WO1999003716A1 - Lenksäulenanordnung für kraftfahrzeuge mit energieabsorptionselement - Google Patents

Lenksäulenanordnung für kraftfahrzeuge mit energieabsorptionselement Download PDF

Info

Publication number
WO1999003716A1
WO1999003716A1 PCT/CH1998/000272 CH9800272W WO9903716A1 WO 1999003716 A1 WO1999003716 A1 WO 1999003716A1 CH 9800272 W CH9800272 W CH 9800272W WO 9903716 A1 WO9903716 A1 WO 9903716A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
steering column
crash
jacket tube
absorption element
Prior art date
Application number
PCT/CH1998/000272
Other languages
English (en)
French (fr)
Inventor
Rony Meier
Daniel Hansert
Original Assignee
Krupp Presta Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Presta Ag filed Critical Krupp Presta Ag
Priority to EP98925378A priority Critical patent/EP0996563A1/de
Priority to JP2000502970A priority patent/JP2001510120A/ja
Publication of WO1999003716A1 publication Critical patent/WO1999003716A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/19Steering columns yieldable or adjustable, e.g. tiltable incorporating energy-absorbing arrangements, e.g. by being yieldable or collapsible
    • B62D1/192Yieldable or collapsible columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/125Units with a telescopic-like action as one member moves into, or out of a second member

Definitions

  • the invention relates to a steering column arrangement for motor vehicles according to the preamble of claim 1.
  • steering columns for motor vehicles require the steering column to be equipped with an energy-absorbing element which dampens the forces acting on the driver's body in the event of a frontal impact. It is often required that the steering column retracts in a frontal impact with a constant holding force of 4 kN to 8 kN over a distance of 70 to 90 mm and that impact energy is absorbed.
  • Conventional crash systems meet this requirement, for example, by installing bending brackets, steel wires, mesh grids, etc. In the known arrangements, the size is increased by the additionally required crash travel.
  • the energy absorption element or the crash element is arranged in the holder of the steering column or the holder is designed as a displaceable console, the entire steering column must move to the rear in the event of a crash or impact. This requires additional freedom of movement and the space required for this is often obstructed, so that the functionality cannot always be guaranteed. Many energy absorption elements also have a relatively high sensitivity to lateral forces, which requires special measures and impairs reliability.
  • an adjustable safety steering column for motor vehicles which has become known, which has a telescopically collapsible steering spindle mounted in tubular casing parts, which is connected at the end facing away from the steering wheel to a deformation element as an energy absorber.
  • the metallic energy absorber is tubular, in particular corrugated, and is used in one Crash compressed or compressed.
  • the disadvantage of the arrangement is that the arrangement requires a relatively large amount of installation space in its longitudinal axis and is complex to implement.
  • the present invention has for its object to avoid the disadvantages of the prior art.
  • it is an object of the invention to provide a compact and economically producible steering column arrangement which meets the safety requirements in the event of a crash.
  • the crash element should take on a low weight, and the crash behavior of the deformation element should act independently of transverse forces acting on the steering wheel. The influence of surrounding components on the crash function of the steering column should be avoided.
  • the casing tube and the spindle should become shorter so that the steering column does not move back.
  • the casing pipe can collapse or shorten in the event of a crash, it is divided into two parts which can be moved into one another, the first casing pipe part, the crash pipe, and the second outer casing pipe part, the steering spindle being mounted in the crash pipe.
  • the crash element a tubular plastic body, encloses the crash tube protruding from the jacket tube and thus fixes the position of the crash tube with the spindle mounted therein in the axial operating position in which the crash element bears against the second jacket tube part against a stop.
  • a further embodiment consists in that the crash element on the one hand surrounds the protruding part of the crash tube. closes and part of the outer casing tube, which increases the transverse rigidity of the arrangement.
  • the energy absorption element is preferably produced from a fiber composite plastic, the fiber being preferably wound directly onto the crash tube, which is displaceably mounted in the jacket tube, and at the same time embedded in synthetic resin. This results in good bonding and thus adhesion of the absorption element to the pipes.
  • the fiber material with the synthetic resin is wound over the protruding part of the crash tube onto the second jacket tube part, so that the absorption element comes to rest over the crash tube and the jacket tube.
  • Carbon is particularly suitable as a fiber material.
  • the inventive design of the crash element will result in a constant holding force during the destruction process of the crash element in the event of a crash or when the two tube parts move into one another.
  • the two parts can preferably be non-positively connected to one another via one or more bead connections.
  • the connection is to be carried out in such a way that it yields under the corresponding crash force. This results in high transverse rigidity in normal operation, regardless of the transverse rigidity of the crash element.
  • the tubular energy absorption element can also simply be pushed onto the crash tube.
  • the absorption element is advantageously attached to the tube, preferably by gluing.
  • a further improvement in the connection between the crash element and the pipe parts is achieved in that the cycle area, the pipe parts are roughened.
  • Particularly good and reproducible adhesion results can be achieved if the contact areas are designed in the form of grooves on the circumference of the tube, so that the fibers engage in the grooves when the composite material is wound. This design ensures that the CFRP (carbon fiber plastic composite) arrangement collapses in a predefined crash force and the crash tube telescopically retracts into the jacket tube with a constant force.
  • CFRP carbon fiber plastic composite
  • Fig. 1 shows a cross section through the longitudinal axis of part of the steering column assembly with an energy absorption element which is attached to the crash tube alone
  • Fig. 2 shows a cross section through the longitudinal axis of a part of the steering column assembly with an energy absorption element, which encloses both the crash tube and a part of the tubular casing part
  • FIG. 1 shows schematically and in cross section part of a steering column arrangement for motor vehicles with an inventive energy absorption element 6.
  • the absorption element 6 is advantageously arranged on the first steering spindle arrangement to which the steering wheel is attached.
  • the steering spindle 3 is designed as a sliding shaft at one end of which the steering wheel is arranged, the spindle 3 being mounted in a casing tube 1, 2 via the spindle bearings 4.
  • the spindle 3 with the casing tube 1, 2 must be able to be pushed into one another in order to absorb the impact energy via the crash path.
  • the jacket tube 1, 2 is therefore in a first jacket tube part 1, the crash tube, and in divided a second tubular casing part 2, the two
  • Pipe parts 1,2 are arranged coaxially and axially longitudinally displaceable.
  • the first jacket tube 1, the crash tube protrudes from the second jacket tube 2 by the required crash path length, so that in the event of a crash the first jacket tube 1 correspondingly shifts into the second jacket tube 2. Crash paths of 70 to 90 mm are preferred.
  • the first jacket tube 1 is encased by a plastic tube piece 6, which serves as an absorption element 6 and at whose one end abuts the second jacket tube 2. At the other end of the absorption element 6, the latter can advantageously abut a stop 8 of the crash tube 1, which is designed, for example, as a projection.
  • the absorption element ⁇ is compressed by the impact force F Cr , which absorbs the energy in a defined manner, preferably in the range of the desired crash force from 4 kN to 8 kN.
  • the design of the absorption element 6 according to the invention allows the required energy absorption values to be specified precisely and reproducibly and to be produced economically in a space-saving manner. In addition, few parts are required, which enables simple assembly.
  • the absorption element 6 is preferably designed as a fiber composite tube and is preferably wound directly onto the first jacket tube part 1 and impregnated with a plastic, for example a casting resin.
  • a carbon fiber composite is particularly suitable for very compact and reproducible arrangements.
  • the fiber composite tube 6 is preferably adhesively bonded to the crash tube 1, with the adhesive being applied simultaneously using a direct winding technique and appropriate plastic impregnation.
  • the crash tube 1 is roughened on the surface, but is preferably grooved.
  • a typical embodiment of an energy absorption element 6 in carbon fiber composite plastic has a wall thickness in the mm range on, for example 1 to 2 mm with crash forces in the range of 4 kN and a crash tube diameter of about 40 mm.
  • guide elements 5, which are preferably designed as plastic rings 5, can additionally be provided between the two pipe parts 1, 2. to be ordered.
  • These guides 5 allow a defined sliding of the pipe parts 1, 2 in the axial direction with low sliding friction forces. The sliding friction forces must be kept so low that they are low compared to the required holding force of 4 kN to 8 kN for energy absorption.
  • the jacket pipe parts 1,2 are preferably made of metals such as steel or aluminum.
  • FIG. 2 shows a further embodiment of the arrangement described in FIG. 1 in cross section.
  • the energy absorption element 6 is not only brought up to one end of the second casing pipe part 2, but is further drawn over a section of the second casing pipe surface.
  • Both the first jacket pipe surface che like the second jacket tube surface can, as already mentioned, be roughened in the contact area with the absorption element 6 in order to achieve better adhesion.
  • the embodiment shown in Figure 2 also increases the transverse stability of the two telescoped pipe parts in normal operation. In this case, additional measures to increase the lateral stability, as described above, can at best be dispensed with.
  • the arrangement for energy absorption proposed according to the invention requires few components and is of extremely compact construction and requires little installation space, the mode of operation being independent of surrounding built-in parts and precise and reproducible and thus safe energy absorption in the event of a crash being possible.

Abstract

Ein rohrförmiges Energieabsorptionselement (6) aus Kunststoff vorzugsweise aus einem Faserverbundkunststoff wird direkt auf einem Teil eines ersten Mantelrohrteiles (1) angeordnet, welches in einem zweiten Mantelrohrteil (2) axial verschieblich ist und mit definierter, konstanter haltekraft beim Zusammenfahren zerstört wird im Falle eines Crashes. Das Energieabsorptionselement findet Anwendungen in Lenksäulenanordnungen für Kraftfahrzeuge für Sicherheitslenksäulen. Die Anordnung ist kompakt und wirtschaftlich realisierbar bei hoher Betriebssicherheit für den Fahrzeuglenker.

Description

Lenksäulenanordnung für Kraf fahrzeuge mit Energieabsorptionselement
Die Erfindung betrifft eine Lenksäulenanordnung für Kraftfahrzeuge nach dem Oberbegriff des Anspruchs 1.
Bei Lenksäulen für Kraftfahrzeuge wird aus Sicherheitsgründen gefordert, dass die Lenksäule mit einem energieabsorbierenden Element ausgerüstet ist, welches bei einem Frontalaufprall die auf den Körper des Fahrers wirkende Kräfte dämpft. Es wird oftmals gefordert, dass die Lenksäule bei einem Frontalaufprall mit einer konstanten Haltekraft von 4 kN bis 8 kN über einen Weg von 70 bis 90 mm zurückfährt und hierbei Aufprallenergie absorbiert wird. Herkömmliche Crashsysteme erfüllen diese Anforderung beispielsweise durch den Einbau von Biegelaschen, Stahldrähten, Maschengitter etc. Bei den bekannten Anordnungen wird durch den zusätzlich geforderten Crashweg die Baugrösse erhöht. Wird das Energieabsorptionselement bzw. das Crashelement in der Halterung der Lenksäule angeordnet bzw. die Halterung als verschiebbare Konsole ausgeführt, so muss beim Crash bzw. beim Aufprall die gesamte Lenksäule nach hinten fahren. Dies benötigt zusätzlichen Bewegungsspielraum und oft ist der dazu notwendige Raum verbaut, so dass die Funktionsweise nicht immer gewährleistet werden kann. Viele Energieabsorbierungselemente haben ausser- dem eine relativ grosse Querkraftempfindlichkeit, was besondere Massnahmen erfordert und die Zuverlässigkeit beeinträchtigt .
Aus der EP 0 477 509 ist eine verstellbare Sicherheitslenksäule für Kraftfahrzeuge bekannt geworden, die ein teleskopisch zusammenschiebbare, in Mantelrohrteilen gelagerte Lenkspindel aufweist, wobei diese an dem vom Lenkrad abgekehrten Ende mit einem Deformationselement als Energieabsorber verbunden ist. Der metallische Energieabsorber ist rohrförmig, insbesondere wellrohrförmig ausgebildet und wird bei einem Crash zusammengedrückt bzw. gestaucht. Der Nachteil der Anordnung besteht darin, dass die Anordnung in ihrer Längsachse relativ viel Einbauraum benötigt und aufwendig in der Realisierung ist.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die Nachteile des Standes der Technik zu vermeiden. Insbesondere ist es Aufgabe der Erfindung eine kompakte und wirtschaftlich herstellbare Lenksäulenanordnung zu schaffen, die den Sicherheitserfordernissen bei einem Crash entspricht. Neben der minimierten Baugrösse soll das Crashelement ein geringes Gewicht aufnehmen, und das Crashverhalten des Deformationselementes soll unabhängig von am Lenkrad angreifenden Querkräften wirken. Der Einfluss von umliegenden Bauteilen auf die Crashfunktion der Lenksäule soll vermieden werden. Beim axialen Crash soll das Mantelrohr und die Spindel in sich kürzer werden, so dass die Lenksäule nicht zurückfährt.
Diese Aufgabe wird erfindungsgemäss durch die Merkmale des Anspruchs 1 gelöst. Weitere vorteilhaft Ausführungsformen beinhalten die abhängigen Patentansprüche. Damit das Mantelrohr beim Crash in sich kollabieren kann bzw. sich verkürzen kann, wird dieses in zwei ineinander verschiebliche Teile unterteilt in das erste Mantelrohrteil, dem Crashrohr, und das zweite äussere Mantelrohrteil, wobei die Lenkspindel im Crashrohr gelagert ist. Das Crashelement, ein rohrförmiger Kunststoffkörper, umschliesst in einer ersten Ausführungsform das aus dem Mantelrohr herausragende Crashrohr und fixiert somit die Lage des Crashrohrs mit der darin gelagerten Spindel in der axialen Betriebsposition in dem das Crashelement am zweiten Mantelrohrteil auf Anschlag anliegt.
Eine weitere Ausführungsform besteht darin, dass das Crashe- lement einerseits den herausragenden Teil des Crashrohres um- schliesst und einen Teil des äusseren Mantelrohres, womit die Quersteifigkeit der Anordnung zusätzlich erhöht wird.
Das Energieabsorptionselement wird bevorzugt aus einem Faserverbundkunststoff hergestellt, wobei beim Herstellungsverfahren die Faser vorzugsweise direkt auf das Crashrohr, welches im Mantelrohr verschiebbar gelagert ist, gewickelt wird und gleichzeitig in Kunstharz eingebettet wird. Dies ergibt eine gute Verklebung und somit Haftung des Absorptionselementes mit den Rohren. Bei der zweiten Ausführung wird der Faserwerkstoff mit dem Kunstharz über das herausragende Teil des Crashrohres hinaus auf das zweite Mantelrohrteil gewickelt, so dass das Absorptionselement über das Crashrohr und das Mantelrohr zu liegen kommt. Als Faserwerkstoff eignet sich besonders Kohlenstoff. Durch die erfindungsgemässe Ausführung des Crashelementes wird beim Crashfall bzw. beim Ineinander- fahren der beiden Rohrteile eine konstante Haltekraft während des Zerstörungsvorganges des Crashelementes resultieren. Verschiedene Kraftniveaus und Kennlinien können beim Faserrohr und insbesondere beim Kohlefaserrohr reproduzierbar durch verschiedene Wicklungen und Dimensionierung leicht und wirtschaftlich realisiert werden. Um die Quersteifigkeit der Anordnung zusätzlich zu erhöhen, können vorzugsweise die beiden Teile über eine oder mehrere Sickenverbindungen kraftschlüssig miteinander verbunden werden. Die Verbindung ist so auszuführen, dass diese bei der entsprechend auftretenden Crashkraft nachgibt. Daraus resultiert eine hohe Quersteifigkeit im Normalbetrieb unabhängig von der Quersteifigkeit des Crashelements. Das Rohrförmige Energieabsorbtionselement kann auch einfach auf das Crashrohr aufgeschoben werden. Mit Vorteil wird das Absorptionselement am Rohr befestigt, vorzugsweise durch verkleben.
Eine weitere Verbesserung der Verbindung zwischen Crashelement und den Rohrteilen wird dadurch erreicht, dass im Kon- taktbereich die Rohrteile aufgerauht werden. Besonders gute und reproduzierbare Haftergebnisse sind realisierbar, wenn die Kontaktbereiche in Rillenform auf dem Rohrumfang ausgeführt werden, so dass beim Wickeln des Verbundwerkstoffes die Fasern in die Rillen eingreifen. Durch diese Bauweise wird erreicht, dass bei einer vordefinierten Crashkraft die CFK (Kohlefaserkunststoffverbund) Anordnung definiert kollabiert und das Crashrohr mit einer konstanten Kraft in das Mantelrohr teleskopartig einfährt.
Die Erfindung wird nun beispielsweise mit schematischen Figuren beschrieben. Es zeigen:
Fig. 1 Ein Querschnitt durch die Längsachse eines Teils der Lenksäulenanordnung mit einem Energieabsorptionselement, welches am Crashrohr alleine angebracht ist
Fig. 2 Ein Querschnitt durch die Längsachse eines Teils der Lenksäulenanordnung mit einem Energieabsorptionselement, welches sowohl das Crashrohr wie ein Teil des Mantelrohrteiles umschliesst
In Figur 1 ist schematisch und im Querschnitt ein Teil einer Lenksäulenanordnung für Kraftfahrzeuge mit einem erfinderischen Energieabsorptionselement 6 dargestellt. Vorteilhafterweise wird das Absorptionselement 6 an der ersten Lenkspindelanordnung, an welcher das Lenkrad angebracht ist, angeordnet. Die Lenkspindel 3 ist als Schiebewelle ausgebildet an dessen einem Ende das Lenkrad angeordnet ist, wobei die Spindel 3 in einem Mantelrohr 1,2 über die Spindellager 4 gelagert ist. Im Crashfall muss die Spindel 3 mit dem Mantelrohr 1,2 ineinandergeschoben werden können, um über den Crashweg die Aufprallenergie zu absorbieren. Das Mantelrohr 1,2 ist deshalb in ein erstes Mantelrohrteil 1, dem Crashrohr, und in ein zweites Mantelrohrteil 2 unterteilt, wobei die beiden
Rohrteile 1,2 koaxial und axial längsverschieblich angeordnet sind. Das erste Mantelrohr 1, das Crashrohr, ragt um die geforderte Crashweglänge aus dem zweiten Mantelrohr 2 heraus, so dass im Crashfall das erste Mantelrohr 1 sich entsprechend in das zweite Mantelrohr 2 verschiebt. Bevorzugt werden hierbei Crashwege von 70 bis 90 mm. Das erste Mantelrohr 1 ist von einem Kunststoffrohrstück 6 umhüllt, welches als Absorptionselement 6 dient und an dessem einen Ende am zweiten Mantelrohr 2 anliegt. Am andern Ende des Absorptionselementes 6 kann dieses vorteilhafterweise an einem Anschlag 8 des Crashrohres 1 anstossen, der beispielsweise als Auskragung ausgebildet ist. Im Crashfall wird das Absorptionselement β durch die Aufprallkraft FCr zusammengedrückt, wobei dieses die Energie definiert absorbiert, vorzugsweise im Bereich der gewünschten Crashkraft von 4 kN bis 8 kN. Die erfindungsgemässe Ausführung des Absorptionselementes 6 erlaubt es, die geforderten Energieabsorptionswerte präzise und reproduzierbar vorzugeben und platzsparend auf wirtschaftliche Weise herzustellen. Ausserdem werden wenig Teile benötigt, womit eine einfache Montage möglich ist. Das Absorptionselement 6 wird vorzugsweise als Faserverbundrohr ausgeführt und vorzugsweise direkt auf das erste Mantelrohrteil 1 aufgewickelt und mit einem Kunststoff beispielsweise einem Giessharz imprägniert. Für sehr kompakte und reproduzierbare Anordnungen ist insbesondere ein Kohlefaserverbund geeignet. Bevorzugterweise wird das Faserverbundrohr 6 auf dem Crashrohr 1 haftend aufgeklebt, wobei mit einer Direktaufwickeltechnik und entsprechender Kunststoffimprägnierung die Verklebung gleichzeitig erfolgt. Um die Haftung zwischen Faserverbundrohr 6 und Crashrohr 1 zu verbessern, wird das Crashrohr 1 an der Oberfläche aufgerauht, vorzugsweise aber gerillt. Eine typische Ausführungsform eines Energieabsorptionselementes 6 in Kohlenstofffaserverbundkunststoff weist eine Wandstärke im mm-Bereich auf, beispielsweise 1 bis 2 mm bei Crashkräften im Bereich von 4 kN und einem Crashrohrdurchmesser von etwa 40 mm.
Um im Crashfall, bei auftretenden Querkräften, keine Verklemmung der beiden Rohrteile 1,2 zu erzeugen, die ein definiertes und gleichmässiges Verhalten der Energieabsorption verhindern würde, können zusätzlich zwischen den beiden Rohrteilen 1,2 Führungselemente 5, die bevorzugterweise als Kunststoffringe 5 ausgebildet sind, angeordnet werden. Diese Führungen 5 erlauben ein definiertes Gleiten der Rohrteile 1,2 in axialer Richtung bei geringen Gleitreibungskräften. Die Gleitreibungskräfte müssen so gering gehalten werden, dass sie gegenüber der geforderten Haltekraft von 4 kN bis 8 kN zur Energieabsorption gering ist.
Um die Querstabilität der beiden Mantelrohrteil 1,2 im normalen Betriebsfall gross zu halten, ist es wünschenswert, weitere Massnahmen zu treffen, um das Spiel zwischen den beiden Rohrteilen 1,2 weiter zu verringern. Dazu können zusätzliche Massnahmen getroffen werden, welche zwischen den Rohrteilen 1,2 eine kraftschlüssige Verbindung 7 erzeugen, beispielsweise wie mit Verstemmen, Verpressen oder mit Bolzen, vorzugsweise aber mit Eindrücken von Sicken. Die Verbindung muss, wie erwähnt, ebenfalls so ausgeführt werden, dass die Losbrechkraft beim Aufprall möglichst klein ist im Verhältnis zur vorerwähnten Haltekraft zur Energieabsorption. Die Mantelrohrteile 1,2 bestehen vorzugsweise aus Metallen wie Stahl oder Aluminium.
In Figur 2 ist eine weitere Ausführungsform der in Figur 1 beschriebenen Anordnung im Querschnitt dargestellt. Das Energieabsorptionselement 6 ist in diesem Beispiel nicht nur bis an das eine Ende des zweiten Mantelrohrteiles 2 herangeführt, sondern wird weitergezogen über einen Teilabschnitt der zweiten Mantelrohroberfläche. Sowohl die erste Mantelrohroberflä- che, wie die zweite Mantelrohroberfläche können, wie bereits erwähnt, im Kontaktbereich mit dem Absorptionselement 6 aufgerauht werden, um eine bessere Haftung zu erzielen. Die in Figur 2 dargestellte Ausführungsform erhöht zusätzlich die Querstabilität der beiden ineinandergeschobenen Rohrteile im normalen Betriebsfall. Es kann in diesem Fall allenfalls sogar auf zusätzliche Massnahmen zur Erhöhung der Querstabilität, wie sie vorhergehende beschrieben worden sind, verzichtet werden.
Die erfindungsgemäss vorgeschlagene Anordnung zur Energieabsorption erfordert wenig Bauteile und ist äusserst kompakt aufzubauen und erfordert wenig Einbauraum, wobei die Funktionsweise von umliegenden Einbauteilen unabhängig ist und eine präzise und reproduzierbare und somit sichere Energieabsorption beim Crashfall möglich ist.

Claims

Patentansprüche
1. Lenksäulenanordnung für Kraftfahrzeuge mit einem Energieabsorptionselement (6) mit einer in Mantelrohrteilen (1,2) gelagerten, teleskopisch zusammenschiebbaren Lenkspindel (3) , wobei ein erstes Mantelrohrteil (1) als Crashrohr zwischen der Lenkspindel (3) und einem zweiten Mantelrohrteil (2) koaxial und axial ineinander längsverschieblich ist, dadurch gekennzeichnet, dass das erste Mantelrohrteil (1) aus dem zweiten Mantelrohrteil (2) herausragt und dass mindestens auf einem Bereich des herausragenden ersten Mantelrohrteiles (1) ein rohrförmiges, Kunststoff enthaltendes Energieabsorptionselement (6) , das äussere zweite Mantelrohr (2) fixierend, angeordnet ist.
2. Lenksäulenanordnung nach Anspruch 1 dadurch gekennzeichnet, dass das Absorptionselement (6) als gewickeltes Faser- kunststoffverbundrohr ausgebildet ist und insbesondere aus einem Kohlenfaserkunststoffverbünd besteht.
3. Lenksäulenanordnung nach Anspruch 2 dadurch gekennzeichnet, dass die vom Absorptionselement (6) berührten Mantelrohrteile (1,2) an den Oberflächen im Kontaktbereich aufgerauht sind, vorzugsweise gerillt sind.
4. Lenksäulenanordnung nach einem der vorhergehenden Ansprüche 1 bis 3 dadurch gekennzeichnet, dass das Absorptionselement den herausragenden Bereich der ersten Mantelrohraussen- fläche mit einem Bereich der zweiten Mantelrohrfläche verbindend und fixierend umschliesst.
5. Lenksäulenanordnung nach einem der vorhergehenden Ansprüche 1 bis 4 dadurch gekennzeichnet, dass zwischen der Aussen- flache des ersten Mantelrohres (1) und der Innenfläche des zweiten Mantelrohres (2) im ineinandergeschobenen Teilbereich mindestens ein, vorzugsweise zwei ringförmige Kunststoffüh- rungen (5) angeordnet sind.
6. Lenksäulenanordnung nach einem der vorhergehenden Ansprüche 1 bis 5 dadurch gekennzeichnet, dass das erste Mantelrohr (1) und das zweite Mantelrohr (2) mit einer Sickenverbindung (7) definiert verbunden ist, wobei die Sicke vorzugsweise am zweiten Mantelrohr (2) und zwischen Kunststofführungen (5) angebracht ist.
PCT/CH1998/000272 1997-07-15 1998-06-23 Lenksäulenanordnung für kraftfahrzeuge mit energieabsorptionselement WO1999003716A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP98925378A EP0996563A1 (de) 1997-07-15 1998-06-23 Lenksäulenanordnung für kraftfahrzeuge mit energieabsorptionselement
JP2000502970A JP2001510120A (ja) 1997-07-15 1998-06-23 エネルギ吸収エレメントを備える、自動車用かじ取り柱配置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH172697 1997-07-15
CH1726/97 1997-07-15

Publications (1)

Publication Number Publication Date
WO1999003716A1 true WO1999003716A1 (de) 1999-01-28

Family

ID=4217170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1998/000272 WO1999003716A1 (de) 1997-07-15 1998-06-23 Lenksäulenanordnung für kraftfahrzeuge mit energieabsorptionselement

Country Status (3)

Country Link
EP (1) EP0996563A1 (de)
JP (1) JP2001510120A (de)
WO (1) WO1999003716A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424260A3 (de) * 2002-11-28 2004-11-24 Koyo Seiko Co., Ltd. Lenkeinrichtung
DE102012005434B3 (de) * 2012-03-20 2013-04-18 Thyssenkrupp Presta Ag Lenksäule mit im Flechtverfahren hergestellten Faserverbundelementen
FR3001429A3 (fr) * 2013-01-30 2014-08-01 Renault Sa Dispositif de controle de retractation de colonne de direction
WO2014117876A1 (de) * 2013-01-29 2014-08-07 Thyssenkrupp Presta Ag Lenksäule in faserverbundtechnologie, basierend auf pultrusion- und flecht- und/oder wickeltechnologie
DE102018208745A1 (de) 2018-06-04 2019-12-05 Audi Ag Lenkwelle für eine Lenkung eines Kraftwagens, Verfahren zum Montieren einer solchen Lenkwelle, Lenkung für einen Kraftwagen sowie Kraftwagen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984667A (ja) * 1982-11-05 1984-05-16 Mitsubishi Electric Corp 衝撃吸収ステアリングシヤフト
EP0477509A2 (de) 1990-09-26 1992-04-01 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Verstellbare Sicherheitslenksäule für ein Kraftfahrzeug
EP0713820A1 (de) * 1994-11-24 1996-05-29 NACAM (Société Anonyme) Energie-absorbierende Einrichtung für eine Kraftfahrzeuglenksäule

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984667A (ja) * 1982-11-05 1984-05-16 Mitsubishi Electric Corp 衝撃吸収ステアリングシヤフト
EP0477509A2 (de) 1990-09-26 1992-04-01 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Verstellbare Sicherheitslenksäule für ein Kraftfahrzeug
EP0713820A1 (de) * 1994-11-24 1996-05-29 NACAM (Société Anonyme) Energie-absorbierende Einrichtung für eine Kraftfahrzeuglenksäule

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 195 (M - 323) 7 September 1984 (1984-09-07) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424260A3 (de) * 2002-11-28 2004-11-24 Koyo Seiko Co., Ltd. Lenkeinrichtung
US7168741B2 (en) 2002-11-28 2007-01-30 Koyo Seiko Co., Ltd Steering apparatus
DE102012005434B3 (de) * 2012-03-20 2013-04-18 Thyssenkrupp Presta Ag Lenksäule mit im Flechtverfahren hergestellten Faserverbundelementen
WO2013139447A1 (de) 2012-03-20 2013-09-26 Thyssenkrupp Presta Ag Lenksäule mit im flechtverfahren hergestellten faserverbundelementen
US9365233B2 (en) 2012-03-20 2016-06-14 Thyssenkrupp Presta Ag Steering column with composite fibre elements produced in a braiding method
WO2014117876A1 (de) * 2013-01-29 2014-08-07 Thyssenkrupp Presta Ag Lenksäule in faserverbundtechnologie, basierend auf pultrusion- und flecht- und/oder wickeltechnologie
US9487227B2 (en) 2013-01-29 2016-11-08 Thyssenkrupp Presta Ag Steering column produced from fibre-composite and on the basis of pultrusion, braiding and/or winding technology
US10137649B2 (en) 2013-01-29 2018-11-27 Thyssenkrupp Presta Ag Steering column produced from fibre-composite and on the basis of pultrusion, braiding and/or winding technology
FR3001429A3 (fr) * 2013-01-30 2014-08-01 Renault Sa Dispositif de controle de retractation de colonne de direction
DE102018208745A1 (de) 2018-06-04 2019-12-05 Audi Ag Lenkwelle für eine Lenkung eines Kraftwagens, Verfahren zum Montieren einer solchen Lenkwelle, Lenkung für einen Kraftwagen sowie Kraftwagen
WO2019233707A1 (de) 2018-06-04 2019-12-12 Audi Ag Lenkwelle für eine lenkung eines kraftwagens, verfahren zum montieren einer solchen lenkwelle, lenkung für einen kraftwagen sowie kraftwagen
US11535293B2 (en) 2018-06-04 2022-12-27 Audi Ag Steering shaft for a steering system of a motor vehicle, method for assembling such a steering shaft, steering system for a motor vehicle, and motor vehicle

Also Published As

Publication number Publication date
EP0996563A1 (de) 2000-05-03
JP2001510120A (ja) 2001-07-31

Similar Documents

Publication Publication Date Title
DE3833048C2 (de) Stoßfänger für Kraftfahrzeuge, insbesondere Personenkraftwagen
DE19717473B4 (de) Energieabsorberelement
DE102004051670B4 (de) Axial einstellbare Lenksäulenanordnung mit flexibler Lagerhülse
EP0943525B1 (de) Lenksäulenanordnung für ein Kraftfahrzeug
EP2013067B1 (de) Lenksäule für ein kraftfahrzeug
EP3242828B1 (de) Lenksäule mit adaptierbarer schwenklagerung
DE1755006B2 (de) Plastisch verformbarer Aufpralldämpfer für Fahrzeuge
DE4119359A1 (de) Antriebswelle
DE1630859A1 (de) Aufprallverzehrendes Bauteil fuer ein Fahrzeug
DE1950062C3 (de) Sicherheitslenkvorrichtung für Kraftfahrzeuge
DE2537947A1 (de) Vorrichtung zum absorbieren von stossenergie
EP1332081B1 (de) Mantelrohr einer lenksäule eines kraftfahrzeuges und ein verfahren zur herstellung des mantelrohres
DE4003952A1 (de) Kniefaenger als sicherheitseinrichtung fuer kraftfahrzeuge
DE19627061C2 (de) Deformationselement
EP0091671B1 (de) Sicherheitslenksäule für Kraftfahrzeuge
EP0909682B1 (de) Pralldämpfer für ein Kraftfahrzeug
EP0556667B1 (de) Stossverzehrvorrichtung
DE19752887A1 (de) Universalgelenkwelle eines Lenksystems zum Absorbieren und Abfangen von Stoßenergie bei einem Zusammenstoß
DE10039792A1 (de) Lenksäule für ein Kraftfahrzeug
WO1999003716A1 (de) Lenksäulenanordnung für kraftfahrzeuge mit energieabsorptionselement
DE2411370C3 (de) Halterung einer unter Energieabsorption teleskopartig zusammenschiebbaren Lenksäule bei Kraftfahrzeugen, insbesondere bei Kraftfahrzeugen mit Frontmotor
DE102020209038A1 (de) Energie-Absorptions-Vorrichtung zum Anordnen zwischen einer Befestigungseinrichtung und einer Halterung, Lenkvorrichtung mit einer solchen Energie-AbsorptionsVorrichtung sowie Verfahren zum Herstellen einer solchen Energie-AbsorptionsVorrichtung und/oder Lenkvorrichtung
WO2009059655A1 (de) Lenksäulenanordnung für kraftwagen
DE19523482B4 (de) Lenkanlage für ein Kraftfahrzeug
DE2637406A1 (de) Stossfaenger-vorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09462247

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998925378

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998925378

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998925378

Country of ref document: EP