinφy cosφx sin φx cosφy 0 13 ) az' cos φx sinφy -sinφx cosφx cosφy -g
ax' sinφy ay' -sinφx cosφy ( 4 ) az' -cosφx cosφy
ax φy = arcsm- ( 5 )
ay' φx = — arcsm- ( 6 ) g cosφy Wenn das Fenstersignal h = 1 ist, kann es aber trotzdem zu Fehlern bei der Berechnung der Lagewinkel kommen, wenn nämlich z.B. ein resultierender Vektor aus störenden Beschleunigungen und der Erdbeschleunigung zufällig den Betrag von lg hat . Damit ein solcher Fehler nicht auftreten kann, ist es zweckmäßig, jeden neuen Lagewinkel φxneu und ΨYneu rekursiv aus einem Anteil eines früher ermittelten Lagewinkels φxa]_t und φyalt un(^ einem Anteil der aus den aktuell gemessenen Beschleunigungen hergeleiteten Lagewinkeln φx und φy zu berechnen:
Φxneu = cl Φxalt + c2 Φx <7>
ΦYneu = cl φyalt + c2 Φ (8)
Die Wichtungsfaktoren cl und c2 in den Gleichungen (7) und
(8) müssen experimentell bestimmt werden. Sie liegen zwischen 0 und 1 und haben Tiefpaßeigenschaften.
Falls Überrollvorgänge des Fahrzeugs sensiert werden sollen, ist ein Funktionsblock 5 vorgesehen, der durch Integration von gemessenen Drehraten G)x' , ö)y', CO z ' um die Längsachse x', die Querachse y' und die Hochachse z1 des Fahrzeugs die Drehwinkel αx und αy des Fahrzeugs um die erdfeste x- und y- Achse ermittelt. Damit bei der Integration nicht auch geringfügige dynamische Lageänderungen des Fahrzeugs mit einfließen, wird die Integration mit den zuvor ermittelten Lagewinkeln φx und φy gestartet; denn diese Lagewinkel φx und φy sind weitgehend unbeeinflußt von störenden dynamischen Fahrzeugbewegungen (z.B. Kurvenfahrten, Beschleunigungs- und Bremsvorgänge) .

Claims

Ansprüche
1. Verfahren zum Ermitteln der Inertiallage eines Fahrzeugs, dadurch gekennzeichnet,
- daß die Beschleunigungen (ax' , ay' , az ' ) des Fahrzeugs in Richtung seiner Längs- (x1), seiner Quer- (y1) und seiner Hochachse (z1) gemessen werden,
- daß der Betrag ( ja.1 ϊ)| ) des Beschleunigungsvektors durch Schwellenwertentscheidung (3) mit einem Fenster verglichen wird, das durch eine oberhalb und eine unterhalb der Erdbeschleunigung (g) liegende Schwelle (co, cu) begrenzt ist,
- daß nur dann der aktuelle Lagewinkel (φx) des Fahrzeugs bezüglich seiner Längsachse (x' ) nd/oder der aktuelle
Lagewinkel (φy) bezüglich seiner Querachse (y' ) ermittelt wird, wenn der Betrag ( a'(i) ) des Beschleunigungsvektors innerhalb des Fensters liegt,
- und daß, wenn der Betrag (|a'(i)|) des Beschleunigungsvektors außerhalb des Fensters liegt, an einem zuvor ermittelten Lagewinkel (φx) bezüglich der Längsachse (x' ) und/oder Lagewinkel (φy) bezüglich der Querachse (y' ) festgehalten wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die obere Schwelle (co) etwa um 10 % größer ist als die Erdbeschleunigung (g) und die untere Schwelle (cu) etwa 10 % niedriger als die Erdbeschleunigung (g) ist.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß mit jeweils zwei zeitlich nacheinander gebildeten Beschleunigungsvektoren (a'(i), a'(i-l)) die Schwellenwertentscheidungen durchgeführt werden und daß nur dann der aktuelle Lagewinkel (φx) bezüglich der Längsachse (x' ) und/oder der aktuelle Lagewinkel (φy) bezüglich der Querachse (y' ) ermittelt wird, wenn die Beträge |a'(i)| , |a'(i — 1)| beider Beschleunigungsvektoren innerhalb des Fensters liegen.
4. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, daß der aktuelle Lagewinkel rekursiv aus einem Anteil eines früher ermittelten Lagewinkels und einem Anteil des aus den aktuell gemessenen Beschleunigungen hergeleiteten Lagewinkels gebildet wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei der Herleitung eines Drehwinkels (αx) um die Fahrzeug-Längsachse und/oder eines Drehwinkels (αy) um die Fahrzeug-Querachse durch Integration (5) eine oder mehrere gemessene Drehraten (C0x', Guy', Cöz1) die Integration mittels des (der) ermittelten Lagewinkel (φx, φy) gestartet wird.
6. Anordnung zum Ermitteln der Inertiallage eines Fahrzeugs, dadurch gekennzeichnet,
- daß Beschleunigungssensoren die Beschleunigungen (ax' , ay' , az ' ) des Fahrzeugs in Richtung seiner Längs- (x1), seiner Quer- (y1) und seiner Hochachse (z') messen, - daß Mittel (2) vorhanden sind, die den Betrag (|a'(i)|) eines aus den drei gemessenen Beschleunigungskomponenten (ax' , ay' , az ' ) resultierenden Beschleunigungsvektors bilden,
- daß die Mittel (3) den Betrag (|a'(i)|) des Beschleunigungsvektors durch SchwellenwertentScheidungen - li ¬
mit einem Fenster vergleichen, das durch eine oberhalb und eine unterhalb der Erdbeschleunigung (g) liegende Schwelle (co, cu) begrenzt ist, - und daß die Mittel (4) nur dann den aktuellen Lagewinkel (φx) des Fahrzeugs bezüglich seiner Längsachse (x' ) und/oder den aktuellen Lagewinkel (φy) bezüglich seiner Querachse (y' ) bestimmen, wenn der Betrag (|a'(i) ) des Beschleunigungsvektors innerhalb des Fensters liegt, ansonsten aber an dem (den) zuvor ermittelten Lagewinkel (n) festhalten.
PCT/DE1998/000739 1997-07-25 1998-03-13 Verfahren und anordnung zum ermitteln der inertiallage eines fahrzeugs WO1999005004A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11509147A JP2001501315A (ja) 1997-07-25 1998-03-13 車両の慣性状態を求める方法および装置
EP98923999A EP0928258B1 (de) 1997-07-25 1998-03-13 Verfahren und anordnung zum ermitteln der inertiallage eines fahrzeugs
US09/147,905 US6259999B1 (en) 1997-07-25 1998-03-13 Method and device for determining a vehicle inertial position
DE59803186T DE59803186D1 (de) 1997-07-25 1998-03-13 Verfahren und anordnung zum ermitteln der inertiallage eines fahrzeugs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19732081A DE19732081A1 (de) 1997-07-25 1997-07-25 Verfahren und Anordnung zum Ermitteln der Inertiallage eines Fahrzeugs
DE19732081.3 1997-07-25

Publications (1)

Publication Number Publication Date
WO1999005004A1 true WO1999005004A1 (de) 1999-02-04

Family

ID=7836907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/000739 WO1999005004A1 (de) 1997-07-25 1998-03-13 Verfahren und anordnung zum ermitteln der inertiallage eines fahrzeugs

Country Status (5)

Country Link
US (1) US6259999B1 (de)
EP (1) EP0928258B1 (de)
JP (1) JP2001501315A (de)
DE (2) DE19732081A1 (de)
WO (1) WO1999005004A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2357148A (en) * 1999-12-07 2001-06-13 Rover Group Determining a spatial position using an array of single axis transducers
EP1114755A2 (de) * 2000-01-08 2001-07-11 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Kalibrierung eines Überrollsensors
WO2003064216A1 (de) * 2002-02-01 2003-08-07 Robert Bosch Gmbh Vorrichtung zur überrollerkennung

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080147280A1 (en) * 1995-06-07 2008-06-19 Automotive Technologies International, Inc. Method and apparatus for sensing a rollover
US6301536B1 (en) * 1999-11-18 2001-10-09 Visteon Global Technologies, Inc. Method and apparatus for detecting a vehicle rollover
DE10025260B4 (de) 2000-05-22 2004-11-25 Conti Temic Microelectronic Gmbh Verfahren zur Detektion von Überrollvorgängen bei Kraftfahrzeugen mit Sicherheitseinrichtungen
DE10153015A1 (de) * 2001-10-26 2003-05-08 Volkswagen Ag Auslösevorrichtung zum Aktivieren einer Sicherheitseinrichtung eines Fahrzeugs und Verfahren zum Betrieb der Auslösevorrichtung
US8768573B2 (en) 2003-08-11 2014-07-01 American Vehicular Sciences, LLC Technique for ensuring safe travel of a vehicle or safety of an occupant therein
DE10361281A1 (de) * 2003-12-24 2005-07-28 Daimlerchrysler Ag Verfahren zur Erkennung kritischer Fahrsituationen eines Fahrzeugs
DE102004008602A1 (de) * 2004-02-21 2005-09-08 Conti Temic Microelectronic Gmbh Verfahren und Vorrichtung zum Auslösen eines Insassenschutzsystems eines Fahrzeugs
DE102004029064B3 (de) 2004-06-16 2006-03-30 Siemens Ag Verfahren und Vorrichtung zum Erkennen einer Überschlagssituation bei einem Kraftfahrzeug
DE102004038000A1 (de) * 2004-08-04 2006-03-16 Conti Temic Microelectronic Gmbh Verfahren zur Bestimmung des Neigungswinkels eines Fahrzeuges und Verwendung desselben für die Erzeugung eines Auslösesignales für eine Sicherheitseinrichtung bei einem Überrollvorgang
JPWO2007020702A1 (ja) * 2005-08-18 2009-02-19 株式会社シーアンドエヌ センサ装置
JP4983132B2 (ja) * 2006-07-26 2012-07-25 株式会社デンソー 車両の方向特定方法,および,車両方向特定装置。
DE102006036818A1 (de) * 2006-08-07 2008-02-14 Siemens Ag Verfahren und Vorrichtung zum Ermitteln einer Orientierung eines Kraftfahrzeugs
KR100834723B1 (ko) * 2007-05-14 2008-06-05 팅크웨어(주) 센서를 이용한 수직적 주행상태 판단 방법 및 장치
JP2009002744A (ja) * 2007-06-20 2009-01-08 Murata Mach Ltd 傾斜計
US7463953B1 (en) 2007-06-22 2008-12-09 Volkswagen Ag Method for determining a tilt angle of a vehicle
DE102008042006B4 (de) 2008-09-12 2019-06-06 Robert Bosch Gmbh Verfahren und Steuergerät zur Aktivierung zumindest eines Sicherheitsmittels eines Fahrzeugs
JP6094026B2 (ja) * 2011-03-02 2017-03-15 セイコーエプソン株式会社 姿勢判定方法、位置算出方法及び姿勢判定装置
WO2015200846A2 (en) 2014-06-26 2015-12-30 Lumedyne Technologies Incorporated Systems and methods for extracting system parameters from nonlinear periodic signals from sensors
TWI676029B (zh) 2015-05-20 2019-11-01 美商路梅戴尼科技公司 用於決定慣性參數之方法及系統
DE102016103659A1 (de) * 2016-03-01 2017-09-07 Prüftechnik Dieter Busch AG Vorrichtung und Verfahren zur Bestimmung einer räumlichen Orientierung
US10234477B2 (en) 2016-07-27 2019-03-19 Google Llc Composite vibratory in-plane accelerometer
FR3063959B1 (fr) * 2017-03-20 2021-05-21 Valeo Comfort & Driving Assistance Dispositif de detection de basculement d'un vehicule et procede associe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0430813A1 (de) * 1989-12-01 1991-06-05 Regie Nationale Des Usines Renault S.A. Sicherheitsvorrichtung für Kraftfahrzeuge
EP0709256A1 (de) * 1994-10-31 1996-05-01 Daewoo Electronics Co., Ltd Verfahren zum Erfassen einer Kollision mittels dreier gerichteter Beschleunigungssignale und Vorrichtung zur Ausführung des Verfahrens
EP0709257A1 (de) * 1994-10-31 1996-05-01 Daewoo Electronics Co., Ltd Verfahren und Steuerungsvorrichtung für das Entfalten des Airbags eines Kraftfahrzeugs
DE19609176A1 (de) * 1996-03-11 1997-09-18 Bosch Gmbh Robert Verfahren und Anordnung zum Erkennen eines Fahrzeug-Überschlags
DE19609717A1 (de) 1996-03-13 1997-09-18 Bosch Gmbh Robert Anordnung zum Erkennen von Überrollvorgängen bei Fahrzeugen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36122E (en) * 1989-02-18 1999-03-02 Robert Bosch Gmbh Method for controlling the release of passenger restraint systems
JP2973902B2 (ja) * 1995-11-06 1999-11-08 トヨタ自動車株式会社 乗員保護装置の起動制御装置
WO1997028037A1 (de) * 1996-02-03 1997-08-07 Itt Manufacturing Enterprises, Inc. Verfahren zur bestimmung von grossen, die das fahrverhalten eines fahrzeugs beschreiben
KR20000022153A (ko) * 1996-06-24 2000-04-25 드레이어 론니 알 차량 안전 장치용 콘트롤러
US6023664A (en) * 1996-10-16 2000-02-08 Automotive Systems Laboratory, Inc. Vehicle crash sensing system
DE19744085A1 (de) * 1997-10-06 1999-04-08 Bosch Gmbh Robert Anordnung zum Erzeugen eines Auslösesignals für eine Sicherheitseinrichtung in einem Fahrzeug
US5928300A (en) * 1997-10-30 1999-07-27 Simula Inc. Three-axis aircraft crash sensing system
US6002975A (en) * 1998-02-06 1999-12-14 Delco Electronics Corporation Vehicle rollover sensing
US6076028A (en) * 1998-09-29 2000-06-13 Veridian Engineering, Inc. Method and apparatus for automatic vehicle event detection, characterization and reporting
US6170594B1 (en) * 1999-06-01 2001-01-09 Micky G. Gilbert Method and apparatus for reducing vehicle rollover

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0430813A1 (de) * 1989-12-01 1991-06-05 Regie Nationale Des Usines Renault S.A. Sicherheitsvorrichtung für Kraftfahrzeuge
EP0709256A1 (de) * 1994-10-31 1996-05-01 Daewoo Electronics Co., Ltd Verfahren zum Erfassen einer Kollision mittels dreier gerichteter Beschleunigungssignale und Vorrichtung zur Ausführung des Verfahrens
EP0709257A1 (de) * 1994-10-31 1996-05-01 Daewoo Electronics Co., Ltd Verfahren und Steuerungsvorrichtung für das Entfalten des Airbags eines Kraftfahrzeugs
DE19609176A1 (de) * 1996-03-11 1997-09-18 Bosch Gmbh Robert Verfahren und Anordnung zum Erkennen eines Fahrzeug-Überschlags
DE19609717A1 (de) 1996-03-13 1997-09-18 Bosch Gmbh Robert Anordnung zum Erkennen von Überrollvorgängen bei Fahrzeugen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2357148A (en) * 1999-12-07 2001-06-13 Rover Group Determining a spatial position using an array of single axis transducers
EP1114755A2 (de) * 2000-01-08 2001-07-11 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Kalibrierung eines Überrollsensors
EP1114755A3 (de) * 2000-01-08 2002-07-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Kalibrierung eines Überrollsensors
US6691549B2 (en) 2000-01-08 2004-02-17 Bayerische Motoren Werke Aktiengesellschaft Method of calibrating a rollover sensor
WO2003064216A1 (de) * 2002-02-01 2003-08-07 Robert Bosch Gmbh Vorrichtung zur überrollerkennung
US7260460B2 (en) 2002-02-01 2007-08-21 Robert Bosch Gmbh Device for identifying the risk of a rollover

Also Published As

Publication number Publication date
JP2001501315A (ja) 2001-01-30
EP0928258A1 (de) 1999-07-14
DE59803186D1 (de) 2002-04-04
US6259999B1 (en) 2001-07-10
DE19732081A1 (de) 1999-01-28
EP0928258B1 (de) 2002-02-27

Similar Documents

Publication Publication Date Title
EP0928258B1 (de) Verfahren und anordnung zum ermitteln der inertiallage eines fahrzeugs
DE60127923T2 (de) Vorrichtung und Verfahren zur Erkennung eines Überschlages von Kraftfahrzeugen
EP0883522B1 (de) Verfahren und anordnung zum erkennen eines fahrzeug-überschlags
EP1157898B1 (de) Verfahren zur Detektion von Überrollvorgängen bei Kraftfahrzeugen mit Sicherheitseinrichtungen
DE60205328T2 (de) Adaptive Vorrichtung und Methode zur Überschlagserkennung
EP1237760B1 (de) Verfahren und vorrichtung zum bestimmen des absolutdrehwinkels eines sich um eine etwa waagerechte drehachse drehenden gegenstandes
EP1021315B1 (de) Anordnung zum erzeugen eines auslösesignals für eine sicherheitseinrichtung in einem fahrzeug bei einem überrollvorgang
EP1276640B1 (de) Anordnung zur plausibilisierung einer überrollentscheidung
EP0261152B1 (de) Vorrichtung zum selbsttätigen auslösen von insassenschutzvorrichtungen bei einem unfall
EP1089898B1 (de) Verfahren zum ermitteln einer zu einem überrollvorgang führenden kritischen winkellage eines fahrzeugs
EP1157899B1 (de) Verfahren und Sicherheitssystem zur Erkennung eines Überschlages und zur Auslösung einer Sicherheitseinrichtung in einem Kraftfahrzeug
EP1054794A1 (de) Verfahren und vorrichtung zum auslösen eines rückhaltesystems
EP0883523A1 (de) Anordnung zum erkennen von überrollvorgängen bei fahrzeugen
EP1528992B1 (de) Verfahren zur erkennung eines überrollvorgangs
EP0942855B1 (de) Verfahren und anordnung zum ermitteln der inertiallage eines fahrzeugs
DE102006045304A1 (de) Verfahren und Vorrichtung zur Schwerpunkthöhenschätzung eines Fahrzeugs
WO2003064216A1 (de) Vorrichtung zur überrollerkennung
DE10239406A1 (de) Vorrichtung zur Erkennung eines Fahrzeugüberschlags
DE102008043475B4 (de) Verfahren zum Steuern einer Einrichtung und Vorrichtung zum Steuern der Einrichtung
EP1758769B1 (de) Verfahren und vorrichtung zum aktivieren von zusatzfunktionen bei einem überrollvorgang eines fahrzeugs
DE102007055639A1 (de) Vorrichtung zur Ermittlung eines aktuellen Fahrzeugzustands
DE102016222490A1 (de) Verfahren und Vorrichtung zum Erkennen eines Zusammenstoßes und dessen Abgrenzung zu regulärem Fahrbetrieb
EP1700750B1 (de) Verfahren zur Steuerung einer Fahrzeugsicherheitseinrichtung
DE10325548B4 (de) Vorrichtung und Verfahren zum Messen von Bewegungsgrößen eines Kraftfahrzeugs
DE102020205580A1 (de) Verfahren zur Ermittlung eines Typs einer Kollision eines Fahrzeugs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1998923999

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09147905

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1999 509147

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998923999

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998923999

Country of ref document: EP