WO1998059032A1 - Appareil distributeur de milieux de culture et methode de distribution - Google Patents

Appareil distributeur de milieux de culture et methode de distribution Download PDF

Info

Publication number
WO1998059032A1
WO1998059032A1 PCT/JP1998/002770 JP9802770W WO9859032A1 WO 1998059032 A1 WO1998059032 A1 WO 1998059032A1 JP 9802770 W JP9802770 W JP 9802770W WO 9859032 A1 WO9859032 A1 WO 9859032A1
Authority
WO
WIPO (PCT)
Prior art keywords
petri dish
medium
dispensing
movable table
culture medium
Prior art date
Application number
PCT/JP1998/002770
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Inaba
Toshiyuki Wakasa
Mamoru Shiratori
Masato Ichikawa
Original Assignee
Nittetsu Mining Co., Ltd.
Sankyo Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP16612497A external-priority patent/JP3401526B2/ja
Priority claimed from JP7047498A external-priority patent/JP3575664B2/ja
Application filed by Nittetsu Mining Co., Ltd., Sankyo Company, Limited filed Critical Nittetsu Mining Co., Ltd.
Priority to EP98928611A priority Critical patent/EP0990698A1/en
Priority to US09/446,664 priority patent/US6199605B1/en
Priority to AU80375/98A priority patent/AU8037598A/en
Publication of WO1998059032A1 publication Critical patent/WO1998059032A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/10Petri dish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/50Means for positioning or orientating the apparatus

Definitions

  • the present invention relates to an apparatus and a method for dispensing a medium such as an agar medium used for various kinds of microbial tests or the like into a petri dish or mixing with a specimen. Background technique
  • microbial tests related to GMP validation such as sterility testing in the pharmaceutical industry, bacterial count limit tests, environmental fall-out test, antibiotic potency (efficacy) measurement, body fluid concentration measurement, preservation efficacy test, etc.
  • Media such as agar media are widely used for microbial tests related to the prevention of harmful bacteria based on HACCP, such as viable cell count tests and fungal count tests in the food industry.
  • a solid medium 5 to 10 cc mixed with bacteria is dispensed into a dish, and a disc or cup is placed on the dispensing surface.
  • the disk or cup is impregnated or dispensed with the specimen, and cultured.
  • the body fluid concentration is measured based on the size of the area where the bacteria grow.
  • a petri dish is filled with 20 cc of a substratum medium (a medium containing nutrients that the bacterium prefers to eat more), solidify, and then place a seed layer medium ( Dispense 4 cc.
  • a disk or cup is placed on the surface of the seed medium, and antibiotics of different concentrations and known or unknown antibiotics are dispensed into the disk or cup and cultured. Then, the area in which the bacteria grow is measured, and the titer of the unknown antibiotic is calculated.
  • the various types of microbial tests described above are broadly divided into qualitative tests and quantitative tests, and the quantitative tests always use an agar medium.
  • an apparatus for automatically performing sample sampling and medium dispensing work is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 5-153,961 and 4-248,980, and It is disclosed in, for example, Japanese Patent Application Laid-Open No. 3-49676.
  • FIG. 20 is a schematic configuration diagram of a medium dispensing / pouring device 200.
  • the dispensing / pruning device 200 is equipped with a medium dispensing device 201 for dispensing the medium material and a mixing and stirring device 202 for pouring the medium material, and the sample diluent 200 3 Is mixed with agar medium 204 to automatically prepare a pour plate.
  • the dispensing / pouring device 200 In the dispensing / pouring device 200, first, empty shelves 206 stored in a vertically stacked state are taken out one by one from the racks 212 and carried out on a conveyor (not shown). Conveyed. After the lid of the petri dish 206 conveyed by the conveyor is opened, the sample diluent 203 is dispensed by the diluted sample liquid dispenser 209. The diluted sample liquid dispensing device 209 sequentially dilutes the sample in the test tube with a diluting liquid at a plurality of dilution ratios, and dilutes the sample diluent 203 with the micropipet 210. Dispense into petri dishes 206.
  • the medium dispensing device 201 feeds the molten agar medium 204 from the medium storage tank (not shown) to the medium dispensing nozzle via a circulation pipe (not shown) and a branch pipe (not shown). A set amount is supplied from 205 to the petri dish 206.
  • the mixing and stirring device 202 is configured to rotate the stirring plate 207 by the rotation driving mechanism 208 to thereby dilute the sample diluting solution dispensed into the petri dish 206 by the diluting sample liquid dispensing device 209.
  • 203 and the molten agar medium 204 dispensed into the petri dish 206 by the medium dispensing device 201 are mixed and stirred.
  • the mixed sample diluent 203 and agar medium 204 are solidified by the cooling device 211 to prepare a pour plate. Thereafter, the petri dish 206 with the lid attached thereto is stored in a rack 213 in a vertically stacked state.
  • a predetermined amount of the sample diluent 203 and the agar medium 204 are mixed to automatically prepare a pour plate. be able to.
  • a plate medium can be prepared.
  • the dispensing and pruning of the culture medium differs depending on the type of test in which the culture medium is used.
  • the pour process in which the diluted sample solution and the agar medium are mixed and stirred is performed only when a pour plate is prepared.
  • the dispensing and pulverizing apparatus 200 as described above can be used for dispensing and pulverizing the plate medium and the pour plate.
  • the dispensed amount of the medium is small and the dispensed medium may be difficult to extend.
  • the dispensing amount of the medium of the seed layer to be laminated is small (for example, about 4 cc), so that the medium is difficult to uniformly spread at the time of dispensing and the temperature of the previously solidified base layer is low. Has dropped to near room temperature (usually 20 to 24 ° C). For this reason, they must be evenly spread quickly after dispensing.
  • the amount of dispensed Boji is minimal (for example, about 5 cc), and the surface of the petri dish is affected by the silicone release agent used for cutting the plastic petri dish. Because of its water repellency, it has a problem that it is difficult for the medium to spread uniformly during dispensing.
  • the fluidity is insufficient with the above-described dispensing and mixing apparatus 200 depending on the concentration of the medium on the petri dish, and the medium is smoothed. Gender was sometimes a problem. If the temperature of the culture medium is kept high, the fluidity of the culture medium can be maintained and a small amount can be dispensed. However, heating the culture medium to 50 ° C or higher will kill the sample bacteria. For this reason, the dispensing of the pour plate, the overlay medium and the thin medium • During the pour operation, it is not possible to maintain the medium temperature at a high temperature and maintain the fluidity of the medium.
  • the dispensing of the plate medium and the pour plate, the mixing, and the dispensing of the overlay medium and the thin layer medium with a small amount (for example, less than 7 cc) of the medium are performed.
  • a small amount for example, less than 7 cc
  • the present invention relates to solving the above-mentioned problems, and it is possible to satisfactorily dispense a culture medium even if the dispense amount of the culture medium is small, and to reliably prevent unevenness in the thickness of the culture medium. It is an object of the present invention to provide a medium dispensing apparatus and method suitable for dispensing any of a plate medium, a pour plate, a layered medium and a thin layer medium. Disclosure of the invention
  • An object of the present invention is to provide a transport unit that transports a petri dish along a predetermined path, and a predetermined angle obliquely upward toward a downstream elevation 1 in the transport direction of the petri dish in the transport path of the petri dish by the transport unit. It is provided at an angle, and makes a circular motion along the predetermined forward and reverse directions in the horizontal plane, so that the petri dish placed in the horizontal direction is inclined obliquely upward toward the downstream side in the transport direction.
  • a movable table that makes circular motions in the forward and reverse directions
  • a medium dispensing means for dispensing a predetermined amount of medium so that at least a part thereof is in contact with the inner surface of the side of the petri dish downstream of the center in the petri dish placed on the movable table; This is achieved by the provided medium dispensing device.
  • the purpose of the present invention is to transport the petri dish by the transport means along the route of the place; and to move the petri dish at a predetermined angle diagonally upward toward the downstream side in the transport direction of the petri dish. Place the petri dish on the table,
  • the required amount of the culture medium is dispensed by the culture medium dispensing means so that at least a portion thereof comes into contact with the inner surface of the side wall of the Petri dish downstream from the center of the Petri dish on the movable table in the transport direction.
  • the movable table is made to perform a circular motion along a predetermined forward direction and a reverse direction in a horizontal plane, so that the placed petri dish is inclined obliquely upward toward the downstream side in the transport direction and forward along the horizontal direction.
  • a medium dispensing method characterized by performing a circular motion in the opposite direction.
  • a predetermined amount of culture medium is dispensed by the culture medium dispensing means such that at least a portion thereof comes into contact with the inner surface of the side wall of the petri dish on the downstream side in the transport direction from the center of the petri dish on the movable table.
  • the petri dish placed on the movable table is inclined obliquely upward toward the downstream side in the transport direction and circularly moves in the forward and reverse directions along the horizontal direction, so that the petri dish can move in different directions in the culture medium.
  • a flow occurs, and the flow in one direction collides with the flow in the other direction, and the medium is dispensed uniformly.
  • the object of the present invention is to transport a petri dish along a predetermined route by a transport means, and place the petri dish on a movable table provided in the transport route, and in this state, move the movable table. After discharging a predetermined amount of culture medium from the culture medium dispensing nozzle of the culture medium dispensing means into the upper petri dish,
  • the medium is dispensed into the petri dish by the medium dispensing nozzle.
  • This is achieved by a method for dispensing a medium, wherein the dispensed medium is dispensed so as to reach almost the entire inner surface of the side wall of the petri dish at the same time.
  • the medium is dispensed by the medium dispensing nozzle, and the medium is moved in the radial direction of the petri dish so as to reach the entire inner surface of the side wall of the petri dish almost simultaneously, and the movable table is caused to make a circular motion. As a result, the medium is uniformly extended.
  • an object of the present invention is to provide a conveying means for conveying a petri dish along a predetermined path, provided in a conveying path of the petri dish by the conveying means, in a state inclined at a predetermined angle from a horizontal plane, in a predetermined positive direction and The circular motion along the reverse direction is performed in a horizontal plane, and the inclination direction along the circumferential direction of the circular motion is changed in predetermined forward and reverse directions in the horizontal plane.
  • an object of the present invention is to transport the petri dish along a predetermined path by a transport means, and place the petri dish on a movable table provided in a transport path of the petri dish by the transport means,
  • a predetermined amount of medium is dispensed by a medium dispensing means into a petri dish placed on a movable table, Further, while the movable table is inclined at a predetermined angle from the horizontal plane, circular motion along predetermined forward and reverse directions is performed in the horizontal plane, and the tilt direction is predetermined along the circumferential direction of the circular motion in the horizontal plane. Dispensing the culture medium in a forward and backward direction, thereby causing the petri dish mounted on the movable table to perform a combined swinging movement of the circular movement and the change in the inclination direction. Achieved by the method.
  • the dispensing means contacts at least a portion higher than a center in a petri dish placed on the movable table, and at least a part of the dispensing means contacts a side plastic inner surface of the petri dish. A predetermined amount of medium is dispensed so as to perform the above.
  • the dispensing means dispenses a predetermined maximum culture medium at a reference position into a petri dish placed on the movable table.
  • the “reference position” in the present invention is a predetermined circumferential stop position ⁇ which is predetermined with respect to the movable table that makes a circular motion in a horizontal plane.
  • the petri dish on the movable table to which the ground is dispensed by the step of dispensing the ground is moved by the movable table maintaining the inclination angle so as to be oriented in the horizontal direction.
  • the medium dispensing apparatus and method of the present invention even if the amount of the medium to be dispensed is small, the medium can be dispensed or evenly mixed with the sample, and the thickness of the medium can be reduced. Unevenness and the like can also be reliably prevented.
  • FIG. 1 is a schematic side view showing a movable table of the medium dispensing apparatus according to the first embodiment of the present invention
  • FIG. 2 is a perspective view showing a medium dispensing means and a lid holding mechanism of the medium dispensing apparatus shown in FIG. 1,
  • FIG. 3 is a side view and a bottom view showing the tip shape of the medium dispensing nozzle of the medium dispensing means shown in FIG. 2,
  • FIG. 4 is a plan view showing an example of a state change of a medium dispensed into a petri dish by a medium dispensing means of the medium dispensing apparatus of FIG. 1,
  • FIG. 5 is a plan view showing another example of the state change of the medium dispensed into the petri dish by the medium dispensing means of the medium dispensing apparatus of FIG. 1,
  • FIG. 6 is a plan view showing still another example of the state change of the medium dispensed into the petri dish by the medium dispensing means of the medium dispensing device of FIG. 1,
  • FIG. 7 is a side view and a bottom view showing the tip shape of the medium dispensing nozzle of the medium dispensing means of the medium dispensing apparatus according to the second embodiment of the present invention
  • FIG. 8 is a plan view showing a state change of the medium dispensed to the medium dispensing nozzle and the dish of the medium dispensing means shown in FIG. 7,
  • FIG. 9 is a schematic side view showing a movable tape of the medium dispensing apparatus according to the third embodiment of the present invention.
  • FIG. 10 is a schematic side view showing a state where the tilt direction of the movable table shown in FIG. 9 has changed by 180 degrees in a horizontal plane
  • FIG. 11 is a schematic side view of the movable table shown in FIG. 9 as viewed in the direction of the arrow W.
  • FIG. 12 is a sectional view of the movable table shown in FIG.
  • FIG. 13 is a schematic sectional view showing a connecting portion between the shaft of the base plate shown in FIG. 9 and the boss of the eccentric rotary crank.
  • FIG. 14 is a schematic view showing a contact portion between the base plate shown in FIG. 9 and the tip of the support rod,
  • FIG. 15 is a schematic perspective view showing a medium dispensing means and a lid holding mechanism of the medium dispensing apparatus shown in FIG. 9,
  • FIG. 16 is a side view and a bottom view showing the tip shape of the medium dispensing nozzle of the medium dispensing means shown in FIG. 15,
  • FIG. 17 shows the state in which the medium was dispensed by the medium dispensing means when producing a thin plate.
  • FIG. 3 is a plan view showing X-X and an X-X cross-sectional view.
  • FIG. 18 is a plan view showing a change in the state of the medium dispensed into the Petri dish shown in FIG. 17.- FIG. 19 shows a state in which the medium is dispensed by the medium dispensing means when producing a multilayer plate.
  • FIG. 2 is a plan view showing a shearing plate and a cross-sectional view taken along a line Y-Y.
  • FIG. 20 is a schematic configuration diagram of a conventional medium dispensing apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
  • the culture medium dispensing apparatus 1 has a diameter of about 10 mm transferred to a movable table 30 by a Petri dish transfer mechanism 20 which is a transfer means.
  • a medium such as an agar medium is dispensed into a 1.0 cm Petri dish 10 by a medium dispensing means 50. Then, the culture medium in the Petri dish 10 is uniformly extended by a predetermined plane circular movement of the movable tape 30.
  • the petri dish transport mechanism 20 transports the petri dish 10 placed on the transport path 2: in a predetermined direction (transport direction Z) by pressing the petri dish 10 with a transport bar member 22.
  • the transport bar member 22 is fixed at a predetermined interval to an endless chain 23 wound around a sprocket (not shown), and rotates with a sprocket driven by driving means (not shown).
  • the endless chain 23 moves along a predetermined route.
  • the support plate 31 of the movable table 30 is, as shown in FIG. It is fixed to the base plate 33 through 32.
  • a panel member 34 arranged substantially horizontally is connected to a substantially center of the column 32, and each column 32 is moved by a spring member 34 in a predetermined range. It is regulated elastically.
  • An eccentric rotating plate fixed in a state of being eccentric with respect to the rotating shaft 40 of the motor 39 by a predetermined amount is provided in a through hole 35 formed substantially at the center of the base plate 33 to which the column 32 is fixed.
  • the tip of a shaft 36 protruding from the upper surface of 38 is fitted via a bearing 37 so as to be relatively rotatable.
  • the base plate 33 is movably supported in a horizontal plane, and when the eccentric rotary plate 38 rotates eccentrically with the rotation of the motor 39, the base plate 33 moves in a predetermined positive direction in a horizontal plane. A circular motion along the opposite direction can be performed. Therefore, with the circular motion of the base plate 33, the support plate 31 is caused to circularly move in the forward and reverse directions along the horizontal direction while being inclined obliquely upward toward the downstream side in the transport direction. It is.
  • the medium dispensing means 50 discharges a predetermined amount of medium from the medium dispensing nozzle 51 in a predetermined direction at a predetermined pressure. That is, the culture medium dispensing nozzle 51 is attached to the tip of the cylinder rod 53 of the air cylinder 52. When dispensing the culture medium, the culture cylinder dispensing nozzle 51 faces the petri dish 10 in a predetermined direction with the operation of the air cylinder 52. A predetermined amount of culture medium is discharged at a predetermined discharge pressure by a protruding roller-type or syringe-type medium dispensing pump (not shown).
  • the medium dispensing means 50 is configured such that a pool of culture medium is formed downstream of the center in the Petri dish 10 on the movable table 30 in the transport direction Z, and at least a part of the pool of medium is formed in the Petri dish. The medium is dispensed into the Petri dish 10 so as to contact the inner surface of the side wall 10.
  • the tip of the culture medium dispensing nozzle 51 has a downwardly divergent shape as viewed from the side as shown in FIG. 3 (a).
  • a lid holding mechanism 60 is provided as shown in FIG. Have been killed.
  • the lid holding mechanism 60 is moved by the movable table 30 by the suction plate 62 provided at the tip of the holding arm 61.
  • the lid 11 of the upper petri dish 10 is sucked and held, and the lid 11 is lifted with the rise of the arm 61, and the lid 11 is opened.
  • the lid holding mechanism 60 lowers the holding arm 61 before the medium is dispensed into the petri dish 10 and is circularly moved by the movable table 30, and sucks the lid 11 by the suction disk 62. Is released, the lid 11 is put on the petri dish 10.
  • a petri dish 10 supplied from a petri dish supply unit (not shown) is transferred to a shear transport mechanism. By 20, it is transported to the movable table 30 and placed on the support plate 31.
  • the petri dish 10 on the movable table 30 is filled with a predetermined amount (approximately 5 cc) of the culture medium containing viable bacteria in advance. 0 is dispensed from the medium dispensing nozzle 51.
  • the medium dispensing means 50 is located downstream from the center in the Petri dish 10 in the transport direction Z. The medium is dispensed into the Petri dish 10 so that a medium pool is formed in the dish 10 and at least a part of the medium pool contacts the inner surface of the side wall of the Petri dish 10.
  • a predetermined amount approximately 5 cc
  • the dispensed culture medium is moved obliquely upward at a predetermined angle toward the downstream side in the transport direction Z (at a predetermined angle (Fig. 4 (b), Fig. 5 (b), or Fig. 6)).
  • the movable table 30 is reversed for a predetermined time (for example, 2 seconds), and the placed shears 10 are inclined obliquely upward at an angle of 0 toward the downstream side in the transport direction along the horizontal direction. And circular motion in the opposite direction.
  • a predetermined time for example, 2 seconds
  • the culture medium flows so as to cover the upstream side in the transport direction Z from the center in the petri dish 10, and becomes uniform. Extend.
  • the Petri dish 10 After the culture medium in the Petri dish 10 is uniformly extended by the circular motion of the movable table 30 as described above, the Petri dish 10 is immediately moved to the next horizontal stage where the horizontal is secured. It is conveyed and left in a horizontal state for a predetermined time (for example, 8 seconds). As a result, the culture medium in the Petri dish 10 is solidified uniformly without any unevenness in thickness. Thereafter, the petri dish 10 is transported to a label sticking section (not shown), where the necessary information such as the type of bacteria, sample number, and date of dispensing is displayed in a bar code (not shown). ) Is attached. The petri dish 10 with the label attached is conveyed to and stored in a petri dish storage section (not shown).
  • the dispensing method of the medium of the present invention at least a predetermined amount of the medium is supplied by the medium dispensing means 50 to the downstream side in the transport direction from the center in the shear 10 on the movable table 30.
  • a portion is dispensed so as to be in contact with the inner surface of the side wall of the Petri dish 10, and the Petri dish 10 placed on the movable tape 30 is inclined obliquely upward toward the downstream side in the transport direction.
  • Circular motions in the forward and reverse directions along the horizontal direction cause flows in the culture medium in different directions, and the flow in one direction collides with the flow in the other direction, resulting in uniform distribution of the medium.
  • a pour plate having a pour step can be easily prepared, and the thickness unevenness of the medium can be reliably prevented.
  • the support plate 31 is inclined four degrees diagonally upward toward the downstream side in the transport direction Z.
  • the inclination angle of is selected as appropriate according to the type of agar medium, the amount of dispensed, and the like.
  • the present invention is not limited to the configurations of the petri dish transport mechanism 20, the movable table 30, and the medium dispensing means 50 in the first embodiment, and may employ various configurations. -As shown in Figs. 7 and 8, in the medium dispensing apparatus according to the second embodiment of the present invention, the medium dispensing nozzle 70 for a horizontally movable table (not shown).
  • the relative position of the medium, the shape of the medium dispensing nozzle 70 and the discharge pressure of the medium from the medium dispensing nozzle 70 are appropriately set, and the medium dispensed into the petri dish 10 by the medium dispensing nozzle 70 is set.
  • the petri dish 10 is set so as to reach almost the entire inner surface of the side wall at the same time.
  • arrows indicate the direction in which the culture medium extends.
  • the medium of the base layer is dispensed and solidified, and then the medium of the seed layer of a predetermined fi (for example, 4 cc) is dispensed and diffused.
  • the temperature of the medium in the substratum solidified earlier is room temperature (22 to 25 ° C), and the agarification temperature of the agar medium is usually around 37 ° C. Attempts to solidify as soon as it is dispensed.
  • the shape of the medium flow path 71 of the culture medium dispensing nozzle 70 is formed in a required shape such that the flow path diameter becomes smaller from a predetermined location 72 (for example, the flow path diameter C on the tip side is 4 mm,
  • the culture medium of the seed layer is dispensed by the medium dispensing nozzle 70 having the above-described shape, and the culture medium is radiated from the petri dish 10 onto the culture medium of the hydrophilic base layer.
  • the medium in the seed layer is evenly extended by moving the movable table in the same direction to reach the entire inner surface of the side wall of the petri dish 10 at substantially the same time and by making the movable table circularly move. Therefore, even if the dispensed amount of the medium of the seed layer to be laminated is small (for example, about 4 cc), the medium of the seed layer can be uniformly spread, and the unevenness of the thickness of the medium can be confirmed. Indeed, it can be prevented.
  • the present invention is not limited to the shape of the medium dispensing nozzle 70 in the second embodiment, and the medium dispensed into the dish by the medium dispensing nozzle is It goes without saying that various shapes can be adopted as long as the shape can be dispensed so as to reach the entire surface at substantially the same time.
  • the culture medium dispensing apparatus 100 is transported to the movable table 130 by a petri dish transport mechanism 120 which is a transport means.
  • a medium such as an agar medium is dispensed into the dish 10 having a diameter of about 10 cm by the medium dispensing means 150.
  • the culture medium in the Petri dish 10 is uniformly extended by a predetermined plane circular motion of the movable table 130 and a swing motion obtained by extracting the change in the tilt direction.
  • the petri dish transport mechanism 120 transports the petri dish 10 placed on the transport path 122 by pressing the petri dish with a transport bar member 122 in a predetermined direction (transport direction Z).
  • the transport bar members 122 are fixed at predetermined intervals to an endless chain 23 wound around a sprocket (not shown), and are rotated by a sprocket driven by driving means (not shown).
  • the endless chain 1 2 3 moves along a predetermined route.
  • a reference position In the state shown in FIG. 10 (hereinafter, referred to as a reference position), a part of the transport path 21 is formed.
  • the movable table 130 makes a circular motion along predetermined forward and reverse directions in a horizontal plane, and while maintaining the tilt angle ⁇ , inclines along the circumferential direction of the circular motion in the horizontal plane. To change the reference position from the reference position in the predetermined forward and reverse directions. Accordingly, the movable table 130 causes the mounted petri dish 10 to perform the swing motion combined with the circular motion and the change in the tilt direction in the forward direction and the reverse direction for a predetermined time, respectively.
  • the stop position of the movable table 130 is controlled by a motor, which will be described later, based on a signal from the fixed position detection sensor 13 1 (see FIG. 11). Therefore, it always becomes the reference position.
  • the movable tape 130 is fixed in a state substantially parallel to the base plate 133 via the support post 132.
  • the movable table 130 is caused by the circular motion and the change of the tilt direction of the base plate 133 along the forward and reverse directions due to the rotation of the eccentric rotary crank 13 4 and the support rod 135.
  • the mounted petri dish 10 is caused to perform a rocking motion in which the circular motion and the change in the tilt direction are combined.
  • the eccentric rotary crank 134 is a shaft connected to the rotary shaft 140 of the motor 130.
  • an eccentric rotary plate 13 8 fixed eccentrically to the shaft 13 6 in a predetermined amount, and a boss 13 7 protruding from the upper center of the eccentric rotary plate 13 8.
  • the eccentric rotary plate 1338 and the boss portion 1337 are eccentrically rotated by the rotation of the wheel [11136] accompanying the rotation of the rotating shaft 140 of the motor 139, respectively.
  • a plurality of the support rods 135 are provided upright at a predetermined distance from the center of rotation on the upper surface of the eccentric rotary plate (three at the position corresponding to the vertex of the virtual triangle in FIG. 12 in the present embodiment).
  • the length to the tip of each support rod 135 is configured to be adjustable manually or the like.
  • one of the support rods 135 on the lower side in FIG. It is set to be longer than the two by a predetermined amount. Note that one may be set to be shorter than the other two by a predetermined amount.
  • caps 141 made of abrasion-resistant resin such as MC pins are screwed into the ends of the support rods 135 in a replaceable manner.
  • a roller made of a wear-resistant resin or the like may be rotatably supported at the tip of each support rod 135.
  • the base plate 133 is supported by the support rods 135 which are in contact with the bottom surface via the caps 141. Further, the base plate 1 3 3 has a shaft fixed substantially through the center.
  • the eccentric rotary crank 13 4 is connected to the boss portion 13 37 via a switch 14 2 so as to be relatively rotatable and tiltable within a predetermined angle range.
  • the shaft 14 2 of the base plate 13 3 has a concave portion 14 3 formed at the lower end thereof in the boss 13 7 of the eccentric rotary crank 13 4.
  • the opening edge of the bearing is supported by a self-aligning ball bearing fixed to the bearing.
  • the lower end of the shaft 144 is positioned with respect to the inner ring of the self-aligning ball bearing 149 by a retaining ring 144 and a flange portion 144.
  • the outer ring 49 is fixed by a set screw 149a in a state of being fitted to the opening edge 144a. Therefore, the shaft 144 can be rotated relative to the boss portion 135 and can be tilted within a predetermined angle range.
  • the tilt angle 0 of the movable table 130 is determined by the difference in the length of each support opening 135, and can be changed as appropriate by adjusting the length of each support rod 135. Noh.
  • each of a plurality of (four in the present embodiment) panel members 146 is connected radially outward from the contact position of each support rod 135 on the bottom surface of the base plate 133. ing. The other end of each panel member 146 is connected to the upper end of the fixed column 112, and elastically restricts the horizontal movement of the base plate 133 within a predetermined range.
  • the eccentric rotary plate 13 8 makes a circular motion along predetermined forward and reverse directions in a horizontal plane.
  • the support openings 1 35 and the boss portions 13 7 on the eccentric rotary plate 13 8 together with the eccentric rotary plate 13 8 respectively perform circular motion along predetermined forward and reverse directions in a horizontal plane.
  • the base plate 133 is tilted at a predetermined angle 0 in a predetermined direction from a horizontal plane by a difference in length of each support rod 135 due to the circular motion of the eccentric rotary plate 1338.
  • the circular motion along the predetermined forward and reverse directions is made in a horizontal plane, and the inclination direction is changed along the circumferential direction of the circular motion into the predetermined forward and reverse directions in the horizontal plane. Therefore, the movable table 130 fixed to the base plate 133 via the support column 132 performs a combined swinging motion of the circular motion and the change of the tilt direction.
  • the fixed position detecting sensor 13 1 detects the rotational direction position of the fixed position detecting disk 14 7 by the sensor main body 14 8, whereby the movable table 13 0 Is detected.
  • the fixed position detecting disk 147 is fixed to the base end of the shaft 136 of the eccentric rotary crank 134 in a substantially horizontal state. Therefore, the fixed position detecting disk 14.7 rotates with the rotation of the rotating shaft 140 of the motor 1390, and rotates in synchronization with the movable table 130.
  • the fixed position detecting disk 147 detects the notch (not shown) formed at a predetermined position on the outer edge portion, for example, by an optical sensor body 148, thereby detecting the rotational direction position. You.
  • a medium dispensing means 150 shown in FIG. 15 is similar to the medium dispensing means 50 according to the first embodiment shown in FIG. Discharge from 1 to a predetermined direction at a predetermined pressure. That is, the culture medium dispensing nozzle 15 1 is attached to the tip of the cylinder rod 53 of the air cylinder 52, and when dispensing the culture medium, the culture cylinder dispensing nozzle 15 1 faces the petri dish 10 in a predetermined direction with the operation of the air cylinder 52. And a predetermined amount of medium is discharged at a predetermined discharge pressure by a roller type or a syringe type medium dispensing pump (not shown).
  • the medium dispensing means 150 is provided at a dispensing position G (FIG. 17 (a) and FIG. 19 (a) on the movable table 130 above the center of the petri dish 10 above the center. ) Reference) Dispense the medium into the Petri dish 10 so that at least a part of the medium pool contacts the inner surface of the side wall of the Petri dish 10.
  • the tip of the culture medium dispensing nozzle 151 has a shape that diverges downward in a side view.
  • the flow path 1554 of the culture medium dispensing nozzle 15 1 is formed in an oval shape with its longitudinal direction along the flow direction of the culture medium.
  • Dimension E is set to 2 mm and dimension F is set to 2.5 mm.
  • a lid holding mechanism 60 similar to the lid holding mechanism 60 according to the first embodiment is provided above the movable table 130.
  • the petri dish 10 supplied from a petri dish supply unit (not shown) is transferred to the movable table 130 by a petri dish transport mechanism 120. And placed on the movable table 130 at the reference position (the state shown in FIG. 2).
  • the petri dish 10 on the movable table 130 is covered with a lid 1 1 by a lid holding mechanism 60.
  • a predetermined amount (about 5 cc) of medium containing live bacteria in advance is dispensed from the medium dispensing nozzle 1501 of the medium dispensing means 150.
  • the medium dispensing means 150 is positioned at a higher position than the center in the petri dish 1-0. The medium is dispensed into the Petri dish 10 so that at least a part of the medium pool contacts the inner surface of the side wall of the Petri dish 10.
  • the dispensed culture medium is transported in the Petri dish 10 as shown in Fig. 17 because the movable table 130 is inclined at a predetermined angle 0 obliquely upward toward the downstream in the transport direction Z. Flow in the direction Z upstream.
  • the petri dish 10 into which the medium has been dispensed is covered again by the cover holding mechanism 60.
  • the movable table 130 is rotated forward for a predetermined time (for example, for 2.5 seconds), and the placed petri dish 10 is moved forward in the horizontal direction (counterclockwise in FIG. 18).
  • the tilt direction is changed in the forward direction in the horizontal plane along the circumferential direction of the circular motion while maintaining the tilt angle 0, and the rocking motion is performed.
  • the medium flows counterclockwise along the inner surface of the side wall of the Petri dish 10 so as to cover the downstream side in the transport direction Z from the center of the Petri dish 10.
  • the movable table 130 rotates forward in the direction of flow when the culture medium pool flows along the inner surface of the side wall of the petri dish 10 due to the inclination. You.
  • the petri dish 10 is moved in the horizontal direction in the opposite direction (first direction). (Clockwise direction in FIG. 8), and the tilt direction is changed in the reverse direction in the horizontal plane along the circumferential direction of the circular motion while maintaining the tilt angle 0, and the rocking motion is performed.
  • the culture medium flows so as to cover the center of the petri dish 11 as shown in FIGS. 18 (c) and 18 (d), and is uniformly spread.
  • the petri dish 10 immediately secures the horizontal position. Then, it is transported to the next horizontal stage, and is left in a horizontal state for a predetermined time (for example, 8 seconds). As a result, the culture medium in the Petri dish 10 is solidified uniformly without causing thickness unevenness or the like. Thereafter, the petri dish 10 is transported to a label attaching section (not shown), where the necessary information such as a type of bacteria, a sample number, and a dispensing date is displayed as a bar code (not shown). ) Is attached. The shear 10 to which the label has been attached is conveyed to and stored in a petri dish storage unit (not shown).
  • the movable table 1 having a tilt angle of 0 with respect to the petri dish 10 on the movable table 130 into which a predetermined amount of the medium has been dispensed by the medium dispensing means 150.
  • a combination of circular motion in the forward and reverse directions along the horizontal direction, and an operation of changing the inclination direction in the horizontal direction to predetermined predetermined forward and reverse directions along the circumferential direction of the circular motion. make a rocking motion. As a result, flows in different directions occur in the culture medium, and the flow in one direction collides with the flow in the other direction, and the medium is dispensed uniformly.
  • the amount of the medium to be dispensed is small (for example, 5 cc) and the surface of the Petri dish 10 has water repellency due to the release agent used for removing the mold of the Petri dish 10, the dispensing amount during the dispensing is small. Dispensing of the above-mentioned thin-layer medium, in which the medium is difficult to extend uniformly, can be performed well.
  • the thin plate is dispensed.However, it can be suitably used for dispensing any of a plate medium, a pour plate, an overlay medium, and a thin layer medium. Needless to say.
  • the medium dispensing means 150 is arranged such that the medium is dispensed toward the dispensing position G, which is higher than the center in the petri dish 10.
  • the medium is dispensed into the Petri dish 10 so that at least a part of the medium comes into contact with the inner surface of the side wall of the Petri dish 10.
  • the dispensed culture medium is disengaged as the movable table 130 tilts obliquely upward at a predetermined angle 6> toward the downstream in the transport direction Z. Flows in the transport direction Z upstream in the area 10.
  • the petri dish 10 into which the medium has been dispensed is circularly moved in the forward and reverse directions along the horizontal direction by the movable table 130, and the inclination angle is also set. While maintaining 6 °, the tilt direction is changed in the forward and reverse directions in a horizontal plane along the circumferential direction of the circular motion, and the rocking motion is performed. As a result, the medium flows so as to cover the entirety of the dish 10 and is evenly spread.
  • the dispensed volume of the medium in the seed layer is small (for example, 4 cc), and it is difficult for the medium to be evenly spread at the time of dispensing, and the temperature of the previously solidified base layer is close to room temperature (usually 20 to 24 °). Since it has dropped to C), it is possible to satisfactorily dispense the overlay medium, which requires an effective treatment in a short time.
  • the movable table 130 is provided with the eccentric rotary cranks 13 4 and the support port 13 5 as the base plate 13 3 rotates in the forward and reverse directions. Due to the circular motion along the direction and the change in the tilt direction, the mounted petri dish 10 is caused to perform a swing motion in which the circular motion and the change in the tilt direction are combined.
  • the thickness unevenness of the medium can be reliably prevented, and the dispensing of a plate medium, a pour plate, an overlay medium, or a thin layer medium is possible. It can be suitably used. As a result, it is possible to automate the dispensing operation of any of the plate medium, the pour plate, the overlay medium, and the thin layer medium, and to improve the workability of the dispensation work and the inspection accuracy and reliability. be able to.
  • the movable table 130 is controlled so as to always stop at the reference position based on the position detection signal from the fixed position detection sensor 131, so that the medium is dispensed by the medium dispensing means 150.
  • the posture of the petri dish 10 when it is poured can be always kept constant. As a result, the shape of the medium immediately after dispensing into the Petri dish 10 can be given a certain reproducibility, and the medium can be spread more uniformly.
  • the movable table 130 is tilted four degrees obliquely upward toward the downstream side in the transport direction Z.
  • the angle is appropriately selected according to the type of the agar medium and the amount to be dispensed.
  • the present invention is not limited to the configuration of the petri dish transport mechanism 120, the movable table 130, and the medium dispensing means 150 in the above embodiment, and may take various configurations.
  • the medium dispensing apparatus and method according to the present invention can be used, for example, in the pharmaceutical industry for sterility tests, bacterial count limit tests, environmental drop bacteria tests, and antibiotic titers ( Indications) related to microbial tests related to GMP validation, such as measurement, measurement of body fluid concentration, preservation efficacy test, etc., and related to measures to prevent contamination by harmful bacteria based on HACCP, such as viable cell count test and fungal count test in the food industry. It is useful for dispensing medium in various tests such as microbial tests.In addition, even if the dispensed amount of medium is small, medium can be dispensed satisfactorily. It is suitable for dispensing plate media, pour plates, overlay media or thin media.

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

明 細 書 培地の分注装置及びその方法 - 技術分野
この発明は、 各種の微生物試験等に用いられる寒天培地等の培地を、 シャーレ 内に分注、 又は検体と混釈する培地の分注装置及びその方法に関する。 背景技
一般に、 例えば医薬品業界における無菌性試験、 菌数限度試験、 環境の落下菌 試験、 抗生物質の力価 (効能) 測定、 体液濃度測定、 保存効力試験等、 G M Pバ リデ一シヨンに関係する微生物試験や、 例えば食品業界における生菌数試験、 真 菌数試験等、 H A C C Pに基づく有害菌による汚染防止対策に関係する微生物試 験などには、 寒天培地等の培地が広く用いられている。
すなわち例えば、 医薬品業界において抗生物質の体液濃度測定を行う場合、 シ ヤーレ内に菌を混ぜた固形培地 5 ~ 1 0 c cを分注し、 その分注面にディスク又 はカップを配置する。 次に、 ディスク又はカップに検体を含浸させたり分注し、 培養する。 その後、 菌の発育する領域の広さで体液濃度を測定する。
また例えば、 抗生物質の力価測定を行う場合、 シャーレ内に基層培地 (菌が好 んで食べ増えるようにした栄養素の入った培地) 2 0 c cを分注固化後、 その上 に種層培地 (菌の入った培地) 4 c cを分注する。 次に、 種層培地の表面にディ スク又はカップを配置し、 ディスク又はカップ中に濃度の異なる力価の判ってい る抗生物質と判らない抗生物質を分注して培養する。 その後、 菌の発育する領域 を測定し、 力価の判らない抗生物質の力価を算出する。
そして、 上述したような各種の微生物試験は、 定性試験と定量試験に大別され るが、 定量試験には必ず寒天培地が使用されている。
ところで、 この様な各種試験において、 検体のサンプリング数が多く、 培地の 種類も複数あるような場合、 検体のサンプリングならびに培地の分注に多大な時 間を要する。 また培地の分注作業は、 試験精度を高めるため、 無菌状態の室内等 において行うことが必要であった。
そこで、 検体のサンプリング及び培地の分注作業を自動的に行う装置が、 例え ば特開平 5— 1 5 3 9 6 1号公報、 特開平 4— 2 4 8 9 8 0号公報及び特[¾平 3 - 4 9 6 7 6号公報等に開示されている。
第 2 0図は、 培地の分注 ·混釈装置 2 0 0の概略構成図である。 分注 ·混釈装 置 2 0 0は、 培地素材を分注する培地分注装置 2 0 1及び培地素材を混釈する混 合攪拌装置 2 0 2を備えており、 検体希釈液 2 0 3を寒天培地 2 0 4と混合して 混釈平板を自動的に調製する。
前記分注 ·混釈装置 2 0 0においては、 先ず、 上下積層状態で収納された空シ ャ一レ 2 0 6が、 ラック 2 1 2から 1枚づっ取り出され、 図示しないコンペャ上 に搬出 '搬送される。 コンペャによって搬送されたシャーレ 2 0 6は、 蓋を開け られた後、 希釈検体液分注装置 2 0 9によって検体希釈液 2 0 3を分注される。 希釈検体液分注装置 2 0 9は、 試験管内の検体を希釈用液体によって複数段階の 希釈倍率に順次希釈し、 その検体希釈液 2 0 3をマイクロ 'ピぺット 2 1 0によ りシャーレ 2 0 6に分注する。
次に、 培地分注装置 2 0 1は、 溶融した寒天培地 2 0 4を、 培地溜槽 (図示し ない) から循環管 (図示しない) 及び分岐管 (図示しない) を介して、 培地分注 ノズル 2 0 5からシャーレ 2 0 6内に設定量だけ供給する。
混合攪拌装置 2 0 2は、 攪拌板 2 0 7を回転駆動機構 2 0 8によって回転させ ることにより、 希釈検体液分注装置 2 0 9によってシャーレ 2 0 6内に分注され た検体希釈液 2 0 3と、 培地分注装置 2 0 1によってシャーレ 2 0 6内に分注さ れた溶融寒天培地 2 0 4とを混合攪袢する。 混合された検体希釈液 2 0 3及び 寒天培地 2 0 4は、 冷却装置 2 1 1によって固化され、 混釈平板が作製される。 その後、 蓋を取り付けられたシャーレ 2 0 6は、 ラック 2 1 3に上下積層状態で 収納される。
従って、 上述の如き培地の分注 ·混釈装置 2 0 0によれば、 所定量の検体希釈 液 2 0 3と寒天培地 2 0 4とを混合して、 混釈平板を自動的に調製することがで きる。 勿論、 検体希釈液 2 0 3を分注する工程を省略して、 寒天培地 2 0 4のみ を分注すれば、 平板培地を作製することも可能である。 ところで、 培地の分注 ·混釈は、 培地が用いられる試験の種類によって処理が 異なり、 平板培地、 混釈平板、 重層培地及び薄層培地の 4種類の培地の分注に大 別される。 ここで、 希釈検体液と寒天培地とを混合撹袢する混釈工程は、.混釈平 板の作成時のみで行われている。
この内、 平板培地及び混釈平板の分注 ·混釈については、 上述の如き分注 ·混 釈装置 2 0 0を用いることができる。 しかしながら、 重層培地及び薄層培地の分 注については、 培地の分注量が少量である上、 分注した培地が延びにくいことも あり、 上述の如き分注 ·混釈装置 2 0 0では自動分注することができなかった。 即ち、 上記重層分注については、 積層される種層の培地の分注量が少量 (例え ば 4 c c程度) であり、 分注時に培地が均一に延び難い上、 先に固化した基層の 温度が室温近く (通常 2 0〜2 4 ° C ) まで下がっている。 このため、 分注後素 早く均 に延ばさなければならない。
また上記薄層分注については、 坊地の分注量が少最 (例えば 5 c c程度) であ る上、 プラスチック製シャーレの型抜きに使用されるシリコン系離型剤の影響で 、 シャーレ表面に撥水性があることから、 分注時に培地が均一に延び難いという 問題を抱えている。
更に、 上記平板培地及び混釈平板の分注 '混釈についても、 上述した分注 '混 釈装置 2 0 0では、 シャーレ上の培地の濃度によっては流動性が不十分であり、 培地の平滑性が問題となることがあった。 培地の温度を高温に保てば、 培地の流 動性が維持できて少量の分注も可能であるが、 培地を 5 0 ° C以上に加熱すると 検体の菌が死滅してしまう。 このため、 混釈平板、 重層培地及び薄層培地の分注 •混釈作業時には、 培地の温度を高温に保って培地の流動性を維持することがで きない。
そこで、 従来の分注 ·混釈装置 2 0 0では、 平板培地及び混釈平板の分注 ·混 釈ゃ、 少量 (例えば 7 c c未満) の培地による重層培地及び薄層培地の分注につ いては、 自動化することができない。 したがって、 分注作業を人手に頼らざるを 得ず、 多大な労力と時間を要するという問題があった。
従って、 本発明は、 上記課題を解消することに係り、 培地の分注量が少量であ つても、 培地の分注を良好に行うことができ、 培地の厚みムラ等を確実に防止す ることができると共に、 平板培地、 混釈平板、 重層培地又は薄層培地のいずれの 分注にも好適な培地の分注装置及びその方法を提供することを Θ的としている。 発明の開示
本発明の目的は、 シャーレを所定の経路に沿つて搬送する搬送手段と、 前記搬送手段によるシャーレの搬送経路中に、 シャ一レの搬送方向下流仰 1に向 けて斜め上方に所定の角度傾斜して設けられ、 水平面内で所定の正方向及び逆方 向に沿う円運動をすることにより、 敝置されたシャーレを搬送方向下流側に向け て斜め上方に傾斜した状態で水平方向に沿って正方向及び逆方向に円運動させる 可動テーブルと、
前記可動テ一ブルに載置されたシャーレ内における中央より搬送方向下流側に 、 少なくとも一部がシャーレの側 ¾内面に接触するように所定 ¾の培地を分注す る培地分注手段とを備えた培地の分注装置により達成される。
乂、 本 ¾明の上記目的は、 シャーレを搬送手段によって所;^の経路に沿って搬 送すると共に、 シャーレの搬送方向下流側に向けて斜め上方に所定の角度傾斜し て設けられた可動テーブルに該シャーレを載置し、
この状態で可動テーブル上のシャーレ内における中央より搬送方向下流側に、 培地分注手段によつて所^量の培地を少なくとも一部がシャ一レの側壁内面に接 触するように分注し、
更に可動テーブルに水平面内で所定の正方向及び逆方向に沿う円運動をさせる ことにより、 載置されたシャーレを搬送方向下流側に向けて斜め上方に傾斜した 状態で水平方向に沿って正方向及び逆方向に円運動させることを特徴とする培地 の分注方法により達成される。
上記構成によれば、 可動テーブル上のシャーレ内における中央より搬送方向下 流側に、 培地分注手段によって所定量の培地を少なくとも一部がシャーレの側壁 内面に接触するように分注し、 該可動テーブル上に載置されたシャーレを搬送方 向下流側に向けて斜め上方に傾斜した状態で水平方向に沿って正方向及び逆方向 に円運動させることにより、 培地の中に異なる方向への流れが生じ、 一方向の流 れが他方向の流れとぶっかり合い、 培地分注が均一に行われる。 更に、 本発明の上記目的は、 シャーレを搬送手段によって所定の経路に沿って 搬送すると共に、 該搬送経路中に設けられた可動テ一ブルに該シャーレを載置し この状態で可動テ一ブル上のシャーレ内に、 培地分注手段の培地分注ノズルか ら所定量の培地を吐出させた後、
該可動テーブルを水平面内で所定の正方向及び逆方向に沿う円運動させること により、 培地を可動テーブルに載置されたシャーレ内に分注する培地の分注方法 であって、
前記可動テーブルに対する培地分注ノズルの相対位置、 該培地分注ノズルの形 状及び該培地分注ノズルからの培地の吐出圧力を適宜設定することにより、 該培地分注ノズルによってシャーレ内に分注された培地が、 シャーレの側壁内 面の全面に略同時に到達するように分注することを特徴とする培地の分注方法に より達成される。
上記構成によれば、 培地分注ノズルによって培地を分注する勢いで、 当該培地 をシャーレの放射方向に移動させ、 シャーレの側壁内面の全面に略同時に到達さ せると共に、 可動テーブルを円運動させることにより、 培地が均一に延びる。 更に、 本発明の目的は、 シャーレを所定の経路に沿って搬送する搬送手段と、 前記搬送手段によるシャーレの搬送経路中に設けられ、 水平面から所定の角度 傾斜した状態で、 所定の正方向及び逆方向に沿う円運動を水平面内ですると共に 、 該円運動の周方向に沿つて傾斜方向を水平面内で所定の正方向及び逆方向に変 化させ、 載置されたシャーレに前記円運動及び前記傾斜方向の変化の複合された 揺動運動をさせる可動テ一ブルと、 前記可動テ一ブルに載置されたシャーレ内 に、 所定量の培地を分注する培地分注手段とを備えた培地の分注装置により達成 される。
又、 本発明の目的は、 シャーレを搬送手段によって所定の経路に沿って搬送す ると共に、 該搬送手段によるシャーレの搬送経路中に設けられた可動テーブルに 前記シャ一レを載置し、
この状態で可動テーブルに載置されたシャーレ内に培地分注手段によつて所定 量の培地を分注し、 更に前記可動テーブルに水平面から所定の角度傾斜した状態で、 所定の正方向 及び逆方向に沿う円運動を水平面内でさせると共に、 該円運動の周方向に沿って 前記傾斜方向を水平面内で所定の正方向及び逆方向に変化させることにより—、 前記可動テーブルに載置されたシャーレに前記円運動及び前記傾斜方向の変化 の複合された揺動運動をさせることを特徴とする培地の分注方法により達成され る。
尚、 好ましい実施態様によれば、 前記分注手段が、 前記可動テ一ブルに載置さ れたシャーレ内における中央より高所側に、 少なくとも一部がシャ一レの側塑内 面に接触するように所定量の培地を分注する。
又、 好ましい他の実施態様によれば、 前記分注手段が、 前記可動テーブルに載 置されたシャーレ内に、 基準位置において所定最の培地を分注する。 ここで、 木 発明における 「基準位置」 とは、 水平面内において円運動する前記可動テーブル に対して予め決められた- 定の周方向停止位^である。
上記構成によれば、 お f地分注乎段によって所^ ¾の 地を分注した可動テープ ル上のシャーレに対して、 傾斜角を保つた可動テ一ブルによって、 水平方向に沿 う正方向及び逆方向への円運動、 及び傾斜方向を前 ^円運動の周方向に沿って水 平面内で所定の正方向及び逆方向に変化させる動作の複合された揺動運動をさせ る。 これにより、 培地の中に異なる方向への流れが生じ、 一方向の流れが他方向 の流れとぶっかり合い、 培地分注が均一に行われる。
従って、 本発明の培地の分注装置及びその方法によれば、 培地の分注量が少量 であっても、 培地の分注又は検体との混釈を均一に行うことができ、 培地の厚み ムラ等も確実に防止することができる。
即ち、 平板培地、 混釈平板、 重層培地又は薄層培地のいずれの分注作業をも自 動化することができ、 この様な分注作業の作業性向上並びに検査精度及び信頼性 の向上を図ることができる。 図面の簡単な説明
第 1図は本発明の第 1実施形態に係る培地の分注装置の可動テーブルを示す概 略側面図であり、 第 2図は第 1図に示した培地の分注装置の培地分注手段及び蓋保持機構を示す 斜視図であり、
第 3図は第 2図に示した培地分注手段の培地分注ノズルの先端形状を示す側面 図及び底面図であり、
第 4図は第 1図の培地の分注装置の培地分注手段によってシャーレに分注され た培地の状態変化の一例を示す平面図であり、
第 5図は第 1図の培地の分注装置の培地分注手段によってシャーレに分注され た培地の状態変化の他の例を示す平面図であり、
第 6図は、 第 1図の培地の分注装蹬の培地分注手段によってシャーレに分注さ れた培地の状態変化の更に他の例を示す平面図であり、
第 '7図は本発明の第 2実施形態に係る培地の分注装置の培地分注手段の培地分 注ノズルの先端形状を示す側面図及び底面図であり、
第 8図は第 7図に示した培地分注手段の培地分注ノズル及びシャ一レに分注さ れた培地の状態変化を示す平面図であり、
第 9図は本発叨の第 3実施形態に係る培地の分注装置の可動テ一プルを示す概 略側面図であり、
第 1 0図は第 9図に示した可動テーブルの傾斜方向が水平面内で 1 8 0度変化 した状態を示す概略側面図であり、
第 1 1図は第 9図に示した可動テ一ブルの W矢視概略側面図であり、 第 1 2図は第 1 1図の XI I— XI I 断面矢視図であり、
第 1 3図は第 9図に示したベースプレートのシャフ卜と偏心回転クランクのボ ス部との連結部分を示す概略断面図であり、
第 1 4図は第 9図に示したベースプレートと支持ロッドの先端との当接部分を 示す概略図であり、
第 1 5図は第 9図に示した培地の分注装置の培地分注手段及び蓋保持機構を示 す概略斜視図であり、
第 1 6図は第 1 5図に示した培地分注手段の培地分注ノズルの先端形状を示す 側面図及び底面図であり、
第 1 7図は薄層平板製作に際して培地分注手段によって培地を分注されたシャ —レを示す平面図及び X— X断面矢視図であり、
第 1 8図は第 1 7図に示したシャーレに分注された培地の状態変化を示す平面 図であり、 - - 第 1 9図は重層平板製作に際して培地分注手段によって培地を分注されたシャ 一レを示す平面図及び Y— Y断面矢視図であり、
第 2 0図は従来の培地の分注装置の概略構成図である。 発明を実施するための最良の形態
以下、 添付図面に基づいて本発明の一実施形態を詳細に説明する。
第 1図及び第 2図に示すように、. 本究明の第 1実施形態に係る培地の分注装置 1は、 搬送手段であるシャーレ搬送機構 2 0によって可動テーブル 3 0まで搬送 された直径約 1. 0 c mのシャーレ 1 0内に、 培地分注手段 5 0によって寒天培地 等の培地を分注する。 そしてシャーレ 1 0内の培地を、 可動テ一プル 3 0の所定 の平面円迎動によって均一に延ばす。
前記シャーレ搬送機構 2 0は、 搬送路 2 :に載置されたシャーレ 1 0を搬送バ —部材 2 2によって押圧することにより、 所定の方向 (搬送方向 Z ) に沿って搬 送する。 搬送バ一部材 2 2は、 スプロケット (図示しない) に卷回されたエンド レスチェーン 2 3に、 所定の間隔をあけて固定されており、 図示しない駆動手段 によって駆動されるスプロケッ 卜の回転に伴うェンドレスチェーン 2 3の移動に よつて所定の経路に沿つて移動する。
前記可動テーブル 3 0は、 シャーレ搬送機構 2 0によるシャーレ 1 0の搬送経 路中において、 シャーレ 1 0の搬送方向 Z下流側に向けて斜め上方に所定の角度 Θ (例えば 0 = 4 ° ) 傾斜し、 かつ、 搬送路 2 1の一部を構成する支持プレート 3 1を備えている。 更に、 該可動テーブル 3 0は、 水平面内で所定の正方向及び 逆方向に沿う円運動をすることにより、 支持プレート 3 1上に載置されたシャ一 レ 1 0を搬送方向下流側に向けて斜め上方に所定の角度 6>傾斜した状態で水平方 向に沿って正方向及び逆方向にそれぞれ所定の時間だけ (例えば正方向及び逆方 向にそれぞれ 2秒間) 円運動させることができる。
すなわち可動テーブル 3 0の支持プレート 3 1は、 第 1図に示すように、 支柱 3 2を介してべ一スプレート 3 3に固定されている。 該支柱 3 2の略中央には、 それぞれ略水平に配置されたパネ部材 3 4が連結されており、 各支柱 3 2はそれ それ、 バネ部材 3 4によつて水平方向の動きを所定の範囲で弾性的に規制されて いる。
前記支柱 3 2が固定されたベースプレート 3 3の略中央に形成された貫通孔 3 5には、 モ一夕 3 9の回転軸 4 0に対して所定量偏心した状態で固定された偏心 回転板 3 8の上面に突設された軸 3 6の先端部が、 ベアリング 3 7を介して相対 回転可能に嵌挿されている。
前記ベースプレート 3 3は水平面内で移動自在に支持されており、 偏心回転板 3 8がモ一夕 3 9の回転に伴って偏心回転すると、 該ベースプレート 3 3は水平 面内で所定の正方向及び逆方向に沿う円運動をすることができる。 そこで、 該べ —スプレート 3 3の円運動に伴って、 支持プレート 3 1は搬送方向下流側に向け て斜め上方に傾斜した状態で水平方向に沿って正方向及び逆方向に円運動させら れる。
第 2図に示すように、 培地分注手段 5 0は、 所定量の培地を、 培地分注ノズル 5 1から所定の向きに所定の圧力で吐出させる。 すなわち培地分注ノズル 5 1は 、 エアシリンダ 5 2のシリンダロッド 5 3先端に取り付けられており、 培地を分 注する際、 エアシリンダ 5 2の作動に伴ってシャーレ 1 0側に所定の向きで突出 され、 ローラ式又はシュリンジ型の培地分注ポンプ (図示しない) による所定の 吐出圧で所定量の培地を吐出させる。
そして、 前記培地分注手段 5 0は、 可動テーブル 3 0上のシャーレ 1 0内にお ける中央より搬送方向 Z下流側に培地の溜まりが形成され、 かつ、 培地の溜まり の少なくとも一部がシャーレ 1 0の側壁内面に接触するように、 培地をシャーレ 1 0内に分注する。
なお、 前記培地分注ノズル 5 1の先端は、 第 3図 (a ) に示すように、 側面視 下向きに末広がりの形状である。 また培地分注ノズル 5 1の流路開口 5 4は、 第 3図 (b ) に示すように、 長手方向を培地の流れ方向に沿わせた小判型に形成さ れており、 例えば寸法 A= 2 mm、 寸法 B = 2 . 5 mmに設定される。
前記可動テーブル 3 0の上方には、 第 2図に示すように、 蓋保持機構 6 0が設 けられている。 蓋保持機構 6 0は、 培地分注手段 5 0によってシャーレ 1 0に培 地が分注される前、 保持アーム 6 1の先端に設けられた吸着盤 6 2によって、 可 動テ一ブル 3 0上のシャーレ 1 0の蓋 1 1を吸着して保持するとともに、 ^¾持ァ —ム 6 1の上昇に伴って蓋 1 1を持ち上げ、 蓋 1 1を開ける。 また蓋保持機構 6 0は、 シャーレ 1 0に培地が分注された後、 可動テーブル 3 0によって円運動さ れる前、 保持アーム 6 1を下降させるとともに、 吸着盤 6 2による蓋 1 1の吸着 を解除することにより、 蓋 1 1をシャーレ 1 0に被せる。
次に、 本第 1実施形態に係る培地の分注装置 1の作用を、 第 1図及び第 4図〜 第 6図を参照して説明する。
例えば、 上記第 1実施形態に係る培地の分注装置 1によって薄層平板を分注す る場合には、 シャーレ供給部 (図示しない) から供給されたシャーレ 1 0を、 シ ャ一レ搬送機構 2 0によって前記可動テーブル 3 0まで搬送し、 支持プレート 3 1上に載置する。
前記可動テーブル 3 0上のシャーレ 1 0は、 蓋保持機構 6 0によって蓋 1 1を 取り外された後、 予め生菌を含有させた所定量 (約 5 c c ) の培地を培地分注手 段 5 0の培地分注ノズル 5 1から分注される。 この際、 培地分注手段 5 0は、 第 4図 (a ) 、 第 5図 (a ) 又は第 6図 (a ) に示すように、 シャーレ 1 0内にお ける中央より搬送方向 Z下流側に培地の溜まりが形成され、 かつ、 培地の溜まり の少なくとも一部がシャ一レ 1 0の側壁内面に接触するように、 培地をシャーレ 1 0内に分注する。 但し、 第 4図 (a ) においては培地の溜まりの図中上部がシ ャ一レ 1 0の側壁内面に接触し、 第 5図 (a ) においては培地の溜まりの図中下 部がシャーレ 1 0の側壁内面に接触し、 第 6図 (a ) においては培地の溜まりの 図中上部及び下部がシャーレ 1 0の側壁内面に接触している。
分注された培地は、 支持プレート 3 1が搬送方向 Z下流側に向けて斜め上方に 所定の角度 ( 傾斜していることにより、 第 4図 (b ) 、 第 5図 (b ) 又は第 6図
( b ) に示すように、 シャーレ 1 0内において搬送方向 Z上流側に流れる。 更に、 培地を分注されたシャーレ 1 0には、 蓋保持機構 6 0によって再び蓋 1 1が被せられる。 この状態で、 可動テ一プル 3 0が所定時間 (例えば 2秒間) 正 転され、 載置されたシャーレ 1 0が搬送方向下流側に向けて斜め上方に角度 0傾 斜した状態で水平方向に沿って正方向に円運動される。 これにより培地は、 第 4 図 (c ) 、 第 5図 (c ) 又は第 6図 (c ) に示すように、 シャーレ 1 0内におけ る中央より搬送方向 Z下流側を覆うように流れる。 . 次に、 可動テーブル 3 0が所定時間 (例えば 2秒間) 逆転され、 載置されたシ ャ一レ 1 0が搬送方向下流側に向けて斜め上方に角度 0傾斜した状態で水平方向 に沿って逆方向に円運動される。 これにより培地は、 第 4図 (d ) 、 第 5図 (d ) 又は第 6図 (d ) に示すように、 シャーレ 1 0内における中央より搬送方向 Z 上流側を覆うように流れ、 均一に延びる。
そして、 上述の如き可動テーブル 3 0の円運動によって、 シャーレ 1 0内の培 地が均一に延ばされた後、 シャーレ 1 0は、 すぐに水平の確保された次の水平ス テ一ジに搬送され、 水平状態で所定時間 (例えば 8秒間) 静置される。 これによ りシャーレ 1 0内の培地は、 厚みムラ等を生じることなく、 均一に固化される。 その後、 シャーレ 1 0は、 ラベル貼付部 (図示しない) に搬送され、 ラベル貼 付部において、 菌の種類、 検体番号、 分注月日等の必要情報をバーコード化して 表示したラベル (図示しない) を貼付される。 ラベルを貼付されたシャーレ 1 0 は、 シャーレ積層収納部 (図示しない) に搬送され、 収納される。
尚、 上記第 1の実施形態においては、 薄層平板を分注する場合について述べた が、 平板培地、 混釈平板、 重層培地又は薄層培地のいずれの分注にも好適に用い ることができることは言うまでもない。
即ち、 本発明の培地の分注 '混釈方法によれば、 可動テーブル 3 0上のシヤー レ 1 0内における中央より搬送方向下流側に、 培地分注手段 5 0によって所定量 の培地を少なくとも一部がシャーレ 1 0の側壁内面に接触するように分注し、 該 可動テ一プル 3 0上に載置されたシャーレ 1 0を搬送方向下流側に向けて斜め上 方に傾斜した状態で水平方向に沿って正方向及び逆方向に円運動させることによ り、 培地の中に異なる方向への流れが生じ、 一方向の流れが他方向の流れとぶつ かり合い、 培地分注が均一に行われる。 尚、 混釈工程のある混釈平板も容易に作 成することができ、 培地の厚みムラ等も確実に防止することができる。
尚、 上記第 1実施形態においては、 支持プレート 3 1を搬送方向 Z下流側に向 けて斜め上方に 4度傾斜させたが、 本発明はこれに限定されるものではなく、 こ の傾斜角度は寒天培地の種類や分注量等に応じて、 適宜選定される。 又、 本発明 は上記第 1実施形態におけるシャーレ搬送機構 2 0、 可動テーブル 3 0、 及び培 地分注手段 5 0の構成に限定されるものではなく種々の構成を採りうる。 - 第 7図及び第 8図に示すように、 本発明の第 2実施形態に係る培地の分注装置 においては、 水平に設けられた可動テーブル (図示せず) に対する培地分注ノズ ル 7 0の相対位置、 培地分注ノズル 7 0の形状及び培地分注ノズル 7 0からの培 地の吐出圧力が適宜設定され、 該培地分注ノズル 7 0によってシャーレ 1 0内に 分注された培地が、 シャーレ 1 0の側壁内面の全面に略同時に到達するように設 定される。 なお第 8図中、 矢印は培地の延び方向を示している。
例えば重層分注の場合、 基層の培地を分注して固化させた後に、 所定 fi (例え ば 4 c c ) の種層の培地の分注 ·拡散を行うが、 種層を分注する際には、 先に固 化した基層の培地の温度は室温 (2 2〜2 5 ° C ) になっており、 寒天培地の岡 化温度は通常 3 7 ° C前後であるため、 種層の培地は分注されるとすぐに固化し ようとする。 そこで、 前記培地分注ノズル 7 0の培地流路 7 1の形状は、 所定箇 所 7 2から流路径の小さくなる所要の形状に形成されており (例えば先端側の流 路径 C = 4 mm、 基端側の流路径 D = 6 mm) 、 分注時の勢いで分注した種層の 培地をシャーレ 1 0の放射方向に移動させる。 従って、 親水性を有する基層の培 地上を移動する種層の培地は、 シャーレ 1 0の側壁内面の全面に略同時に到達す 。
分注が終了したらすぐに蓋を閉め、 可動テーブルを水平方向に沿って正方向及 び逆方向に所定時間 (例えば正転 2秒間、 逆転 2秒間) 円運動させることにより 、 基層の培地上での種層の培地の延びが補助され、 種層の培地は均一に延びるこ とができる。
即ち本実施形態では、 重層分注に際して、 上述した形状の培地分注ノズル 7 0 によって種層の培地を分注する勢いで、 当該培地を親水性を有する基層の培地上 でシャーレ 1 0の放射方向に移動させ、 シャーレ 1 0の側壁内面の全面に略同時 に到達させると共に、 可動テーブルを円運動させることにより、 種層の培地が均 一に延びる。 そこで、 積層される種層の培地の分注量が少量 (例えば 4 c c程度 ) であっても、 該種層の培地を均一に延ばすことができ、 培地の厚みムラ等も確 実に防止することができる。
尚、 本発明は上記第 2実施形態における培地分注ノズル 7 0の形状に限定され るものではなく、 培地分注ノズルによってシャーレ内に分注された培地が、 -シャ ーレの側壁内面の全面に略同時に到達するように分注できる形状であれば、 種々 の形状を採りうることは言うまでもない。
第 9図〜第 1 5図に示すように、 本発明の第 3実施形態に係る培地の分注装置 1 0 0は、 搬送手段であるシャーレ搬送機構 1 2 0によって可動テーブル 1 3 0 まで搬送した直径約 1 0 c mのシャーレ 1 0内に、 培地分注手段 1 5 0によって 寒天培地等の培地を分注する。 そしてシャーレ 1 0内の培地を、 可動テーブル 1 3 0の所定の平面円運動及び傾斜方向の変化の拔合された揺動運動によって均一 に延ばす。
前記シャーレ搬送機構 1 2 0は、 搬送路 1 2 1に載置されたシャーレ 1 0を搬 送バー部材 1 2 2によって押圧することにより、 所定の方向 (搬送方向 Z ) に沿 つて搬送する。 搬送バ一部材 1 2 2は、 スプロケット (図示しない) に卷回され たエンドレスチェーン 2 3に、 所定の問隔をあけて固定されており、 図示しない 駆動手段によって駆動されるスプロケットの回転に伴うェンドレスチェーン 1 2 3の移動によって、 所定の経路に沿って移動する。
前記可動テーブル 1 3 0は、 シャ一レ搬送機構 1 2 0によるシャーレ 1 0の搬 送経路中において、 シャーレ 1 0の搬送方向 Z下流側に向けて斜め上方に、 水平 面から所定の角度 0 (例えば 6> = 4 ° ) 傾斜した第 1 0図に示す状態で (以下、 基準位置という) 、 搬送路 2 1の一部を構成する。
更に、 前記可動テーブル 1 3 0は、 水平面内で所定の正方向及び逆方向に沿う 円運動をすると共に、 傾斜角 Θを保ったまま、 前記円運動の周方向に沿って傾斜 方向を水平面内で前記基準位置から所定の正方向及び逆方向に変化させる。 これ により可動テーブル 1 3 0は、 載置されたシャーレ 1 0に、 前記円運動及び傾斜 方向の変化の複合された揺動運動を正方向及び逆方向にそれぞれ所定の時間だけ
(例えば正方向に 2 . 5秒間、 停止 0 . 5秒間、 逆方向に 2 . 5秒間) させるこ とができる。 尚、 前記可動テーブル 1 3 0の停止位置は、 定位置検出センサ 1 3 1 (第 1 1図参照) からの信号に基づいて、 後述するモー夕が制御されることに より、 常に基準位置となる。
すなわち第 9図〜第 1 2図に示すように、 前記可動テ一プル 1 3 0は、 支柱 1 3 2を介してべ一スプレート 1 3 3に略平行な状態で固定されている。 該可動テ —ブル 1 3 0は、 偏心回転クランク 1 3 4及び支持ロッド 1 3 5の回転に伴うベ —スプレート 1 3 3の正方向及び逆方向に沿う円運動及び傾斜方向の変化によつ て、 載置されたシャーレ 1 0に前記円運動及び傾斜方向の変化の複合された揺動 運動をさせる。
前記偏心回転クランク 1 3 4は、 モ一夕 1 3 9の回転軸 1 4 0に連結された軸
1 3 6と、 該軸 1 3 6に所定量偏心した状態で固定された偏心回転板 1 3 8と、 偏心回転板 1 3 8の上面略中央に突設されたボス部 1 3 7とからなる。 偏心回転 板 1 3 8及びボス部 1 3 7は、 それぞれモ一夕 1 3 9の回転軸 1 4 0の回転に伴 う車 [11 1 3 6の回転によって偏心回転する。
支持ロッド 1 3 5は、 偏心回転板の上面における回転中心から所定の間隔をお いた位置に複数 (本実施形態では第 1 2図中仮想三角形の頂点に当たる位置に 3 本) 立設される。 各支持ロッド 1 3 5の先端までの長さは手動等により調整可能 に構成されており、 本実施形態では、 各支持ロッド 1 3 5のうちの第 1 2図中下 側の 1本を他の 2本よりも所定量長くなるように設定している。 尚、 1本を他の 2本よりも所定量短くなるように設定しても良い。
各支持ロッド 1 3 5の先端には、 第 1 4図に示すように、 それぞれ M Cナイ口 ン等の耐磨耗性樹脂からなるキャップ 1 4 1が交換可能に螺合されている。 なお キャップ 1 4 1に代えて、 耐磨耗性樹脂等からなるローラを、 各支持ロヅド 1 3 5の先端に回転自在に支持してもよい。
第 9図〜第 1 2図及び第 1 4図に示すように、 前記ベースプレート 1 3 3は、 キャップ 1 4 1を介して底面に当接させた各支持ロッド 1 3 5により支持されて いる。 また、 該べ一スプレート 1 3 3は、 略中央を貫通して固定されたシャフト
1 4 2を介して、 前記偏心回転クランク 1 3 4のボス部 1 3 7に相対回転可能か つ所定の角度範囲で傾き可能に連結されている。
即ち、 例えばベースプレート 1 3 3のシャフト 1 4 2は、 第 1 3図に示すよう に、 下端部が、 偏心回転クランク 1 3 4のボス部 1 3 7に形成された凹部 1 4 3 の開口縁部 1 4 3 aに固定された自動調心玉軸受 1 4 9によって支持されている 。 前記シャフト 1 4 2の下端部は、 抜け止めリング 1 4 4とフランジ部 1 4 5と で前記自動調心玉軸受 1 4 9の内輪に対して位置決めされており、 該自動調心玉 軸受 1 4 9の外輪は開口縁部 1 4 3 aに嵌合された状態で止めビス 1 4 9 aによ つて固定されている。 そこで、 前記シャフト 1 4 2は、 ボス部 1 3 7に対して相 対回転可能であると共に所定の角度範囲で傾き可能である。
前記可動テーブル 1 3 0の傾斜角 0は、 各支持口ッド 1 3 5の長さの違いによ り決まり、 かつ、 各支持ロッド 1 3 5の長さを調整することにより、 適宜変更可 能である。
前記べ一スプレート 1 3 3の底面における各支持ロッド 1 3 5の当接位置より 更に半径方向外側には、 複数 (本実施形態では 4個) のパネ部材 1 4 6の一端が それぞれ連結されている。 各パネ部材 1 4 6の他端は、 それぞれ固定柱 1 1 2の 上端部に連結されており、 前記べ一スプレート 1 3 3の水平方向の動きを所定の 範囲で弾性的に規制する。
前記偏心回転板 1 3 8は、 偏心回転クランク 1 3 4がモ一夕 1 3 9の回転に伴 つて偏心回転すると、 水平面内で所定の正方向及び逆方向に沿う円運動をする。 同時に、 偏心回転板 1 3 8上の各支持口ッド 1 3 5及びボス部 1 3 7が、 それぞ れ該偏心回転板 1 3 8と共に所定の正方向及び逆方向に沿う円運動を水平面内で する。
そこで、 前記ベースプレート 1 3 3は、 前記偏心回転板 1 3 8の円運動によつ て、 各支持ロッド 1 3 5の長さの違いによって水平面から所定方向に所定の角度 0傾斜された状態で、 所定の正方向及び逆方向に沿う円運動を水平面内でさせら れると共に、 該円運動の周方向に沿って前記傾斜方向を水平面内で所定の正方向 及び逆方向に変化される。 従って、 支柱 1 3 2を介して該ベースプレート 1 3 3 に固定された可動テーブル 1 3 0は、 前記円運動及び前記傾斜方向の変化の複合 された揺動運動をされる。
前記定位置検出センサ 1 3 1は、 第 1 1図に示すように、 定位置検出用円板 1 4 7の回転方向位置をセンサ本体 1 4 8によって検出することにより、 前記可動 テーブル 1 3 0の基準位置を検出する。 前記定位置検出用円板 1 4 7は、 偏心回転クランク 1 3 4の軸 1 3 6の基端部 に、 略水平な状態で固定されている。 そこで、 定位置検出用円板 1 4 7は、 モ一 夕 1 3 9の回転軸 1 4 0の回転に伴って回転し、 可動テーブル 1 3 0と同期して 回転する。 定位置検出用円板 1 4 7は、 外縁部の所定位置に形成された切欠 (図 示しない) を、 例えば光学式のセンサ本体 1 4 8によって検出されることにより 、 回転方向位置を検出される。
第 1 5図に示す培地分注手段 1 5 0は、 第 2図に示した第 1実施形態に係る培 地分注手段 5 0と同様に、 所定量の培地を、 培地分注ノズル 1 5 1から所定の向 きに所定の圧力で吐出させる。 すなわち培地分注ノズル 1 5 1は、 エアシリンダ 5 2のシリンダロッド 5 3先端に取り付けられており、 培地を分注する際、 エア シリンダ 5 2の作動に伴ってシャーレ 1 0側に所定の向きで突出され、 ローラ式 又はシュリンジ型の培地分注ポンプ (図示しない) による所定の吐出圧で所定量 の培地を吐出させる。
そして、 前記培地分注手段 1 5 0は、 可動テーブル 1 3 0上のシャーレ 1 0内 における中央より高所側のの分注位置 G (第 1 7図 (a ) 及び第 1 9図 (a ) 参 照) に向けて、 培地の溜まりの少なくとも一部がシャーレ 1 0の側壁内面に接触 するように、 培地をシャーレ 1 0内に分注する。
なお、 培地分注ノズル 1 5 1の先端は、 第 1 6図 (a ) に示すように、 側面視 下向きに末広がりの形状である。 また培地分注ノズル 1 5 1の流路閧ロ 1 5 4は 、 第 1 6図 (b ) に示すように、 長手方向を培地の流れ方向に沿わせた小判型に 形成されており、 例えば寸法 E = 2 mm、 寸法 F = 2 . 5 mmに設定される。 前記可動テーブル 1 3 0の上方には、 第 1 5図に示すように、 第 1実施形態に 係る蓋保持機構 6 0と同様の蓋保持機構 6 0が設けられている。
次に、 本実施形態の作用を第 1 7図及び第 1 8図を参照して説明する。
例えば、 上記分注装置 1 0 0によって薄層平板を分注する場合には、 シャーレ 供給部 (図示しない) から供給されたシャーレ 1 0を、 シャーレ搬送機構 1 2 0 によって前記可動テーブル 1 3 0まで搬送し、 基準位置にある該可動テーブル 1 3 0 (第 2図に示す状態) に載置する。
前記可動テーブル 1 3 0上のシャーレ 1 0は、 蓋保持機構 6 0によって蓋 1 1 を取り外された後、 予め生菌を含有させた所定量 (約 5 c c ) の培地を培地分注 手段 1 5 0の培地分注ノズル 1 5 1から分注される。 この際、 培地分注手段 1 5 0は、 第 1 7図 (a ) 及び第 1 8図 (a ) に示すように、 シャーレ 1 -0内におけ る中央より高所側の分注位置 Gに向けて、 培地の溜まりの少なくとも一部がシャ —レ 1 0の側壁内面に接触するように、 培地をシャーレ 1 0内に分注する。
分注された培地は、 可動テーブル 1 3 0が搬送方向 Z下流側に向けて斜め上方 に所定の角度 0傾斜していることにより、 第 1 7図に示すように、 シャーレ 1 0 内において搬送方向 Z上流側に流れる。
更に、 培地を分注されたシャーレ 1 0には、 蓋保持機構 6 0によって再び蓋 1 1が被せられる。 この状態で、 可動テーブル 1 3 0が所定時間 (例えば 2 . 5秒 間) 正転され、 載置されたシャーレ 1 0が水平方向に沿って正方向 (第 1 8図中 反時計回り方向) に円運動されると共に、 傾斜角 0を保ったまま、 傾斜方向を前 記円運動の周方向に沿って水平面内で正転方向に変化され、 揺動運動される。 こ れにより培地は、 第 1 8図 (b ) に示すように、 シャーレ 1 0の側壁内面に沿つ て反時計回り方向に流れ、 シャーレ 1 0内における中央より搬送方向 Z下流側を 覆うように流れる。 尚、 前記可動テーブル 1 3 0は、 第 1 8図 (a ) に示すよう に、 培地の溜まりが傾斜によってシャーレ 1 0の側壁内面に沿って流れる際の流 れ方向の回転が正転とされる。
次に、 前記可動テーブル 1 3 0が所定時間 (例えば 0 . 5秒間) 停止された後 、 所定時間 (例えば 2 . 5秒間) 逆転され、 シャーレ 1 0が水平方向に沿って逆 方向 (第 1 8図中時計回り方向) に円運動されると共に、 傾斜角 0を保ったまま 、 傾斜方向を前記円運動の周方向に沿って水平面内で逆転方向に変化され、 揺動 運動される。 これにより培地は、 第 1 8図 (c ) 及び第 1 8図 (d ) に示すよう に、 シャーレ 1 1内における中央部をも覆うように流れ、 均一に延ばされる。 そして、 前記可動テーブル 1 3 0の円運動及び傾斜方向の変化の複合された揺 動運動によって、 シャーレ 1 0内の培地が均一に延ばされた後、 シャーレ 1 0は 、 すぐに水平の確保された次の水平ステージに搬送され、 水平状態で所定時間 ( 例えば 8秒間) 静置される。 これによりシャーレ 1 0内の培地は、 厚みムラ等を 生じることなく、 均一に固化される。 その後、 シャーレ 1 0は、 ラベル貼付部 (図示しない) に搬送され、 ラベル貼 付部において、 菌の種類、 検体番号、 分注月日等の必要情報をバーコード化して 表示したラベル (図示しない) を貼付される。 ラベルを貼付されたシャー 1 0 は、 シャーレ積層収納部 (図示しない) に搬送され、 収納される。
即ち、 上記実施形態によれば、 培地分注手段 1 5 0によって所定量の培地を分 注した可動テーブル 1 3 0上のシャーレ 1 0に対して、 傾斜角 0を保った可動テ 一ブル 1 3 0によって、 水平方向に沿う正方向及び逆方向への円運動、 及び傾斜 方向を前記円運動の周方向に沿って水平面内で所定の正方向及び逆方向に変化さ せる動作の複合された揺動運動をさせる。 これにより、 培地の中に異なる方向へ の流れが生じ、 一方向の流れが他方向の流れとぶっかり合い、 培地分注が均一に 行われる。
従って、 培地の分注量が少量 (例えば 5 c c ) である上、 シャーレ 1 0の型抜 きに使用される離型剤の影響でシャーレ 1 0表面に撥水性があることから、 分注 時に培地が均一に延び難いという上記薄層培地の分注を良好に行える。
なお、 上記第 3実施形態においては、 薄層 板を分注する場合について述べた が、 平板培地、 混釈平板、 重層培地又は薄層培地のいずれの分注にも好適に用い ることができることは言うまでもない。
例えば、 重層培地の場合、 第 1 9図 (a ) に示すように、 培地分注手段 1 5 0 が、 シャーレ 1 0内における中央より高所側の分注位置 Gに向けて、 培地の溜ま りの少なくとも一部がシャーレ 1 0の側壁内面に接触するように、 培地をシャ一 レ 1 0内に分注する。
分注された培地は、 可動テーブル 1 3 0が搬送方向 Z下流側に向けて斜め上方 に所定の角度 6>傾斜していることにより、 第 1 9図 (b ) に示すように、 シャ一 レ 1 0内において搬送方向 Z上流側に流れる。
以後、 上述した薄層培地の場合と同様に、 培地を分注されたシャーレ 1 0は、 可動テーブル 1 3 0によって、 水平方向に沿って正方向及び逆方向に円運動され ると共に、 傾斜角 6»を保ったまま、 傾斜方向を前記円運動の周方向に沿って水平 面内で正方向及び逆方向に変化され、 揺動運動される。 これにより培地は、 シャ —レ 1 0内全体を覆うように流れ、 均一に延ばされる。 従って、 種層の培地の分注量が少量 (例えば 4 c c ) であり、 分注時に培地が 均一に延び難い上、 先に固化した基層の温度が、 室温近く (通常 2 0〜2 4 ° C ) まで下がっているため、 短時間で効果的な処理が要求される上記重層培地の分 注を良好に行える。
以上のように上記第 3実施形態によれば、 可動テーブル 1 3 0は、 偏心回転ク ランク 1 3 4及び支持口ッド 1 3 5の回転に伴うベースプレ一ト 1 3 3の正方向 及び逆方向に沿う円運動及び傾斜方向の変化によって、 載置されたシャーレ 1 0 に対して前記円運動及び傾斜方向の変化の複合された揺動運動をさせる。
したがって、 培地の分注量が例え少量であっても、 培地の厚みムラ等を確実に 防止することができるとともに、 平板培地、 混釈平板、 重層培地又は薄層培地の いずれの分注にも好適に用いることができる。 これにより、 平板培地、 混釈平板 、 重層培地又は薄層培地のいずれの分注作業をも自動化することができ、 かつ、 それら分注作業の作業性向上並びに検査精度及び信頼性の向上を図ることができ る。
又、 前記可動テーブル 1 3 0は、 定位置検出センサ 1 3 1による位置検出信号 に基づいて、 常に基準位置で停止するように制御されるので、 前記培地分注手段 1 5 0によって培地を分注される際のシャーレ 1 0の姿勢を、 常に一定に保つこ とができる。 これにより、 シャーレ 1 0内に分注された直後の培地の形状に一定 の再現性を持たせることができ、 培地をより均一に延ばすことができる。
尚、 上記第 3実施形態においては、 前記可動テーブル 1 3 0を搬送方向 Z下流 側に向けて斜め上方に 4度傾斜させたが、 本発明はこれに限定されるものではな く、 この傾斜角度は寒天培地の種類や分注量等に応じて、 適宜選定される。 又、 本発明は上記実施形態におけるシャーレ搬送機構 1 2 0、 可動テーブル 1 3 0、 及び培地分注手段 1 5 0の構成に限定されるものではなく種々の構成を採りうる
産業上の利用可能性
以上のように、 本発明にかかる培地の分注装置及びその方法は、 例えば医薬品 業界における無菌性試験、 菌数限度試験、 環境の落下菌試験、 抗生物質の力価 ( 効能) 測定、 体液濃度測定、 保存効力試験等、 GMPバリデ一シヨンに関係する 微生物試験や、 例えば食品業界における生菌数試験、 真菌数試験等、 HACCP に基づく有害菌による汚染防止対策に関係する微生物試験などの各種試験におけ る培地の分注作業において有用であり、 また、 培地の分注量が少量であっても、 培地の分注を良好に行うことができ、 培地の厚みムラ等を確実に防止することが できると共に、 平板培地、 混釈平板、 重層培地又は薄層培地のいずれの分注にも 適している。

Claims

請 求 の 範 囲
1 . シャーレを所定の経路に沿って搬送する搬送手段と、 ― ― 前記搬送手段によるシャーレの搬送経路中に、 シャーレの搬送方向下流側に向 けて斜め上方に所定の角度傾斜して設けられ、 水平面内で所定の正方向及び逆方 向に沿う円運動をすることにより、 載置されたシャーレを搬送方向下流側に向け て斜め上方に傾斜した状態で水平方向に沿って正方向及び逆方向に円運動させる 可動テーブルと、
前記可動テーブルに載置されたシャーレ内における中央より搬送方向下流側に 、 少なくとも一部がシャーレの側壁内面に接触するように所定量の培地を分注す る培地分注手段とを備えた培地の分注装置。
2 . シャーレを搬送手段によって所定の経路に沿って搬送すると共に、 シャーレ の搬送方向下流側に向けて斜め上方に所定の角度傾斜して設けられた可動テ一ブ ルに該シャーレを載置し、
この状態で可動テーブル上のシャーレ内における中央より搬送方向下流側に、 培地分注手段によつて所定量の培地を少なくとも一部がシヤーレの側壁内面に接 触するように分注し、
更に可動テーブルに水平面内で所定の正方向及び逆方向に沿う円運動をさせる ことにより、 載置されたシャーレを搬送方向下流側に向けて斜め上方に傾斜した 状態で水平方向に沿って正方向及び逆方向に円運動させることを特徴とする培地 の分注方法。
3 . シャーレを搬送手段によって所定の経路に沿って搬送すると共に、 該搬送経 路中に設けられた可動テーブルに該シャーレを載置し、
この状態で可動テーブル上のシャーレ内に、 培地分注手段の培地分注ノズルか ら所定量の培地を吐出させた後、
該可動テーブルを水平面内で所定の正方向及び逆方向に沿う円運動させること により、 培地を可動テーブルに載置されたシャーレ内に分注する培地の分注方法 であって、
前記可動テーブルに対する培地分注ノズルの相対位置、 該培地分注ノズルの形 状及び該培地分注ノズルからの培地の吐出圧力を適宜設定することにより、 該培地分注ノズルによってシャーレ内に分注された培地が、 シャーレの側壁内 面の全面に略同時に到達するように分注することを特徴とする培地の分注方法。
4 . シャーレを所定の経路に沿って搬送する搬送手段と、
前記搬送手段によるシャーレの搬送経路中に設けられ、 水平面から所定の角度 傾斜した状態で、 所定の正方向及び逆方向に沿う円運動を水平面内ですると共に 、 該円運動の周方向に沿って傾斜方向を水平面内で所定の正方向及び逆方向に変 化させ、 載置されたシャーレに前記円運動及び前記傾斜方向の変化の複合された 揺動運動をさせる可動テ一ブルと、
前記可動テーブルに載置されたシャーレ内に、 所定量の培地を分注する培地分 注手段とを備えた培地の分注装置。
5 . 前記分注手段が、 前記可動テ一プルに載置されたシャーレ内における中央よ り高所側に、 少なくとも一部がシャーレの側壁内面に接触するように所定量の培 地を分注することを特徴とする請求の範囲第 4項記載の培地の分注装置。
6 . 前記分注手段が、 前記可動テーブルに載置されたシャーレ内に、 基準位置に おいて所定量の培地を分注することを特徴とする請求の範囲第 4項又は第 5項記 載の培地の分注装置。
7 . シャーレを搬送手段によって所定の経路に沿って搬送すると共に、 該搬送手 段によるシャーレの搬送経路中に設けられた可動テ一ブルに前記シャ一レを載置 し、
この状態で可動テ一ブルに載置されたシャーレ内に培地分注手段によって所定 量の培地を分注し、
更に前記可動テーブルに水平面から所定の角度傾斜した状態で、 所定の正方向 及び逆方向に沿う円運動を水平面内でさせると共に、 該円運動の周方向に沿って 前記傾斜方向を水平面内で所定の正方向及び逆方向に変化させることにより、 前記可動テーブルに載置されたシャーレに前記円運動及び前記傾斜方向の変化 の複合された揺動運動をさせることを特徴とする培地の分注方法。
8 . 前記分注手段が、 前記可動テーブルに載置されたシャーレ内における中央よ り高所側に、 少なくとも一部がシャーレの側壁内面に接触するように所定量の培 地を分注することを特徴とする請求の範囲第 7項記載の培地の分注方法。
9 . 前記分注手段が、 前記可動テーブルに載置されたシャーレ内に、 基準位置に おいて所定量の培地を分注することを特徴とする請求の範囲第 7項又は第 8項記 載の培地の分注方法。
PCT/JP1998/002770 1997-06-23 1998-06-22 Appareil distributeur de milieux de culture et methode de distribution WO1998059032A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98928611A EP0990698A1 (en) 1997-06-23 1998-06-22 Culture medium dispenser and dispensing method
US09/446,664 US6199605B1 (en) 1997-06-23 1998-06-22 Medium dispensing apparatus and a method for the same
AU80375/98A AU8037598A (en) 1997-06-23 1998-06-22 Culture medium dispenser and dispensing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/166124 1997-06-23
JP16612497A JP3401526B2 (ja) 1997-06-23 1997-06-23 培地の分注装置及びその方法
JP10/70474 1998-03-19
JP7047498A JP3575664B2 (ja) 1998-03-19 1998-03-19 培地の分注装置及びその方法

Publications (1)

Publication Number Publication Date
WO1998059032A1 true WO1998059032A1 (fr) 1998-12-30

Family

ID=26411631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002770 WO1998059032A1 (fr) 1997-06-23 1998-06-22 Appareil distributeur de milieux de culture et methode de distribution

Country Status (4)

Country Link
US (1) US6199605B1 (ja)
EP (1) EP0990698A1 (ja)
AU (1) AU8037598A (ja)
WO (1) WO1998059032A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109576131A (zh) * 2018-12-24 2019-04-05 广州市安亦捷自动化设备有限公司 一种培养皿自动灌装装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10050085C1 (de) * 2000-10-10 2001-10-31 Jochem Koetting Verschlußelement und Verschlußsystem für Behältnisse und Gefäße
DE10301447A1 (de) * 2003-01-09 2004-07-22 A.I.D. Autoimmun Diagnostika Gmbh Verfahren zum Abnehmen eines Deckels einer Petrischale und Deckelabnehmeinrichtung
US7396512B2 (en) * 2003-11-04 2008-07-08 Drummond Scientific Company Automatic precision non-contact open-loop fluid dispensing
US20060211080A1 (en) * 2005-03-16 2006-09-21 Picoscript Ltd., L.L.P. Automated biological plate spreader
US7449327B2 (en) * 2005-05-03 2008-11-11 Mediatek, Llc System and method for dispensing dehydrated culture media powder
US20060252146A1 (en) * 2005-05-03 2006-11-09 House Arthur G System and method for dispensing dehydrated culture media powder
US7934622B2 (en) * 2005-11-01 2011-05-03 Mediatek, Llc System and method for dispensing dehydrated culture media powder
FR2939444B1 (fr) 2008-12-10 2011-02-04 Aes Chemunex Dispositif de distribution d'un produit dans une boite de petri.
FR2948945B1 (fr) * 2009-08-07 2012-03-09 Aes Chemunex Dispositif et procede de distribution d'un produit dans une boite de petri
EP2821477B1 (en) * 2012-02-29 2016-10-05 JTEC Corporation Cell culture device having culture medium replacement function
GB2513418A (en) * 2013-04-26 2014-10-29 Singer Instr Company Ltd A method and apparatus for filling a plurality of media plates in a self-supporting stack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349676A (ja) * 1989-07-18 1991-03-04 Takeda Chem Ind Ltd Mic及び生菌数の測定自動化装置および自動測定方法
JPH04248980A (ja) * 1991-01-31 1992-09-04 Dainippon Seiki:Kk 自動微生物試験装置
JPH06174732A (ja) * 1992-12-10 1994-06-24 Nittetsu Mining Co Ltd 自動サンプリング・培地分注方法及び装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844896A (en) * 1970-10-29 1974-10-29 Lever Brothers Ltd Apparatus for performing bacteriological tests automatically
US4287301A (en) * 1976-04-21 1981-09-01 Astle Thomas W Method and apparatus for streaking agar
AU635008B2 (en) * 1989-12-13 1993-03-11 Genelabs Diagnostics Pte Ltd Analytical apparatus and method for automated blot assay
JPH05153961A (ja) 1991-07-11 1993-06-22 Erumetsukusu:Kk 検体自動注入混釈装置
JP2500472B2 (ja) * 1993-10-06 1996-05-29 日本電気株式会社 細胞配列培養装置およびその方法
US5698260A (en) * 1995-06-16 1997-12-16 Rcr Scientific, Inc. Method and apparatus for coating containers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349676A (ja) * 1989-07-18 1991-03-04 Takeda Chem Ind Ltd Mic及び生菌数の測定自動化装置および自動測定方法
JPH04248980A (ja) * 1991-01-31 1992-09-04 Dainippon Seiki:Kk 自動微生物試験装置
JPH06174732A (ja) * 1992-12-10 1994-06-24 Nittetsu Mining Co Ltd 自動サンプリング・培地分注方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109576131A (zh) * 2018-12-24 2019-04-05 广州市安亦捷自动化设备有限公司 一种培养皿自动灌装装置
CN109576131B (zh) * 2018-12-24 2022-05-24 广州市安亦捷自动化设备有限公司 一种培养皿自动灌装装置

Also Published As

Publication number Publication date
US6199605B1 (en) 2001-03-13
EP0990698A1 (en) 2000-04-05
AU8037598A (en) 1999-01-04

Similar Documents

Publication Publication Date Title
WO1998059032A1 (fr) Appareil distributeur de milieux de culture et methode de distribution
TWI523683B (zh) Mixing device and stirring method
CN101448443B (zh) 从速溶代乳品制备婴儿乳品的设备
JPH04507295A (ja) スライドに取り付けられた細胞標本のインサイテュ・ハイブリダイゼーション装置
JP2002098704A (ja) 細菌類の自動分析装置
US20080318310A1 (en) Method and Apparatus for Automatically Isolating Microbial Species
JP5557732B2 (ja) 混合装置
US20040149776A1 (en) Rotary-drive dispenser
JP3575664B2 (ja) 培地の分注装置及びその方法
US20090046535A1 (en) Systems and methods for mixing materials
JPH04248980A (ja) 自動微生物試験装置
JP3401526B2 (ja) 培地の分注装置及びその方法
JP5514097B2 (ja) 生菌数検査装置
KR20190045821A (ko) 용기들을 수집하고 중력에 의해 비우기 위한 수단을 구비하고 생성물 수집 영역을 포함하는 자동 용기 비움 장치
JP4537671B2 (ja) 薬剤ホッパーのクリーニング方法及び薬剤分包装置
JP3734899B2 (ja) 試薬を収容した可撓性容器と試薬を細胞標本上に置く方法
JP2007163189A (ja) 秤量方法、秤量装置及び試料分析前処理装置
JPH085639A (ja) 血液自動分析装置
JPS5944577B2 (ja) 液体分配方法及び装置
JP2001149063A (ja) 検体検査サンプル自動作成装置
JP3847256B2 (ja) 粒状ドライアイスの分配供給装置
JPH06174732A (ja) 自動サンプリング・培地分注方法及び装置
JP2890449B2 (ja) 試薬分注装置
JP5738266B2 (ja) 潜在的な発癌性について物質を試験するための方法と装置
JPH11266853A (ja) 培地分注装置及び分注方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR NO SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998928611

Country of ref document: EP

Ref document number: 09446664

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998928611

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1998928611

Country of ref document: EP