WO1999001647A1 - Alveolate catalyst and method for cleaning exhaust gas from an air excess-driven combustion engine - Google Patents

Alveolate catalyst and method for cleaning exhaust gas from an air excess-driven combustion engine Download PDF

Info

Publication number
WO1999001647A1
WO1999001647A1 PCT/EP1998/004085 EP9804085W WO9901647A1 WO 1999001647 A1 WO1999001647 A1 WO 1999001647A1 EP 9804085 W EP9804085 W EP 9804085W WO 9901647 A1 WO9901647 A1 WO 9901647A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
combustion engine
internal combustion
flow channels
Prior art date
Application number
PCT/EP1998/004085
Other languages
German (de)
French (fr)
Inventor
Ronald Neufert
Wieland Mathes
Klaus Wenzlawski
Dietmar Weisensel
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP98936407A priority Critical patent/EP0993544A1/en
Publication of WO1999001647A1 publication Critical patent/WO1999001647A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/06Exhaust treating devices having provisions not otherwise provided for for improving exhaust evacuation or circulation, or reducing back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a honeycomb-shaped catalyst and a method for the catalytic removal of pollutants from an exhaust gas of an internal combustion engine operated with excess air, for example a diesel engine or a gasoline engine with mixed engines.
  • pollutants are e.g. Nitrogen oxides, sulfur oxides, carbon monoxide and hydrocarbons, but also dioxins, furans and other organic compounds.
  • the pollutants mentioned can arise to a not inconsiderable extent. They are released into the environment via the exhaust gas and can cause damage there.
  • An internal combustion engine that works with excess air for example a diesel engine or a lean-mix petrol engine, releases such pollutants into the environment when its fuel is burned.
  • DeNOx catalyst which uses the method of selective catalytic reduction (SCR) to reduce the nitrogen oxides with a suitable reducing agent, usually ammonia, to environmentally friendly nitrogen and to water implements.
  • SCR selective catalytic reduction
  • EP 0 382 434 B1 describes a cleaning process for reducing so-called SOF contained in the exhaust gas of a diesel engine, ie organic components soluble in organic solvents.
  • the exhaust gas from the diesel engine is passed through a honeycomb-like catalyst which has cells parallel to the flow direction of the exhaust gas.
  • the individual, continuous cells have a hydraulic diameter of 1.00 to 2.00 mm, the cross section of the inflow area of the catalyst being 10 to 100 cm 2 per liter of cubic capacity of the diesel engine.
  • the percentage of the open area of the inflow area through which the exhaust gas can flow is 40 to 95%.
  • the specified catalytic converter is only suitable for use in the exhaust gas of a diesel engine, in which primary measures for reducing the particle emissions, e.g. in the form of soot particles.
  • the specified catalyst causes a relatively high exhaust gas back pressure, which leads to a reduction in engine performance and to increased fuel consumption.
  • the object of the invention is to provide a versatile, honeycomb-shaped catalyst and a method for removing the pollutants from the exhaust gas of an internal combustion engine operated with excess air. Effective catalytic degradation of the pollutants should also take place in the exhaust gas of a conventional diesel engine with a low tendency to clog the catalytic converter, whereby an increased exhaust gas back pressure, which would greatly reduce the engine output, should be practically avoided.
  • the object relating to the catalyst is achieved according to the invention by a honeycomb-shaped catalyst with a number of parallel flow channels for cleaning the exhaust gas of an internal combustion engine working with excess air with a predetermined displacement, the inflow area on the inlet side ' - of the catalyst being between 100 and 500 cm 2 per liter of displacement Combustion engine is, and wherein the flow channels have a hydraulic diameter between 2 and 4 mm and the percentage of the open frontal area at the inlet of the catalyst is between 45 and 95%.
  • the object of the method is achieved by a method for purifying the exhaust gas from an excess air internal combustion engine with a predetermined displacement, comprising passing the exhaust gas through a honeycomb-shaped catalyst with a number of parallel flow channels, the percentage of the open, frontal area at the inlet of the catalyst is at most 95%, the exhaust gas according to the invention being passed through the catalyst at a temperature between 100 and 700 ° C., the inflow area on the inlet side of the catalyst being between 100 and 500 cm 2 per liter of displacement of the internal combustion engine, and wherein the hydraulic diameter of the flow channels between 2 and 4 mm and the percentage of the open frontal area is at least 45%.
  • the “inflow area” is understood to mean the total area of the inflow side of the catalytic converter lying perpendicular to the flow direction of the exhaust gas and the “percentage of the open frontal area” is the ratio of the inflow area and the total cross-sectional area of the flow channels in percent.
  • the "hydraulic diameter” is defined as four times the cross-sectional area of a flow channel divided by its circumference. The invention is based on the consideration that such a catalytic converter, the flow area of which is specifically adapted to the displacement of the internal combustion engine, results in a high
  • the honeycomb-shaped catalyst can be designed as an oxidation catalyst with a known composition for the oxidation of unburned hydrocarbons, carbon monoxide or of dioxins or furans.
  • the honeycomb-shaped catalyst can also be designed as a reduction catalyst of known composition for removing nitrogen oxides.
  • the inflow area is between 100 and 500 cm 2 per liter of displacement of the internal combustion engine.
  • the inflow area is preferably 100-300 cm 2 per liter of cubic capacity.
  • the cross-sectional area through which the exhaust gas flows is so small on the inlet side of the catalytic converter that an exhaust gas counterpressure arises at the catalytic converter, which reduces the performance of the internal combustion engine.
  • the small cross-sectional area on the inlet side of the catalyst also leads to an increase in the tendency to clog. If the inflow area per liter of cubic capacity is more than 500 cm 2 , the honeycomb-shaped catalyst becomes too large to be used in particular in non-stationary applications, in particular in the motor vehicle sector. Is the percentage of the open, frontal area of the
  • the percentage of the open, frontal area of the inlet side of the catalyst is advantageously chosen between 60 and 85%.
  • the parallel flow channels have a hydraulic diameter between 2 and 4 mm.
  • the hydraulic diameter is preferably 2 to 3 mm.
  • the flow channels tend to clog with soot particles contained in the exhaust gas and thus reduce the catalytic activity of the catalyst. If the flow channels have a hydraulic diameter of more than 4 mm, the catalytic conversion of pollutants in the catalytic converter also decreases, since the frequency of contact of the pollutants carried in the exhaust gas decreases with the catalytic converter surface.
  • the honeycomb-shaped catalyst is designed as a DeNOx catalyst on which, among other things, Nitrogen oxides contained in the exhaust gas can be catalytically converted to nitrogen and water using a reducing agent, for example ammonia, previously introduced into the exhaust gas by the selective catalytic reduction (SCR) method.
  • a reducing agent for example ammonia
  • Substances which release the actual reducing agent only after being introduced into the exhaust gas can of course also be used as the reducing agent.
  • Egg- Such a substance is, for example, urea, from which ammonia is released.
  • a metering device for metering the reducing agent into the exhaust gas stream.
  • the reducing agent can be injected, injected or blown in.
  • an appropriately designed, controllable or regulatable nozzle can be provided.
  • the honeycomb-shaped catalyst can be connected to conventional internal combustion engines operated with excess air, in particular to diesel engines or to lean-mix petrol engines.
  • the use of the catalyst according to the invention has the advantage that no impairment of the engine performance is to be expected due to the low exhaust gas back pressure.
  • the installation of the honeycomb-shaped catalyst therefore leads to negligible additional fuel consumption by the internal combustion engine, while the additional fuel consumption in systems according to the prior art is between 5 and 20%.
  • a diesel engine which is connected via an exhaust pipe 2 to a honeycomb-shaped catalytic converter 7, which has a number of flow channels 9, which are aligned parallel to the flow direction 6 of the exhaust gas.
  • the catalyst 7 is designed as a DeNOx catalyst based on Ti0 2 , which is a catalytically active material or more of the substances V 2 0 5 , W0O3 and M0O3 comprises.
  • a DeNOx catalytic converter reduces the nitrogen oxides contained in the exhaust gas according to the SCR method of selective catalytic reduction with the aid of a reducing agent, for example ammonia, to nitrogen and water.
  • the exhaust gas generated in the diesel engine flows through the exhaust gas pipe 2 into the catalytic converter 7 at a temperature of 100 to 700 ° C.
  • a metering device 4 is fitted in the exhaust pipe 2.
  • the metering device 4 comprises a reducing agent tank 4A and a controllable nozzle 4B connected to it, through which the reducing agent located in the reducing agent tank 4A is injected into the exhaust gas flowing through the exhaust pipe 2. This can be done using compressed air, for example.
  • the reducing agent is intimately mixed with the exhaust gas.
  • Urea is used as the reducing agent, which partially converts to ammonia under the conditions prevailing in the exhaust gas.
  • a hydrolysis catalytic converter (not shown in more detail) can be arranged between the metering device 4 and the DeNOx catalytic converter 7.
  • the exhaust pipe 2 opens into the catalytic converter 7, which has an inflow surface 11 on its inlet side.
  • the inflow surface 11 perpendicular to the flow direction 6 of the exhaust gas is here 200 cm 2 per liter of cubic capacity 3 of the internal combustion engine 1.
  • the percentage of the inflow surface 11 through which the exhaust gas and reducing agent can flow is 70%.
  • the parallel flow channels 9 through which the exhaust gas and the reducing agent can flow have a hydraulic diameter of 2 mm.
  • the honeycomb-shaped catalytic converter 7 of this exemplary embodiment has a high pollutant conversion rate as well as a low tendency to clog and a low exhaust gas back pressure and thus does not impair the performance of the internal combustion engine 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

In order to eliminate contaminants in exhaust gas from an air excess-driven combustion engine (1) with a given engine capacity (3), an alveolate catalyst (7) is disclosed as well as a method consisting in feeding said exhaust gas via an exhaust pipe (2) into the catalyst (7). Adapting the surface of approach (11) to the engine capacity (3) enables, with a hydraulic flow channel (9) diameter of 2 to 4 mm and a front area aperture at the catalyst inlet (7) of 45 to 95 %, a high contaminant conversion rate to be obtained with no engine capacity reduction.

Description

Beschreibung description
Wabenförmiger Katalysator und Verfahren zur Reinigung eines Abgases aus einem mit Luftüberschuß betriebenen Verbrennungs- otorHoneycomb-shaped catalyst and method for purifying an exhaust gas from a combustion engine operated with excess air
Die Erfindung betrifft einen wabenformigen Katalysator und ein Verfahren zur katalytischen Entfernung von Schadstoffen aus einem Abgas eines mit Luftüberschuß betriebenen Verbren- nungsmotors, beispielsweise eines Dieselmotors oder eines Ma- germix-Benzinmotors. Derartige Schadstoffe sind z.B. Stickoxide, Schwefeloxide, Kohlenmonoxid und Kohlenwasserstoffe, aber auch Dioxine, Furane und andere organische Verbindungen.The invention relates to a honeycomb-shaped catalyst and a method for the catalytic removal of pollutants from an exhaust gas of an internal combustion engine operated with excess air, for example a diesel engine or a gasoline engine with mixed engines. Such pollutants are e.g. Nitrogen oxides, sulfur oxides, carbon monoxide and hydrocarbons, but also dioxins, furans and other organic compounds.
Bei dem Betrieb eines Verbrennungsmotors können in nicht unerheblichem Umfang die genannten Schadstoffe entstehen. Sie werden über das Abgas an die Umwelt abgegeben und können dort Schäden anrichten. Auch ein Verbrennungsmotor, der mit Luftüberschuß arbeitet, beispielsweise ein Dieselmotor oder ein Magermix-Benzinmotor, gibt solche Schadstoffe bei der Verbrennung seines Treibstoffs an die Umwelt ab.When operating an internal combustion engine, the pollutants mentioned can arise to a not inconsiderable extent. They are released into the environment via the exhaust gas and can cause damage there. An internal combustion engine that works with excess air, for example a diesel engine or a lean-mix petrol engine, releases such pollutants into the environment when its fuel is burned.
Um die von einem mit Luftüberschuß arbeitenden Verbrennungsmotor an die Umwelt abgegebenen Schadstoffe zu reduzieren, ist in der Vergangenheit eine Vielzahl von Katalysatoren entwickelt worden. So ist zur Verringerung von Stickoxiden im Abgas eines derartigen Verbrennungsmotors beispielsweise die Verwendung eines sogenannten DeNOx - Katalysators bekannt, welcher nach dem Verfahren der Selektiven Katalytischen Re- duktion (SCR) die Stickoxide mit einem geeigneten Reduktionsmittel, meist Ammoniak, zu umweltfreundlichem Stickstoff und zu Wasser umsetzt.A large number of catalysts have been developed in the past in order to reduce the pollutants released into the environment by an internal combustion engine operating with excess air. To reduce nitrogen oxides in the exhaust gas of such an internal combustion engine, for example, the use of a so-called DeNOx catalyst is known, which uses the method of selective catalytic reduction (SCR) to reduce the nitrogen oxides with a suitable reducing agent, usually ammonia, to environmentally friendly nitrogen and to water implements.
Auch wurden bezüglich der Geometrie des jeweils verwendeten Katalysators verschiedentlich Überlegungen angestellt, um eine Verstopfung des Katalysators durch die im Abgas des mitVarious considerations have also been made with regard to the geometry of the particular catalyst used a clogging of the catalyst due to the in the exhaust gas of the
Luftüberschuß arbeitenden Verbrennungsmotors enthaltenen unverbrannten Partikel oder Rußteilchen zu vermeiden.Avoid excess combustion internal combustion engine contained unburned particles or soot particles.
So ist speziell zur Verringerung von im Abgas eines Dieselmotors enthaltenen sogenannten SOF, d.h. von in organischen Lösungsmitteln löslichen, organischen Komponenten, in der EP 0 382 434 Bl ein Reinigungsverfahren beschrieben. Bei diesem Verfahren wird das Abgas des Dieselmotors durch einen bienenwabenartigen Katalysator, der Zellen parallel zur Strömungsrichtung des Abgases besitzt, geleitet. Die einzelnen, durchgehenden Zellen besitzen dabei einen hydraulischen Durchmesser von 1,00 bis 2,00 mm, wobei der Querschnitt der Anströmfläche des Katalysators 10 bis 100 cm2 pro Liter Hub- räum des Dieselmotors beträgt. Der Prozentsatz des offenen, vom Abgas durchströmbaren Bereiches der Anströmfläche beträgt 40 bis 95%.For example, EP 0 382 434 B1 describes a cleaning process for reducing so-called SOF contained in the exhaust gas of a diesel engine, ie organic components soluble in organic solvents. In this method, the exhaust gas from the diesel engine is passed through a honeycomb-like catalyst which has cells parallel to the flow direction of the exhaust gas. The individual, continuous cells have a hydraulic diameter of 1.00 to 2.00 mm, the cross section of the inflow area of the catalyst being 10 to 100 cm 2 per liter of cubic capacity of the diesel engine. The percentage of the open area of the inflow area through which the exhaust gas can flow is 40 to 95%.
Nachteiligerweise eignet sich jedoch der angegebene Katalysa- tor nur zum Einsatz im Abgas eines Dieselmotors, bei dem bereits motorseitig Primärmaßnahmen zur Verringerung des Parti- kelausstoßes , z.B. in Form von Rußteilchen, getroffen sind. Weiterhin bewirkt der angegebene Katalysator einen relativ hohen Abgasgegendruck, der zur Minderung der Motorleistung und zu einem Kraftstoffmehrverbrauch führt.Disadvantageously, however, the specified catalytic converter is only suitable for use in the exhaust gas of a diesel engine, in which primary measures for reducing the particle emissions, e.g. in the form of soot particles. Furthermore, the specified catalyst causes a relatively high exhaust gas back pressure, which leads to a reduction in engine performance and to increased fuel consumption.
Aufgabe der Erfindung ist es, einen vielseitig verwendbaren, wabenformigen Katalysator sowie ein Verfahren zur Entfernung der Schadstoffe aus dem Abgas eines mit Luftüberschuß be- triebenen Verbrennungsmotors anzugeben. Auch im Abgas eines üblichen Dieselmotors soll ein effektiver katalytischer Abbau der Schadstoffe bei gleichzeitig geringer Verstopfungsneigung des Katalysators stattfinden, wobei ein erhöhter Abgasgegendruck, der die Motorleistung stark vermindern würde, prak- tisch vermieden werden soll. Die Aufgabe bezüglich des Katalysators wird erfindungsgemäß durch einen wabenformigen Katalysator mit einer Anzahl paralleler Strömungskanäle zur Reinigung des Abgases eines mit Luftüberschuß arbeitenden Verbrennungsmotors mit vorgegebenem Hubraum gelöst, wobei die Anströmfläche auf der Einlaßseite '- des Katalysators zwischen 100 und 500 cm2 pro Liter Hubraum des Verbrennungsmotors beträgt, und wobei die Strömungskanäle einen hydraulischen Durchmesser zwischen 2 und 4 mm aufweisen und der Prozentsatz des offenen, frontalen Bereiches am Ein- laß des Katalysators zwischen 45 und 95% beträgt.The object of the invention is to provide a versatile, honeycomb-shaped catalyst and a method for removing the pollutants from the exhaust gas of an internal combustion engine operated with excess air. Effective catalytic degradation of the pollutants should also take place in the exhaust gas of a conventional diesel engine with a low tendency to clog the catalytic converter, whereby an increased exhaust gas back pressure, which would greatly reduce the engine output, should be practically avoided. The object relating to the catalyst is achieved according to the invention by a honeycomb-shaped catalyst with a number of parallel flow channels for cleaning the exhaust gas of an internal combustion engine working with excess air with a predetermined displacement, the inflow area on the inlet side ' - of the catalyst being between 100 and 500 cm 2 per liter of displacement Combustion engine is, and wherein the flow channels have a hydraulic diameter between 2 and 4 mm and the percentage of the open frontal area at the inlet of the catalyst is between 45 and 95%.
Die Aufgabe bezüglich des Verfahrens wird gelöst durch ein Verfahren zur Reinigung des Abgases aus einem mit Luftüberschuß arbeitenden Verbrennungsmotor mit einem vorgegebenen Hubraum, umfassend das Durchleiten des Abgases durch einen wabenformigen Katalysator mit einer Anzahl paralleler Strömungskanäle, wobei der Prozentsatz des offenen, frontalen Bereichs am Einlaß des Katalysators höchstens 95% beträgt, wobei erfindungsgemäß das Abgas bei einer Temperatur zwischen 100 und 700 °C durch den Katalysator geleitet wird, wobei die Anströmfläche auf der Einlaßseite des Katalysators zwischen 100 und 500 cm2 pro Liter Hubraum des Verbrennungsmotors beträgt, und wobei der hydraulische Durchmesser der Strömungskanäle zwischen 2 und 4 mm und der Prozentsatz des offenen frontalen Bereiches mindestens 45% beträgt.The object of the method is achieved by a method for purifying the exhaust gas from an excess air internal combustion engine with a predetermined displacement, comprising passing the exhaust gas through a honeycomb-shaped catalyst with a number of parallel flow channels, the percentage of the open, frontal area at the inlet of the catalyst is at most 95%, the exhaust gas according to the invention being passed through the catalyst at a temperature between 100 and 700 ° C., the inflow area on the inlet side of the catalyst being between 100 and 500 cm 2 per liter of displacement of the internal combustion engine, and wherein the hydraulic diameter of the flow channels between 2 and 4 mm and the percentage of the open frontal area is at least 45%.
Dabei wird unter der „Anströmfläche" die senkrecht zur Strömungsrichtung des Abgases liegende Gesamtfläche der Anströmseite des Katalysators und unter dem „Prozentsatz des offe- nen, frontalen Bereiches" das Verhältnis aus Anströmfläche und Gesamtquerschnittsfläche der Strömungskanäle in Prozent verstanden. Der „hydraulische Durchmesser" ist definiert als die vierfache Querschnittsfläche eines Strömungskanals, dividiert durch seinen Umfang. Die Erfindung geht von der Überlegung aus, daß durch einen derartigen Katalysator, dessen Anströmfläche spezifisch auf den Hubraum des Verbrennungsmotors angepaßt ist, eine hoheThe “inflow area” is understood to mean the total area of the inflow side of the catalytic converter lying perpendicular to the flow direction of the exhaust gas and the “percentage of the open frontal area” is the ratio of the inflow area and the total cross-sectional area of the flow channels in percent. The "hydraulic diameter" is defined as four times the cross-sectional area of a flow channel divided by its circumference. The invention is based on the consideration that such a catalytic converter, the flow area of which is specifically adapted to the displacement of the internal combustion engine, results in a high
Schadstoffumsatzrate bei gleichzeitig niedrigem Abgasgegen- druck und niedriger Verstopfungstendenz erzielt wird. Auf- ~- grund des niedrigen Abgasgegendrucks wird die Motorleistung des Verbrennungsmotors nicht gemindert, und der Einsatz eines derartigen Katalysators zieht keinen Kraftstoffmehrverbrauch nach sich.Pollutant turnover rate with low exhaust gas back pressure and low clogging tendency is achieved. ~ Up - due to the low exhaust gas back pressure is not reduced, the engine output of the internal combustion engine, and the use of such a catalyst is not drawing fuel consumption to himself.
Der wabenformige Katalysator kann dabei als ein Oxidations- Katalysator mit an sich bekannter Zusammensetzung zur Oxida- tion unverbrannter Kohlenwasserstoffe, Kohlenmonoxid oder von Dioxinen oder Furanen ausgebildet sein. Auch kann der waben- förmige Katalysator als ein Reduktionskatalysator bekannter Zusammensetzung zur Entfernung von Stickoxiden ausgebildet sein.The honeycomb-shaped catalyst can be designed as an oxidation catalyst with a known composition for the oxidation of unburned hydrocarbons, carbon monoxide or of dioxins or furans. The honeycomb-shaped catalyst can also be designed as a reduction catalyst of known composition for removing nitrogen oxides.
Um den Abgasgegendruck am Katalysator zu minimieren und so eine Minderung der Motorleistung gering zu halten, beträgt die Anströmfläche zwischen 100 und 500 cm2 pro Liter Hubraum des Verbrennungsmotors. Vorzugsweise beträgt die Anströmfläche 100 - 300 cm2 pro Liter Hubraum.In order to minimize the exhaust gas back pressure on the catalytic converter and thus keep the engine output low, the inflow area is between 100 and 500 cm 2 per liter of displacement of the internal combustion engine. The inflow area is preferably 100-300 cm 2 per liter of cubic capacity.
Unterhalb von 100 cm2 Anströmfläche pro Liter Hubraum ist die vom Abgas durchströmte Querschnittsfläche auf der Einlaßseite des Katalysators so klein, daß am Katalysator ein Abgasgegendruck entsteht, der die Leistung des Verbrennungsmotors mindert. Die geringe Querschnittsfläche auf der Einlaßseite des Katalysators führt gleichzeitig zu einem Anstieg der Verstopfungstendenz. Beträgt die Anströmfläche pro Liter Hubraum mehr als 500 cm2, wird der wabenformige Katalysator zu groß- volumig, um insbesondere bei nichtstationären Anwendungen, insbesondere im Kraftfahrzeugbereich, eingesetzt zu werden. Liegt der Prozentsatz des offenen, frontalen Bereiches derBelow 100 cm 2 of inflow area per liter of displacement, the cross-sectional area through which the exhaust gas flows is so small on the inlet side of the catalytic converter that an exhaust gas counterpressure arises at the catalytic converter, which reduces the performance of the internal combustion engine. The small cross-sectional area on the inlet side of the catalyst also leads to an increase in the tendency to clog. If the inflow area per liter of cubic capacity is more than 500 cm 2 , the honeycomb-shaped catalyst becomes too large to be used in particular in non-stationary applications, in particular in the motor vehicle sector. Is the percentage of the open, frontal area of the
Einlaßseite des Katalysators unterhalb von 45%, so steigt der Abgasgegendruck, bedingt durch die dann verkleinerte offene Querschnittsfläche der Strömungskanäle an, während die mechanische Stabilität des Katalysators bei einem Prozentsatz oberhalb von 95% aufgrund der dünnen Wandstärke der einzelnen Strömungskanäle stark eingeschränkt ist. Vorteilhaft wird der Prozentsatz des offenen, frontalen Bereiches der Einlaßseite des Katalysators zwischen 60 und 85% gewählt.Inlet side of the catalyst below 45%, so the exhaust gas back pressure increases due to the then reduced open cross-sectional area of the flow channels, while the mechanical stability of the catalyst is severely restricted at a percentage above 95% due to the thin wall thickness of the individual flow channels. The percentage of the open, frontal area of the inlet side of the catalyst is advantageously chosen between 60 and 85%.
Um weiterhin den Druckabfall am Katalysator zu vermindern, weisen die parallelen Strömungskanäle einen hydraulischen Durchmesser zwischen 2 und 4 mm auf.In order to further reduce the pressure drop across the catalytic converter, the parallel flow channels have a hydraulic diameter between 2 and 4 mm.
Bevorzugt beträgt der hydraulische Durchmesser 2 bis 3 mm.The hydraulic diameter is preferably 2 to 3 mm.
Bei einem hydraulischen Durchmesser von unter 2 mm steigt die Tendenz der Strömungskanäle, sich mit im Abgas enthaltenen Rußteilchen zuzusetzen und so die katalytische Aktivität des Katalysator zu verringern. Bei einem hydraulischen Durchmes- ser der Strömungskanäle von mehr als 4 mm sinkt die katalytische Umsetzung von Schadstoffen im Katalysator ebenfalls, da die Kontakthäufigkeit der im Abgas mitgeführten Schadstoffe mit der Katalysatoroberfläche abnimmt.With a hydraulic diameter of less than 2 mm, the flow channels tend to clog with soot particles contained in the exhaust gas and thus reduce the catalytic activity of the catalyst. If the flow channels have a hydraulic diameter of more than 4 mm, the catalytic conversion of pollutants in the catalytic converter also decreases, since the frequency of contact of the pollutants carried in the exhaust gas decreases with the catalytic converter surface.
Für einen effektiven Abbau von im Abgas enthaltenen Stickoxiden ist es vorteilhaft, wenn der wabenformige Katalysator als DeNOx-Katalysator ausgeführt ist, an dem u.a. im Abgas enthaltene Stickoxide mit einem zuvor in das Abgas eingebrachten Reduktionsmittel, beispielsweise Ammoniak, nach dem Verfahren der Selektiven Katalytischen Reduktion (SCR) katalytisch zu Stickstoff und Wasser umgesetzt werden.For an effective breakdown of nitrogen oxides contained in the exhaust gas, it is advantageous if the honeycomb-shaped catalyst is designed as a DeNOx catalyst on which, among other things, Nitrogen oxides contained in the exhaust gas can be catalytically converted to nitrogen and water using a reducing agent, for example ammonia, previously introduced into the exhaust gas by the selective catalytic reduction (SCR) method.
Als Reduktionsmittel können dabei selbstverständlich auch Substanzen verwendet werden, welche erst nach dem Einbringen in das Abgas das eigentliche Reduktionsmittel freisetzen. Ei- ne derartige Substanz ist beispielsweise Harnstoff, aus welchem Ammoniak freigesetzt wird.Substances which release the actual reducing agent only after being introduced into the exhaust gas can of course also be used as the reducing agent. Egg- Such a substance is, for example, urea, from which ammonia is released.
In Strömungsrichtung des Abgases vor dem DeNOx-Katalysator befindet sich vorteilhafterweise eine Dosiereinrichtung zur - Zudosierung des Reduktionsmittels in den Abgasstrom. Dabei kann das Reduktionsmittel eingedüst, eingespritzt oder eingeblasen werden. Hierfür kann beispielsweise eine entsprechend ausgelegte, Steuer- oder regelbare Düse vorgesehen sein.In the flow direction of the exhaust gas upstream of the DeNOx catalytic converter there is advantageously a metering device for metering the reducing agent into the exhaust gas stream. The reducing agent can be injected, injected or blown in. For this purpose, an appropriately designed, controllable or regulatable nozzle can be provided.
Der wabenformige Katalysator kann an übliche, mit Luftüberschuß betriebene Verbrennungsmotoren, insbesondere an Dieselmotoren oder an Magermix-Benzinmotoren, angeschlossen werden.The honeycomb-shaped catalyst can be connected to conventional internal combustion engines operated with excess air, in particular to diesel engines or to lean-mix petrol engines.
Der Einsatz des erfindungsgemäßen Katalysators hat den Vorteil, daß aufgrund des geringen Abgasgegendrucks keine Beeinträchtigung der Motorleistung zu erwarten ist. Der Einbau des wabenformigen Katalysators führt daher zu einem vernachlässigbaren Kraftstoffmehrverbrauch des Verbrennungsmotors, wäh- rend der Kraftstoffmehrverbrauch bei Systemen gemäß dem Stand der Technik zwischen 5 und 20% liegt.The use of the catalyst according to the invention has the advantage that no impairment of the engine performance is to be expected due to the low exhaust gas back pressure. The installation of the honeycomb-shaped catalyst therefore leads to negligible additional fuel consumption by the internal combustion engine, while the additional fuel consumption in systems according to the prior art is between 5 and 20%.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Figur näher erläutert, welche eine schematische Dar- Stellung eines Dieselmotors mit einem zugeordneten wabenformigen Katalysator zeigt.An exemplary embodiment of the invention is explained in more detail below with reference to a figure which shows a schematic illustration of a diesel engine with an associated honeycomb-shaped catalytic converter.
In der Figur ist als ein mit Luftüberschuß arbeitender Verbrennungsmotor 1 ein Dieselmotor gezeigt, welcher über ein Abgasrohr 2 mit einem wabenformigen Katalysator 7 verbunden ist, der eine Anzahl von Strömungskanälen 9 aufweist, die zur Strömungsrichtung 6 des Abgases parallel ausgerichtet sind.In the figure, as a combustion engine 1 working with excess air, a diesel engine is shown, which is connected via an exhaust pipe 2 to a honeycomb-shaped catalytic converter 7, which has a number of flow channels 9, which are aligned parallel to the flow direction 6 of the exhaust gas.
Der Katalysator 7 ist dabei als DeNOx-Katalysator auf Ti02- Basis ausgeführt, der als katalytisch aktives Material eine oder mehrere der Substanzen V205, W0O3 und M0O3 umfaßt. Ein derartiger DeNOx-Katalysator reduziert die im Abgas enthaltenen Stickoxide nach dem SCR-Verfahren der Selektiven Katalytischen Reduktion mit Hilfe eines Reduktionsmittels, bei- spielsweise Ammoniak, zu Stickstoff und Wasser.The catalyst 7 is designed as a DeNOx catalyst based on Ti0 2 , which is a catalytically active material or more of the substances V 2 0 5 , W0O3 and M0O3 comprises. Such a DeNOx catalytic converter reduces the nitrogen oxides contained in the exhaust gas according to the SCR method of selective catalytic reduction with the aid of a reducing agent, for example ammonia, to nitrogen and water.
Das im Dieselmotor erzeugte Abgas strömt je nach Betriebszustand des Motors mit einer Temperatur von 100 bis 700 °C durch das 7Abgasrohr 2 in den Katalysator 7. Bezogen auf die Strömungsrichtung des Abgases vor dem Katalysator 7 ist im Abgasrohr 2 eine Dosiereinrichtung 4 angebracht. Die Dosiereinrichtung 4 umfaßt einen Reduktionsmitteltank 4A und eine daran angeschlossene, steuerbare Düse 4B, durch welche das sich im Reduktionsmitteltank 4A befindliche Reduktionsmittel in das durch das Abgasrohr 2 strömende Abgas eingedüst wird. Dies kann beispielsweise mit Hilfe von Druckluft geschehen. Dabei wird das Reduktionsmittel mit dem Abgas innig vermischt.Depending on the operating state of the engine, the exhaust gas generated in the diesel engine flows through the exhaust gas pipe 2 into the catalytic converter 7 at a temperature of 100 to 700 ° C. Relative to the direction of flow of the exhaust gas upstream of the catalytic converter 7, a metering device 4 is fitted in the exhaust pipe 2. The metering device 4 comprises a reducing agent tank 4A and a controllable nozzle 4B connected to it, through which the reducing agent located in the reducing agent tank 4A is injected into the exhaust gas flowing through the exhaust pipe 2. This can be done using compressed air, for example. The reducing agent is intimately mixed with the exhaust gas.
Als Reduktionsmittel wird Harnstoff verwendet, welcher sich unter den im Abgas herrschenden Bedingungen teilweise zu Ammoniak umwandelt. Zur Unterstützung der Umwandlung kann ein nicht näher gezeigter Hydrolysekatalysator zwischen der Dosiereinrichtung 4 und dem DeNOx-Katalysator 7 angeordnet sein.Urea is used as the reducing agent, which partially converts to ammonia under the conditions prevailing in the exhaust gas. To support the conversion, a hydrolysis catalytic converter (not shown in more detail) can be arranged between the metering device 4 and the DeNOx catalytic converter 7.
Hinter der Dosiereinrichtung 4 mündet das Abgasrohr 2 in den Katalysator 7, der auf seiner Einlaßseite eine Anströmfläche 11 aufweist. Die senkrecht zur Strömungsrichtung 6 des Abga- ses stehende Anströmfläche 11 beträgt hier 200 cm2 pro Liter Hubraum 3 des Verbrennungsmotors 1. Der Prozentsatz der Anströmfläche 11, der von Abgas und Reduktionsmittel durchströmt werden kann, beträgt hier 70%. Die vom Abgas und dem Reduktionsmittel durchströmbaren, parallelen Strömungskanäle 9 haben hier einen hydraulischen Durchmesser von 2 mm.After the metering device 4, the exhaust pipe 2 opens into the catalytic converter 7, which has an inflow surface 11 on its inlet side. The inflow surface 11 perpendicular to the flow direction 6 of the exhaust gas is here 200 cm 2 per liter of cubic capacity 3 of the internal combustion engine 1. The percentage of the inflow surface 11 through which the exhaust gas and reducing agent can flow is 70%. The parallel flow channels 9 through which the exhaust gas and the reducing agent can flow have a hydraulic diameter of 2 mm.
Der wabenformige Katalysator 7 dieses Ausführungsbeispiels weist eine hohe Schadstoffumsatzrate sowie eine geringe Verstopfungsneigung und einen geringen Abgasgegendruck auf und beeinträchtigt so die Leistung des Verbrennungsmotors 1 nicht. The honeycomb-shaped catalytic converter 7 of this exemplary embodiment has a high pollutant conversion rate as well as a low tendency to clog and a low exhaust gas back pressure and thus does not impair the performance of the internal combustion engine 1.

Claims

Patentansprüche claims
1. Wabenförmiger Katalysator (7) mit einer Anzahl von parallelen Strömungskanälen (9) zur Reinigung des Abgases eines mit Luftüberschuß arbeitenden Verbrennungsmotors (1) mit eignem vorgegebenen Hubraum (3) , d a d u r c h g e k e n n z e i c h n e t, daß seine Anströmfläche (11) auf der Einlaßseite zwischen 100 und 500 cm2 pro Liter Hubraum (3) des Verbrennungsmotors (1) beträgt, daß der hydraulische Durchmesser der Strömungskanäle (9) zwischen 2 und 4 mm liegt, und daß der Prozentsatz seines offenen, frontalen Bereichs am Einlaß zwischen 45 und 95% beträgt.1. A honeycomb catalyst (7) with a number of parallel flow channels (9) for cleaning the exhaust gas of an operating with excess air, the internal combustion engine (1) having egg g NEM predetermined displacement (3), characterized in that its inflow area (11) on the inlet side between 100 and 500 cm 2 per liter of displacement (3) of the internal combustion engine (1) is that the hydraulic diameter of the flow channels (9) is between 2 and 4 mm, and that the percentage of its open frontal area at the inlet is between 45 and 95% is.
2. Katalysator (7) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß seine Anströmfläche (11) auf der Einlaßseite zwischen 100 und 300 cm2 pro Liter Hubraum (3) des Verbrennungsmotors (1) beträgt.2. Catalyst (7) according to claim 1, characterized in that its inflow surface (11) on the inlet side is between 100 and 300 cm 2 per liter of displacement (3) of the internal combustion engine (1).
3. Katalysator (7) nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß der hydraulische Durchmesser der Strömungskanäle (9) zwischen 2 und 3 mm beträgt.3. Catalyst (7) according to claim 1 or 2, so that the hydraulic diameter of the flow channels (9) is between 2 and 3 mm.
4. Katalysator (7) nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, daß der Prozentsatz des offenen frontalen Bereichs zwischen 60 und 85% beträgt.4. Catalyst (7) according to one of claims 1 to 3, d a d u r c h g e k e n n z e i c h n e t that the percentage of the open frontal area is between 60 and 85%.
5. Katalysator (7) nach einem Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, daß er ein DeNOx-Katalysator ist.5. Catalyst (7) according to any one of claims 1 to 4, d a d u r c h g e k e n n z e i c h n e t that it is a DeNOx catalyst.
6. Verfahren zur Reinigung des Abgases aus einem mit Luftüberschuß arbeitenden Verbrennungsmotor (1) mit einem vorge- gebenen Hubraum (3) , umfassend das Durchleiten des Abgases durch einen wabenformigen Katalysator (7) mit einer Anzahl paralleler Strömungskanäle (9), wobei der Prozentsatz des offenen, frontalen Bereichs am Einlaß des Katalysators (7) höchstens 95% beträgt, d a d u r c h g e k e n n z e i c h n e t, daß das Abgas be einer Temperatur zwischen 100 und 700°C durch den Katalysator (7) geleitet wird, wobei die Anströmfläche (11) auf der Einlaßseite des Katalysators (7) zwischen 100 und 500 cm2 pro Liter Hubraum (3) des Verbrennungsmotors (1) beträgt, und daß der hydraulische Durchmesser der Stromungskanale (9) zwischen 2 und 4 mm und der Prozentsatz des offenen frontalen Bereichs mindestens 45% beträgt.6. A method for cleaning the exhaust gas from an internal combustion engine (1) working with excess air and having a predetermined displacement (3), comprising passing the exhaust gas through by a honeycomb-shaped catalyst (7) with a number of parallel flow channels (9), the percentage of the open frontal area at the inlet of the catalyst (7) being at most 95%, characterized in that the exhaust gas is at a temperature between 100 and 700 ° C is passed through the catalytic converter (7), the inflow area (11) on the inlet side of the catalytic converter (7) being between 100 and 500 cm 2 per liter of cubic capacity (3) of the internal combustion engine (1), and the hydraulic diameter of the flow channels ( 9) between 2 and 4 mm and the percentage of the open frontal area is at least 45%.
7. Verfahren nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, daß die Anströmfläche (11) auf der Einlaßseite des Katalysators (7) zwischen 100 und 300 cm2 pro Liter Hubraum (3) des Verbrennungsmotors (1) beträgt.7. The method according to claim 6, characterized in that the inflow surface (11) on the inlet side of the catalyst (7) is between 100 and 300 cm 2 per liter of displacement (3) of the internal combustion engine (1).
8. Verfahren nach Anspruch 6 oder 7, d a d u r c h g e k e n n z e i c h n e t, daß der hydraulische Durchmesser der Strömungskanäle (9) zwischen 2 und 3 mm beträgt.8. The method according to claim 6 or 7, d a d u r c h g e k e n n z e i c h n e t that the hydraulic diameter of the flow channels (9) is between 2 and 3 mm.
9. Verfahren nach einem der Ansprüche 6 bis 8, d a d u r c h g e k e n n z e i c h n e t, daß der Prozentsatz des offenen frontalen Bereichs zwischen 60 und 85% beträgt.9. The method according to any one of claims 6 to 8, so that the percentage of the open frontal area is between 60 and 85%.
10. Verfahren nach einem Ansprüche 6 bis 9, d a d u r c h g e k e n n z e i c h n e t, daß das Abgas durch einen DeNOx-Katalysator geleitet wird. 10. The method according to any one of claims 6 to 9, that the exhaust gas is passed through a DeNOx catalytic converter.
11. Verfahren nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, daß dem Abgas vor11. The method according to claim 10, characterized in that the exhaust gas
Durchleitung durch den DeNOx-Katalysator ein Reduktionsmittel zudosiert wird. Passing through the DeNOx catalyst, a reducing agent is added.
PCT/EP1998/004085 1997-07-04 1998-07-02 Alveolate catalyst and method for cleaning exhaust gas from an air excess-driven combustion engine WO1999001647A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98936407A EP0993544A1 (en) 1997-07-04 1998-07-02 Alveolate catalyst and method for cleaning exhaust gas from an air excess-driven combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP97111324 1997-07-04
EP97111324.6 1997-07-04

Publications (1)

Publication Number Publication Date
WO1999001647A1 true WO1999001647A1 (en) 1999-01-14

Family

ID=8227015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/004085 WO1999001647A1 (en) 1997-07-04 1998-07-02 Alveolate catalyst and method for cleaning exhaust gas from an air excess-driven combustion engine

Country Status (2)

Country Link
EP (1) EP0993544A1 (en)
WO (1) WO1999001647A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0277765A1 (en) * 1987-01-27 1988-08-10 Nippon Shokubai Co., Ltd. Method for the removal of nitrogen oxides from the exhaust gas of a diesel engine
EP0382434A2 (en) * 1989-02-06 1990-08-16 Nippon Shokubai Kagaku Kogyo Co. Ltd. Purification of exhaust gas from diesel engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0277765A1 (en) * 1987-01-27 1988-08-10 Nippon Shokubai Co., Ltd. Method for the removal of nitrogen oxides from the exhaust gas of a diesel engine
EP0382434A2 (en) * 1989-02-06 1990-08-16 Nippon Shokubai Kagaku Kogyo Co. Ltd. Purification of exhaust gas from diesel engine

Also Published As

Publication number Publication date
EP0993544A1 (en) 2000-04-19

Similar Documents

Publication Publication Date Title
EP1728984B2 (en) Exhaust system
EP2138681B1 (en) Method and device for cleaning diesel exhaust gases
EP2691618B1 (en) Compact exhaust-gas treatment unit with mixing region, and method for mixing an exhaust gas
EP2266681B1 (en) Exhaust gas system having a reducing agent supply unit and a filter element with a SCR-catalyst
EP2183471B1 (en) Exhaust-gas secondary treatment preceding a turbocharger
EP1900916A2 (en) Exhaust gas finishing treatment system
EP2101049A2 (en) Compact exhaust gas after treatment system
EP1892394A1 (en) Exhaust gas finishing treatment system
EP3134622B1 (en) Model kit and method of production for a catalyst assembly
WO2000070202A1 (en) Method for reducing harmful components in the exhaust gas of an internal combustion engine, especially a diesel-internal combustion engine
DE102009044689A1 (en) Exhaust device for a diesel vehicle
EP1882090B1 (en) Exhaust system with two exhaust treatment units
WO2015074697A1 (en) Apparatus for purifying the emissions of an internal combustion engine
DE102017118214A1 (en) Exhaust gas aftertreatment system and method for exhaust aftertreatment of an internal combustion engine
WO1999001647A1 (en) Alveolate catalyst and method for cleaning exhaust gas from an air excess-driven combustion engine
EP0993545A1 (en) Alveolate catalyst and method for cleaning exhaust gas from an air excess-driven combustion engine
EP1048828B1 (en) Catalytic converter
EP0889209A1 (en) Exhaust conduit arrangement and method of cleaning exhaust gas from a combustion engine run on excess air
DE102015226039A1 (en) Particulate filter for an exhaust aftertreatment system, exhaust aftertreatment system and method of making a particulate filter
DE102005036712A1 (en) Device and method for exhaust aftertreatment of an internal combustion engine
DE10044893A1 (en) Soot filter for continuous regeneration trap of diesel exhaust purification system, includes internal longitudinal bypass
EP1512850A1 (en) Particulate filter
DE102011114097A1 (en) Arrangement for performing post-treatment of exhaust gas of diesel engine of e.g. truck, has injection apparatus which introduces source of ammonia into the exhaust stream, with respect to flow direction of the exhaust gas
DE102015226038A1 (en) Particulate filter for an exhaust aftertreatment system, exhaust aftertreatment system and method of making a particulate filter
DE102011113809A1 (en) Exhaust system for an internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998936407

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 09477446

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998936407

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998936407

Country of ref document: EP