WO1998057041A1 - Aube de refroidissement de turbine a gaz - Google Patents

Aube de refroidissement de turbine a gaz Download PDF

Info

Publication number
WO1998057041A1
WO1998057041A1 PCT/JP1998/002594 JP9802594W WO9857041A1 WO 1998057041 A1 WO1998057041 A1 WO 1998057041A1 JP 9802594 W JP9802594 W JP 9802594W WO 9857041 A1 WO9857041 A1 WO 9857041A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
blade
front edge
air blowing
air
Prior art date
Application number
PCT/JP1998/002594
Other languages
English (en)
French (fr)
Inventor
Hiroki Fukuno
Yasuoki Tomita
Shigeyuki Maeda
Yukihiro Hashimoto
Kiyoshi Suenaga
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to CA002263516A priority Critical patent/CA2263516C/en
Priority to EP98924593A priority patent/EP0931910A4/en
Priority to US09/242,330 priority patent/US6196798B1/en
Publication of WO1998057041A1 publication Critical patent/WO1998057041A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades

Definitions

  • the present invention relates to a gas turbine cooling blade, and more particularly, to a structure for preventing the occurrence of cracks in an air blowing hole for cooling a sash head provided at a leading edge of the blade.
  • FIG. 4 is a perspective view of a conventional gas turbine cooling blade.
  • the cooling blade 11 has a leading edge 12 and a trailing edge 13. As shown in this figure, a large number of air blowing holes 14 are provided at the leading edge 12 of the cooling blade 11, and the cooling air is blown out from the cooling air passage inside the blade through the holes, and the shower head is provided. Cooling.
  • FIG. 5 (a) is a cross-sectional view taken along line C-C of FIG. 4, and FIG. 5 (b) is a cross-sectional view taken along line DD of FIG.
  • These figures show in detail the air blowing holes 14 used for cooling the showerhead, which are provided in large numbers on the leading edge 12 of the cooling blade 11. The cooling air passes through the air blowing holes 14 and blows out from the cooling air passage 15 inside the wing to the wing surface to cool the wing surface to the shower.
  • the air blowing holes 14 are provided at an angle to the wing surface of the leading edge 12. Due to the inclination of the hole 14, the cooling air blown out from the air blowing hole 14 flows along the blade surface, thereby effectively cooling the blade surface.
  • an acute angle portion 30 is formed between the wing surface and the entrance of the air blowing hole.
  • the structure having the acute angle portion 30 when the thermal stress is generated around the hole 14, However, there is a problem that stress is concentrated on the acute angle portion 30 and cracks are easily generated around the hole 14.
  • the present invention has been made to solve the above-mentioned problems, and the angle of the cooling blade of the gas jet bottle with respect to the front edge of the air blowing hole is changed so as to eliminate the acute angle portion.
  • the purpose is to prevent the occurrence of cracks at the leading edge of the cooling blade by preventing high thermal stress from being generated around it.
  • the present invention provides the following means in order to solve the above-mentioned problems.
  • a cooling air passage is provided inside the wing, cooling air is flowed through the cooling air passage to cool the inside of the wing, and a number of air blowing holes are formed in a leading edge of the wing to form a cooling air passage from the cooling air passage.
  • the air blowing hole generates thermal stress at the entrance and exit at the leading edge of the blade.
  • the gas turbine cooling blade is provided so as to be formed on the blade surface of the leading edge so that stress concentration is reduced.
  • the air blowing hole is formed so as to be substantially perpendicular to the wing surface of the front edge portion.
  • the gas turbine cooling blade of the present invention is formed such that the air blowing hole is substantially orthogonal to the blade surface at the leading edge. Therefore, according to the present invention, since a substantially orthogonal portion is formed around the air blowing hole, there is no sharp point, and even when thermal stress is generated around the air blowing hole, the air blowing to the front edge portion is performed. Stress concentration at the entrance and exit of the hole is reduced. As a result, cracks due to thermal stress can be avoided around the air outlet holes.
  • FIG. 1 is a perspective view of a gas cooling bin cooling blade according to an embodiment of the present invention.
  • FIGS. 2A and 2B are cross-sectional views of FIG. 1 showing details of the air blowing holes.
  • FIG. 1 is a perspective view of a gas cooling bin cooling blade according to an embodiment of the present invention.
  • FIGS. 2A and 2B are cross-sectional views of FIG. 1 showing details of the air blowing holes.
  • FIG. 1 is a perspective view of a gas cooling bin cooling blade according to an embodiment of the present invention.
  • FIGS. 2A and 2B are cross-sectional views of FIG. 1 showing details of the air blowing holes.
  • FIG. 3 shows a comparison of a cross-sectional view of an air blowout hole of a gas turbine cooling blade according to an embodiment of the present invention with a conventional example, where (a) shows the conventional example and (b) shows the present embodiment. Show.
  • FIG. 4 is a perspective view of a conventional gas cooling bin cooling blade.
  • Fig. 5 is a cross-sectional view of Fig. 4 showing details of the air blowing hole (1), (a) is a C-C cross-sectional view, and (b) is a D-D cross-sectional view.
  • FIG. 1 is a perspective view showing a gas turbine cooling blade according to an embodiment of the present invention.
  • FIG. 2 is a view showing details of an air blowout hole.
  • (A) is a cross section taken along line AA in FIG.
  • the figure, (b) is a BB cross-sectional view.
  • the cooling blade 1 has a leading edge 2 and a trailing edge 3.
  • Cooling air passages 15 are provided inside the cooling blades 1, through which cooling air flows to cool the inside of the blades.
  • the front edge 2 is provided with a number of air blowing holes 4.
  • the cooling air flowing through the cooling air passage 15 inside the wing passes through the air blowing hole 14 and blows out to the wing surface, thereby cooling the leading edge wing surface with a shower head.
  • FIGS. 3A and 3B show a comparison between the air blowing hole 4 according to the present invention and the air blowing hole 14 in the conventional example.
  • FIG. 3A is a longitudinal sectional view of the leading edge of the conventional blade, and FIG. It is a longitudinal section of a wing of an embodiment.
  • the air blowing hole 14 is formed obliquely to the blade surface, the air blowing hole 14 is formed at the entrance at the front edge 2 of the air blowing hole 14 as shown by a circle in the figure. An acute angle portion 30 is formed.
  • FIG. 3 (b) of the present embodiment the air blowing holes 4 are drilled at almost right angles to the wing surface of the leading edge 2, so that the air blowing holes 4 as indicated by circles in the figure.
  • An orthogonal portion 20 is formed at the entrance at the front edge 2 instead of the conventional acute angle portion.
  • the air blowing hole 4 is provided so as to be substantially orthogonal to the wing surface of the front edge 2, and around the entrance at the front edge 2 of the air blowing hole 4.
  • the acute angle portion is not formed, and the orthogonal portion 20 is formed instead, the generated thermal stress can be significantly reduced as compared with the conventional obliquely provided air blowing hole 14. Therefore, the occurrence of cracks around the air outlet hole 4 in the front edge 2 can be avoided.
  • the air blowing holes 4 are provided so as to be substantially perpendicular to the blade surface.
  • the air blowing holes 4 have a gentler slope than the conventional air blowing holes 14. The higher the value, the more effective it is to avoid the concentration of heat and stress, and it is most preferable to set them orthogonally.
  • the angle of the air outlet hole is set to the angle of inclination of the conventional air outlet hole 14, taking into account the effect of shower head cooling based on the shape of the blades, the temperature of the combustion gas, or the pressure of the cooling air.
  • the value may be determined as long as the generation of cracks can be avoided between the direction perpendicular to the wing surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

明 細 書 ガス夕一ビン冷却翼 発明の背景
発明の属する技術分野
本発明はガスタービン冷却翼に関し、 特に、 翼の前縁部に設けるシャヮ 一へッド冷却のための空気吹き出し穴部分におけるクラックの発生を防止する構 造に関する。
関連技術の説明
ガスタービンの静翼及び動翼は、 高温の燃焼ガスに晒されるため、 翼内 部を冷却する必要がある。 そのため、 翼内部に冷却空気通路を設け、 そこに冷却 空気を流して翼内部を冷却する。 図 4は、 従来のガスタービン冷却翼の斜視図で あり、 冷却翼 1 1は、 前縁 1 2及び後縁 1 3を有している。 この図に示すように 、 冷却翼 1 1の前縁 1 2には、 空気吹き出し穴 1 4が多数設けられており、 その 穴から翼内部の冷却空気通路からの冷却空気が吹き出し、 シャワーへッド冷却を 行うようになつている。
図 5 ( a ) は、 図 4の C一 C断面図、 図 5 ( b ) はその D— D断面図で ある。 これらの図は、 冷却翼 1 1の前縁 1 2に多数設けられた、 シャワーヘッド 冷却に用いられる空気吹き出し穴 1 4を詳細に示している。 冷却空気は、 空気吹 き出し穴 1 4を通り、 翼内部の冷却空気通路 1 5から翼表面に吹き出し、 翼表面 をシャワーへヅド冷却している。
空気吹き出し穴 1 4は、 図 5 ( b ) に示すように、 前縁 1 2の翼面に対 して傾けて設けられている。 この穴 1 4の傾きのため、 空気吹き出し穴 1 4から 吹き出た冷却空気は、 翼表面に沿って流れ、 翼面の冷却を効果的に行うようにな つている。
しかし、 空気吹き出し穴 1 4が前縁 1 2に対して斜めに傾いている結果 、 翼表面と空気吹き出し穴の出入口との間に、 鋭角部 3 0が形成される。 このよ うに、 鋭角部 3 0を有する構造においては、 熱応力が穴 1 4の周囲に発生すると 、 鋭角部 3 0に応力が集中し、 穴 1 4の周囲にクラックが発生し易くなるという 問題点があった。 発明の目的
そこで、 本発明は、 上記問題点を解決するためになされたもので、 ガス 夕一ビンの冷却翼における空気吹き出し穴の前縁に対する角度を変更し、 鋭角部 を無くすことにより、 空気吹き出し穴の周囲に高い熱応力が発生しないようにし て、 冷却翼前縁部のクラック発生を防止することを目的とする。 発明の概要
本発明は、 前述の課題を解決するために、 次の手段を提供する。
翼内部に冷却空気通路を有し、 該冷却空気通路に冷却空気を流して翼内 部を冷却すると共に、 前記翼の前縁部に空気吹き出し穴を多数穿設して前記冷却 空気通路からの前記冷却空気を吹き出すことにより前記翼の前記前縁部をシャヮ 一ヘッド冷却をするガス夕一ビン冷却翼において、 前記空気吹き出し穴は、 前記 翼の前記前縁部におけるその出入口において熱応力が発生した際に、 応力集中が 小さくなるように、 前記前縁部の翼面に対して穿設されていることを特徴とする ガスタービン冷却翼を提供する。 特に、 前記空気吹き出し穴は、 前記前縁部の前 記翼面に対してほぼ直交するように穿設されていることが好ましい。
本発明のガスタービン冷却翼は、 空気吹き出し穴が前縁部の翼面に対し てほぼ直交するようにあけられている。 従って、 本発明では、 空気吹き出し穴の 周囲には、 ほぼ直交部が形成されるので、 鋭角な個所がなくなり、 空気吹き出し 穴の周囲に熱応力が発生した場合にも、 前縁部に対する空気吹き出し穴の出入口 における応力集中が小さくなる。 その結果、 空気吹き出し穴の周囲において、 熱 応力によるクラックの発生を回避することができる。 図面の簡単な説明
図 1は、 本発明の実施の一形態に係るガス夕一ビン冷却翼の斜視図であ る。 図 2は、 空気吹き出し穴の詳細を示した図 1における断面図で、 (a ) が A— A断面図、 (b ) が B— B断面図である。
図 3は、 本発明の実施の一形態に係るガスタービン冷却翼の空気吹き出 し穴と従来例との断面図の比較を示し、 (a ) が従来例、 (b ) が本実施の形態を 示す。
図 4は、 従来のガス夕一ビン冷却翼の斜視図である。
図 5は、 空気吹き出し穴の詳細を示した図 4における断面 (® 、 (a ) が C一 C断面図、 (b ) が D— D断面図である。 好適な実施例の説明
添付の図面を参照しながら、 本発明の現在好適であると考えられる実施 形態に関して詳述する。
以下の説明において、 各図面を通じて同様の構成要素には、 同様の参照 符号を付する。 なお、 以下の説明中、 「右」、 「左」、 「上」、 「下」 等の用語は、 便 宜上使用するもので、 これらの用語を限定的に解釈すべきものでないことを記し ておく。
実施例 1
図 1は、 本発明の実施の一形態に係るガスタービン冷却翼を示す斜視図 、 図 2は、 その空気吹き出し穴の詳細を示したずであり、 (a ) は図 1における A— A断面図、 (b ) は B— B断面図である。 これらの図において、 冷却翼 1は 、 前縁 2及び後縁 3を有している。 冷却翼 1の内部には、 冷却空気通路 1 5が設 けられ、 そこに冷却空気を流して翼内部を冷却する。 前縁 2には、 多数の空気吹 き出し穴 4が設けられている。 翼内部の冷却空気通路 1 5を流れる冷却空気は、 この空気吹き出し穴 1 4を通り、 翼表面に吹き出し、 前縁部の翼表面をシャワー へッド冷却する。
空気吹き出し穴 4は、 図 2 ( b ) に示すように、 前縁 2の翼面に対して ほぼ直交するように設けられており、 翼面に対する穴出入口に鋭角な個所が成形 されないような構造になっていて、 空気吹き出し穴 4の周囲に発生する応力集中 の影響を小さくし、 熱応力を低減させる。 図 3は、 本発明に係る空気吹き出し穴 4と、 従来例における空気吹き出 し穴 1 4との比較を示し、 (a ) が従来の翼の前縁部の縦断面図、 (b ) が本実施 の形態の翼の縦断面図である。 図に示すように、 従来例においては、 空気吹き出 し穴 1 4が翼面に対して斜めにあけられているので、 図中丸印で示すような空気 吹き出し穴 1 4の前縁 2における出入口に鋭角部 3 0が形成される。
これに対し、 本実施の形態の図 3 ( b ) においては、 空気吹き出し穴 4 が前縁 2の翼面に対し、 ほぼ直角にあけられており、 図中丸印で示すような空気 吹き出し穴 4の前縁 2における出入口には、 従来の鋭角部に代り、 直交部 2 0が 形成される。
上記のように、 本実施の形態においては空気吹き出し穴 4が前縁 2の翼 面に対してほぼ直交するように設けられ、 この空気吹き出し穴 4の前縁 2におけ る出入口の周囲には、 鋭角部が形成されなくなり、 その代わりに直交部 2 0が形 成されるので、 発生する熱応力を従来の斜めに設けた空気吹き出し穴 1 4と比べ て大幅に低減することができる。 それゆえ、 前縁 2の空気吹き出し穴 4の周囲に おけるクラック発生を回避することができる。
上記に説明の実施の形態では、 空気吹き出し穴 4を翼面に対してほぼ直 交するように設ける例で説明したが、 従来の空気吹き出し穴 1 4の傾斜と比較し て、 より緩やかな傾斜に設定すればする程熱、 応力の集中を回避する効果がある ものであり、 直交するようにすることが最も好ましいものである。 このような空 気吹き出し穴の角度は、 翼の形状や燃焼ガス温度、 あるいは冷却空気の圧力等に 基づきシャワーへッド冷却の効果を加味して、 従来の空気吹き出し穴 1 4の傾斜 角と翼面に対する直交との間でクラックの発生を回避できる範囲で決定しても良 いものである。
なお、 本発明のガス夕一ビン冷却翼は、 動翼あるいは静翼のいずれに適 用しても同様の効果が得られることはもちろんである。
以上、 図面を参照し、 本発明の現在好適であると考えられる実施形態及 びそれに代わる他の実施形態について詳細に説明したが、 本発明は、 これ等の実 施形態に限定されるものではなく、 ガスタービン冷却静翼の種々の付加的な適用 例及び変更例は、 本発明の精神及び範囲から逸脱することなく、 当該技術分野に おける当業者にとって、 容易に想到し実現し得るものであることを記しておく。

Claims

請 求 の 範 囲
1 . 翼内部に冷却空気通路を有し、 該冷却空気通路に冷却空気を流して翼内 部を冷却すると共に、 前記翼の前縁部に空気吹き出し穴を多数穿設して前記冷却 空気通路からの前記冷却空気を吹き出すことにより前記翼の前記前縁部をシャヮ 一ヘッド冷却するガス夕一ビン冷却翼において、 前記空気吹き出し穴は、 前記翼 の前記前縁部におけるその出入口において熱応力が発生した際に、 応力集中が小 さくなるように、 前記前縁部の翼面に対して穿設されていることを特徴とするガ スタービン冷却翼。
2 . 前記空気吹き出し穴は、 前記前縁部の前記翼面に対してほぼ直交するよ うに穿設されていることを特徴とする請求の範囲 1に記載のガスタービン冷却翼
PCT/JP1998/002594 1997-06-12 1998-06-12 Aube de refroidissement de turbine a gaz WO1998057041A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002263516A CA2263516C (en) 1997-06-12 1998-06-12 Cooled gas turbine blade
EP98924593A EP0931910A4 (en) 1997-06-12 1998-06-12 COOLED GAS TURBINE SHOVEL
US09/242,330 US6196798B1 (en) 1997-06-12 1998-06-12 Gas turbine cooling blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/155124 1997-06-12
JP15512497A JP3615907B2 (ja) 1997-06-12 1997-06-12 ガスタービン冷却翼

Publications (1)

Publication Number Publication Date
WO1998057041A1 true WO1998057041A1 (fr) 1998-12-17

Family

ID=15599091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002594 WO1998057041A1 (fr) 1997-06-12 1998-06-12 Aube de refroidissement de turbine a gaz

Country Status (5)

Country Link
US (1) US6196798B1 (ja)
EP (1) EP0931910A4 (ja)
JP (1) JP3615907B2 (ja)
CA (1) CA2263516C (ja)
WO (1) WO1998057041A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351036B2 (en) * 2005-12-02 2008-04-01 Siemens Power Generation, Inc. Turbine airfoil cooling system with elbowed, diffusion film cooling hole
US7878761B1 (en) * 2007-09-07 2011-02-01 Florida Turbine Technologies, Inc. Turbine blade with a showerhead film cooling hole arrangement
KR101565452B1 (ko) * 2013-12-17 2015-11-04 한국항공우주연구원 가스 터빈 엔진의 에어포일

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57309A (en) * 1979-12-26 1982-01-05 United Technologies Corp Coolable wall element
JPS61155601A (ja) * 1984-12-21 1986-07-15 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン ガスタ−ビンエンジン

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177710A (ja) 1974-03-15 1976-07-06 Nat Aerospace Lab Gasutaabinyokoonbuzaino reikyakusochi
GB2227965B (en) * 1988-10-12 1993-02-10 Rolls Royce Plc Apparatus for drilling a shaped hole in a workpiece
US5184459A (en) * 1990-05-29 1993-02-09 The United States Of America As Represented By The Secretary Of The Air Force Variable vane valve in a gas turbine
US5813835A (en) * 1991-08-19 1998-09-29 The United States Of America As Represented By The Secretary Of The Air Force Air-cooled turbine blade
FR2715693B1 (fr) * 1994-02-03 1996-03-01 Snecma Aube fixe ou mobile refroidie de turbine.
JPH07279612A (ja) 1994-04-14 1995-10-27 Mitsubishi Heavy Ind Ltd 重質油焚き用ガスタービン冷却翼
US5997251A (en) * 1997-11-17 1999-12-07 General Electric Company Ribbed turbine blade tip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57309A (en) * 1979-12-26 1982-01-05 United Technologies Corp Coolable wall element
JPS61155601A (ja) * 1984-12-21 1986-07-15 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン ガスタ−ビンエンジン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0931910A4 *

Also Published As

Publication number Publication date
JPH112102A (ja) 1999-01-06
US6196798B1 (en) 2001-03-06
EP0931910A4 (en) 2001-02-28
EP0931910A1 (en) 1999-07-28
JP3615907B2 (ja) 2005-02-02
CA2263516A1 (en) 1998-12-17
CA2263516C (en) 2004-08-24

Similar Documents

Publication Publication Date Title
US9151173B2 (en) Use of multi-faceted impingement openings for increasing heat transfer characteristics on gas turbine components
RU2179246C2 (ru) Охлаждающее устройство профильной части лопатки газотурбинного двигателя
US7997868B1 (en) Film cooling hole for turbine airfoil
JP4752841B2 (ja) タービン部品
US7195458B2 (en) Impingement cooling system for a turbine blade
US8297926B2 (en) Turbine blade
US8657576B2 (en) Rotor blade
US20050042074A1 (en) Combustion turbine with airfoil having multi-section diffusion cooling holes and methods of making same
US20090304499A1 (en) Counter-Vortex film cooling hole design
US20050025623A1 (en) Cooling circuits for a gas turbine blade
JP2007146841A (ja) タービンエンジンの構成部品内に使用される冷却マイクロ回路およびタービンブレード
US8961136B1 (en) Turbine airfoil with film cooling hole
US20100124508A1 (en) Turbine airfoil cooling system with platform edge cooling channels
US20060073017A1 (en) Stepped outlet turbine airfoil
JPH11148303A (ja) プラットホームのためのセグメント装置
JP2010509532A5 (ja)
KR20100097718A (ko) 터빈 날개의 냉각 구조
JPH11247607A (ja) タ―ビン翼
JP2007002843A (ja) ターボ機械の可動な翼のための冷却回路
JP2004225690A (ja) タービン動翼およびガスタービン
US20060177310A1 (en) Cooled blade or vane for a gas turbine
WO1998059157A1 (fr) Virole pour aube de turbine a gaz refroidie
JPH062502A (ja) ガスタービンの静翼
WO1998057041A1 (fr) Aube de refroidissement de turbine a gaz
JP3241241B2 (ja) 中空ガスタービン翼

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2263516

Country of ref document: CA

Ref country code: CA

Ref document number: 2263516

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1998924593

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09242330

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998924593

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998924593

Country of ref document: EP