JPH10335918A - Adaptive array antenna unit - Google Patents

Adaptive array antenna unit

Info

Publication number
JPH10335918A
JPH10335918A JP14422197A JP14422197A JPH10335918A JP H10335918 A JPH10335918 A JP H10335918A JP 14422197 A JP14422197 A JP 14422197A JP 14422197 A JP14422197 A JP 14422197A JP H10335918 A JPH10335918 A JP H10335918A
Authority
JP
Japan
Prior art keywords
antenna
beam width
sector
array antenna
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14422197A
Other languages
Japanese (ja)
Other versions
JP3332329B2 (en
Inventor
Taisuke Ihara
泰介 井原
Makoto Yamaguchi
山口  良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
NTT Mobile Communications Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP14422197A priority Critical patent/JP3332329B2/en
Application filed by Nippon Telegraph and Telephone Corp, NTT Mobile Communications Networks Inc filed Critical Nippon Telegraph and Telephone Corp
Priority to PCT/JP1998/002408 priority patent/WO1998056069A1/en
Priority to CA 2247349 priority patent/CA2247349C/en
Priority to US09/125,734 priority patent/US6512934B2/en
Priority to KR1019980706811A priority patent/KR100306466B1/en
Priority to EP98923064A priority patent/EP0923155A4/en
Priority to CNB988000490A priority patent/CN1147025C/en
Publication of JPH10335918A publication Critical patent/JPH10335918A/en
Application granted granted Critical
Publication of JP3332329B2 publication Critical patent/JP3332329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2611Means for null steering; Adaptive interference nulling

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To apply this antenna to a base station in a CDMA(code division multipl access) mobile communication system by using a beam width in a horizontal plane of antenna elements that constitute an array antenna which is narrower (or wider) than a sector angle and forming service areas in the sector. SOLUTION: In the case of a CDMA system in which interference waves arrive from all of directions, a sector angle is not widened, even when beam width of antenna elements which constitute an array antenna is widened. When the number of antenna elements is increased, a sector angle is widened by using antenna elements which have the same beam width. Taking an advantage of this, an antenna that consists of base station antennas for three sectors 1 to 3 constituting eight antenna elements #1 to #8, whose beam width is 90 deg. that is narrower than the sector angle in order to apply to a base station that divides one cell into three 120 deg. sectors. Thereby, a sector angle which is wider than the beam width of the elements #1 to #8 is made a service area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はアクセス方式とし
てCDMA(符号分割多元接続)方式を用いる自動車電
話、携帯電話などの移動通信における基地局に用いら
れ、水平面内である角度範囲、いわゆるセクタ領域をサ
ービス領域とし、複数のアンテナ素子を配列したアレー
アンテナであって、かつ、干渉波を適応的に抑圧するア
ダプティブ処理器が接続されたアダプティブアレーアン
テナ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for a base station in mobile communication such as a mobile phone or a mobile phone using a CDMA (code division multiple access) system as an access system, and is used for an angular range within a horizontal plane, a so-called sector area. The present invention relates to an array antenna in which a plurality of antenna elements are arranged as a service area and to which an adaptive processor that adaptively suppresses an interference wave is connected.

【0002】[0002]

【従来の技術】自動車・携帯電話などの移動体通信にお
いて、セルラー方式では限られた周波数を有効利用する
ため、距離の離れた基地局で同一の周波数を用い加入者
容量の増加を行っている。しかしながら周波数を繰り返
して用いると同一周波数による干渉雑音が問題となって
くる。干渉雑音が増大すると加入者容量が低下するとい
う問題点がある。
2. Description of the Related Art In mobile communications such as automobiles and cellular phones, a cellular system uses a limited frequency effectively, so that a base station at a long distance uses the same frequency to increase the subscriber capacity. . However, when frequencies are used repeatedly, interference noise due to the same frequency becomes a problem. When the interference noise increases, there is a problem that the subscriber capacity decreases.

【0003】これまで干渉雑音を抑える手段として、基
地局アンテナに指向性アンテナを用いる手法が行われて
きている。水平面で指向性をもつアンテナを利用し、セ
ルを扇状に分割するセクタ化や、垂直面内の指向性を変
化させるビームチルティングなどがこれまで採用されて
きた。これらは基地局アンテナに指向性アンテナを用い
る事でアンテナの指向方向以外からの干渉波を抑圧する
事により受信SIR(信号波・干渉波比)を向上させる
効果がある。
[0003] As a means for suppressing interference noise, a technique using a directional antenna as a base station antenna has been used. Up to now, sectorization in which a cell is divided into a fan shape using an antenna having directivity in a horizontal plane, and beam tilting in which directivity in a vertical plane is changed have been adopted. These have the effect of using a directional antenna as the base station antenna to suppress interference waves from directions other than the direction of the antenna, thereby improving the reception SIR (signal wave / interference wave ratio).

【0004】さらにこれらの方法に加えて近年アダプテ
ィブアレーアンテナを用いて干渉雑音を抑圧する検討が
なされてきている。アダプティブアレーアンテナとは空
間的に離して配置した複数のアンテナ(アレーアンテ
ナ)を用いて干渉波方向にヌルビーム(感度ゼロ)を形
成し、干渉雑音レベルを抑圧する手法である。しかしな
がら、これまでのアダプティブアレーアンテナの検討で
は、アレーアンテナを構成する個々のアンテナ素子の放
射指向性に指向性アンテナを用いたものはほとんどな
い。
[0004] In addition to these methods, studies have recently been made to suppress interference noise using an adaptive array antenna. The adaptive array antenna is a technique of forming a null beam (zero sensitivity) in the direction of an interference wave by using a plurality of antennas (array antennas) spatially separated from each other to suppress the interference noise level. However, in the study of adaptive array antennas so far, there has been almost no use of a directional antenna for the radiation directivity of each antenna element constituting the array antenna.

【0005】前述したようにセルラー方式ではセクタ化
が用いられることが多いが、そのためにはセクタ形状に
適した指向性アンテナが必要となる。従来のアダプティ
ブアレーアンテナを用いないシステムにおいては、基地
局のアンテナはその水平面内指向性の電力半値幅(以
後、ビーム幅と称する)がセクタ角度と同じものが用い
られてきた。すなわち120°セクタ(3セクタ)にお
いてはビーム幅が120°のアンテナが用いられるのが
通常であった。従来の基地局アダプティブアレーアンテ
ナに指向性アンテナを適用する検討においては(山口
良、恵比根佳雄「移動通信基地局アダプティブアレーア
ンテナにおけるアンテナ指向性の影響」、信学技報 A
P96−131、1997−01)、干渉波を除去でき
る角度がアンテナビーム幅よりも狭い為、セクタを構成
する場合、セクタ角よりも広いビーム幅のアンテナが必
要であることが報告されている。この従来の検討は、無
線アクセス方式にTDMA方式を用いた移動通信システ
ムに対するものであり、干渉波の数が比較的少ない条件
下での検討結果である。CDMA方式のような干渉波が
多数存在する条件下でのセクタ角とビーム幅との関係の
検討はなされていないのが現状である。
As described above, sectoring is often used in the cellular system, but for that purpose, a directional antenna suitable for the sector shape is required. In a conventional system that does not use an adaptive array antenna, an antenna of a base station whose directivity in a horizontal plane has a half-power width (hereinafter referred to as a beam width) equal to a sector angle has been used. That is, in a 120 ° sector (three sectors), an antenna having a beam width of 120 ° is usually used. A study on applying directional antennas to conventional base station adaptive array antennas (Yamaguchi
Ryo, Ehine Yoshio, "Effects of Antenna Directivity on Mobile Array Base Station Adaptive Array Antenna", IEICE Tech.
P96-131, 1997-01), it has been reported that an antenna having a beam width wider than the sector angle is necessary when forming a sector because the angle at which the interference wave can be removed is smaller than the antenna beam width. This conventional study is for a mobile communication system using a TDMA scheme as a wireless access scheme, and is a study result under a condition where the number of interference waves is relatively small. At present, the relationship between the sector angle and the beam width under the condition that a large number of interference waves exist such as in the CDMA system has not been studied.

【0006】[0006]

【発明が解決しようとする課題】このように、従来のア
ダプティブアレーアンテナの検討では、指向性アンテナ
を用いた検討はほとんどなされておらず、そのため指向
性アンテナを用いるセクタセルにアダプティブアレーア
ンテナを適用した場合の、最適なアンテナ構成法がほと
んど明らかにされていなかった。特に、無線アクセス方
式にCDMAを用いたシステムのように、干渉波があら
ゆる方向から多数到来する環境下でのアンテナ構成が明
らかにされていなかったのが現状である。
As described above, in the study of the conventional adaptive array antenna, almost no study using the directional antenna has been made. Therefore, the adaptive array antenna is applied to the sector cell using the directional antenna. In that case, the optimal antenna configuration method was hardly clarified. In particular, at present, an antenna configuration in an environment where a large number of interference waves arrive from all directions, such as a system using CDMA as a wireless access method, has not been clarified.

【0007】この発明はこのような課題を解決し、CD
MA移動通信方式において基地局のアダプティブアレー
アンテナ装置を提供することを目的とする。
[0007] The present invention solves such a problem and provides a CD.
An object of the present invention is to provide an adaptive array antenna device of a base station in an MA mobile communication system.

【0008】[0008]

【課題を解決するための手段】この発明は、無線アクセ
ス方式としてCDMA方式を用いる移動通信の基地局ア
ダプティブアレーアンテナ装置において、第一の観点に
よれば、アレーアンテナを構成するアンテナ素子の水平
面内ビーム幅がセクタ角よりも狭いものを用いてセクタ
内のサービスエリアを構成する。特にアンテナ素子の水
平面内ビーム幅がセクタ角とほぼ等しい場合に必要とす
るアンテナ素子数(基準数と呼ぶ)より素子数を多くし
てサービスエリアを構成することができる。
According to a first aspect of the present invention, there is provided an adaptive array antenna apparatus for a base station for mobile communication using a CDMA system as a radio access system, in a horizontal plane of an antenna element constituting the array antenna. A service area in a sector is configured using a beam width smaller than the sector angle. In particular, the service area can be configured by increasing the number of antenna elements (referred to as a reference number) more than required when the beam width in the horizontal plane of the antenna elements is substantially equal to the sector angle.

【0009】第2の観点によれば、アンテナ素子の水平
面内ビーム幅がセクタ角よりも広いアンテナを素子とし
て用いる。特にアンテナ素子数を前記基準素子数より減
らしてサービス領域を構成することができる。
According to the second aspect, an antenna having a beam width in a horizontal plane of the antenna element wider than the sector angle is used as the element. In particular, the service area can be configured by reducing the number of antenna elements from the number of reference elements.

【発明の実施の形態】実施例1 この発明の実施例を説明する前に、CDMA移動通信方
式においてアダプティブアレーアンテナ基地局に指向性
アンテナを適用した場合の指向特性の計算機シュミレー
ションの結果を示し、具体的には移動機からの受信信号
の誤り率特性を、移動機の位置、アレーアンテナを構成
するアンテナ素子の指向性、及びアレーを構成するアン
テナ素子数を変化させた場合の特性を示し、これにより
所望のセクタ角に対するアンテナ構成(アンテナ指向
性、アレー素子数)。つまりこの発明が得られることを
示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Before describing an embodiment of the present invention, results of computer simulation of directional characteristics when a directional antenna is applied to an adaptive array antenna base station in a CDMA mobile communication system will be described. Specifically, the error rate characteristics of the received signal from the mobile device, the position of the mobile device, the directivity of the antenna elements constituting the array antenna, and the characteristics when the number of antenna elements constituting the array are changed, Thus, the antenna configuration (antenna directivity, number of array elements) for a desired sector angle. That is, this shows that the present invention can be obtained.

【0010】シュミレーションは干渉波が多い条件とな
るようにセル内に36の移動機(ユーザ)を配置し、各
々異なる拡散コードを用いて同時に通信している環境と
した。それぞれの移動機からの受信電力は、すべてのユ
ーザで同一となるように移動機の送信電力制御がなされ
ている。図1にシュミレーションで用いたアンテナ素子
の水平面指向性を示す。横軸はビーム幅で規格化した角
度、縦軸は相対利得をピーク電力で規格化した相対利得
を示している。ピーク利得はビーム幅を変えてもアンテ
ナから放射される電力が一定となるように設定し、かつ
サイドローブレベルはピーク電力の15dB低いレベル
とした。図2に示すように複数のアンテナ素子11を水
平面内で直線上に配置し、リニアアレーとし、アンテナ
素子間隔は0.5波長間隔とし、アレーアンテナを構成
する各アンテナ素子11の主ビーム方向はすべてθ=0
°方向、アンテナ素子11の配列方向と水平面内で垂直
な方向に設定した。
In the simulation, 36 mobile units (users) are arranged in a cell so that there are many interference waves, and an environment is used in which communication is simultaneously performed using different spreading codes. The transmission power of the mobile device is controlled so that the reception power from each mobile device is the same for all users. FIG. 1 shows the horizontal directivity of the antenna element used in the simulation. The horizontal axis shows the angle normalized by the beam width, and the vertical axis shows the relative gain normalized by the peak power. The peak gain was set so that the power radiated from the antenna was constant even when the beam width was changed, and the side lobe level was set to a level 15 dB lower than the peak power. As shown in FIG. 2, a plurality of antenna elements 11 are arranged on a straight line in a horizontal plane to form a linear array. The antenna element spacing is 0.5 wavelength spacing. The main beam direction of each antenna element 11 constituting the array antenna is all θ = 0
The angle was set to a direction perpendicular to the arrangement direction of the antenna elements 11 in the horizontal plane.

【0011】図3に計算結果の一例を示す。図は移動機
の位置による誤り率特性を示しており、横軸は移動機の
基地局アンテナから見た角度(アレーアンテナ正面方向
を0度としている)であり、縦軸は誤り率である。移動
機の送信電力制御が行われているため移動機の場所依存
性は移動機、基地局間の距離には依存せず、角度依存性
のみを考慮すればよいことになる。図中のそれぞれの曲
線はアンテナ素子11のビーム幅を変化させた場合の特
性を示しており、この場合全て、4素子のアレーアンテ
ナである。この図から誤り率が10-3以下となる角度領
域をセクタ角とすると、素子ビーム幅とセクタ角は比例
しない結果となっている。アダプティブアレーアンテナ
は干渉局(波)方向へヌルビームを形成するだけでな
く、希望局(波)方向へビームのピーク方向を向けると
いう特性を有するが、指向性アンテナ素子を用いると、
移動機の方向がビーム幅端近くになるとビームの追従性
が劣化する。これは元々のアンテナ素子11の指向性が
ビーム端では利得が下がっていることに起因している。
そのためセクタ角を広げるにはアンテナ素子のビーム幅
を広げればよいことになる。しかしながらCDMA方式
の場合干渉波があらゆる方向から到来するので、アンテ
ナ素子のビーム幅を広げると多くの干渉波を受信するこ
とになり、受信SIRが劣化し、誤り率特性も劣化す
る。これらの理由によりアンテナ素子ビーム幅を広げて
もセクタ角が広がらないという結果になっている。
FIG. 3 shows an example of the calculation result. The figure shows the error rate characteristics depending on the position of the mobile device. The horizontal axis is the angle (the front direction of the array antenna is 0 degree) as viewed from the base station antenna of the mobile device, and the vertical axis is the error rate. Since the transmission power control of the mobile device is performed, the location dependency of the mobile device does not depend on the distance between the mobile device and the base station, and only the angle dependency needs to be considered. The respective curves in the figure show the characteristics when the beam width of the antenna element 11 is changed. In this case, all of the curves are four-element array antennas. From this figure, if the angle region where the error rate is 10 −3 or less is defined as the sector angle, the result is that the element beam width and the sector angle are not proportional. The adaptive array antenna not only forms a null beam in the direction of the interfering station (wave) but also directs the peak of the beam in the direction of the desired station (wave). However, if a directional antenna element is used,
When the direction of the mobile device is near the beam width end, the followability of the beam deteriorates. This is due to the fact that the directivity of the original antenna element 11 has a lower gain at the beam end.
Therefore, to increase the sector angle, the beam width of the antenna element may be increased. However, in the case of the CDMA system, an interference wave arrives from every direction. Therefore, if the beam width of the antenna element is widened, many interference waves will be received, the reception SIR will deteriorate, and the error rate characteristics will also deteriorate. For these reasons, the sector angle does not increase even if the antenna element beam width is increased.

【0012】また、図4は図3と同じように移動機の位
置による誤り率特性を示しているが、アレーを構成する
アンテナ素子数(以後、アレー素子数とする)を変化さ
せた場合の特性である。アンテナ素子のビーム幅は12
0°である。この図からアレー素子数を増加させると同
じビーム幅の素子を用いていてもセクタ角が広がること
がわかる。アダプティブアレーアンテナは構成する素子
数がN個の場合、干渉波方向に形成されるヌルビームの
数はN−1個である(これをアレーアンテナの自由度と
も言う)。そのためアレー素子数を増やすと形成される
ヌルビームが増え、受信SIRが上昇しセクタ角が広が
る。このシュミレーションではアレー素子数よりも干渉
波の数の方が大きいという条件のため、アレー素子数を
増やすとそれに比例して受信SIRが改善され、セクタ
角が広がっていると考えられる。
FIG. 4 shows the error rate characteristics depending on the position of the mobile station as in FIG. 3, but shows the case where the number of antenna elements constituting the array (hereinafter referred to as the number of array elements) is changed. It is a characteristic. The beam width of the antenna element is 12
0 °. From this figure, it can be seen that increasing the number of array elements increases the sector angle even when elements having the same beam width are used. When the number of elements constituting the adaptive array antenna is N, the number of null beams formed in the interference wave direction is N-1 (this is also referred to as the degree of freedom of the array antenna). Therefore, when the number of array elements is increased, the number of formed null beams increases, the reception SIR increases, and the sector angle increases. In this simulation, since the number of interference waves is larger than the number of array elements, it is considered that the reception SIR is improved in proportion to the increase of the number of array elements and the sector angle is increased.

【0013】図5にこれらの結果をまとめたグラフを示
す。横軸に素子ビーム幅、縦軸に誤り率が10-3以下と
なる角度(セクタ角)とし、それぞれの曲線はアレー素
子数を変化させた場合の特性である。直線13は素子ビ
ーム幅とセクタ角とが一致する線であり、例えば素子ビ
ーム幅が90°でセクタ角が90°の場合に必要とする
アレー素子数は8あり、素子ビーム幅が120°でセク
タ角が120°の場合のアレー素子数はほぼ6であるこ
とがわかる。また素子ビーム幅を例えば120°にする
と、これと同一のセクタ角120°を得るに必要なアレ
ー素子数はほぼ6であり、これよりアレー素子数を多
く、例えば8にすると、セクタ角はほぼ135°にな
り、つまり素子ビーム幅120°より大となり、逆にア
レー素子数を6より減らし、4にすると、セクタ角はほ
ぼ85°になり、素子ビーム幅120°より小となる。
FIG. 5 is a graph summarizing these results. The horizontal axis is the element beam width, and the vertical axis is the angle (sector angle) at which the error rate is 10 −3 or less, and each curve is a characteristic when the number of array elements is changed. The straight line 13 is a line where the element beam width and the sector angle coincide. For example, when the element beam width is 90 ° and the sector angle is 90 °, the number of array elements required is 8, and the element beam width is 120 °. It can be seen that the number of array elements is almost six when the sector angle is 120 °. Further, when the element beam width is set to, for example, 120 °, the number of array elements required to obtain the same sector angle of 120 ° is approximately 6, and the number of array elements is increased. 135 °, that is, larger than the element beam width of 120 °. Conversely, when the number of array elements is reduced from 6 to 4, the sector angle becomes approximately 85 ° and smaller than the element beam width of 120 °.

【0014】これらより(1)素子ビーム幅がセクタ角
より狭くてもアレー素子数を増やすことでビーム幅より
広いエリアをサービスエリアとすることができる(図中
の領域#1)、(2)素子ビーム幅がセクタ角より広い
ものを用いればセクタ当たりのアレー素子数を減らすこ
とが出来る(領域#2)ことを示している。以上の検討
結果より図6および図7にこの発明の第一の実施形態を
示す。図6はセクタ構成を示す図であり、一つのセルは
3つの120°セクタ(セクタ1、セタ2、セクタ3)
に分割され、それぞれのセクタにアダプティブアレーア
ンテナを適用した基地局アンテナ装置が配置される。図
7にはそれぞれのセクタの基地局アンテナ装置の構成を
示してある。各セクタに対するアンテナ装置は8つのア
ンテナ素子#1から#8により構成される8素子アレー
アンテナであり、各々のアンテナは指向性アンテナであ
る。アンテナ素子の水平面内ビーム幅はセクタ角よりも
狭い90°である。この構成は図5の領域#1に相当す
る。
From these, (1) Even if the element beam width is smaller than the sector angle, an area wider than the beam width can be set as a service area by increasing the number of array elements (area # 1 in the figure), (2) This shows that the number of array elements per sector can be reduced if the element beam width is wider than the sector angle (area # 2). FIGS. 6 and 7 show the first embodiment of the present invention based on the above examination results. FIG. 6 is a diagram showing a sector configuration. One cell is composed of three 120 ° sectors (sector 1, setter 2, and sector 3).
And a base station antenna apparatus to which an adaptive array antenna is applied in each sector is arranged. FIG. 7 shows the configuration of the base station antenna device of each sector. The antenna device for each sector is an eight-element array antenna composed of eight antenna elements # 1 to # 8, and each antenna is a directional antenna. The beam width in the horizontal plane of the antenna element is 90 ° smaller than the sector angle. This configuration corresponds to region # 1 in FIG.

【0015】このようにアダプティブアレーアンテナを
構成する素子のビーム幅がセクタ角より狭角であっても
アレー素子数を多くすれば、ビーム幅よりも広いセクタ
角をサービスエリアとすることができる。所でアンテナ
素子11のビーム幅の変更は、例えば半波長ダイポール
アンテナを反射板から4分の1波長離して設けると、ビ
ーム幅は約120°あり、これより反射板と半波長ダイ
ポールの間隔を狭めると、ビーム幅は狭くなり、逆に間
隔を大にすれば、ビーム幅が広がり、また一辺が4分の
1波長正方形の金属板よりなるストリップアンテナ(パ
ッチアンテナ)はビーム幅は約90°であり、またホー
ンアンテナの開き角度の選定などにより所望のビーム幅
のアンテナ素子を得ることができる。実施例2 図8および図9にこの発明の第2の実施形態を示す。図
8はセクタ構成を示す図であり、一つのセルは4つの9
0°セクタ(セクタ1、セクタ2、セクタ3、セクタ
4)に分割され、それぞれのセクタにアダプティブアレ
ーアンテナを適用した基地局アンテナ装置が配置され
る。図9には基地局アンテナ装置の構成を示してある。
一つのセクタに対するアンテナ装置は6つのアンテナ素
子#1から#6により構成される6素子アレーアンテナ
であり、各々のアンテナ素子は指向性アンテナである。
アンテナ素子のビーム幅はセクタ角よりも広い120°
である。この構成は図5の領域#2に相当する。
As described above, even if the beam width of the elements constituting the adaptive array antenna is smaller than the sector angle, if the number of array elements is increased, a sector angle wider than the beam width can be used as the service area. The beam width of the antenna element 11 can be changed, for example, when a half-wave dipole antenna is provided at a quarter wavelength from the reflector, the beam width is about 120 °. When the width is reduced, the beam width is reduced. On the contrary, when the interval is increased, the beam width is widened. In a strip antenna (patch antenna) made of a metal plate having a quarter-wavelength square, the beam width is approximately 90 ° In addition, an antenna element having a desired beam width can be obtained by selecting an opening angle of the horn antenna. Embodiment 2 FIGS. 8 and 9 show a second embodiment of the present invention. FIG. 8 is a diagram showing a sector configuration. One cell is composed of four 9
The base station antenna apparatus is divided into 0 ° sectors (sector 1, sector 2, sector 3, and sector 4), and an adaptive array antenna is applied to each sector. FIG. 9 shows the configuration of the base station antenna device.
The antenna device for one sector is a six-element array antenna composed of six antenna elements # 1 to # 6, and each antenna element is a directional antenna.
The beam width of the antenna element is 120 ° wider than the sector angle
It is. This configuration corresponds to region # 2 in FIG.

【0016】このようにアダプティブアレーアンテナを
構成する素子のビーム幅がセクタ角より広角であればサ
ービスエリアとなるセクタ角はビーム幅より狭くなるも
のの、アレー素子数を減らすことができる。
As described above, if the beam width of the elements constituting the adaptive array antenna is wider than the sector angle, the sector angle serving as the service area is smaller than the beam width, but the number of array elements can be reduced.

【0017】[0017]

【発明の効果】以上説明したように、この発明によれば
アダプティブアレーアンテナを構成するアンテナ素子の
ビーム幅がセクタ角よりも狭くても、アレー素子数を増
やすことにより広いエリアをサービスエリアとすること
が出来る。また逆に素子アンテナにセクタ角よりも広い
ビーム幅を有するアンテナ素子を用いればアレー素子数
を、セクタ角と等しい素子ビーム幅のアンテナ素子を用
いる場合に必要とする素子数より減らすことが出来る。
これらのことより、CDMA移動通信の基地局アダプテ
ィブアレーアンテナにおいて、所望のセクタ構成に対す
る最適なアンテナ構成を設計することができる。
As described above, according to the present invention, even if the beam width of the antenna element constituting the adaptive array antenna is smaller than the sector angle, a wider area is set as a service area by increasing the number of array elements. I can do it. Conversely, when an antenna element having a beam width wider than the sector angle is used for the element antenna, the number of array elements can be reduced from that required when an antenna element having an element beam width equal to the sector angle is used.
From these facts, it is possible to design an optimal antenna configuration for a desired sector configuration in a base station adaptive array antenna for CDMA mobile communication.

【図面の簡単な説明】[Brief description of the drawings]

【図1】計算機シュミレーションで用いたアンテナの指
向性を示す図。
FIG. 1 is a diagram showing the directivity of an antenna used in a computer simulation.

【図2】4素子アレーアンテナの場合のアレーアンテナ
素子の配置、及び座標系を示す。
FIG. 2 shows an arrangement of an array antenna element and a coordinate system in the case of a four-element array antenna.

【図3】アレーアンテナのビーム幅をパラメータとして
希望局の角度を変化させた場合の受信信号の誤り率特性
の計算機シュミレーション結果を示す図。
FIG. 3 is a diagram showing a computer simulation result of an error rate characteristic of a received signal when an angle of a desired station is changed using a beam width of an array antenna as a parameter.

【図4】アレーアンテナの素子数をパラメータとし希望
局の角度を変化させた場合の受信信号の誤り率特性の計
算機シュミレーション結果を示す図。
FIG. 4 is a diagram illustrating a computer simulation result of an error rate characteristic of a received signal when the angle of a desired station is changed using the number of elements of an array antenna as a parameter.

【図5】素子ビーム幅とセクタ角およびアレー素子数の
関係を示す図。
FIG. 5 is a diagram showing a relationship among an element beam width, a sector angle, and the number of array elements.

【図6】この発明の第1の実施例のセクタ構成を示す
図。
FIG. 6 is a diagram showing a sector configuration according to the first embodiment of the present invention.

【図7】この発明の第1の実施例のアレーアンテナ構成
を示す図。
FIG. 7 is a diagram showing an array antenna configuration according to the first embodiment of the present invention.

【図8】この発明の第2の実施例のセクタ構成を示す
図。
FIG. 8 is a diagram showing a sector configuration according to a second embodiment of the present invention.

【図9】この発明の第2の実施例のアレーアンテナ構成
を示す図。
FIG. 9 is a diagram showing a configuration of an array antenna according to a second embodiment of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 CDMA方式のアクセス方式の移動通信
における基地局に用いられ、アンテナ指向特性を、干渉
波を抑圧するように適応的に制御するアダプティブ処理
器が接続されたアレーアンテナ装置において、 上記アレーアンテナ装置を構成するアンテナ素子の水平
面内指向特性ビーム幅が、サービスセクタ領域の幅より
狭いことを特徴とするアダプティブアレーアンテナ装
置。
1. An array antenna device connected to an adaptive processor for adaptively controlling antenna directivity so as to suppress an interference wave, the array antenna device being used for a base station in mobile communication of an CDMA access method. An adaptive array antenna device, wherein a beam width in a horizontal plane of a directivity characteristic of an antenna element constituting the array antenna device is smaller than a width of a service sector area.
【請求項2】 上記アンテナ素子の指向特性ビーム幅
と、上記サービスセクタ領域の幅とをほぼ等しくするの
に必要とするアンテナ素子数よりも上記アンテナ素子数
が多いことを特徴とする請求項1記載のアダプティブア
レーアンテナ装置。
2. The number of antenna elements is larger than the number of antenna elements required to make the directional characteristic beam width of the antenna elements substantially equal to the width of the service sector area. An adaptive array antenna device according to any one of the preceding claims.
【請求項3】 CDMA方式のアクセス方式の移動通信
における基地局に用いられ、アンテナ指向特性を、干渉
波を抑圧するように適応的に制御するアダプティブ処理
器が接続されたアレーアンテナ装置において、 上記アレーアンテナ装置を構成するアンテナ素子の水平
面内指向特性ビーム幅が、サービスセクタ領域の幅より
広いことを特徴とするアダプティブアレーアンテナ装
置。
3. An array antenna device used for a base station in mobile communication of an access method of a CDMA system and connected to an adaptive processor for adaptively controlling antenna directivity so as to suppress an interference wave. An adaptive array antenna device, wherein a beam width of a directional characteristic beam in a horizontal plane of an antenna element constituting the array antenna device is wider than a width of a service sector area.
【請求項4】 上記アンテナ素子の指向特性ビーム幅
と、上記サービスセクタ領域の幅とをほぼ等しくするの
に必要とするアンテナ素子数よりも上記アンテナ素子数
が少ないことを特徴とする請求項3記載のアダプティブ
アレーアンテナ装置。
4. The number of antenna elements is smaller than the number of antenna elements required to make the directional characteristic beam width of the antenna element substantially equal to the width of the service sector area. An adaptive array antenna device according to any one of the preceding claims.
JP14422197A 1997-06-02 1997-06-02 Adaptive array antenna device Expired - Fee Related JP3332329B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP14422197A JP3332329B2 (en) 1997-06-02 1997-06-02 Adaptive array antenna device
CA 2247349 CA2247349C (en) 1997-06-02 1998-06-01 Adaptive array antenna unit
US09/125,734 US6512934B2 (en) 1997-06-02 1998-06-01 Adaptive array antenna
KR1019980706811A KR100306466B1 (en) 1997-06-02 1998-06-01 Adaptive array antenna unit
PCT/JP1998/002408 WO1998056069A1 (en) 1997-06-02 1998-06-01 Adaptive array antenna
EP98923064A EP0923155A4 (en) 1997-06-02 1998-06-01 Adaptive array antenna
CNB988000490A CN1147025C (en) 1997-06-02 1998-06-01 Adaptive array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14422197A JP3332329B2 (en) 1997-06-02 1997-06-02 Adaptive array antenna device

Publications (2)

Publication Number Publication Date
JPH10335918A true JPH10335918A (en) 1998-12-18
JP3332329B2 JP3332329B2 (en) 2002-10-07

Family

ID=15357069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14422197A Expired - Fee Related JP3332329B2 (en) 1997-06-02 1997-06-02 Adaptive array antenna device

Country Status (6)

Country Link
EP (1) EP0923155A4 (en)
JP (1) JP3332329B2 (en)
KR (1) KR100306466B1 (en)
CN (1) CN1147025C (en)
CA (1) CA2247349C (en)
WO (1) WO1998056069A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452536B1 (en) * 2000-10-02 2004-10-12 가부시키가이샤 엔.티.티.도코모 Mobile communication base station equipment
KR20020041699A (en) * 2000-11-28 2002-06-03 이노영 CELLULAR Microstrip patch array antenna
RU2233017C1 (en) * 2002-12-02 2004-07-20 Общество с ограниченной ответственностью "Алгоритм" Controlled-pattern antenna assembly and planar directive antenna
CN100463376C (en) * 2002-12-20 2009-02-18 中兴通讯股份有限公司 Full-adaptive intelligent antella receiving device
JP4241440B2 (en) * 2004-03-03 2009-03-18 株式会社日立製作所 Packet scheduling method and wireless communication apparatus
CN104716979B (en) * 2013-12-12 2017-11-21 启碁科技股份有限公司 Wireless electron device and radio transmitting method
US10651568B2 (en) * 2016-07-19 2020-05-12 Quintel Cayman Limited Base station antenna system with enhanced array spacing
CN110235384B (en) * 2017-01-06 2022-02-08 天工方案公司 Harmonic beamforming

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3273144A (en) * 1963-04-02 1966-09-13 Fishbein William Narrow beam antenna system
US3903524A (en) * 1973-05-25 1975-09-02 Hazeltine Corp Antenna system using variable phase pattern synthesis
US5548813A (en) * 1994-03-24 1996-08-20 Ericsson Inc. Phased array cellular base station and associated methods for enhanced power efficiency
JP3540374B2 (en) * 1994-07-20 2004-07-07 Kddi株式会社 Base station antenna device for mobile communication system
US6006069A (en) * 1994-11-28 1999-12-21 Bosch Telecom Gmbh Point-to-multipoint communications system
JPH0927714A (en) * 1995-07-11 1997-01-28 N T T Ido Tsushinmo Kk Multibeam antenna system
JPH10174160A (en) * 1996-12-13 1998-06-26 N T T Ido Tsushinmo Kk Array antenna

Also Published As

Publication number Publication date
KR20000064538A (en) 2000-11-06
CA2247349C (en) 2002-04-09
JP3332329B2 (en) 2002-10-07
EP0923155A4 (en) 2000-03-22
CA2247349A1 (en) 1998-12-10
WO1998056069A1 (en) 1998-12-10
CN1217827A (en) 1999-05-26
EP0923155A1 (en) 1999-06-16
KR100306466B1 (en) 2001-11-02
CN1147025C (en) 2004-04-21

Similar Documents

Publication Publication Date Title
JP2949533B2 (en) Mobile communication wireless zone configuration method
KR100817620B1 (en) Method and apparatus for adapting antenna array using received predetermined signal
JP4095103B2 (en) High gain antenna for wireless applications
US5491833A (en) Mobile radio communication system having radio zones of sector configurations and antenna selecting method employed therein
JP4457120B2 (en) Wide angle antenna lobe
US6512934B2 (en) Adaptive array antenna
JP3332329B2 (en) Adaptive array antenna device
US20040152415A1 (en) Active antenna method and system with variable directivity and gain
CN100359980C (en) Interstitial sector system
JP2000059291A (en) Processing process for directing one or plural radiation radio wave beams for communication between base station and mobile radio telephone and base station corresponding to the same
JP2600448B2 (en) Radio channel allocation control method in mobile communication
EP1444752B1 (en) A cellular radio adaptive antenna array
JP3832083B2 (en) Base station antenna device
JP3542068B2 (en) Three frequency shared base station antenna device
JP4105083B2 (en) Antenna device
US20230136183A1 (en) Antenna for a wireless communication device and such a device
Swales et al. A spectrum efficient cellular base-station antenna architecture
JPH09162799A (en) Base station antenna system for mobile communication
JPH11298953A (en) Radio communication apparatus
JP2001358639A (en) Sector antenna
JPS61147622A (en) Mobile communication system
JPH098546A (en) Antenna system
JPH04237223A (en) Sector zone antenna constitution system
JP2001257527A (en) Base station antenna device
JPH04297138A (en) Mobile communication cell construction system using multi antenna and mobile communication system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130726

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees