WO1999003810A1 - Hydroformylierung mit unmodifizierten rhodiumkatalysatoren in überkritischem kohlendioxid - Google Patents

Hydroformylierung mit unmodifizierten rhodiumkatalysatoren in überkritischem kohlendioxid Download PDF

Info

Publication number
WO1999003810A1
WO1999003810A1 PCT/EP1998/004319 EP9804319W WO9903810A1 WO 1999003810 A1 WO1999003810 A1 WO 1999003810A1 EP 9804319 W EP9804319 W EP 9804319W WO 9903810 A1 WO9903810 A1 WO 9903810A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroformylation
catalyst
substrates
compounds
products
Prior art date
Application number
PCT/EP1998/004319
Other languages
English (en)
French (fr)
Inventor
Walter Leitner
Daniel Koch
Original Assignee
Studiengesellschaft Kohle Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle Mbh filed Critical Studiengesellschaft Kohle Mbh
Priority to EP98942539A priority Critical patent/EP0998442A1/de
Priority to US09/462,855 priority patent/US6388141B1/en
Priority to CA002297455A priority patent/CA2297455A1/en
Priority to JP2000503043A priority patent/JP2001510176A/ja
Publication of WO1999003810A1 publication Critical patent/WO1999003810A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/14Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by doubly-bound oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/20Carbonyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2234Beta-dicarbonyl ligands, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/293Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0202Polynuclearity
    • B01J2531/0205Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/90Catalytic systems characterized by the solvent or solvent system used
    • B01J2531/92Supercritical solvents
    • B01J2531/922Carbon dioxide (scCO2)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • SCCO2 supercritical state
  • the invention relates to methods of this type for the production of products which contain substantial proportions of branched / -oxo products.
  • the invention further relates to processes of this type for the hydroformylation of substrates which do not correspond to the general formula C2H2 n .
  • the invention relates to the processes mentioned, in which the product and catalyst are separated off using the special solution properties of SCCO2.
  • n H2 n 2.3
  • the n products in particular are of economic importance.
  • the branched / -oxo products are also of considerable importance and are discussed in pure form or as mixtures with the n-oxo products, for example as starting materials for the production of plasticizers.
  • vitamin A described in US 3,840,589, DE 2,03,078 and US 4,124,619, which involves the formation of a / -aldehyde by hydroformylation of substrates with allyl ester units.
  • the formation of branched products in the hydroformylation of vinyl aromatics (e.g. styrene) is discussed as a possible route to ⁇ -arylcarboxylic acids, which are used, among other things, as analgesics and anti-rheumatics (e.g. Ibuprofen®, Naproxen®, Suprofen®).
  • the catalysts for the hydroformylation can be divided into so-called “unmodified” and “modified” catalysts, which are preferred according to the prior art in certain processes or for certain substrates (CD Frohning, CW Kohlpaintner, loc. Cit., Pp. 33ff).
  • Modified systems are understood to mean catalysts in which the catalytically active metal component contains, in addition to H and CO, other ligands - generally phosphorus compounds - to increase the service life and to control activity or selectivity.
  • Unmodified catalysts are all other metal compounds that can form catalytically active hydridocarbonyl compounds under the reaction conditions. So far, catalysts based on the metals cobalt have been of technical importance (Co) and rhodium (Rh) obtained. The separation of the products and the recovery of the catalysts is an important factor in the technical implementation of hydroformylation reactions.
  • SCCO2 has the property of being completely miscible with many gaseous reaction partners within wide limits, which basically avoids the limitation of the reaction rate, which is not uncommon in gas / liquid phase reactions, due to diffusion processes with a suitable choice of the outer P Arameter in favorable cases, the separation of main or by-products from the reaction mixture possible.
  • An overview of catalytic reactions in SCCO2 can be found in Science 1995, 269, 1065.
  • Rhodium-catalyzed hydroformylations in SCCO2 are expediently carried out in such a way that the catalyst or catalyst precursor and the substrate are placed in a high-pressure reactor and then H2 and CO are injected either as a mixture or in succession at room temperature to the desired partial pressure.
  • the amount of CO2 required to achieve the desired density of the reaction medium is then introduced into the reactor.
  • the mixture is then heated to the desired reaction temperature with stirring. After this has been reached, the stirrer can be switched off due to the rapid diffusion in the homogeneous supercritical phase.
  • the reactor is depressurized, the products using suitable known processes (K. Zosel, Angew. Chem.
  • catalysts or catalyst precursors for the formation of unmodified Rh systems in SCCO2 salts, complexes or cluster compounds of Use rhodium in any oxidation state.
  • Compounds 1-8 are preferred representatives of such catalysts or catalyst precursors, without the structures shown being intended to imply any restriction on the choice of catalyst.
  • Particularly preferred catalysts are complex compounds of rhodium 4-8 which contain carbonyl ligands (CO) or ligands which are easily exchanged for CO under the reaction conditions.
  • the amount of catalyst can be freely selected over a wide range depending on the reaction conditions and the reactivity of the substrates. Typical amounts of catalyst, based on the amount of substrate used, are 0.001-10 mol%, preferably 0.01-1 mol%, particularly preferably 0.05-0.5 mol%.
  • R! -R5 are independently selectable radicals from hydrogen, Cj-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, aryl, -C -C 2 o perfluoroalkyl C ⁇ -C 2 o carboxylate, C1 -C20 alkoxy, C2-C20 Alkenyloxy, C2-C20 alkynyloxy, aryloxy, C2-C20 alkoxycarbonyl, C1-C20 alkylthio, arylthio, C1-C20 alkylsilyL arylsilyl, C1-C20 alkyloxysilyl or aryloxysilyl; each optionally substituted with Cj-C ⁇ alkyl, Cj-Ci2 perfluoroalkyl, halogen, C1-C5 alkoxy, C1-C12 carboxylate, C2-C12 alkoxycarbonyl or aryl.
  • L ⁇ -L 4 can be linked together in cyclic compounds.
  • X, Y are simply negatively charged anions or ligands which can be selected independently of one another from the group R “, F “ , Cl “ , Br “ , I “ , RO “ , RCO2 ",
  • the amount of substrate used is not critical as long as complete solubility is achieved in the supercritical medium. Based on the reactor volume, typical amounts of substrate are 0.05-5 mol / 1, preferably 0.1-2 mol / 1.
  • R ⁇ -R ⁇ are independently selectable residues from hydrogen, C1 -C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, aryl, C1-C20 perfluoroalkyl C! -C 2 o carboxylate, C1-C20 alkoxy, C2-C20 alkenyloxy , C2-C20 alkynyloxy, aryloxy, C2-C20 alkoxycarbonyl, C1 -C20 alkylthio, arylthio, C1-C20 alkylsilyl, arylsilyl, C1 -C20 alkyloxysilyl, aryloxysilyl, C1-C20 alkylsilyloxy, C1 -C20 alkyloxysilyloxy, C1-C20 alkylsulfonyl, C1 -C20 alkylsufinyl or halogen; each optionally substituted with further radicals of the same definition
  • the total pressure at reaction temperature is determined by the amount of CO2 at a given H2 / CO pressure and reactor volume.
  • Reactions according to the present invention can also be carried out in the presence of one or more additives, which can result in, for example, easier handling of the substrates or catalysts, or an improvement in the solution properties of the reaction medium, or an increase in the reaction rate or an improvement in the yield.
  • additives can, for example, be selected independently from: water, Amines, perfluorinated compounds, organic solvents (e.g. dichloromethane, trichloromethane, carbon tetrachloride, 1,2-dichloroethane,
  • the catalyst and the substrate in a spatially separate manner.
  • the substrate or the catalyst can be introduced into the reactor in a separate, open-topped container.
  • a component can also be placed in a second pressure vessel, which is connected to the reactor by a valve.
  • the catalyst in glass ampoules which can burst under the reaction conditions.
  • Another alternative is the continuous or discontinuous metering of a component by means of a pump system.
  • Example 1 describes the typical procedure for hydroformylation in SCCO2 with unmodified rhodium catalysts and illustrates the increased reaction rate and the unexpected change in selectivity when using SCCO2 compared to a conventional solvent.
  • Table 1 describe the hydroformylation of some prototypical compounds in SCCO2 under typical conditions, but are not intended to limit the scope, scope, or advantages of the present invention in any way.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Die Vorliegende Erfindung betrifft Verfahren zur Herstellung von Oxo-Produkten durch Hydroformylierung von Substraten mit C=C-Doppelbindungen unter Verwendung unmodifizierter Rhodiumkatalysatoren in einem Reaktionsgemisch bestehend im wesentlichen aus den Substraten, dem Katalysator und Kohlendioxid im überkritischen Zustand (scCO2). Insbesondere betrifft die Erfindung Verfahren dieser Art zur Herstellung von Produkten, die wesentliche Anteile an verzweigten i-Oxo-Produkten enthalten. Ferner betrifft die Erfindung Verfahren dieser Art zur Hydroformylierung von Substraten, die nicht der allgemeinen Formel C2H2n entsprechen. Weiterhin betrifft die Erfindung genannte Verfahren, bei denen die Abtrennung von Produkt und Katalysator unter Ausnutzung der speziellen Lösungseigenschaften von scCO2 erfolgt.

Description

Hydroformylierung mit unmodifizierten Rhodiumkatalysatoren in überkritischem Kohlendioxid
Die vorliegende Erfindung betrifft Verfahren zur Herstellung von Oxo-Produkten durch Hydroformylierung von Substraten mit C=C-Doppelbindungen unter Verwendung unmodifϊzierter Rhodiumkatalysatoren in einem Reaktionsgemisch bestehend im wesentlichen aus den Substraten, dem Katalysator und Kohlendioxid im überkritischen Zustand (SCCO2). Insbesondere betrifft die Erfindung Verfahren dieser Art zur Herstellung von Produkten, die wesentliche Anteile an verzweigten /-Oxo-Produkten enthalten. Ferner betrifft die Erfindung Verfahren dieser Art zur Hydroformylierung von Substraten, die nicht der allgemeinen Formel C2H2n entsprechen. Weiterhin betrifft die Erfindung genannte Verfahren, bei denen die Abtrennung von Produkt und Katalysator unter Ausnutzung der speziellen Lösungseigenschaften von SCCO2 erfolgt.
Die übergangsmetallkatalysierte Reaktion von Substraten, die C=C- Doppelbindungen enthalten, mit einem Gemisch aus Wasserstoff (H2) und Kohlenmonoxid (CO) wird als Hydroformylierung oder Oxo-Reaktion bezeichnet und ist eine technisch bedeutende Methode zur Herstellung von Aldehyden und Alkoholen (Oxo-Produkten). Durch katalytische Hydroformylierung werden weltweit mehr als 6 Mio. Jahrestonnen Oxo-Produkte hergestellt. Diese Produkte finden Anwendung als Weichmacher und Modifikatoren für PVC uhd andere Polymere, in der Waschmittelproduktion, sowie als Feinchemikalien und als Intermediate für die Produktion von Agrochemikalien, Lebensrnittelzusatzstoffen und Pharmazeutika (C. D. Frohning, C. W. Kohlpaintner, in: Applied Homogeneous Cαtαlysis with Orgαnometαllic Compounds (Hrsg.: B. Cornils, W. A. Herrmann), VCH, Weinheim, 1996, Vol. 1, Kap. 2.1.1). In Abhängigkeit von den Reaktionsparametern, von den Katalysatoren und vom Substitutionsmuster an der C=C-Doppelbindung des Substrats entstehen bei der Hydroformylierung mehr oder weniger selektiv lineare (normal, n-) oder verzweigte (iso, /-) Oxo-Produkte. Bei den Oxo-Produkten einfacher, kurzkettiger Olefϊne der allgemeinen Formel CnH2n (n = 2,3) haben vor allem die n-Produkte wirtschaftliche Bedeutung. Bei lankettigen Olefinen CnH2n (n > 4) besitzen auch die verzweigten /-Oxo-Produkte erhebliche Bedeutung und werden in reiner Form oder als Gemische mit den n-Oxo-Produkten beispielsweise als Ausgangsstoffe für die Herstellung von Weichmachern diskutiert. Besondere Bedeutung haben die /- Oxo-Produkten vor allem auch bei Substraten mit ranktionalisierten C=C- Doppelbindungen, also bei Substraten, die nicht der allgemeinen Formel CnH2n gehorchen. Insbesondere sei an dieser Stelle auf die in US 3.840.589, DE 2.03.078 und US 4.124.619 beschriebene technische Synthese von Vitamin A verwiesen, welche die Bildung eines /-Aldehyds durch Hydroformylierung von Substraten mit Allylestereinheiten beinhaltet. Die Bildung verzweigter Produkte in der Hydroformylierung von Vinylaromaten (z. B. Styrol) wird als mögliche Route zu α-Arylcarbonsäuren diskutiert, die u. a. als Analgetika und Antirheumatika (z.B. Ibuprofen®, Naproxen®, Suprofen®) Einsatz finden.
Die Katalysatoren für die Hydroformylierung lassen sich in sogenannte „unmodifizierte" und „modifizierte" Katalysatoren einteilen, welche nach dem Stand der Technik jeweils in bestimmten Verfahren oder für bestimmte Substrate bevorzugt werden (C. D. Frohning, C. W. Kohlpaintner, a.a.O., S. 33ff). Unter modifizierten Systemen versteht man dabei Katalysatoren, bei denen die katalytisch aktive Metallkomponente neben H und CO weitere Liganden - in der Regel Phosphorverbindungen - zur Erhöhung der Standzeit und zur Steuerung von Aktivität oder Selektivität enthält. Als unmodifizierte Katalysatoren bezeichnet man alle anderen Metallverbindungen, die unter den Reaktionsbedingungen katalytisch aktive Hydrido-Carbonyl-Verbindungen bilden können. Technische Bedeutung haben bislang vor allem Katalysatoren auf Basis der Metalle Cobalt (Co) und Rhodium (Rh) erlangt. Die Abtrennung der Produkte und die Rückgewinnung der Katalysatoren stellt einen wichtigen Faktor bei der technischen Umsetzung von Hydroformylierungs-Reaktionen dar.
Überkritisches („fluides") Kohlendioxid (SCCO2), d. h. komprimiertes Kohlendioxid bei Temperaturen und Drücken jenseits des kritischen Punkts (Tc = 31.0°C, pc = 73.75 atm, dc = 0.467 g mH), wird als Reaktionsmedium für die Hydroformylierung in US 5.198.589 und in der deutschen Anmeldung DE A 197 02 025.9 (23.1.97) eingesetzt. Kohlendioxid im überkritischen Zustand ist ein interessantes Lösungsmittel für die Durchführung katalytischer Reaktionen, da es im Gegensatz zu konventionellen organischen Lösungsmitteln toxikologisch und ökologisch unbedenklich ist. Weiterhin besitzt SCCO2 die Eigenschaft, mit vielen gasförmigen Reaktionspartnern in weiten Grenzen vollständig mischbar zu sein, wodurch die bei Gas/Flüssigphasen-Reaktionen nicht selten auftretende Limitierung der Reaktionsgeschwindigkeit durch Diffusionsprozesse grundsätzlich vermieden wird. Aufgrund der mit Druck und Temperatur variablen Lösungseigenschaften von SCCO2 ist ferner bei geeigneter Wahl der äußeren Parameter in günstigen Fällen die Abtrennung von Haupt- oder Nebenprodukten aus der Reaktionsmischung möglich. Ein Überblick über katalytische Reaktionen in SCCO2 findet sich in Science 1995, 269, 1065.
In DE A 197 02 025.9 werden modifizierte Rhodium-Katalysatoren für die Hydroformylierung in SCCO2 eingesetzt, wobei speziell entwickelte Phosphorverbindungen eine hohe Löslichkeit der Katalysatoren in SCCO2 sicherstellen. Damit werden die geschilderten vorteilhaften Eigenschaften von SCCO2 mit modifizierten Rhodium-Katalysatoren voll nutzbar, doch die Herstellung der Phosphor-Liganden stellt einen zusätzlichen Kostenfaktor für mögliche technische Anwendungen dar. In US 5.198.589 werden unmodifizierte Cobalt-Katalysatoren für die Hydroformylierung einfacher Olefine CnH2n m SCCO2 eingesetzt. Im Vergleich zu konventionellen Lösungsmitteln werden dabei ähnliche Reaktionsgeschwindigkeiten bei deutlich höheren Selektivitäten zugunsten der linearen n-Oxo-Produkte erhalten. Die Selektivitätserhöhung zugunsten der n- Oxo-Produkte wird dabei auf die Verwendung von SCCO2 als Reaktionsmedium zurückgeführt.
Wir finden nun, daß unmodifizierte Rhodium-Katalysatoren in effizienter Weise für die Hydroformylierung in SCCO2 eingesetzt werden können, wobei überraschenderweise nicht nur deutlich höhere Reaktionsgeschwindigkeiten, sondern auch deutlich höhere Selektivitäten zugunsten der verzweigten /-Oxo- Produkte erhalten werden als in konventionellen Lösungsmitteln.
Rhodiumkatalysierte Hydroformylierungen in SCCO2 werden zweckmäßig so durchgeführt, daß der Katalysator bzw. Katalysatorvorläufer und das Substrat in einem Hochdruckreaktor vorgelegt werden und dann H2 und CO entweder als Mischung oder nacheinander bei Raumtemperatur bis zum gewünschten Partialdruck aufgepreßt werden. Anschließend wird die zum Erreichen der gewünschten Dichte des Reaktionsmediums erforderliche Menge CO2 in den Reaktor gefüllt. Dann wird unter Rühren auf die gewünschte Reaktionstemperatur aufgeheizt. Nachdem diese erreicht worden ist, kann der Rührer aufgrund der raschen Diffusion in der homogenen überkritischen Phase abgeschaltet werden. Nach der gewünschten Reaktionszeit wird der Reaktor entspannt, wobei die Produkte mit Hilfe geeigneter bekannter Verfahren (K. Zosel, Angew. Chem. 1978, 90, 748; M.A. McHugh, V. J. Krukonis, Supercritical Fluid Extraction: Principle and Practice, Butterworths, Stoneham, 1994) aus der überkritischen Phase isoliert werden können. Aufgrund der deutlich unterschiedlichen Löslichkeiten der Metallspezies und der Produkte lassen sich hierbei die Katalysatoren von den Produkten in einfacher Weise abtrennen und wiedergewinnen.
Als Katalysatoren oder Katalysatorvorläufer zur Bildung unmodüϊzierter Rh- Systeme in SCCO2 lassen sich Salze, Komplexe oder Clusterverbindungen des Rhodiums in beliebiger Oxidationsstufe einsetzen. Verbindungen 1-8 sind bevorzugte Vertreter solcher Katalysatoren oder Katalysatorvorläufer, ohne daß durch die gezeigten Strukturen eine Beschränkung der Katalysatorwahl impliziert werden soll. Besonders bevorzugte Katalysatoren sind Komplexverbindungen des Rhodiums 4-8, die Carbonyl-Liganden (CO) enthalten oder Liganden, die leicht unter den Reaktionsbedingungen gegen CO ausgetauscht werden. Die Katalysatormenge läßt sich in Abhängigkeit von den Reaktionsbedingungen und der Reaktivität der Substrate in weiten Bereichen frei wählen. Typische Katalysatormengen bezogen auf die eingesetzte Substratmenge hegen bei 0.001-10 Mol-%, bevorzugt bei 0.01-1 Mol-%, besonders bevorzugt bei 0.05-0.5 Mol-%.
RhCI3 x nH20 Rh(acac)3 [Rh2(OAc)4] [Rh6(CC 3)16] (acac = Acetylacetonat) (Ac = Acetat)
1 2 3 4
Figure imgf000007_0001
5 6 7 8
R!-R5 sind unabhängig voneinander wählbare Reste aus Wasserstoff, Cj-C20 Alkyl, C2-C20 Alkenyl, C2-C20 Alkinyl, Aryl, Cι -C2o Perfluoralkyl Cι-C2o Carboxylat, C1 -C20 Alkoxy, C2-C20 Alkenyloxy, C2-C20 Alkinyloxy, Aryloxy, C2-C20 Alkoxycarbonyl, C1-C20 Alkylthio, Arylthio, C1-C20 AlkylsilyL Arylsilyl, C1-C20 Alkyloxysilyl oder Aryloxysilyl; jeweils wahlweise substituiert mit Cj-C^ Alkyl, Cj-Ci2 Perfluoralkyl, Halogen, C1-C5 Alkoxy, C1-C12 Carboxylat, C2- C12 Alkoxycarbonyl oder Aryl. Die Reste R^-R^ können in cyclischen Verbindungen miteinander verknüpft vorliegen.
LI-L^ sind Neutralliganden, die unabhängig voneinander wählbar sind aus der Gruppe CO, R1R2C=CR3R4, RiC≡CR2, NR^R3, wobei R!-R4 der genannten Definition genügen. L^-L4 können in cyclischen Verbindungen miteinander verknüpft sein.
X, Y sind einfach negativ geladene Anionen oder Liganden, die unabhängig voneinander wählbar sind aus der Gruppe R", F", Cl", Br", I", RO", RCO2",
/7-C6H4SO3", PFg", BF4", BR4", wobei R der für R^-R^ genannten Definition genügt.
Als mögliche Substrate für die rhodiumkatalysierte Hydroformylierung in SCCO2 kommen Verbindungen in Frage, die mindestens eine C=C-Doppelbindung enthalten und aufgrund ihres Substitutionsmusters zum einen die Hydroformylierungsreaktion erlauben, zum anderen eine ausreichende Lösüchkeit in SCCO2 aufweisen, so daß homogene Lösungen während der Reaktion erzielt werden. Bevorzugt sind Substrate mit einer C=C-Doppelbindung der allgemeinen Formel 9. Auch Mischungen solcher Verbindungen können als Substrate verwendet werden. Die eingesetzte Substratmenge ist nicht kritisch, solange eine vollständige Löslichkeit im überkritischen Medium erzielt wird. Bezogen auf das Reaktorvolumen liegen typische Substratmengen bei 0.05-5 mol/1, bevorzugt bei 0.1-2 mol/1.
Figure imgf000008_0001
9
RÖ-R^ sind unabhängig voneinander wählbare Reste aus Wasserstoff, C1 -C20 Alkyl, C2-C20 Alkenyl, C2-C20 Alkinyl, Aryl, C1-C20 Perfluoralkyl C!-C2o Carboxylat, C1-C20 Alkoxy, C2-C20 Alkenyloxy, C2-C20 Alkinyloxy, Aryloxy, C2-C20 Alkoxycarbonyl, C1 -C20 Alkylthio, Arylthio, C1-C20 Alkylsilyl, Arylsilyl, C1 -C20 Alkyloxysilyl, Aryloxysilyl, C1-C20 Alkylsilyloxy, C1 -C20 Alkyloxysilyloxy, C1-C20 Alkylsulfonyl, C1-C20 Alkylsufinyl oder Halogen; jeweils wahlweise substituiert mit weiteren Resten der gleichen Definition wie R^- R Die Reste R"-R9 können in cyclischen Verbindungen miteinander verknüpft vorliegen.
Der Partialdruck von H2 und CO kann in weiten Grenzen variiert werden. Typische Drücke bei Raumtemperatur liegen zwischen 0.1 bar und 100 bar für jeweils H2 und CO, bevorzugt zwischen jeweils 1 bar und 30 bar. Der Einfluß des H2 und CO Partialdrucks auf Reaktionsgeschwindigkeit und Selektivität ist weitgehend mit den in konventionellen Lösungsmitteln gefundenen Trends (C. D. Frohning, C. W. Kohlpaintner, a.a.O. S. 55ff) identisch. Ähnliches gilt für die Reaktionstemperatur, deren untere Grenze durch die kritische Temperatur von CO2 (7, C = 31°C) bestimmt wird. Typische Reaktionstemperaturen für die Hydroformylierung mit unmodifizierten Rhodiumkatalysatoren in SCCO2 liegen zwischen 31°C und 150°C, bevorzugt zwischen 35°C und 100°C. Der bei Reaktionstemperatur vorliegende Gesamtdruck wird bei gegebenem H2/CO-Druck und Reaktorvolumen durch die Menge an CO2 bestimmt. Die Mindestmenge ist durch die kritische Dichte von CO2 (dc = 0.467 g ml" 1) vorgegeben, die obere Grenze richtet sich nach dem maximal zulässigen Prüfdruck der verwendeten Reaktoren. Für Standard- V2A-Hochdruckreaktoren mit Sichtfenstern ergibt sich ein typischer Bereich für die eingesetzte CO2 Menge bezogen auf das Reaktorvolumen von 0.46 g mH bis 0.90 g ml" , bevorzugt von 0.5 g mH bis 0.75 g ml-1.
Reaktionen gemäß der vorliegenden Erfindung können auch in Gegenwart von einem ödere mehrerer Additiva durchgeführt werden, wodurch zum Beipiel eine leichtere Handhabung der Substrate oder Katalysatoren, oder eine Verbesserung der Lösungseigenschaften des Reaktionsmediums, oder eine Erhöhung der Reaktionsgeschwindigkeit oder eine Verbesserung der Ausbeute resultieren kann. Solche Additiva können beispielsweise unabhängig gewählt werden aus: Wasser, Amine, perfluorierte Verbindungen, organische Lösungsmittel (z. B. Dichlormethan, Trichlormethan, Tetrachlormethan, 1,2-Dichlorethan,
Trichlorethen, Benzol, Toluol, Xylol, Cumol, Hexan, Cyclohexan, Halogenbenzole, Tetrahydrofuran, tert-Butylmethylether, Diethylether, Dimethoxyethan, Dimethylformamid, Acetessigester, Aceton, Dimethylcarbonat, Alkohole).
Um sicherzustellen, daß die Reaktion erst nach Erreichen des überkritischen Zustands startet, kann es je nach Reaktivität des Substrats zweckmäßig sein, den Katalysator und das Substrat räumlich getrennt vorzulegen. So kann beispielsweise entweder das Substrat oder der Katalysator in einem separaten, oben offenen Vorratsbehälter in den Reaktor eingebracht werden. Eine Komponente kann auch in einem zweiten Druckbehälter, der durch ein Ventil mit dem Reaktor verbunden ist, vorgelegt werden. Das Vorlegen des Katalysators in Glasampullen, welche unter den Reaktionsbedingungen zum Bersten gebracht werden können, ist ebenfalls möglich. Eine weitere Alternative besteht in kontinuierlichem oder diskontinuierlichem Zudosieren einer Komponente mittels eines Pumpensystems.
Beispiel 1 beschreibt die typische Vorgehensweise bei der Hydroformylierung in SCCO2 mit unmodifizierten Rhodiumkatalysatoren und verdeutlicht die erhöhte Reaktionsgeschwindigkeit und die unerwartete Selektivitätsänderung bei der Verwendung von SCCO2 im Vergleich zu einem konventionellen Lösungsmittel. Die in Tabelle 1 zusammengefaßten Beispiele beschreiben die Hydroformylierung einiger prototypischer Verbindungen in SCCO2 unter typischen Bedingungen, sollen jedoch in keiner Weise den Umfang, die Anwendungsbreite oder Vorteile der vorliegenden Erfindung einschränken.
BEISPIEL 1: Vergleich der Hydroformylierung von 1-Octen und trans-3-Hexen mit [(cod)Rh(hfacac)] (cod = 1,5-Cycloctadien, hfacac = Hexafluoroacetyl- acetonat) als Katalysator in scCO2 und in Toluol:
2.9 mg [(cod)Rh(hfacac)] (6.9 x 10"3 mmol) und 508 mg 3-Hexen (6.04 mmol) wurden in einem mit Argon gespülten Druckreaktor ( V = 25 ml) räumlich getrennt voneinander vorgelegt. Anschließend wurde bei Raumtemperatur ein 1:1 Gasgemisch aus CO/H2 bis zu einem Druck von 45 bar aufgepreßt. Nachfolgend wurden mittels Kompressor 13.5 g CO2 in den Druckreaktor gefüllt und auf 45°C aufgeheizt, wobei sich ein Innendruck von ca. 160 bar einstellte. Nach 20 h wurde der Reaktor über eine mit Trockeneis/Aceton auf -50°C gekühlte Kühlfalle entspannt. Die Η-NMR-spektroskopische Analyse der in der Kühlfalle zurückgehaltenen Bestandteile zeigte quantitativen Umsatz von 3-Hexen und eine Zusammensetzung der Oxo-Produkte von 86% 2-Ethylpentanal und 14% 2- Methylhexanal an.
Im Vergleichsexperiment wurden 2.7 mg [(cod)Rh(hfacac)] (6.4 x 10"3 mmol) und 508 mg trans-3-Hexen (6.04 mmol) in einem mit Argon gespülten Druckreaktor (V = 50 ml) in 25 ml Toluol vorgelegt. Anschließend wurde bei Raumtemperatur ein 1 : 1 Gasgemisch aus CO/H2 bis zu einem Druck von 45 bar aufgepreßt und danach auf 45°C aufgeheizt. Die Reaktionsmischung wurde 20 h gerührt und dann nach Abkühlen das Restgas abgeblasen. Die Η-NMR-spektroskopische Analyse der Toluol-Lösung zeigte einen Umsatz von 3-Hexen von nur 23% unter hauptsächlicher Bildung von 2-Ethylpentanal.
In analoger Weise wurden zwei Experimente mit 1-Octen als Substrat durchgeführt. In SCCO2 wurde nach 20 h bei 40°C laut NMR- Analyse quantitativer Umsatz von 1-Octen erzielt. Die Zusammensetzung der Oxo-Produkte betrug 58% n-Nonanal und 42% /-Aldehyde (2-Methyloctanal, 2-Ethylheptanal und weitere interne Aldehyde). In Toluol betrug der Umsatz unter ansonsten identischen Bedingungen nur 61 %, die Oxo-Produkte bestanden aus 63% n-Nonanal und 37% 2-Methyloctanal. Tabelle 1: Rhodiumkatalysierte Hydroformylierung in SCCO2 [a]
Figure imgf000012_0001
Tabelle 1: (Fortsetzung)
Figure imgf000013_0001
[a] Alle Experimente wurden in einem mit Sichtfenster ausgestatteten Edelstahl-Hochdruckreaktor durchgeführt. Die Reaktionsmischungen waren während der Reaktion in allen Fällen homogen und gelb gefärbt; [b] Die Produktverhältnisse wurden in allen Fällen über die Intensitäten der Aldehyd-Protonen im 1H-NMR-Spektrum ermittelt; [c] cod = 1,5-Cyclooctadien; hfacac = Hexafluoroacetylacetonat; [d] Bezogen auf das Reaktorvolumen V= 25 ml; [e] Bei Raumtemperatur; [f] Mischung aus 2- Methyloctanal, 3-Ethylheptanal und weiterer interner Aldehyde:

Claims

Ansprüche:
1. Verfahren zur Herstellung von Oxo-Produkten durch Hydroformylierung von Substraten mit C=C-Doppelbindungen unter Verwendung von Rhodiumkatalysatoren in einem Reaktionsgemisch bestehend im wesentlichen aus den Substraten, dem Katalysator und Kohlendioxid im überkritischen Zustand (SCCO2), dadurch gekennzeichnet, daß entweder unmodifizierte Rhodiumkatalysatoren eingesetzt werden, oder die Substrate nicht der allgemeinen Formel CnH2n entsprechen, oder die Produkte wesentliche Anteile an verzweigten /-Oxo-Produkten enthalten.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet daß der Katalysator oder Katalysatorvorläufer in einer Konzentration von 0.001-10 Mol-%, bevorzugt 0.01-1 Mol-%, besonders bevorzugt 0.05-0.5 Mol-% bezogen auf das Substrat vorliegt und daß genannte Katalysatoren oder Katalysatorvorstufen Salze, Komplexe oder Clusterverbindungen des Rhodiums in beliebiger Oxidationsstufe sind; bevorzugt sind Verbindungen der allgemeinen Formeln
1-8, besonders bevorzugt sind 4-8;
RhCI3 x nH20 Rh(acac)3 [Rh2(OAc)4] [Rh6(CO)16]
(acac = Acetylacetonat) (Ac = Acetat)
1 2 3 4
Figure imgf000014_0001
5 6 7 8 dabei sind R^-R^ unabhängig voneinander wählbare Reste aus Wasserstoff, C!-C20 Alkyl, C2-C20 Alkenyl, C2-C20 Alkinyl, Aryl, C1-C20 Perfluoralkyl C1-C20 Carboxylat, C1 -C20 Alkoxy, C2-C20 Alkenyloxy, C2-C20 Alkinyloxy, Aryloxy, C2-C20 Alkoxycarbonyl, C1 -C20 Alkylthio, Arylthio, C1-C20 Alkylsilyl, Arylsilyl, C1-C20 Alkyloxysilyl oder Aryloxysilyl; jeweils wahlweise substituiert mit C1 -C12 Alkyl, Cι-Cj2 Perfluoralkyl, Halogen, Ci - C5 Alkoxy, Cj-Ci2 Carboxylat, C2-C12 Alkoxycarbonyl oder Aryl; die Reste R!-R^ können in cyclischen Verbindungen miteinander verknüpft vorliegen; ferner sind L^-L4 Neutralliganden, die unabhängig voneinander wählbar sind aus der Gruppe CO, R1R2C=CR3R4, RΪC≡CR2, NR*R2R3, wobei R*-R4 der genannten Definition genügen; L^-L4 können in cyclischen Verbindungen miteinander verknüpft sein; schließlich sind X, Y einfach negativ geladene Anionen oder Liganden, die unabhängig voneinander wählbar sind aus der Gruppe R", F", Cl", Br, I", RO" RCO2", P-C6H4SO3-, PFg", BF4-, BR4-, wobei R der für RΪ-R5 genannten Definition genügt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Substrate in einer Konzentration bezogen auf das Reaktorvolumen von 0.05-5 mol/1, bevorzugt von 0.1-2 mol/1 vorliegen und Verbindungen oder Mischungen von Verbindungen sind, die mindestens eine Doppelbindung der allgemeinen Formel 9
Figure imgf000015_0001
9 enthalten, wobei die Reste R6-R9 SO gewählt sind, daß sie zum einen die Hydroformylierungsreaktion erlauben, zum anderen homogene Lösungen des Substrats in SCCO2 ermöglichen; bevorzugte Reste R"-R9 sind unabhängig voneinander wählbare Reste aus Wasserstoff, C1 -C20 Alkyl, C2-C20 Alkenyl, C2-C20 Alkinyl, Aryl, Cι-C2o Perfluoralkyl C1-C2O Carboxylat,
Figure imgf000015_0002
Alkoxy, C2-C20 Alkenyloxy, C2-C20 Alkinyloxy, Aryloxy, C2-C20 Alkoxycarbonyl, C1-C20 Alkylthio, Arylthio, C1-C20 Alkylsilyl, Arylsilyl, C - C20 Alkyloxysilyl, Aryloxysilyl, C1-C20 Alkylsilyloxy, C1-C20 Alkyloxysilyloxy, C1-C20 Alkylsulfonyl, C1-C20 Alkylsufinyl oder Halogen jeweils wahlweise substituiert mit weiteren Resten der gleichen Definition wie R"-Rχ die Reste R"-R9 können in cyclischen Verbindungen miteinander verknüpft vorliegen.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Partialdruck der Reaktionsgase H2 und CO jeweils im Bereich zwischen 0.1 bar und 100 bar bevorzugt zwischen jeweils 1 bar und 30 bar liegt.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Reaktionstemperatur zwischen 31°C und 150°C, bevorzugt zwischen 35°C und 100°C liegt.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die verwendete CO2 Menge bezogen auf das Reaktorvolumen im Bereich von 0.45 g ml"1 bis 0.90 g ml" 1, bevorzugt von 0.5 g ml"1 bis 0.75 g ml"1 liegt.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Reaktionsgemisch zusätzliche Additiva enthält.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Additiva unabhängig gewählt werden aus der Gruppe Wasser, Arnine, perfluorierte Verbindungen, oder organische Lösungsmittel (z. B. Dichlormethan, Trichlormethan, Tetrachlormethan, 1,2-Dichlorethan, Trichlorethen, Benzol, Toluol, Xylol, Cumol, Hexan, Cyclohexan, Halogenbenzole, Tetrahydrofuran, tert-Butylmethylether, Diethylether, Dimethoxyethan, Dimethylformamid, Acetessigester, Aceton, Dimethylcarbonat, Alkohole).
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Substrat und Katalysator bis zum Erreichen des überkritischen Zustande räumlich voneinander getrennt vorgelegt werden.
10. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Produkte durch Extraktion mit überkritischem CO2 vom Katalysator abgetrennt werden.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß der Katalysator in aktiver Form wiedergewonnen wird.
12. Verfahren nach Anspruch 1-11 zur Herstellung von Vitamin A über Hydroformylierung von Substraten, die Allylestereinheiten enthalten.
13. Verfahren nach Anspruch 1-11 zur Herstellung von α-Arylcarbonsäuren über Hydroformylierung von Vinylaromaten.
14. Verfahren nach Anspruch 1-11 zur Herstellung von Oxo-Produkten mit einer Kohlenstoffzahl von C5 bis C20 durch Hydroformylierung entsprechender Olefine.
PCT/EP1998/004319 1997-07-18 1998-07-11 Hydroformylierung mit unmodifizierten rhodiumkatalysatoren in überkritischem kohlendioxid WO1999003810A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98942539A EP0998442A1 (de) 1997-07-18 1998-07-11 Hydroformylierung mit unmodifizierten rhodiumkatalysatoren in überkritischem kohlendioxid
US09/462,855 US6388141B1 (en) 1997-07-18 1998-07-11 Hydroformylation with unmodified rhodium catalysts in supercritical carbon dioxide
CA002297455A CA2297455A1 (en) 1997-07-18 1998-07-11 Hydroformylation with unmodified rhodium catalysts in supercritical carbon dioxide
JP2000503043A JP2001510176A (ja) 1997-07-18 1998-07-11 超臨界二酸化炭素中における非修飾ロジウム触媒によるヒドロホルミル化

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19730783A DE19730783A1 (de) 1997-07-18 1997-07-18 Hydroformylierung mit unmodifizierten Rhodiumkatalysatoren in überkritischem Kohlendioxid
DE19730783.3 1997-07-18

Publications (1)

Publication Number Publication Date
WO1999003810A1 true WO1999003810A1 (de) 1999-01-28

Family

ID=7836075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/004319 WO1999003810A1 (de) 1997-07-18 1998-07-11 Hydroformylierung mit unmodifizierten rhodiumkatalysatoren in überkritischem kohlendioxid

Country Status (6)

Country Link
US (1) US6388141B1 (de)
EP (1) EP0998442A1 (de)
JP (1) JP2001510176A (de)
CA (1) CA2297455A1 (de)
DE (1) DE19730783A1 (de)
WO (1) WO1999003810A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2338956A (en) * 1998-07-01 2000-01-12 Swan Thomas & Co Ltd Hydroformylation Reactions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7885697B2 (en) * 2004-07-13 2011-02-08 Dexcom, Inc. Transcutaneous analyte sensor
DE10049228A1 (de) * 2000-09-28 2002-04-11 Studiengesellschaft Kohle Mbh Verfahren zur Trennung verzweigter und linearer Aldenyde durch selektive Extraktion mit komprimiertem Kohlendioxid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124619A (en) * 1975-05-28 1978-11-07 Hoffmann-La Roche Inc. Preparation of esters of hydroxy tiglic aldehyde
US4568653A (en) * 1978-07-29 1986-02-04 Basf Aktiengesellschaft Working up of hydroformylation or carbonylation reaction mixtures
JPH026424A (ja) * 1988-06-24 1990-01-10 Nippon Petrochem Co Ltd α−(4−イソブチルフェニル)プロピオンアルデヒドの製造方法
US5198589A (en) * 1992-04-28 1993-03-30 The United States Of America As Represented By The United States Department Of Energy Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2039078A1 (de) * 1970-08-06 1972-02-10 Basf Ag Verfahren zur Herstellung von Aldehyden und Alkoholen nach dem Oxoverfahren
DE3909445A1 (de) * 1989-03-22 1990-09-27 Hoechst Ag Verfahren zur reinigung und rueckgewinnung der bei der carbonylierung von methanol und/oder methylacetat und/oder dimethylether anfallenden verunreinigten katalysatorloesung
DE4040315A1 (de) * 1990-12-17 1992-06-25 Hoechst Ag Verfahren zur herstellung von aldehyden
DE4447067A1 (de) * 1994-12-29 1996-07-04 Hoechst Ag Verfahren zur Herstellung von Aldehyden

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124619A (en) * 1975-05-28 1978-11-07 Hoffmann-La Roche Inc. Preparation of esters of hydroxy tiglic aldehyde
US4568653A (en) * 1978-07-29 1986-02-04 Basf Aktiengesellschaft Working up of hydroformylation or carbonylation reaction mixtures
JPH026424A (ja) * 1988-06-24 1990-01-10 Nippon Petrochem Co Ltd α−(4−イソブチルフェニル)プロピオンアルデヒドの製造方法
US5198589A (en) * 1992-04-28 1993-03-30 The United States Of America As Represented By The United States Department Of Energy Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 014, no. 134 (C - 0701) 14 March 1990 (1990-03-14) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2338956A (en) * 1998-07-01 2000-01-12 Swan Thomas & Co Ltd Hydroformylation Reactions

Also Published As

Publication number Publication date
DE19730783A1 (de) 1999-01-21
EP0998442A1 (de) 2000-05-10
JP2001510176A (ja) 2001-07-31
US6388141B1 (en) 2002-05-14
CA2297455A1 (en) 1999-01-28

Similar Documents

Publication Publication Date Title
DE2922757C2 (de) Verfahren zur Hydroformylierung von olefinischen Verbindungen
EP2091958B1 (de) Bisphosphitliganden für die übergangsmetallkatalysierte hydroformylierung
EP1373277A1 (de) Metallorganische gerüsmaterialien und verfahren zu deren herstellung
DE3135127A1 (de) Katalytisches verfahren
EP0982314B1 (de) Valeraldehyd und Verfahren zu seiner Herstellung
EP0780157B1 (de) Rutheniumkomplexe mit einem chiralen, zweizähnigen Phosphinoxazolin-Liganden zur enantioselektiven Transferhydrierung von prochiralen Ketonen
DE60304449T2 (de) Stabilisierung von fluorphosphit enthaltenden katalysatoren
WO2001085662A2 (de) Verfahren zur herstellung von aldehyden
EP0924182B1 (de) Verfahren zur Herstellung von Aldehyden
EP2217555B1 (de) Verfahren zur herstellung von aldehyden
EP0959987B1 (de) Verwendung perfluoralkylsubstituierter phosphorverbindungen als liganden für die homogene katalyse in überkritischem kohlendioxid
EP0811424A2 (de) Katalysatorsysteme auf der Basis von Rhodium-Komplex-verbindungen mit Diphosphin-Liganden und ihre Verwendung bei der Herstellung von Aldehyden
DE10243446B4 (de) Verfahren zur Herstellung von Aldehyden
WO1999003810A1 (de) Hydroformylierung mit unmodifizierten rhodiumkatalysatoren in überkritischem kohlendioxid
EP0885183A1 (de) Verfahren zur herstellung von aldehyden durch hydroformylierung von olefinen
EP0946481A1 (de) Funktionalisierte, von cyclopenten abgeleitete oligomerengemische
EP1161437B1 (de) Phosphabenzolverbindungen und ihre verwendung als liganden für hydroformylierungskatalysatoren
DE10164720A1 (de) Verfahren zur Herstellung von Aldehyden
EP1025111B1 (de) Verfahren zur herstellung von phosphabenzolverbindungen
EP4008709B1 (de) Verfahren zur herstellung polyzyklischer aliphatischer dialdehyde
EP1019354B1 (de) Verfahren zur herstellung von aldehyden
DE10035120A1 (de) Verfahren zur Hydroformylierung von Olefinen in einem zweistufigen Reaktionssystem
EP0795533A1 (de) Verfahren zur Herstellung von Aldehyden mittels eines Rhodium und substituierte Diphenyldiphosphane enthaltenden Katalysatorsystems
EP4155288A1 (de) Verfahren zur verbesserten steuerung der isomerenverhältnisse in hydroformylierungen
DE19756946C2 (de) Verfahren zur Herstellung von Aldehyden

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998942539

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09462855

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2297455

Country of ref document: CA

Ref country code: CA

Ref document number: 2297455

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1998942539

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998942539

Country of ref document: EP