WO1998056069A1 - Adaptive array antenna - Google Patents

Adaptive array antenna Download PDF

Info

Publication number
WO1998056069A1
WO1998056069A1 PCT/JP1998/002408 JP9802408W WO9856069A1 WO 1998056069 A1 WO1998056069 A1 WO 1998056069A1 JP 9802408 W JP9802408 W JP 9802408W WO 9856069 A1 WO9856069 A1 WO 9856069A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
beam width
array antenna
adaptive array
elements
Prior art date
Application number
PCT/JP1998/002408
Other languages
French (fr)
Japanese (ja)
Inventor
Taisuke Ihara
Ryo Yamaguchi
Original Assignee
Ntt Mobile Communications Network Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Mobile Communications Network Inc. filed Critical Ntt Mobile Communications Network Inc.
Priority to EP98923064A priority Critical patent/EP0923155A4/en
Priority to US09/125,734 priority patent/US6512934B2/en
Priority to CA 2247349 priority patent/CA2247349C/en
Priority to KR1019980706811A priority patent/KR100306466B1/en
Publication of WO1998056069A1 publication Critical patent/WO1998056069A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2611Means for null steering; Adaptive interference nulling

Definitions

  • the present invention is used for a base station in mobile communication such as a car phone or a mobile phone, and is an array antenna in which a plurality of antenna elements are arranged in an angle range within a horizontal plane, a so-called sector area, and a plurality of antenna elements, and
  • the present invention relates to an adaptive array antenna device to which an adaptive processor that adaptively suppresses an interference wave is connected.
  • the cellular system uses the limited frequency effectively, and the base station at a long distance uses the same frequency to increase the subscriber capacity.
  • interference noise due to the same frequency becomes a problem when the frequency is used repeatedly.
  • the subscriber capacity decreases when the interference noise increases.
  • An adaptive array antenna uses a plurality of antennas (array antennas) that are spatially separated to form a null beam (no sensitivity) in the interference wave direction and a directivity having a narrow beam in the desired wave direction. Is adaptively formed to suppress the interference noise level.
  • the omni-directional ie, (Omni-directional: omni-directional)
  • the element uses an element, and there is almost no use of a directional antenna for the radiation directivity of the individual antenna elements constituting the antenna.
  • the directional antenna element There was no idea to use an adaptive array antenna using.
  • a directional antenna suitable for the sector shape is required.
  • base station antennas whose directivity in the horizontal plane has a half-power width (hereinafter referred to as a beam width) equal to the sector angle have been used. That is, in a 120 ° sector (3 sectors), the beam width is 120.
  • Antennas were usually used.
  • a study on applying directional antennas to conventional base station adaptive array antennas (Ryo Yamaguchi, Yoshio Ebine
  • the optimal antenna configuration method was hardly clarified.
  • the antenna configuration has not been clarified in an environment where a large number of interfering waves arrive from all directions, such as a system using CDMA as a wireless access method.
  • the present invention provides a mobile communication base station adaptive array antenna device using a CDMA system as a wireless access system,
  • a service area in a sector is configured by using an antenna element constituting an array antenna whose beam width in a horizontal plane is smaller than a sector angle.
  • the service area can be configured by increasing the number of antenna elements required (referred to as a reference number).
  • an antenna whose beam width in the horizontal plane of the antenna element is wider than the sector angle is used as the element.
  • the service area can be configured by reducing the number of antenna elements from the number of reference elements.
  • Figure 1 shows the directivity of the antenna used in computer simulation.
  • Figure 2 shows the arrangement of the array antenna elements and the coordinate system for a four-element array antenna.
  • FIG. 3 is a diagram showing a computer simulation result of an error rate characteristic of a received signal when an angle of a desired station is changed using a beam width of an array antenna as a parameter.
  • FIG. 4 is a diagram showing a computer simulation result of an error rate characteristic of a received signal when an angle of a desired station is changed using the number of elements of an array antenna as a parameter.
  • FIG. 5 is a diagram showing a relationship between an element beam width, a sector angle, and the number of array elements.
  • FIG. 6 is a diagram showing a sector configuration according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of an array antenna according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a first embodiment in which a dipole antenna is used as an antenna element.
  • FIG. 9 is a diagram showing a first embodiment when a patch antenna is used as an antenna element.
  • FIG. 1 () is a diagram showing a sector configuration according to a second embodiment of the present invention.
  • FIG. 11 is a diagram showing a configuration of an array antenna according to a second embodiment of the present invention.
  • the results of computer simulation of directional characteristics when a directional antenna is applied to an adaptive array antenna base station in a CDMA mobile communication system will be described.
  • the error rate characteristics of the received signal are shown for the case where the position of the mobile station, the directivity of the antenna elements constituting the array antenna, and the number of antenna elements constituting the array are changed.
  • the antenna configuration (antenna directivity, the number of array elements) with respect to the angle is shown, that is, the present invention can be obtained.
  • Figure 1 shows the horizontal directivity of the antenna element used in the simulation. Horizontal axis angle normalized by the beam width B w, the vertical axis represents the relative gain obtained by normalizing the relative gain at the peak power. Peak gain is set so that the power radiated from the antenna be changed bi one beam width B w is constant, and sidelobe levels was 1 5 d B low levels of peak power. As shown in Fig.
  • a linear array in which a plurality of antenna elements 11 are arranged in a straight line in a horizontal plane, the interval between the antenna elements is a half wavelength interval, and the main elements of each antenna element 11 in the array antenna
  • Figure 3 shows an example of the calculation results.
  • the figure shows the error rate characteristics depending on the position of the mobile device.
  • the horizontal axis is the angle seen from the base station antenna of the mobile device (the front direction of the array antenna is 0 °), and the vertical axis is the error rate. . Since the transmission power of the mobile device is controlled, the location dependency of the mobile device does not depend on the distance between the mobile device and the base station, and only the angle dependency needs to be considered.
  • Each curve in the figure shows the characteristics when the beam width Bw of the antenna element 11 is changed from 30 ° to 180 ° in steps of 30 °. In this case, an array antenna of all four elements is used. It is.
  • Adaptive array antennas not only form a null beam in the direction of the interfering station (wave), but also have an excellent characteristic of directing the peak of the beam in the direction of the desired station (wave). However, when a directional antenna element is used, When the direction (that is, the direction of the desired wave) is near the beam width edge, the beam tracking performance deteriorates.
  • the beam width of the antenna element needs to be increased.
  • the beam width of the antenna element since the interference wave comes from all directions, if the beam width of the antenna element is widened, many interference waves will be received, and the received SIR will deteriorate and the error rate characteristics will also deteriorate. For these reasons, the sector angle does not increase even if the antenna element beam width is increased.
  • Fig. 4 shows the error rate characteristics depending on the position of the mobile station, as in Fig. 3.
  • Curves 4a, 4b, and 4c indicate the number of antenna elements that constitute the array (hereinafter, the number of array elements). ) Are 4, 6, and 8, respectively.
  • the beam width of the antenna element is 120 °. From this figure, it can be seen that increasing the number of array elements increases the sector angle even when elements having the same beam width are used.
  • the number of elements constituting the adaptive array antenna is N
  • the number of null beams formed in the interference wave direction is N-1 (this is also called the degree of freedom of the array antenna). Therefore, when the number of array elements is increased, the number of formed null beams increases, the reception S 1 R increases, and the sector angle increases.
  • the condition that the number of interference waves is larger than the number of array elements is considered. Therefore, if the number of array elements is increased, the received SIR is improved in proportion to that, and the sector angle is considered to be wider.
  • Figure 5 shows a graph summarizing these results.
  • the horizontal axis in the element beam width, rate any error in the vertical axis and the angle (sector angle) become 1 0 5 below
  • each curve 5 a, 5 b, 5 c is a number of array elements 4, 6, 8 and This is the characteristic when changed.
  • the straight line 13 is a line where the element beam width and the sector angle match.
  • the element beam width is 90 ° and the sector angle is 90.
  • the number of array elements required is 4, and it can be seen that the number of array elements is almost 6 when the element beam width is 120 ° and the sector angle is 120 °.
  • the element beam width is set to, for example, 120 °
  • the number of array elements required to obtain the same sector angle of 120 ° is almost 6, and if the number of array elements is larger than this, for example, 8
  • the sector angle is approximately 135 °, which means that the element beam width is 120. If the number of array elements is reduced from six to four, the sector angle becomes approximately 85 °, which is smaller than the element beam width of 120 °.
  • Regions # 1) and (2) indicate that if the element beam width is wider than the sector angle, the number of array elements per sector can be reduced (region # 2).
  • FIG. 6 and 7 show the first embodiment of the present invention based on the above examination results.
  • Figure 6 shows the sector configuration. One cell is divided into three 120 ° sectors (Sector # S1, Sector # S2, and Sector # S3), and an adaptive array antenna is assigned to each sector.
  • the applied base station antenna device is arranged.
  • Figure 7 shows the configuration of a base station antenna device for three sectors.
  • the antenna devices BA 1, BA 2, and BA 3 for each sector are eight-element array antennas composed of eight antenna elements A to AE 8 , arranged at an interval from the reflector 21.
  • Each antenna element AE> ⁇ AE fi is a directional antenna.
  • the horizontal in-plane beam width of the antenna element is smaller than the sector angle 9 (:). It is.
  • the beam width can be set to a desired by adjusting the spacing of the antenna elements AE, a ⁇ AE s and the reflection plate 21.
  • the configuration in FIG. 7 corresponds to region # 1 in FIG.
  • Fig. 8 shows the configuration of an array antenna when a half-wave dipole with a reflector is used as an antenna element.
  • Each of the sector antenna devices BA1, BA2, and BA3 includes a metallic reflector 21 and dipole antennas DA, -DAs arranged in front of the reflector 21.
  • the distance between the surface of the reflecting plate 21 and the dipole antennas DA, -D is, for example, one-fourth of the used wavelength ⁇ .
  • the horizontal beam width of each antenna element is about 120 °. If the distance between the dipole antenna element and the surface of the reflector 21 is made shorter than this, the beam width becomes narrower, and conversely, if the distance is made larger, the beam width becomes wider.
  • Fig. 9 shows the configuration of an array antenna when a patch antenna (microstrip antenna) is used as an antenna element.
  • Antenna includes a dielectric substrate 22 Iro been kicked with metal plate tension on the back surface, the metal patch antenna PA quadrilateral provided spaced apart from each other on the surface thereof, and a ⁇ Roarufa 8 Prefecture. If the size of one side of the patch antenna is set to about a quarter wavelength (more precisely, ⁇ / 4 ⁇ when the permittivity of the dielectric substrate 22 is set), the horizontal plane beam width is about 90 °.
  • a horn antenna can be used as an antenna element, and a desired beam width can be obtained by selecting an opening angle of the horn antenna.
  • FIG. 10 and FIG. 11 show a second embodiment of the present invention.
  • Figure 10 is a diagram showing the sector configuration.
  • One cell is divided into four 90 ° sectors (sector # S1, sector # S2, sector # S3, and sector # S4).
  • a base station antenna device to which an adaptive array antenna is applied is arranged.
  • FIG. 11 shows the configuration of the base station antenna device.
  • Antena device for one sector is four 4 elements ⁇ array antenna composed of the antenna elements AE i to AE 4, each of the antenna elements are directional Antena.
  • the beam width of the antenna element is wider than the sector angle. It is. This configuration corresponds to region # 2 in FIG.
  • the beam width of the elements constituting the adaptive array antenna is wider than the sector angle, and the sector angle of the array / service area is smaller than the beam width, but the number of array elements can be reduced.
  • a dipole antenna similar to that of FIG. 8 or a patch antenna similar to that of FIG. 9 may be used as the antenna element.
  • the present invention even if the beam width of the antenna elements constituting the adaptive array antenna is smaller than the sector angle, a wider area can be set as the service area by increasing the number of array elements. Can be done. Conversely, if an antenna element with a beam width wider than the sector angle is used for the element antenna, the number of array elements can be reduced from that required when an antenna element with an element beam width equal to the sector angle is used. I can do it. From these facts, it is possible to design an optimal antenna configuration for a desired sector configuration in the base station adaptive array antenna for the cdma mobile communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An adaptive array antenna used in a base station of a CDMA mobile radio communication system, wherein a service area having a narrower sector angle than the element beam width is constructed by using a larger number of antenna elements than the number (standard number) of elements required when a directive antenna element having the same beam width as the sector angle is used, and by using a number of antenna elements each having a beam width larger than the sector angle, the number being smaller than the standard number.

Description

明細書 技術分野  Description Technical Field
この発明は自動車電話、 携帯電話などの移動通信における基地局に用いられ、 水平面内である角度範囲、 いわゆるセクタ領域をサービス領域とし、 複数のアン テナ素子を配列したアレイアンテナであって、 かつ、 干渉波を適応的に抑圧する ァダプティブ処理器が接続されたァダプティブアレイアンテナ装置に関する。 従来の技術  The present invention is used for a base station in mobile communication such as a car phone or a mobile phone, and is an array antenna in which a plurality of antenna elements are arranged in an angle range within a horizontal plane, a so-called sector area, and a plurality of antenna elements, and The present invention relates to an adaptive array antenna device to which an adaptive processor that adaptively suppresses an interference wave is connected. Conventional technology
自動車 ·携帯電話などの移動体通信において、 セルラー方式では限られた周波 数を有効利用すろため、 距離の離れた基地局で同一の周波数を用い加入者容量の 増加を行っている。 しかしながら周波数を繰り返して用いろと同一周波数による 干渉雑音が問題となってくる。 干渉雑音が増大すると加入者容量が低下するとい う問題点がある。  In mobile communications such as automobiles and mobile phones, the cellular system uses the limited frequency effectively, and the base station at a long distance uses the same frequency to increase the subscriber capacity. However, interference noise due to the same frequency becomes a problem when the frequency is used repeatedly. There is a problem that the subscriber capacity decreases when the interference noise increases.
これまで干渉雑音を抑える手段として、 基地局アンテナに指向性アンテナを用 いろ手法が行われてきている。 水平面内で指向性をもつアンテナを利用し、 セル を扇状に分割するセクタ化や、 垂直面内の指向性を変化させるビームチルティン グなどがこれまで採用されてきた。 これらは基地局アンテナに指向性アンテナを 用いる事でアンテナの指向方向以外からの干渉波を抑圧すろ事により受信 S I R (信号波 ·干渉波比) を向上させる効果がある。  Hitherto, as a means of suppressing interference noise, a method of using a directional antenna as a base station antenna has been used. Until now, the use of antennas with directivity in the horizontal plane, sectorization in which cells are divided into sectors in a sector, and beam tilting in which the directivity in the vertical plane is changed have been adopted. These have the effect of improving the received SIR (signal wave-interference wave ratio) by using a directional antenna as the base station antenna to suppress interference waves from directions other than the antenna's directional direction.
さらにこれらの方法に加えて近年ァダプティブアレイアンテナを用レ、て干渉雑 音を抑圧する検討がなされてきている。 ァダプティブアレイアンテナとは空間的 に離して配置した複数のアンテナ (アレイアンテナ) を用いて干渉波方向にヌル ビーム (感度ゼロ) とすると共に、 希望波方向に幅の狭いビームを有する指向性 を適応的に形成し、 干渉雑音レベルを抑圧する手法である。 しかしながら、 従来 のァダプティブアレイアンテナの検討では、 この様に形成されるビ一ム方向を広 い範囲にわたって任意に変化できることが望まれることから、 各アンテナ素子と して無指向性 (即ち、 全指向性: ォムニ指向性) 素子を使用したものであり、 ァ レイァンテナを構成する個々のアンテナ素子の放射指向性に指向性ァンテナを用 いたものはほとんどない。 まして、 C DMA方式において、 指向性アンテナ素子 を用いたァダプティプアレイァンテナを使用する考えは無かつた。 In addition to these methods, in recent years, studies have been made to use an adaptive array antenna to suppress interference noise. An adaptive array antenna uses a plurality of antennas (array antennas) that are spatially separated to form a null beam (no sensitivity) in the interference wave direction and a directivity having a narrow beam in the desired wave direction. Is adaptively formed to suppress the interference noise level. However, in the study of conventional adaptive array antennas, since it is desired that the beam direction formed in this way can be arbitrarily changed over a wide range, the omni-directional (ie, (Omni-directional: omni-directional) The element uses an element, and there is almost no use of a directional antenna for the radiation directivity of the individual antenna elements constituting the antenna. Furthermore, in the CDMA system, the directional antenna element There was no idea to use an adaptive array antenna using.
前述したようにセルラ一方式ではセクタ化が用いられることが多いが、 そのた めにはセクタ形状に適した指向性ァンテナが必要となる。 従来のァダプテイブァ レイアンテナを用いないシステムにおいては、 基地局のアンテナはその水平面内 指向性の電力半値幅 (以後、 ビーム幅と称する) がセクタ角度と同じものが用い られてきた。 すなわち 1 2 0 ° セクタ (3セクタ) においてはビーム幅が 1 2 0 。 のアンテナが用いられるのが通常であった。 従来の基地局ァダプティプアレイ アンテナに指向性アンテナを適用する検討においては (山口 良、 恵比根佳雄 As mentioned above, sectorization is often used in the cellular system, but for that purpose, a directional antenna suitable for the sector shape is required. In conventional systems that do not use adaptive array antennas, base station antennas whose directivity in the horizontal plane has a half-power width (hereinafter referred to as a beam width) equal to the sector angle have been used. That is, in a 120 ° sector (3 sectors), the beam width is 120. Antennas were usually used. A study on applying directional antennas to conventional base station adaptive array antennas (Ryo Yamaguchi, Yoshio Ebine
「移動通信基地局ァダプティブアレイアンテナにおけるアンテナ指向性の影響」 、 信学技報 AP96-131, 1997-01 ) 、 干渉波を除去できろ角度がアンテナビーム幅よ りも狭いため、 セクタを構成する場合、 セクタ角よりも広いビーム幅のアンテナ が必要であることが報告されている。 この文献での検討は、 無線アクセス方式に T DMA方式を用いた移動通信システムに対するものであり、 干渉波の数が比較 的少ない条件下での検討結果である。 C DMA方式のような干渉波が多数存在す る条件下でのセクタ角とビーム幅との関係の検討はなされていないのが現状であ る。 "Influence of antenna directivity on mobile communication base station adaptive array antenna", IEICE Technical Report, AP96-131, 1997-01), since the angle at which interference waves can be removed is smaller than the antenna beam width, It has been reported that an antenna with a beam width wider than the sector angle is required when configuring. The study in this document is for a mobile communication system that uses the TDMA scheme as the wireless access scheme, and is the result of study under conditions where the number of interference waves is relatively small. At present, no study has been made on the relationship between the sector angle and the beam width under conditions where many interference waves exist, such as in the CDMA system.
このように、 従来のァダプティブアレイアンテナの検討では、 指向性アンテナ を用いた検討はほとんどなされておらず、 そのため指向性アンテナを用いるセク タセルにァダプティプアレイアンテナを適用した場合の、 最適なアンテナ構成法 がほとんど明らかにされていなかった。 特に、 無線アクセス方式に C DMAを用 いたシステムのように、 干渉波があらゆる方向から多数到来する環境下でのアン テナ構成が明らかにされていなかつたのが現状である。  As described above, in the study of the conventional adaptive array antenna, almost no study using a directional antenna has been made. The optimal antenna configuration method was hardly clarified. In particular, at present, the antenna configuration has not been clarified in an environment where a large number of interfering waves arrive from all directions, such as a system using CDMA as a wireless access method.
この発明はこのような課題を解決し、 C DMA移動通信方式において基地局の 最適なァダプティプアレイァンテナ装置を提供することを目的とする。  SUMMARY OF THE INVENTION It is an object of the present invention to solve such a problem and to provide an optimal array antenna device for a base station in a CDMA mobile communication system.
発明の開示 Disclosure of the invention
この発明は、 無線アクセス方式として C DMA方式を用いる移動通信の基地局 ァダプティブァレイアンテナ装置において、  The present invention provides a mobile communication base station adaptive array antenna device using a CDMA system as a wireless access system,
第一の観点によれば、 アレイアンテナを構成するアンテナ素子の水平面内ビーム 幅がセクタ角よりも狭いものを用いてセクタ内のサービスェリアを構成する。 特 にァンテナ素子の水平面内ビーム幅がセクタ角とほぼ等しい場合に必要とするァ ンテナ素子数 (基準数と呼ぶ) より素子数を多く してサービスエリアを構成する ことができる。 According to the first aspect, a service area in a sector is configured by using an antenna element constituting an array antenna whose beam width in a horizontal plane is smaller than a sector angle. Special In addition, when the beam width in the horizontal plane of the antenna element is substantially equal to the sector angle, the service area can be configured by increasing the number of antenna elements required (referred to as a reference number).
第 2の観点によれば、 アンテナ素子の水平面内ビーム幅がセクタ角よりも広い アンテナを素子として用いる。 特にアンテナ素子数を前記基準素子数より減らし てサービス領域を構成することができる。  According to the second aspect, an antenna whose beam width in the horizontal plane of the antenna element is wider than the sector angle is used as the element. In particular, the service area can be configured by reducing the number of antenna elements from the number of reference elements.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は計算機シュミレーシヨンで用いたアンテナの指向性を示す図。  Figure 1 shows the directivity of the antenna used in computer simulation.
図 2は 4素子アレイアンテナの場合のアレイアンテナ素子の配置、 及び座標系 を示す。  Figure 2 shows the arrangement of the array antenna elements and the coordinate system for a four-element array antenna.
図 3はアレイアンテナのビーム幅をパラメータとして希望局の角度を変化させ た場合の受信信号の誤り率特性の計算機シュミレ一シヨン結果を示す図。  FIG. 3 is a diagram showing a computer simulation result of an error rate characteristic of a received signal when an angle of a desired station is changed using a beam width of an array antenna as a parameter.
図 4はアレイアンテナの素子数をパラメータとし希望局の角度を変化させた場 合の受信信号の誤り率特性の計算機シュミレーシヨン結果を示す図。  FIG. 4 is a diagram showing a computer simulation result of an error rate characteristic of a received signal when an angle of a desired station is changed using the number of elements of an array antenna as a parameter.
図 5は素子ビーム幅とセクタ角およびアレイ素子数の関係を示す図。  FIG. 5 is a diagram showing a relationship between an element beam width, a sector angle, and the number of array elements.
図 6はこの発明の第 1の実施例のセクタ構成を示す図。  FIG. 6 is a diagram showing a sector configuration according to the first embodiment of the present invention.
図 7はこの発明の第 1の実施例のァレイアンテナ構成を示す図。  FIG. 7 is a diagram showing a configuration of an array antenna according to the first embodiment of the present invention.
図 8はアンテナ素子としてダイポ一ルアンテナを用いた場合の第 1実施例を示 す図。  FIG. 8 is a diagram showing a first embodiment in which a dipole antenna is used as an antenna element.
図 9はアンテナ素子としてパッチアンテナを用いた場合の第 1実施例を示す図。 図 1 ()はこの発明の第 2の実施例のセクタ構成を示す図。  FIG. 9 is a diagram showing a first embodiment when a patch antenna is used as an antenna element. FIG. 1 () is a diagram showing a sector configuration according to a second embodiment of the present invention.
図 1 1はこの発明の第 2の実施例のアレイアンテナ構成を示す図。  FIG. 11 is a diagram showing a configuration of an array antenna according to a second embodiment of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
実施例 1 Example 1
この発明の実施例を説明する前に、 C D M A移動通信方式においてァダプティ ブァレイアンテナ基地局に指向性アンテナを適用した場合の指向特性の計算機シ ュミレーシヨンの結果を示し、 具体的には移動機からの受信信号の誤り率特性を、 移動機の位置、 アレイアンテナを構成するアンテナ素子の指向性、 及びアレイを 構成するアンテナ素子数を変化させた場合について示し、 これにより所望のセク タ角に対するアンテナ構成 (アンテナ指向性、 アレイ素子数) 、 つまりこの発明 が得られることを示す。 Before describing the embodiments of the present invention, the results of computer simulation of directional characteristics when a directional antenna is applied to an adaptive array antenna base station in a CDMA mobile communication system will be described. The error rate characteristics of the received signal are shown for the case where the position of the mobile station, the directivity of the antenna elements constituting the array antenna, and the number of antenna elements constituting the array are changed. The antenna configuration (antenna directivity, the number of array elements) with respect to the angle is shown, that is, the present invention can be obtained.
シュミレ一シヨンは干渉波が多い条件となるようにセル内に 3 6の移動機 (ュ 一ザ) を配置し、 各々異なろ拡散コードを用いて同時に通信している環境とした。 それぞれの移動機からの受信電力は、 すべてのユーザで同一となるように移動機 の送信電力制御がなされている。 図 1にシュミレーションで用いたアンテナ素子 の水平面指向性を示す。 横軸はビーム幅 Bwで規格化した角度、 縦軸は相対利得を ピーク電力で規格化した相対利得を示している。 ピーク利得はビ一ム幅 B wを変え てもアンテナから放射される電力が一定となるように設定し、 かつサイ ドローブ レベルはピーク電力の 1 5 d B低いレベルとした。 図 2に示すように複数のアン テナ素子 1 1を水平面内で直線上に配置するリニアアレイとし、 アンテナ素子間 隔は 1/2波長間隔とし、 アレイアンテナを構成すろ各アンテナ素子 1 1の主ビ一 ム方向はすべて Θ = 0 ° 方向、 アンテナ素子 1 1の配列方向と水平面内で垂直な 方向に設定した。 In the simulation, 36 mobile units (users) were placed in the cell so that there would be a lot of interference waves, and the environment was such that communication was simultaneously performed using different spreading codes. The transmission power of mobile units is controlled so that the received power from each mobile unit is the same for all users. Figure 1 shows the horizontal directivity of the antenna element used in the simulation. Horizontal axis angle normalized by the beam width B w, the vertical axis represents the relative gain obtained by normalizing the relative gain at the peak power. Peak gain is set so that the power radiated from the antenna be changed bi one beam width B w is constant, and sidelobe levels was 1 5 d B low levels of peak power. As shown in Fig. 2, a linear array in which a plurality of antenna elements 11 are arranged in a straight line in a horizontal plane, the interval between the antenna elements is a half wavelength interval, and the main elements of each antenna element 11 in the array antenna The beam directions were all set to Θ = 0 °, and perpendicular to the array direction of antenna elements 11 in the horizontal plane.
図 3に計算結果の一例を示す。 図は移動機の位置による誤り率特性を示してお り、 横軸は移動機の基地局アンテナから見た角度 (アレイアンテナ正面方向を 0 度としている) であり、 縦軸は誤り率である。 移動機の送信電力制御が行われて いるため移動機の場所依存性は移動機、 基地局間の距離には依存せず、 角度依存 性のみを考慮すればよいことになる。 図中のそれぞれの曲線はアンテナ素子 1 1 のビーム幅 B wを 3 0 ° から 1 8 0 ° まで 3 0 ° ずつ変化させた場合の特性を示し ており、 この場合、 全て 4素子のアレイアンテナである。 この図から誤り率が 1 0一3以下となる角度領域をセクタ角とすると、 ビーム幅 B wが 3 0 ° の時、 セクタ 角は約 4 0 ° であるが、 ビーム幅 B wが 6 0。 〜1 8 0 ° ではほぼ 9 0 ° で一定と なり、 素子ビーム幅とセクタ角は比例しない結果となっている。 ァダプティプア レイアンテナは干渉局 (波) 方向へヌルビームを形成するだけでなく、 希望局 (波) 方向へビームのピーク方向を向けるという優れた特性を有するが、 指向性 アンテナ素子を用いると、 移動機の方向 (即ち希望波の方向) がビーム幅端近く になるとビームの追従性が劣化する。 これは元々のアンテナ素子 1 1の指向性が ビーム端では利得が下がっていることに起因している。 そのためセクタ角を広げ るにはァンテナ素子のビーム幅を広げればよいことになる。 しかしながら C DM A方式の場合干渉波があらゆる方向から到来するので、 アンテナ素子のビーム幅 を広げると多くの干渉波を受信することになり、 受信 S I Rが劣化し、 誤り率特 性も劣化する。 これらの理由によりァンテナ素子ビーム幅を広げてもセクタ角が 広がらないという結果になっている。 Figure 3 shows an example of the calculation results. The figure shows the error rate characteristics depending on the position of the mobile device. The horizontal axis is the angle seen from the base station antenna of the mobile device (the front direction of the array antenna is 0 °), and the vertical axis is the error rate. . Since the transmission power of the mobile device is controlled, the location dependency of the mobile device does not depend on the distance between the mobile device and the base station, and only the angle dependency needs to be considered. Each curve in the figure shows the characteristics when the beam width Bw of the antenna element 11 is changed from 30 ° to 180 ° in steps of 30 °. In this case, an array antenna of all four elements is used. It is. When the angle region the error rate from the figure becomes 1 0 one 3 follows the sector angle, when the beam width B w of 3 0 °, but the sector angle is about 4 0 °, the beam width B w is 6 0 . At ~ 180 °, it is almost 90 °, and the element beam width and the sector angle are not proportional. Adaptive array antennas not only form a null beam in the direction of the interfering station (wave), but also have an excellent characteristic of directing the peak of the beam in the direction of the desired station (wave). However, when a directional antenna element is used, When the direction (that is, the direction of the desired wave) is near the beam width edge, the beam tracking performance deteriorates. This is due to the fact that the directivity of the original antenna element 11 has a lower gain at the beam end. Therefore, widen the sector angle To achieve this, the beam width of the antenna element needs to be increased. However, in the case of the CDMA method, since the interference wave comes from all directions, if the beam width of the antenna element is widened, many interference waves will be received, and the received SIR will deteriorate and the error rate characteristics will also deteriorate. For these reasons, the sector angle does not increase even if the antenna element beam width is increased.
また、 図 4は図 3と同じように移動機の位置による誤り率特性を示しているが、 曲線 4 a, 4 b, 4 cはアレイを構成するアンテナ素子数 (以後、 アレイ素子数 とする) をそれぞれ 4, 6, 8とした場合の特性である。 アンテナ素子のビーム 幅は 1 20° である。 この図からアレイ素子数を増加させると同じビーム幅の素 子を用いていてもセクタ角が広がることがわかる。 ァダプティブアレイアンテナ は構成する素子数が N個の場合、 干渉波方向に形成されるヌルビ一ムの数は N - 1個である (これをアレイアンテナの自由度とも言う) 。 そのためアレイ素子数 を増やすと形成されるヌルビームが増え、 受信 S 1 Rが上昇しセクタ角が広がる。 このシュミレーションではアレイ素子数よりも干渉波の数の方が大きいという条 件のため、 アレイ素子数を増やすとそれに比例して受信 S I Rが改善され、 セク タ角が広がっていると考えられる。  Fig. 4 shows the error rate characteristics depending on the position of the mobile station, as in Fig. 3. Curves 4a, 4b, and 4c indicate the number of antenna elements that constitute the array (hereinafter, the number of array elements). ) Are 4, 6, and 8, respectively. The beam width of the antenna element is 120 °. From this figure, it can be seen that increasing the number of array elements increases the sector angle even when elements having the same beam width are used. When the number of elements constituting the adaptive array antenna is N, the number of null beams formed in the interference wave direction is N-1 (this is also called the degree of freedom of the array antenna). Therefore, when the number of array elements is increased, the number of formed null beams increases, the reception S 1 R increases, and the sector angle increases. In this simulation, the condition that the number of interference waves is larger than the number of array elements is considered. Therefore, if the number of array elements is increased, the received SIR is improved in proportion to that, and the sector angle is considered to be wider.
図 5にこれらの結果をまとめたグラフを示す。 横軸に素子ビーム幅、 縦軸に誤 り率が 1 0— 5以下となろ角度 (セクタ角) とし、 それぞれの曲線 5 a, 5 b, 5 cはアレイ素子数を 4, 6, 8と変化させた場合の特性である。 直線 1 3は素子 ビーム幅とセクタ角とがー致する線であり、 例えば素子ビーム幅が 90° でセク タ角が 90。 の場合に必要とするアレイ素子数は 4であり、 素子ビーム幅が 1 2 0° でセクタ角が 1 20° の場合のアレイ素子数はほぼ 6であることがわかる。 また素子ビ一ム幅を例えば 1 20° にすると、 これと同一のセクタ角 1 20° を 得るに必要なアレイ素子数はほぼ 6であり、 これよりアレイ素子数を多く、 例え ば 8にすると、 セクタ角はほぼ 1 35° になり、 つまり素子ビーム幅 1 20。 よ り大となり、 逆にアレイ素子数を 6より減らし、 4にすると、 セクタ角はほぼ 8 5° になり、 素子ビ一ム幅 1 20° より小となる。 Figure 5 shows a graph summarizing these results. The horizontal axis in the element beam width, rate any error in the vertical axis and the angle (sector angle) become 1 0 5 below, each curve 5 a, 5 b, 5 c is a number of array elements 4, 6, 8 and This is the characteristic when changed. The straight line 13 is a line where the element beam width and the sector angle match. For example, the element beam width is 90 ° and the sector angle is 90. In this case, the number of array elements required is 4, and it can be seen that the number of array elements is almost 6 when the element beam width is 120 ° and the sector angle is 120 °. If the element beam width is set to, for example, 120 °, the number of array elements required to obtain the same sector angle of 120 ° is almost 6, and if the number of array elements is larger than this, for example, 8 The sector angle is approximately 135 °, which means that the element beam width is 120. If the number of array elements is reduced from six to four, the sector angle becomes approximately 85 °, which is smaller than the element beam width of 120 °.
これらより (1) 素子ビーム幅がセクタ角より狭くてもアレイ素子数を増やす ことでビーム幅より広いエリアをサービスエリアとすることができる (図中の領 域 # 1) 、 (2) 素子ビーム幅がセクタ角より広いものを用いればセクタ当たり のアレイ素子数を減らすことが出来る (領域 # 2) ことを示している。 From these, (1) Even if the element beam width is narrower than the sector angle, an area wider than the beam width can be set as the service area by increasing the number of array elements (see the area in the figure). Regions # 1) and (2) indicate that if the element beam width is wider than the sector angle, the number of array elements per sector can be reduced (region # 2).
以上の検討結果より図 6および図 7にこの発明の第一の実施形態を示す。 図 6 はセクタ構成を示す図であり、 一つのセルは 3つの 1 20° セクタ (セクタ #S 1、 セクタ #S 2、 セクタ #S 3) に分割され、 それぞれのセクタにァダプティ プアレイアンテナを適用した基地局アンテナ装置が配置される。 図 7には 3つの セクタの基地局アンテナ装置の構成を示してある。 各セクタに対するアンテナ装 置 BA 1, BA2, B A 3は 8つのアンテナ素子 A から AE8 により構成さ れる 8素子アレイアンテナであり、 反射板 2 1と間隔を置いて配列されている。 各々のアンテナ素子 A E >〜 A E fiは指向性ァンテナである。 ァンテナ素子の水平 面内ビーム幅はセクタ角よりも狭い 9 (:)。 である。 このビーム幅はアンテナ素子 A E ,〜 A E sと反射板 21との間隔を調整することにより所望に設定することが できる。 図 7の構成は図 5の領域 # 1に相当する。 6 and 7 show the first embodiment of the present invention based on the above examination results. Figure 6 shows the sector configuration. One cell is divided into three 120 ° sectors (Sector # S1, Sector # S2, and Sector # S3), and an adaptive array antenna is assigned to each sector. The applied base station antenna device is arranged. Figure 7 shows the configuration of a base station antenna device for three sectors. The antenna devices BA 1, BA 2, and BA 3 for each sector are eight-element array antennas composed of eight antenna elements A to AE 8 , arranged at an interval from the reflector 21. Each antenna element AE> ~ AE fi is a directional antenna. The horizontal in-plane beam width of the antenna element is smaller than the sector angle 9 (:). It is. The beam width can be set to a desired by adjusting the spacing of the antenna elements AE, a ~ AE s and the reflection plate 21. The configuration in FIG. 7 corresponds to region # 1 in FIG.
図 8は反射板付きの半波長ダイポールをアンテナ素子として用いた場合のァレ イアンテナの構成を示す。 各セクタ用アンテナ装置 B A 1 , B A 2, BA3は金 属の反射板 21と、 反射板 21の前に配置されたダイポ一ルアンテナ DA, 〜D As から構成されている。 反射板 21の表面とダイポ一ルアンテナ DA,〜D As との間の距離は、 例えば使用波長 λの 4分の 1である。 この場合、 各アンテナ素 子の水平面ビーム幅は約 1 20° となる。 ダイポールアンテナ素子と反射板 2 1 の表面との距離をこれより狭めると、 ビーム幅は狭くなり、 逆に間隔を大にすれ ば、 ビーム幅が広がる。  Fig. 8 shows the configuration of an array antenna when a half-wave dipole with a reflector is used as an antenna element. Each of the sector antenna devices BA1, BA2, and BA3 includes a metallic reflector 21 and dipole antennas DA, -DAs arranged in front of the reflector 21. The distance between the surface of the reflecting plate 21 and the dipole antennas DA, -D As is, for example, one-fourth of the used wavelength λ. In this case, the horizontal beam width of each antenna element is about 120 °. If the distance between the dipole antenna element and the surface of the reflector 21 is made shorter than this, the beam width becomes narrower, and conversely, if the distance is made larger, the beam width becomes wider.
図 9はパッチアンテナ (マイクロストリップアンテナ) をアンテナ素子として 用いた場合のアレイアンテナの構成を示す。 アンテナは、 裏面に金属板が張り付 けられていろ誘電体基板 22と、 その表面に互いに間隔をおいて設けられた四辺 形の金属パッチアンテナ P A,〜ΡΑ8とから構成される。 パッチアンテナの一辺 の大きさを約 4分の 1波長 (正確には誘電体基板 22の誘電率を とすると、 λ /4ί ) とした場合、 水平面ビーム幅は約 90° となる。 Fig. 9 shows the configuration of an array antenna when a patch antenna (microstrip antenna) is used as an antenna element. Antenna includes a dielectric substrate 22 Iro been kicked with metal plate tension on the back surface, the metal patch antenna PA quadrilateral provided spaced apart from each other on the surface thereof, and a ~Roarufa 8 Prefecture. If the size of one side of the patch antenna is set to about a quarter wavelength (more precisely, λ / 4ί when the permittivity of the dielectric substrate 22 is set), the horizontal plane beam width is about 90 °.
その他、 アンテナ素子としてホーンアンテナを用いることもでき、 そのホーン ァンテナの開き角度の選定などにより所望のビーム幅を得ることができる。 このようにァダプティブアレイアンテナを構成する素子のビ一ム幅がセクタ角 より狭角であってもアレイ素子数を多くすれば、 ビーム幅よりも広いセクタ角を サ一ビスェリアと —ることができる。 In addition, a horn antenna can be used as an antenna element, and a desired beam width can be obtained by selecting an opening angle of the horn antenna. Thus, even if the beam width of the elements constituting the adaptive array antenna is narrower than the sector angle, if the number of array elements is increased, the sector angle wider than the beam width becomes a service area. Can be.
実施例 2 Example 2
図 1 0および図 1 1にこの発明の第 2の実施形態を示す。 図 1 0はセクタ構成 を示す図であり、 一つのセルは 4つの 9 0 ° セクタ (セクタ # S 1、 セクタ # S 2、 セクタ # S 3、 セクタ # S 4 ) に分割され、 それぞれのセクタにァダプティ ブアレイアンテナを適用した基地局アンテナ装置が配置される。 図 1 1には基地 局ァンテナ装置の構成を示してある。 一つのセクタに対するァンテナ装置は 4つ のアンテナ素子 A E i〜 A E 4により構成される 4素子ァレイアンテナであり、 各 々のアンテナ素子は指向性ァンテナである。 ァンテナ素子のビーム幅はセクタ角 よりも広い 1 2 0。 である。 この構成は図 5の領域 # 2に相当する。 FIG. 10 and FIG. 11 show a second embodiment of the present invention. Figure 10 is a diagram showing the sector configuration. One cell is divided into four 90 ° sectors (sector # S1, sector # S2, sector # S3, and sector # S4). A base station antenna device to which an adaptive array antenna is applied is arranged. FIG. 11 shows the configuration of the base station antenna device. Antena device for one sector is four 4 elements § array antenna composed of the antenna elements AE i to AE 4, each of the antenna elements are directional Antena. The beam width of the antenna element is wider than the sector angle. It is. This configuration corresponds to region # 2 in FIG.
このようにァダプティブァレイァンテナを構成する素子のビーム幅がセクタ角 より広角でアレイぱサービスエリアとなるセクタ角はビ一ム幅より狭くなるもの の、 アレイ素子数を減らすことができる。 この実施例においても、 アンテナ素子 としては図 8と同様のダイポールアンテナを用いてもよいし、 図 9と同様のパッ チアンテナを用いてもよい。  As described above, the beam width of the elements constituting the adaptive array antenna is wider than the sector angle, and the sector angle of the array / service area is smaller than the beam width, but the number of array elements can be reduced. . Also in this embodiment, a dipole antenna similar to that of FIG. 8 or a patch antenna similar to that of FIG. 9 may be used as the antenna element.
発明の効果 The invention's effect
以上説明したように、 この発明によればァダプティブアレイアンテナを構成す るアンテナ素子のビーム幅がセクタ角よりも狭くても、 アレイ素子数を増やすこ とにより広いエリアをサービスエリアとすることが出来る。 また逆に素子アンテ ナにセクタ角よりも広いビーム幅を有するアンテナ素子を用いればアレイ素子数 を、 セクタ角と等しい素子ビーム幅のアンテナ素子を用いる場合に必要とする素 子数より減らすことが出来る。 これらのことより、 C DMA移動通信の基地局ァ ダプテイブアレイアンテナにおいて、 所望のセクタ構成に対する最適なアンテナ 構成を設計すろことができる。  As described above, according to the present invention, even if the beam width of the antenna elements constituting the adaptive array antenna is smaller than the sector angle, a wider area can be set as the service area by increasing the number of array elements. Can be done. Conversely, if an antenna element with a beam width wider than the sector angle is used for the element antenna, the number of array elements can be reduced from that required when an antenna element with an element beam width equal to the sector angle is used. I can do it. From these facts, it is possible to design an optimal antenna configuration for a desired sector configuration in the base station adaptive array antenna for the cdma mobile communication.

Claims

請求の範囲 The scope of the claims
1 . C DMAによる移動通信システムにおける基地局に用いられ、 アンテナ指向 特性を、 干渉波を抑圧するように適応的に制御するアレイアンテナ装置において、 上記ァレイァンテナ装置を構成すろァンテナ素子の水平面内指向特性ビーム幅 が、 サービスセクタ領域の幅より狭いことを特徴とするァダプティプアレイアン テナ装置。  1. An array antenna device that is used for a base station in a mobile communication system using CDMA and that adaptively controls the antenna directivity so as to suppress interference waves. An adaptive array antenna device, wherein a beam width is smaller than a width of a service sector area.
2 . 請求項 1に記載のァダプティブアレイアンテナ装置において、 上記アンテナ 素子の指向特性ビーム幅と、 上記サービスセクタ領域の幅とをほぼ等しくするの に必要とするアンテナ素子数よりも上記アンテナ素子数が大とされている。  2. The adaptive array antenna apparatus according to claim 1, wherein the directional characteristic beam width of the antenna element is smaller than the number of antenna elements required to make the width of the service sector area substantially equal. The number is large.
3 . C D MAによる移動通信システムにおける基地局に用いられ、 アンテナ指向 特性を、 干渉波を抑圧するように適応的に制御するアレイアンテナ装置において、 上記ァレイァンテナ装置を構成するァンテナ素子の水平面内指向特性ビーム幅 が、 サ一ビスセクタ領域の幅より広いことを特徴とするァダプティブアレイアン テナ装置。  3. An array antenna device that is used for a base station in a mobile communication system based on CDMA and that adaptively controls the antenna directivity so as to suppress interference waves. An adaptive array antenna device, wherein the beam width is wider than the width of the service sector area.
4 . 請求項 3に記載のァダプティブアレイアンテナ装置において、 上記アンテナ 素子の指向特性ビーム幅と、 上記サ一ビスセクタ領域の幅とをほぼ等しくするの に必要とするアンテナ素子数よりも上記アンテナ素子数が小とされている。  4. The adaptive array antenna apparatus according to claim 3, wherein the directional characteristic beam width of the antenna element is larger than the number of antenna elements required to make the width of the service sector area substantially equal. The number of elements is small.
5 . 請求項 1, 2, 3又は 4の何れか 1つに記載のァダプティブアレイアンテナ 装置は、 各上記セクタに対応して設けられた反射板と、 上記反射板から間隔をお いて、 かつ互いに間隔をおいて配列された上記アンテナ素子とを含む。  5. The adaptive array antenna device according to any one of claims 1, 2, 3, and 4, further comprising: a reflector provided corresponding to each of the sectors; And the antenna elements arranged at an interval from each other.
6 . 請求項 5に記載のァダプティブアレイアンテナ装置において、 各上記アンテ ナ素子は半波長ダイポールアンテナである。  6. In the adaptive array antenna device according to claim 5, each of the antenna elements is a half-wave dipole antenna.
7 . 請求項 1, 2, 3又は 4の何れか 1つに記載のァダプティブアレイアンテナ 装置は、 各上記セクタに対応して設けられ、 裏面に金属板が設けられた誘電体基 板と、 上記誘電体基板の表面に間隔をおいて配列された一辺が λ /4の四辺形金属 パッチとを含む。  7. The adaptive array antenna device according to any one of claims 1, 2, 3, and 4, further comprising: a dielectric substrate provided in correspondence with each of the sectors; And a quadrilateral metal patch whose one side is λ / 4 arranged at intervals on the surface of the dielectric substrate.
PCT/JP1998/002408 1997-06-02 1998-06-01 Adaptive array antenna WO1998056069A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98923064A EP0923155A4 (en) 1997-06-02 1998-06-01 Adaptive array antenna
US09/125,734 US6512934B2 (en) 1997-06-02 1998-06-01 Adaptive array antenna
CA 2247349 CA2247349C (en) 1997-06-02 1998-06-01 Adaptive array antenna unit
KR1019980706811A KR100306466B1 (en) 1997-06-02 1998-06-01 Adaptive array antenna unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/144221 1997-06-02
JP14422197A JP3332329B2 (en) 1997-06-02 1997-06-02 Adaptive array antenna device

Publications (1)

Publication Number Publication Date
WO1998056069A1 true WO1998056069A1 (en) 1998-12-10

Family

ID=15357069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002408 WO1998056069A1 (en) 1997-06-02 1998-06-01 Adaptive array antenna

Country Status (6)

Country Link
EP (1) EP0923155A4 (en)
JP (1) JP3332329B2 (en)
KR (1) KR100306466B1 (en)
CN (1) CN1147025C (en)
CA (1) CA2247349C (en)
WO (1) WO1998056069A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452536B1 (en) * 2000-10-02 2004-10-12 가부시키가이샤 엔.티.티.도코모 Mobile communication base station equipment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020041699A (en) * 2000-11-28 2002-06-03 이노영 CELLULAR Microstrip patch array antenna
RU2233017C1 (en) 2002-12-02 2004-07-20 Общество с ограниченной ответственностью "Алгоритм" Controlled-pattern antenna assembly and planar directive antenna
CN100463376C (en) * 2002-12-20 2009-02-18 中兴通讯股份有限公司 Full-adaptive intelligent antella receiving device
JP4241440B2 (en) * 2004-03-03 2009-03-18 株式会社日立製作所 Packet scheduling method and wireless communication apparatus
CN104716979B (en) * 2013-12-12 2017-11-21 启碁科技股份有限公司 Wireless electron device and radio transmitting method
US10651568B2 (en) * 2016-07-19 2020-05-12 Quintel Cayman Limited Base station antenna system with enhanced array spacing
WO2018129355A1 (en) * 2017-01-06 2018-07-12 Skyworks Solutions, Inc. Beamforming of harmonics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832347A (en) * 1994-07-20 1996-02-02 Nippon Ido Tsushin Kk Antenna system for base station of mobile communication system
JPH0927714A (en) * 1995-07-11 1997-01-28 N T T Ido Tsushinmo Kk Multibeam antenna system
JPH10174160A (en) * 1996-12-13 1998-06-26 N T T Ido Tsushinmo Kk Array antenna

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3273144A (en) * 1963-04-02 1966-09-13 Fishbein William Narrow beam antenna system
US3903524A (en) * 1973-05-25 1975-09-02 Hazeltine Corp Antenna system using variable phase pattern synthesis
US5548813A (en) * 1994-03-24 1996-08-20 Ericsson Inc. Phased array cellular base station and associated methods for enhanced power efficiency
US6006069A (en) * 1994-11-28 1999-12-21 Bosch Telecom Gmbh Point-to-multipoint communications system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832347A (en) * 1994-07-20 1996-02-02 Nippon Ido Tsushin Kk Antenna system for base station of mobile communication system
JPH0927714A (en) * 1995-07-11 1997-01-28 N T T Ido Tsushinmo Kk Multibeam antenna system
JPH10174160A (en) * 1996-12-13 1998-06-26 N T T Ido Tsushinmo Kk Array antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0923155A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452536B1 (en) * 2000-10-02 2004-10-12 가부시키가이샤 엔.티.티.도코모 Mobile communication base station equipment

Also Published As

Publication number Publication date
EP0923155A1 (en) 1999-06-16
CN1217827A (en) 1999-05-26
CA2247349C (en) 2002-04-09
KR100306466B1 (en) 2001-11-02
JP3332329B2 (en) 2002-10-07
JPH10335918A (en) 1998-12-18
CN1147025C (en) 2004-04-21
EP0923155A4 (en) 2000-03-22
KR20000064538A (en) 2000-11-06
CA2247349A1 (en) 1998-12-10

Similar Documents

Publication Publication Date Title
KR100767249B1 (en) High gain antenna for wireless applications
KR100817620B1 (en) Method and apparatus for adapting antenna array using received predetermined signal
US5629713A (en) Horizontally polarized antenna array having extended E-plane beam width and method for accomplishing beam width extension
US7489282B2 (en) Method and apparatus for an antenna module
KR20040111409A (en) Mobile communication handset with adaptive antenna array
US7081865B2 (en) Method and apparatus for improving antenna radiation patterns
WO1995034102A1 (en) Microstrip antenna array
US6512934B2 (en) Adaptive array antenna
WO1998056069A1 (en) Adaptive array antenna
Kijima et al. Development of a dual-frequency base station antenna for cellular mobile radios
JP3510598B2 (en) Dual-polarization antenna device
US20230092210A1 (en) Antenna and base station
Uehara et al. A planar sector antenna for indoor high-speed wireless communication terminals
EP1444752A1 (en) A cellular radio adaptive antenna array
JP3542068B2 (en) Three frequency shared base station antenna device
US20230136183A1 (en) Antenna for a wireless communication device and such a device
EP4354751A1 (en) Method and device for controling a communication device
JPH11298953A (en) Radio communication apparatus
JPH11168318A (en) Multi-frequency sharing sector antenna
Okano et al. Novel internal multi-antenna configuration employing folded dipole elements for notebook PC
CN115411502A (en) Antenna module, antenna module array and base station
JPH098546A (en) Antenna system
Kagoshima et al. Broadband Wireless Access System Antennas: Concepts and Designs
JP2001358639A (en) Sector antenna
Sriploy et al. Investigation into GPRS Transmission Employing Switched Beam Antenna at Mobile Station

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98800049.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2247349

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1998923064

Country of ref document: EP

Ref document number: 09125734

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019980706811

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998923064

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980706811

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980706811

Country of ref document: KR