WO1998053059A1 - Proteines de liaison d'acide nucleique - Google Patents

Proteines de liaison d'acide nucleique Download PDF

Info

Publication number
WO1998053059A1
WO1998053059A1 PCT/GB1998/001514 GB9801514W WO9853059A1 WO 1998053059 A1 WO1998053059 A1 WO 1998053059A1 GB 9801514 W GB9801514 W GB 9801514W WO 9853059 A1 WO9853059 A1 WO 9853059A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
triplet
zinc finger
base
helix
Prior art date
Application number
PCT/GB1998/001514
Other languages
English (en)
Inventor
Yen Choo
Aaron Klug
Mark Isalan
Original Assignee
Medical Research Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medical Research Council filed Critical Medical Research Council
Priority to AU75424/98A priority Critical patent/AU7542498A/en
Publication of WO1998053059A1 publication Critical patent/WO1998053059A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to nucleic acid binding proteins.
  • the invention relates to a method for designing a protein which is capable of binding to any predefined nucleic acid sequence.
  • Protein-nucleic acid recognition is a commonplace phenomenon which is central to a large number of biomolecular control mechanisms which regulate the functioning of eukaryotic and pro kary otic cells.
  • protein-DNA interactions form the basis of the regulation of gene expression and are thus one of the subjects most widely studied by molecular biologists.
  • DNA-binding proteins contain independently folded domains for the recognition of DNA, and these domains in turn belong to a large number of structural families, such as the leucine zipper, the "helix-turn-helix” and zinc finger families.
  • a syllabic code is a code which relies on more than one feature of the binding protein to specify binding to a particular base, the features being combinable in the forms of "syllables" , or complex instructions, to define each specific contact.
  • the present invention provides a more complete code which permits the selection of any nucleic acid sequence as the target sequence, and the design of a specific nucleic acid- binding protein which will bind thereto. Moreover, the invention provides a method by which a zinc finger protein specific for any given nucleic acid sequence may be designed and optimised. The present invention therefore concerns a recognition code which has been elucidated for the interactions of classical zinc fingers with nucleic acid. In this case a pattern of rules, expressing a bias in the use of amino acid residues for specific base recognition by zinc finger proteins, is provided which covers binding to all nucleic acid sequences.
  • a method for preparing a nucleic acid binding protein of the Cys2-His2 zinc finger class capable of binding to a nucleic acid base triplet in a target nucleic acid sequence wherein binding to the 5' base of the nucleic acid base triplet by an ⁇ -helical zinc finger nucleic acid binding motif in the protein is determined as follows:
  • binding to the 5' base of the triplet by an ⁇ -helical zinc finger nucleic acid binding motif in the protein is additionally determined as follows:
  • nucleic acid-binding residue positions of zinc fingers are numbered from the first residue in the ⁇ -helix of the finger, ranging from + 1 to +9.
  • "-1" refers to the residue in the framework structure immediately preceding the ⁇ -helix in a Cys2-His2 zinc finger polypeptide.
  • Residues referred to as " + + " are residues present in an adjacent (C-terminal) finger. Where there is no C-terminal adjacent finger, " + + " interactions do not operate.
  • Cys2-His2 zinc finger binding proteins bind to target nucleic acid sequences via ⁇ -helical zinc metal atom co-ordinated binding motifs known as zinc fingers.
  • Each zinc finger in a zinc finger nucleic acid binding protein is responsible for determining binding to a nucleic acid triplet in a nucleic acid binding sequence.
  • there are 2 or more zinc fingers for example 2, 3, 4, 5 or 6 zinc fingers, in each binding protein.
  • the method of the present invention allows the production of what are essentially artificial nucleic acid binding proteins.
  • artificial analogues of amino acids may be used, to impart the proteins with desired properties or for other reasons.
  • amino acid particularly in the context where "any amino acid” is referred to, means any sort of natural or artificial amino acid or amino acid analogue that may be employed in protein construction according to methods known in the art.
  • any specific amino acid referred to herein may be replaced by a functional analogue thereof, particularly an artificial functional analogue.
  • the nomenclature used herein therefore specifically comprises within its scope functional analogues of the defined amino acids.
  • the ⁇ -helix of a zinc finger binding protein aligns antiparallel to the nucleic acid strand, such that the primary nucleic acid sequence is arranged 3' to 5' in order to correspond with the N terminal to C-terminal sequence of the zinc finger. Since nucleic acid sequences are conventionally written 5' to 3', and amino acid sequences N-terminus to C-terminus, the result is that when a nucleic acid sequence and a zinc finger protein are aligned according to convention, the primary interaction of the zinc finger is with the - strand of the nucleic acid, since it is this strand which is aligned 3' to 5'. These conventions are followed in the nomenclature used herein.
  • the invention provides a solution to a problem hitherto unaddressed in the art, by permitting the rational design of polypeptides which will bind nucleic acid triplets whose 5' residue is other than G.
  • the invention provides for the first time a solution for the design of polypeptides for binding triplets containing 5' A or C.
  • position +6 in the ⁇ -helix is Ser, or Thr.
  • Figure 1 illustrates zinc finger-DNA interactions.
  • A model of modular interactions with DNA base triplets in Zif268; B: similar model showing potential for synergism between zinc finger binding; C: model of library design for recognition code determination.
  • Figure 2 shows the amino acid sequence of three fingers used for phage display selection in the determination of recognition code.
  • Figure 3 lists the sequence-specific zinc finger clones obtained from phage selections, and their binding site signatures.
  • Figure 4 shows the base/amino acid correlation of the clones isolated from phage selections. Recognition patterns are highlighted.
  • Figure 5 illustrates the design of a zinc finger binding protein specific for a G12V mutant ras oncogene
  • Figure 6 illustrates the binding specificity of the binding protein for the oncogene as opposed to the wild-type ras sequence
  • Figure 7 illustrates the results of an ELISA assay performed using the anti-ras binding protein with both wild-type and mutant target nucleic acid sequences.
  • Position +6 in the ⁇ -helix is generally responsible for the interaction with the 5' residue of a given triplet in the target.
  • a 5' A residue is preferentially bound by one of amino acids Val, Asn or Glu at position +6, while a 5' C reside is preferentially bound by Ala, Glu, Asn, Ser, Thr or Val, especially Ser or Thr.
  • the present invention concerns a method for preparing nucleic acid binding proteins which are capable of binding nucleic acid.
  • the solutions provided by the invention will result in a functional nucleic acid binding molecule
  • naturally- occurring zinc finger nucleic acid binding molecules may not follow some or all of the rules provided herein.
  • the aim of the invention is to permit the design of the nucleic acid binding molecules on the basis of nucleic acid sequence, and not the converse.
  • the rules in certain instances, provide for a number of possibilities for any given residue. In other instances, alternative residues to those given may be possible.
  • the present invention does not seek to provide every solution for the design of a binding protein for a given target nucleic acid. It does, however, provide for the first time a complete solution allowing a functional nucleic acid binding protein to be constructed for any given nucleic acid triplet.
  • the invention provides a method for preparing a nucleic acid binding protein of the Cys2-His2 zinc finger class capable of binding to a nucleic acid triplet in a target nucleic acid sequence, wherein binding to each base of the triplet by an ⁇ - helical zinc finger nucleic acid binding motif in the protein is determined as follows:
  • position +3 in the ⁇ -helix is His; f) if the central base in the triplet is A, then position +3 in the ⁇ -helix is Asn; g) if the central base in the triplet is T, then position +3 in the ⁇ -helix is Ala, Ser or Val; provided that if it is Ala, then one of the residues at -1 or +6 is a small residue; h) if the central base in the triplet is C, then position +3 in the ⁇ -helix is Ser, Asp, Glu,
  • the foregoing represents a set of rules which permits the design of a zinc finger binding protein specific for any given nucleic acid sequence.
  • the invention may be seen as an improvement in a method for preparing a nucleic acid binding protein of the Cys2-His2 zinc finger class capable of binding to a nucleic acid triplet in a target nucleic acid sequence, said nucleic acid binding protein having at least one zinc finger nucleic acid binding motif, wherein binding to each base of the triplet by the zinc finger nucleic acid binding motif in the protein is determined as follows:
  • the improvement comprising determining the binding to the 5' of the triplet by the zinc finger nucleic acid binding motif in the protein as follows:
  • residue + +2 influences binding to the 5' base of the triplet.
  • a suitable + +2 reside is selected (see WO 96/06166).
  • zinc fmger polypeptides are normally considered to bind to triplet sequences
  • the method of the present invention allows polypeptides to be designed to bind to target sequences which are not multiples of triplets.
  • a zinc finger polypeptide may be designed to bind to a palindromic target sequence.
  • Such sequences are commonly found as, for example, restriction enzyme target sequences.
  • creation of zinc fingers which bind to fewer than three nucleotides is achieved by specifying, in the zinc finger, amino acids which are unable to support H-bonding with the nucleic acid in the relevant position.
  • this is achieved by substituting Gly at position -1 (to eliminate a contact with a 3' base) and/or Ala at positions +3 and/or +6 (to eliminate contacts at the central or 5' base respectively).
  • the contact with the final (3') base in the target sequence should be strengthened, if necessary, by substimting a residue at the relevant position which is capable of making a direct contact with the phosphate backbone of the nucleic acid.
  • a zinc finger binding motif is a structure well known to those in the art and defined in, for example, Miller et al. , (1985) EMBO J. 4: 1609-1614; Berg (1988) PNAS (USA) 85:99- 102: Lee et al , (1989) Science 245:635-637; see International patent applications WO 96/06166 and WO 96/32475, corresponding to USSN 08/422,107, incorporated herein by reference.
  • nucleic acid refers to both RNA and DNA, constructed from natural nucleic acid bases or synthetic bases, or mixtures thereof.
  • binding proteins of the invention are DNA binding proteins.
  • a preferred zinc finger framework has the structure:
  • zinc finger nucleic acid binding motifs may be represented as motifs having the following primary structure:
  • X (including X a , X b and X c ) is any amino acid.
  • X 2 - 4 and X 2 . 3 refer to the presence of 2 or 4, or 2 or 3, amino acids, respectively.
  • the Cys and His residues, which together co-ordinate the zinc metal atom, are marked in bold text and are usually invariant, as is the Leu residue at position +4 in the ⁇ -helix.
  • Modifications to this representation may occur or be effected without necessarily abolishing zinc finger function, by insertion, mutation or deletion of amino acids.
  • the second His residue may be replaced by Cys (Krizek et al , (1991) J. Am. Chem. Soc. 113:4518-4523) and that Leu at +4 can in some circumstances be replaced with Arg.
  • the Phe residue before X c may be replaced by any aromatic other than Trp.
  • experiments have shown that departure from the preferred structure and residue assignments for the zinc finger are tolerated and may even prove beneficial in binding to certain nucleic acid sequences.
  • structures (A) and (B) above are taken as an exemplary structure representing all zinc finger structures of the Cys2-His2 type.
  • X a is F / ⁇ -X or P- F / ⁇ -X.
  • X is any amino acid.
  • X is E, K, T or S. Less preferred but also envisaged are Q, V, A and P. The remaining amino acids remain possible.
  • X 2 - 4 consists of two amino acids rather than four.
  • the first of these amino acids may be any amino acid, but S, E, K, T, P and R are preferred.
  • P or R is preferred.
  • the second of these amino acids is preferably E, although any amino acid may be used.
  • X b is T or I.
  • X c is S or T.
  • X 2 . 3 is G-K-A, G-K-C, G-K-S or G-K-G.
  • X 2 . 3 is G-K-A, G-K-C, G-K-S or G-K-G.
  • departures from the preferred residues are possible, for example in the form of M-R-N or M-R.
  • the linker is T-G-E-K or T-G-E-K-P.
  • amino acids -1 , +3 and +6 amino acids +4 and +7 are largely invariant.
  • the remaining amino acids may be essentially any amino acids.
  • position +9 is occupied by Arg or Lys.
  • positions + 1, -1-5 and +8 are not hydrophobic amino acids, that is to say are not Phe, Trp or Tyr.
  • position +2 is any amino acid, and preferably serine, save where its nature is dictated by its role as a + +2 amino acid for an N-terminal zinc finger in the same nucleic acid binding molecule.
  • the invention allows the definition of every residue in a zinc finger nucleic acid binding motif which will bind specifically to a given nucleic acid triplet.
  • the code provided by the present invention is not entirely rigid; certain choices are provided. For example, positions + 1 , +5 and +8 may have any amino acid allocation, whilst other positions may have certain options: for example, the present rules provide that, for binding to a central T residue, any one of Ala, Ser or Val may be used at +3. In its broadest sense, therefore, the present invention provides a very large number of proteins which are capable of binding to every defined target nucleic acid triplet.
  • the number of possibilities may be significantly reduced.
  • the non-critical residues + 1, +5 and +8 may be occupied by the residues Lys, Thr and Gin respectively as a default option.
  • the first-given option may be employed as a default.
  • the code according to the present invention allows the design of a single, defined polypeptide (a "default" polypeptide) which will bind to its target triplet.
  • a method for preparing a nucleic acid binding protein of the Cys2-His2 zinc finger class capable of binding to a target nucleic acid sequence comprising the steps of:
  • namrally occurring zinc fingers may be selected from those fingers for which the nucleic acid binding specificity is known.
  • these will be the fingers for which a crystal strucmre has been resolved: namely Zif 268 (Elrod-Erickson et al, (1996) Strucmre 4:1171-1180), GLI (Pavletich and Pabo, (1993) Science 261:1701-1707), Tramtrack (Fairall et al, (1993) Nature 366:483-487) and YY1 (Houbaviy et al, (1996) PNAS (USA) 93:13577-13582).
  • the namrally occurring zinc finger 2 in Zif 268 makes an excellent starting point from which to engineer a zinc finger and is preferred.
  • Consensus zinc finger structures may be prepared by comparing the sequences of known zinc fingers, irrespective of whether their binding domain is known.
  • the consensus strucmre is selected from the group consisting of the consensus strucmre P Y K CPECGKSFSQKSDLVKHQRTHTG, and the consensus strucmre P Y K C SECGKAFSQKSNLTRHQRIHTGEKP.
  • the consensuses are derived from the consensus provided by Krizek et al. , (1991) J. Am. Chem. Soc.113:4518-4523 and from Jacobs, (1993) PhD thesis, University of Cambridge, UK.
  • the linker sequences described above for joining two zinc finger motifs together namely TGEK or TGEKP can be formed on the ends of the consensus.
  • a P may be removed where necessary, or, in the case of the consensus terminating T G, E K (P) can be added.
  • the mutation of the finger in order to modify its specificity to bind to the target nucleic acid may be directed to residues known to affect binding to bases at which the natural and desired targets differ. Otherwise, mutation of the model fingers should be concentrated upon residues -1, +3, +6 and as provided for in the foregoing rules.
  • the rules provided by the present invention may be supplemented by physical or virtual modelling of the protein/nucleic acid interface in order to assist in residue selection.
  • Zinc finger binding motifs designed according to the invention may be combined into nucleic acid binding proteins having a multiplicity of zinc fingers.
  • the proteins have at least two zinc fingers.
  • zinc finger binding proteins commonly have at least three zinc fingers, although two-zinc finger proteins such as Tramtrack are known. The presence of at least three zinc fingers is preferred.
  • Binding proteins may be constructed by joining the required fingers end to end, N-terminus to C-terminus. Preferably, this is effected by joining together the relevant nucleic acid coding sequences encoding the zinc fingers to produce a composite coding sequence encoding the entire binding protein.
  • the invention therefore provides a method for producing a nucleic acid binding protein as defined above, wherein the nucleic acid binding protein is constructed by recombinant DNA technology, the method comprising the steps of:
  • nucleic acid binding protein a) preparing a nucleic acid coding sequence encoding two or more zinc finger binding motifs as defined above, placed N-terminus to C-terminus; b) inserting the nucleic acid sequence into a suitable expression vector; and c) expressing the nucleic acid sequence in a host organism in order to obtain the nucleic acid binding protein.
  • leader peptide may be added to the N-terminal finger.
  • the leader peptide is MAEEKP.
  • vector or piasmid refers to discrete elements that are used to introduce heterologous nucleic acid into cells for either expression or replication thereof. Selection and use of such vehicles are well within the skill of the person of ordinary skill in the art. Many vectors are available, and selection of appropriate vector will depend on the intended use of the vector, i.e. whether it is to be used for DNA amplification or for nucleic acid expression, the size of the DNA to be inserted into the vector, and the host cell to be transformed with the vector. Each vector contains various components depending on its function (amplification of DNA or expression of DNA) and the host cell for which it is compatible.
  • the vector components generally include, but are not limited to, one or more of the following: an origin of replication, one or more marker genes, an enhancer element, a promoter, a transcription termination sequence and a signal sequence.
  • Both expression and cloning vectors generally contain nucleic acid sequence that enable the vector to replicate in one or more selected host cells.
  • this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences.
  • origins of replication or autonomously replicating sequences are well known for a variety of bacteria, yeast and viruses.
  • the origin of replication from the piasmid pBR322 is suitable for most Gram-negative bacteria, the 2 ⁇ piasmid origin is suitable for yeast, and various viral origins (e.g. SV 40, polyoma, adenovirus) are useful for cloning vectors in mammalian cells.
  • the origin of replication component is not needed for mammalian expression vectors unless these are used in mammalian cells competent for high level DNA replication, such as COS cells.
  • Most expression vectors are shuttle vectors, i.e. they are capable of replication in at least one class of organisms but can be transfected into another organism for expression.
  • a vector is cloned in E. coli and then the same vector is transfected into yeast or mammalian cells even though it is not capable of replicating independently of the host cell chromosome.
  • DNA may also be replicated by insertion into the host genome.
  • the recovery of genomic DNA encoding the nucleic acid binding protein is more complex than that of exogenously replicated vector because restriction enzyme digestion is required to excise nucleic acid binding protein DNA.
  • DNA can be amplified by PCR and be directly transfected into the host cells without any replication component.
  • an expression and cloning vector may contain a selection gene also referred to as selectable marker.
  • This gene encodes a protein necessary for the survival or growth of transformed host cells grown in a selective culmre medium. Host cells not transformed with the vector containing the selection gene will not survive in the culmre medium.
  • Typical selection genes encode proteins that confer resistance to antibiotics and other toxins, e.g. ampicillin, neomycin, methotrexate or tetracycline. complement auxotrophic deficiencies, or supply critical nutrients not available from complex media.
  • any marker gene can be used which facilitates the selection for transformants due to the phenotypic expression of the marker gene.
  • Suitable markers for yeast are, for example, those conferring resistance to antibiotics G418. hygromycin or bleomycin, or provide for prototrophy in an auxotrophic yeast mutant, for example the URA3, LEU2, LYS2, TRP1, or HIS3 gene.
  • an E. coli genetic marker and an E. coli origin of replication are advantageously included. These can be obtained from E. coli plasmids, such as pBR322, Bluescript ® vector or a pUC piasmid, e.g. pUC18 or pUC19, which contain both E. coli replication origin and E. coli genetic marker conferring resistance to antibiotics, such as ampicillin.
  • Suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up nucleic acid binding protein nucleic acid, such as dihydrofolate reductase (DHFR, methotrexate resistance), thymidine kinase, or genes conferring resistance to G418 or hygromycin.
  • DHFR dihydrofolate reductase
  • thymidine kinase or genes conferring resistance to G418 or hygromycin.
  • the mammalian cell transformants are placed under selection pressure which only those transformants which have taken up and are expressing the marker are uniquely adapted to survive.
  • selection pressure can be imposed by culturing the transformants under conditions in which the pressure is progressively increased, thereby leading to amplification (at its chromosomal integration site) of both the selection gene and the linked DNA that encodes the nucleic acid binding protein.
  • Amplification is the process by which genes in greater demand for the production of a protein critical for growth, together with closely associated genes which may encode a desired protein, are reiterated in tandem within the chromosomes of recombinant cells. Increased quantities of desired protein are usually synthesised from thus amplified DNA.
  • Expression and cloning vectors usually contain a promoter that is recognised by the host organism and is operably linked to nucleic acid binding protein encoding nucleic acid. Such a promoter may be inducible or constitutive.
  • the promoters are operably linked to DNA encoding the nucleic acid binding protein by removing the promoter from the source DNA by restriction enzyme digestion and inserting the isolated promoter sequence into the vector. Both the native nucleic acid binding protein promoter sequence and many heterologous promoters may be used to direct amplification and/or expression of nucleic acid binding protein encoding DNA.
  • Promoters suitable for use with prokaryotic hosts include, for example, the ⁇ -lactamase and lactose promoter systems, alkaline phosphatase, the tryptophan (Trp) promoter system and hybrid promoters such as the tac promoter.
  • Their nucleotide sequences have been published, thereby enabling the skilled worker operably to ligate them to DNA encoding nucleic acid binding protein, using linkers or adapters to supply any required restriction sites.
  • Promoters for use in bacterial systems will also generally contain a Shine-Delgarno sequence operably linked to the DNA encoding the nucleic acid binding protein.
  • Preferred expression vectors are bacterial expression vectors which comprise a promoter of a bacteriophage such as phagex or T7 which is capable of functioning in the bacteria.
  • the nucleic acid encoding the fusion protein may be transcribed from the vector by T7 RNA polymerase (Smdier et al, Methods in Enzymol. 185; 60-89, 1990).
  • T7 RNA polymerase Smdier et al, Methods in Enzymol. 185; 60-89, 1990.
  • the T7 RNA polymerase is produced from the ⁇ -lysogen DE3 in the host bacterium, and its expression is under the control of the IPTG inducible lac UV5 promoter. This system has been employed successfully for over-production of many proteins.
  • the polymerase gene may be introduced on a lambda phage by infection with an int- phage such as the CE6 phage which is commercially available (Novagen, Madison, USA), other vectors include vectors containing the lambda PL promoter such as PLEX (Invitrogen, NL) , vectors containing the trc promoters such as pTrcHisXpressTm (Invitrogen) or pTrc99 (Pharmacia Biotech, SE) or vectors containing the tac promoter such as pKK223-3 (Pharmacia Biotech) or PMAL (New England Biolabs, MA. USA).
  • PLEX Invitrogen, NL
  • vectors containing the trc promoters such as pTrcHisXpressTm (Invitrogen) or pTrc99 (Pharmacia Biotech, SE)
  • vectors containing the tac promoter such as pKK223-3 (Pharmacia Bio
  • the nucleic acid binding protein gene according to the invention preferably includes a secretion sequence in order to facilitate secretion of the polypeptide from bacterial hosts, such that it will be produced as a soluble native peptide rather than in an inclusion body.
  • the peptide may be recovered from the bacterial periplasmic space, or the culmre medium, as appropriate.
  • Suitable promoting sequences for use with yeast hosts may be regulated or constitutive and are preferably derived from a highly expressed yeast gene, especially a Saccharomyces cerevisiae gene.
  • hybrid promoters comprising upstream activation sequences (UAS) of one yeast gene and downstream promoter elements including a functional TATA box of another yeast gene
  • a hybrid promoter including the UAS(s) of the yeast PH05 gene and downstream promoter elements including a functional TATA box of the yeast GAP gene PH05-GAP hybrid promoter
  • a suitable constitutive PH05 promoter is e.g. a shortened acid phosphatase PH05 promoter devoid of the upstream regulatory elements (UAS) such as the PH05 (-173) promoter element starting at nucleotide -173 and ending at nucleotide -9 of the PH05 gene.
  • Nucleic acid binding protein gene transcription from vectors in mammalian hosts may be controlled by promoters derived from the genomes of viruses such as polyoma virus, adenovirus, fowlpox virus, bovine papilloma virus, avian sarcoma virus, cytomegalovirus (CMV), a retrovirus and Simian Virus 40 (SV40), from heterologous mammalian promoters such as the actin promoter or a very strong promoter, e.g. a ribosomal protein promoter, and from the promoter normally associated with nucleic acid binding protein sequence, provided such promoters are compatible with the host cell systems.
  • viruses such as polyoma virus, adenovirus, fowlpox virus, bovine papilloma virus, avian sarcoma virus, cytomegalovirus (CMV), a retrovirus and Simian Virus 40 (SV40)
  • heterologous mammalian promoters such as
  • Enhancers are relatively orientation and position independent. Many enhancer sequences are known from mammalian genes (e.g. elastase and globin). However, typically one will employ an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270) and the CMV early promoter enhancer. The enhancer may be spliced into the vector at a position 5' or 3' to nucleic acid binding protein DNA, but is preferably located at a site 5' from the promoter.
  • a eukaryotic expression vector encoding a nucleic acid binding protein according to the invention may comprise a locus control region (LCR).
  • LCRs are capable of directing high-level integration site independent expression of transgenes integrated into host cell chromatin. which is of importance especially where the nucleic acid binding protein gene is to be expressed in the context of a permanently-transfected eukaryotic cell line in which chromosomal integration of the vector has occurred, in vectors designed for gene therapy applications or in transgenic animals.
  • Eukaryotic vectors may also contain sequences necessary for the termination of transcription and for stabilising the mRNA. Such sequences are commonly available from the 5' and 3' untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding nucleic acid binding protein.
  • An expression vector includes any vector capable of expressing nucleic acid binding protein nucleic acids that are operatively linked with regulatory sequences, such as promoter regions, that are capable of expression of such DNAs.
  • an expression vector refers to a recombinant DNA or RNA construct, such as a piasmid.
  • a phage, recombinant virus or other vector that upon introduction into an appropriate host cell, results in expression of the cloned DNA.
  • Appropriate expression vectors are well known to those with ordinary skill in the art and include those that are replicable in eukaryotic and/or prokaryotic cells and those that remain episomal or those which integrate into the host cell genome.
  • DNAs encoding nucleic acid binding protein may be inserted into a vector suitable for expression of cDNAs in mammalian cells, e.g. a CMV enhancer-based vector such as pEVRF (Matthias, et al. , (1989) NAR 17, 6418).
  • transient expression usually involves the use of an expression vector that is able to replicate efficiently in a host cell, such that the host cell accumulates many copies of the expression vector, and, in turn, synthesises high levels of nucleic acid binding protein.
  • transient expression systems are useful e.g. for identifying nucleic acid binding protein mutants, to identify potential phosphorylation sites, or to characterise functional domains of the protein.
  • Plasmids employs conventional ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and religated in the form desired to generate the plasmids required. If desired, analysis to confirm correct sequences in the constructed plasmids is performed in a known fashion. Suitable methods for constructing expression vectors, preparing in vitro transcripts, introducing DNA into host cells, and performing analyses for assessing nucleic acid binding protein expression and function are known to those skilled in the art.
  • Gene presence, amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA, dot blotting (DNA or RNA analysis), or in situ hybridisation, using an appropriately labelled probe which may be based on a sequence provided herein. Those skilled in the art will readily envisage how these methods may be modified, if desired.
  • cells containing the above-described nucleic acids are provided.
  • host cells such as prokaryote, yeast and higher eukaryote cells may be used for replicating DNA and producing the nucleic acid binding protein.
  • Suitable prokaryotes include eubacteria, such as Gram-negative or Gram- positive organisms, such as E. coli, e.g. E. coli K-12 strains, DH5a and HB101, or Bacilli.
  • Further hosts suitable for the nucleic acid binding protein encoding vectors include eukaryotic microbes such as filamentous fungi or yeast, e.g. Saccharomyces cerevisiae.
  • Higher eukaryotic cells include insect and vertebrate cells, particularly mammalian cells including human cells, or nucleated cells from other multicellular organisms.
  • mammalian host cell lines are epithelial or fibroblastic cell lines such as Chinese hamster ovary (CHO) cells, NIH 3T3 cells, HeLa cells or 293T cells.
  • the host cells referred to in this disclosure comprise cells in in vitro culmre as well as cells that are within a host animal.
  • DNA may be stably incorporated into cells or may be transiently expressed using methods known in the art.
  • Stably transfected mammalian cells may be prepared by transfecting cells with an expression vector having a selectable marker gene, and growing the transfected cells under conditions selective for cells expressing the marker gene. To prepare transient transfectants, mammalian cells are transfected with a reporter gene to monitor transfection efficiency.
  • the cells should be transfected with a sufficient amount of the nucleic acid binding protein-encoding nucleic acid to form the nucleic acid binding protein.
  • the precise amounts of DNA encoding the nucleic acid binding protein may be empirically determined and optimised for a particular cell and assay.
  • Host cells are transfected or, preferably, transformed with the above-captioned expression or cloning vectors of this invention and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
  • Heterologous DNA may be introduced into host cells by any method known in the art, such as transfection with a vector encoding a heterologous DNA by the calcium phosphate coprecipitation technique or by electroporation. Numerous methods of transfection are known to the skilled worker in the field. Successful transfection is generally recognised when any indication of the operation of this vector occurs in the host cell. Transformation is achieved using standard techniques appropriate to the particular host cells used.
  • Transfected or transformed cells are cultured using media and culturing methods known in the art, preferably under conditions, whereby the nucleic acid binding protein encoded by the DNA is expressed.
  • media and culturing methods known in the art, preferably under conditions, whereby the nucleic acid binding protein encoded by the DNA is expressed.
  • suitable media is known to those in the art, so that they can be readily prepared.
  • Suitable culturing media are also commercially available.
  • the invention also provides means by which the binding of the protein designed according to the rules can be improved by randomising the proteins and selecting for improved binding.
  • the present invention represents an improvement of the method set forth in WO 96/06166.
  • zinc finger molecules designed according to the invention may be subjected to limited randomisation and subsequent selection, such as by phage display, in order to optimise the binding characteristics of the molecule.
  • the method according to the invention comprises the further steps of randomising the sequence of the zinc finger binding motifs at selected sites, screening the randomised molecules obtained and selecting the molecules having the most advantageous properties. Generally, those molecules showing higher affinity and/or specificity of the target nucleic acid sequence are selected.
  • Mutagenesis and screening of target nucleic acid molecules may be achieved by any suitable means.
  • the mutagenesis is performed at the nucleic acid level, for example by synthesising novel genes encoding mutant proteins and expressing these to obtain a variety of different proteins.
  • existing genes can be themselves mutated, such by site-directed or random mutagenesis, in order to obtain the desired mutant genes.
  • Mutations may be performed by any method known to those of skill in the art. Preferred, however, is site-directed mutagenesis of a nucleic acid sequence encoding the protein of interest.
  • a number of methods for site-directed mutagenesis are known in the art, from methods employing single-stranded phage such as M13 to PCR-based techniques (see “PCR Protocols: A guide to methods and applications", M.A. Innis, D.H. Gelfand, J.J. Sninsky, T . White (eds.). Academic Press, New York, 1990).
  • the commercially available Altered Site II Mutagenesis System (Promega) may be employed, according to the directions given by the manufacturer.
  • Screening of the proteins produced by mutant genes is preferably performed by expressing the genes and assaying the binding ability of the protein product.
  • a simple and advantageously rapid method by which this may be accomplished is by phage display, in which the mutant polypeptides are expressed as fusion proteins with the coat proteins of filamentous bacteriophage, such as the minor coat protein pll of bacteriophage ml3 or gene III of bacteriophage Fd, and displayed on the capsid of bacteriophage transformed with the mutant genes.
  • the target nucleic acid sequence is used as a probe to bind directly to the protein on the phage surface and select the phage possessing advantageous mutants, by affinity purification.
  • the phage are then amplified by passage through a bacterial host, and subjected to further rounds of selection and amplification in order to enrich the mutant pool for the desired phage and eventually isolate the preferred clone(s).
  • Detailed methodology for phage display is known in the art and set forth, for example, in US Patent 5,223,409; Choo and Klug, (1995) Current Opinions in Biotechnology 6:431-436; Smith, (1985) Science 228: 1315-1317; and McCafferty et al. , (1990) Nature 348:552-554; all incorporated herein by reference.
  • Vector systems and kits for phage display are available commercially, for example from Pharmacia.
  • Randomisation of the zinc finger binding motifs produced according to the invention is preferably directed to those residues where the code provided herein gives a choice of residues. For example, therefore, positions + 1, +5 and +8 are advantageously randomised, whilst preferably avoiding hydrophobic amino acids; positions involved in binding to the nucleic acid, notably -1 , +2, +3 and +6, may be randomised also, preferably within the choices provided by the rules of the present invention.
  • the "default" protein produced according to the rules provided by the invention can be improved by subjecting the protein to one or more rounds of randomisation and selection within the specified parameters.
  • the zinc finger proteins according to the invention may be randomised such that 2 or more residues are randomised together.
  • residues -1 and +6 of adjacent zinc fingers in a zinc finger protein be randomised together.
  • position +6 of a zinc finger and positions -1 , + 1 , +2 and +3 of an adjacent zinc finger are randomised together. This reflects cooperativity between adjacent zinc fingers and allows every possible triple junction base sequence to be specified.
  • Nucleic acid binding proteins according to the invention may be employed in a wide variety of applications, including diagnostics, therapy and as research tools. Advantageously, they may be employed as diagnostic tools for identifying the presence of nucleic acid molecules in a complex mixmre. nucleic acid binding molecules according to the invention can differentiate single base pair changes in target nucleic acid molecules. Accordingly, the invention provides a method for determining the presence of a target nucleic acid molecule, comprising the steps of:
  • nucleic acid binding protein a) preparing a nucleic acid binding protein by the method set forth above which is specific for the target nucleic acid molecule; b) exposing a test system comprising the target nucleic acid molecule to the nucleic acid binding protein under conditions which promote binding, and removing any nucleic acid binding protein which remains unbound; c) detecting the presence of the nucleic acid binding protein in the test system.
  • the nucleic acid binding molecules of the invention can be incorporated into an ELISA assay.
  • phage displaying the molecules of the invention can be used to detect the presence of the target nucleic acid, and visualised using enzyme-linked anti-phage antibodies.
  • markers for display might include the fluorescent proteins ( A. B. Cubitt, et al., (1995) Trends Biochem Sci. 20, 448-455; T. T. Yang, et al . (1996) Gene 173. 19-23), or an enzyme such as alkaline phosphatase which has been previously displayed on gill ( J. McCafferty, R. H. Jackson, D. J.
  • the invention lends itself, therefore, to the design of any zinc finger- comprising molecule of which specific nucleic acid binding is required.
  • the proteins according to the invention may be employed in the manufacture of chimeric restriction enzymes, in which a nucleic acid cleaving domain is fused to a nucleic acid binding domain comprising a zinc finger as described herein.
  • the invention provides therapeutic agents and methods of therapy involving use of nucleic acid binding proteins as described herein.
  • the invention provides the use of polypeptide fusions comprising an integrase, such as a viral integrase, and a nucleic acid binding protein according to the invention to target nucleic acid sequences in vivo (Bushman, (1994) PNAS (USA) 91:9233-9237).
  • the method may be applied to the delivery of functional genes into defective genes, or the delivery of nonsense nucleic acid in order to disrupt undesired nucleic acid.
  • genes may be delivered to known, repetitive stretches of nucleic acid, such as centromeres, together with an activating sequence such as an LCR. This would represent a route to the safe and predictable incorporation of nucleic acid into the genome.
  • nucleic acid binding proteins according to the invention may be used to specifically knock out cell having mutant vital proteins. For example, if cells with mutant ras are targeted, they will be destroyed because ras is essential to cellular survival.
  • the action of transcription factors may be modulated, preferably reduced, by administering to the cell agents which bind to the binding site specific for the transcription factor. For example, the activity of HIV tat may be reduced by binding proteins specific for HIV TAR.
  • binding proteins according to the invention may be coupled to toxic molecules, such as nucleases, which are capable of causing irreversible nucleic acid damage and cell death. Such agents are capable of selectively destroying cells which comprise a mutation in their endogenous nucleic acid.
  • Nucleic acid binding proteins and derivatives thereof as set forth above may also be applied to the treatment of infections and the like in the form of organism-specific antibiotic or antiviral drugs. In such applications, the binding proteins may be coupled to a nuclease or other nuclear toxin and targeted specifically to the nucleic acids of microorganisms.
  • the invention likewise relates to pharmaceutical preparations which contain the compounds according to the invention or pharmaceutically acceptable salts thereof as active ingredients, and to processes for their preparation.
  • compositions according to the invention which contain the compound according to the invention or pharmaceutically acceptable salts thereof are those for enteral, such as oral, furthermore rectal, and parenteral administration to (a) warm-blooded animal(s), the pharmacological active ingredient being present on its own or together with a pharmaceutically acceptable carrier.
  • enteral such as oral, furthermore rectal, and parenteral administration to (a) warm-blooded animal(s), the pharmacological active ingredient being present on its own or together with a pharmaceutically acceptable carrier.
  • the daily dose of the active ingredient depends on the age and the individual condition and also on the manner of administration.
  • novel pharmaceutical preparations contain, for example, from about 10 % to about 80% , preferably from about 20 % to about 60 % , of the active ingredient.
  • Pharmaceutical preparations according to the invention for enteral or parenteral administration are, for example, those in unit dose forms, such as sugar-coated tablets, tablets, capsules or suppositories, and furthermore ampoules. These are prepared in a manner known per se, for example by means of conventional mixing, granulating, sugar-coating, dissolving or lyophilising processes.
  • compositions for oral use can be obtained by combining the active ingredient with solid carriers, if desired granulating a mixmre obtained, and processing the mixmre or granules, if desired or necessary, after addition of suitable excipients to give tablets or sugar-coated tablet cores.
  • Suitable carriers are, in particular, fillers, such as sugars, for example lactose, sucrose, mannitol or sorbitol.
  • cellulose preparations and/or calcium phosphates for example tricalcium phosphate or calcium hydrogen phosphate
  • furthermore binders such as starch paste, using, for example, corn, wheat, rice or potato starch, gelatin, tragacanth, methylcellulose and/or polyvinylpyrrolidone, if desired, disintegrants, such as the abovementioned starches, furthermore carboxymethyl starch, crosslinked polyvinylpyrrolidone, agar, alginic acid or a salt thereof, such as sodium alginate; auxiliaries are primarily glidants, flow-regulators and lubricants, for example silicic acid, talc, stearic acid or salts thereof, such as magnesium or calcium stearate, and/or polyethylene glycol.
  • fillers such as sugars, for example lacto
  • Sugar-coated tablet cores are provided with suitable coatings which, if desired, are resistant to gastric juice, using, inter alia, concentrated sugar solutions which, if desired, contain gum arabic, talc, polyvinylpyrrolidone, polyethylene glycol and/or titanium dioxide, coating solutions in suitable organic solvents or solvent mixtures or, for the preparation of gastric juice-resistant coatings, solutions of suitable cellulose preparations, such as acetylcellulose phthalate or hydroxypropylmethylcellulose phthalate. Colorants or pigments, for example to identify or to indicate different doses of active ingredient, may be added to the tablets or sugar-coated tablet coatings.
  • hard gelatin capsules and also soft closed capsules made of gelatin and a plasticiser, such as glycerol or sorbitol.
  • the hard gelatin capsules may contain the active ingredient in the form of granules, for example in a mixmre with fillers, such as lactose, binders, such as starches, and/or lubricants, such as talc or magnesium stearate, and, if desired, stabilisers.
  • the active ingredient is preferably dissolved or suspended in suitable liquids, such as fatty oils, paraffin oil or liquid polyethylene glycols, it also being possible to add stabilisers.
  • Suitable rectally utilisable pharmaceutical preparations are, for example, suppositories, which consist of a combination of the active ingredient with a suppository base.
  • Suitable suppository bases are, for example, namral or synthetic triglycerides, paraffin hydrocarbons, polyethylene glycols or higher alkanols.
  • gelatin rectal capsules which contain a combination of the active ingredient with a base substance may also be used.
  • Suitable base substances are, for example, liquid triglycerides, polyethylene glycols or paraffin hydrocarbons.
  • Suitable preparations for parenteral administration are primarily aqueous solutions of an active ingredient in water-soluble form, for example a water-soluble salt, and furthermore suspensions of the active ingredient, such as appropriate oily injection suspensions, using suitable lipophilic solvents or vehicles, such as fatty oils, for example sesame oil, or synthetic fatty acid esters, for example ethyl oleate or triglycerides, or aqueous injection suspensions which contain viscosity-increasing substances, for example sodium carboxymethylcellulose, sorbitol and/or dextran, and, if necessary, also stabilisers.
  • suitable lipophilic solvents or vehicles such as fatty oils, for example sesame oil, or synthetic fatty acid esters, for example ethyl oleate or triglycerides
  • viscosity-increasing substances for example sodium carboxymethylcellulose, sorbitol and/or dextran, and, if necessary, also stabilisers.
  • the dose of the active ingredient depends on the warm-blooded animal species, the age and the individual condition and on the manner of administration. In the normal case, an approximate daily dose of about 10 mg to about 250 mg is to be estimated in the case of oral administration for a patient weighing approximately 75 kg .
  • Zinc finger-DNA recognition at the interface between adjacent DNA subsites is studied using a zinc finger phage display library.
  • This library is based on the three-finger DNA- binding domain of Zif268, but contains randomisations of amino acids from finger 2 (F2) and finger 3 (F3), at residue positions which could form a network of contacts across the interface of their DNA subsites.
  • the detailed design of the library is shown in Figure lc, together with the generic DNA binding site used in selections.
  • the library contains randomisations at F2 residue position 6 (hereafter denoted F2[+6]) and F3 residue positions -1 , + 1 , +2 and +3 (hereafter denoted F3[-l], F3[+2], etc.).
  • DNA binding sites that resembled the Zif268 operator, but which contained systematic combinations of bases in the DNA doublet which forms the base-step between the DNA subsites of F2 and F3.
  • DNA binding sites are of the generic form 5'-GNX-XCG-GCG-3' , where X-X denotes a given combination of the bases at the interface between the DNA subsites, and N denotes that the four bases are equally represented at DNA position 3.
  • X-X denotes a given combination of the bases at the interface between the DNA subsites
  • N denotes that the four bases are equally represented at DNA position 3.
  • This feature of the library allows selection of a large family (or database) of related zinc fingers that bind a given combination of bases at nucleotide positions 4X and 5X, but which are non-identical owing to different interactions with the middle base in the nominal triplet subsite of F3.
  • the first library to be constructed contains randomisations at F2 residue position 6 and F3 residue positions -1, 1, 2 and 3 (see Figure 2), and is sorted using the DNA sequence 5'GNX-XCG-GCG-3' , where X-X denotes a known combination of the two bases at DNA positions 4X and 5X, and N denotes an equal probability of any of the four bases at DNA position 3.
  • the second library, LIB-B contains randomisations at F2 residue position 6 and F3 residue positions -1 and 2, and is sorted using the DNA sequence 5'- GCX-XCG-GCG3 ' , where X-X denotes a known combination of the two bases at DNA positions 4X and 5X.
  • the genes for the two different zinc finger phage display libraries are assembled from four synthetic DNA oligonucleotides by directional end-to-end ligation using three short complementary DNA linkers.
  • the constructs are amplified by PCR using primers containing Not I and Sfi I restriction sites, digested with the above endonucleases to produce cloning overhangs, and ligated into phage vector Fd-Tet-SN. Electrocompetent E.
  • coli TG 1 cells are transformed with the recombinant vector and plated onto TY ⁇ medium (1.5 % agar, 1 % Bacto tryptone, 0.5 % Bacto yeast extract, 0.8% NaCl) containing 15 ⁇ g/ml tetracycline.
  • TY ⁇ medium 1.5 % agar, 1 % Bacto tryptone, 0.5 % Bacto yeast extract, 0.8% NaCl
  • Allowing this freedom to some protein-DNA interactions that are not being studied is a useful strategy towards increasing the diversity of clones which can be obtained from any one selection experiment.
  • it is important to limit the number of contacts that are allowed contextual freedom at any one time otherwise there is a danger that a subset of particularly strong intermolecular interactions will dominate the selections.
  • a smaller sublibrary is also created that contains randomised residues only in positions F2[+6] and F3[-l and +2], and therefore does not allow for contextual freedom in selections.
  • Clones selected from this library are marked with an asterisk when they are discussed herein.
  • Phage selections from the two zinc finger libraries are performed separately in order to determine the diversity of DNA sequences which can be bound specifically by members of each library. Sixteen selections are performed on each library, using the different DNA binding sites that correspond to all 16 possible combinations of bases at nucleotide positions 4X and 5X. The DNA binding site used to select specifically binding phage is immobilised on a solid surface, while a 10-fold excess of each of the other 15 DNA sites is present in solution as a specific competitor.
  • Tetracycline resistant colonies are transferred from plates into 2xTY medium (l ⁇ g/litre Bacto tryptone, lOg/litre Bacto yeast extract, 5g/litre NaCl) containing 50 ⁇ M ZnCl 2 and 15 ⁇ g/ml tetracycline, and culmred overnight at 30°C in a shaking incubator. Cleared culmre supernatant containing phage particles is obtained by centrifuging at 300g for 5 minutes.
  • Biotinylated DNA target sites (lpmol) are bound to streptavidin-coated tubes (Boehringer Mannheim). Phage supernatant solutions are diluted 1 : 10 in PBS selection buffer (PBS containing 50 ⁇ M ZnCl 2 , 2% Marvel, 1 % Tween, 20 ⁇ g/ml sonicated salmon sperm DNA, 10 pmol/ml of each of the 15 other possible unbiotinylated DNA sites), and 1 ml is applied to each tube for 1 hour at 20°C. After this time, the tubes are emptied and washed 20 times with PBS containing 50 ⁇ M ZnCl 2 , 2% Marvel and 1 % Tween.
  • Retained phage are eluted in 0.1ml 0.1M triethylamine and neutralised with an equal volume of 1M Tris (pH 7.4).
  • Logarithmic-phase E. coli TG 1 (0.5ml) are infected with eluted phage (50 ⁇ l), and used to prepare phage supernatants for subsequent rounds of selection. After 3 rounds of selection, E. coli infected with selected phage are plated, individual colonies are picked and used to grow phage for binding site signature assays and DNA sequencing.
  • each zinc finger clones After three rounds of phage selection against a particular DNA binding site, individual zinc finger clones are recovered, and the DNA binding specificity of each clone is determined by the binding site signature method. This involves screening each zinc finger phage for binding to eight different libraries of the DNA binding site, designed such that each library contains one fixed base and one randomised base at either of positions 4X and 5X (i.e. libraries GN, AN, TN, CN, and NG, NA, NT, NC).
  • each of the 16 DNA binding sites used in selection experiments is specified by a unique combination of two libraries - for example, the DNA binding site containing 4G5G is present in only two of the eight libraries in which the relevant doublet had one nucleotide randomised and the other nucleotide fixed as guanine, i.e. libraries 4G5N and 4N5G.
  • the eight DNA libraries used in binding site signamres are arrayed across a microtitre plate and zinc finger phage binding is detected by phage ⁇ LISA.
  • the pattern of binding to the eight DNA libraries reveals the DNA sequence specificity (or preference) of each phage clone, and only those clones found to be relatively specific are subsequently sequenced to reveal the identity of the amino acids present in the randomised zinc finger residue positions.
  • DNA libraries (0.4 pmol/well for LIB-A and 1.2 pmol/well for LIB-B) are added to streptavidin-coated ⁇ LISA wells (Boehringer-Mannheim) in PBS containing 50 ⁇ M ZnCl 2 (PBS/Zn).
  • Phage solution overnight bacterial culmre supernatant diluted 1 : 10 in PBS/Zn containing 2% Marvel, 1 % Tween and 20 ⁇ g/ml sonicated salmon sperm DNA
  • Binding is allowed to proceed for one hour at 20°C.
  • Unbound phage are removed by washing 6 times with PBS/Zn containing 1 % Tween, then 3 times with PBS/Zn. Bound phage are detected by ⁇ LISA using horseradish peroxidase- conjugated anti-M13 IgG (Pharmacia Biotech) and the colourimetric signal quantitated using SOFFMAX 2.32 (Molecular Devices).
  • the coding sequence of individual zinc finger clones is amplified by PCR using external primers complementary to phage sequence. These PCR products are sequenced manually using Thermo Sequenase cycle sequencing (Amersham Life Science).
  • Figure 3 shows the binding site signamres of relatively sequence-specific zinc finger phages selected from both libraries, using the 16 different DNA doublets which form the base-step between the DNA subsites of fingers 2 and 3.
  • the results show that zinc finger clones are selected which bind specifically to almost all subsites, including those triplets in which the 5' position (nucleotide 5X in the model system) is fixed as a base other than guanine.
  • the selections show that any of the four bases can be bound specifically in both the 5' and 3' positions of a nominal triplet subsite.
  • the results are summarised in Figure 4.
  • Selections from the smaller sub-library yield fingers that can bind specifically to only 8 of the 16 doublets, whereas members of the larger library yield fingers that recognise 15 out of the 16 doublets. It is not known whether this difference in efficacy originates from the inclusion of more randomised positions in the larger library, or the conformational flexibility afforded by the contextual freedom designed into the larger library, or both.
  • the only base-step that does not yield specific zinc fingers is 4G5A. This dinucleotide may induce an unfavourable DNA deformation in the context of the DNA binding sites used for selection.
  • the target selected for the zinc finger nucleic acid binding protein is the activating point mutation of the human EJ bladder carcinoma ras oncogene, which was the first DNA lesion reported to confer transforming properties on a cellular proto-oncogene. Since the original discovery, ras gene mutations have been found to occur at high frequencies in a variety of human cancers and are established targets for the diagnosis of oncogenesis at early stages of tumour growth.
  • the EJ bladder carcinoma mutation is a single nucleotide change in codon 12 of H-ras, which results in a mutation from GGC to GTC at this position.
  • a zinc finger peptide is designed to bind a 9bp DNA site assigned in the noncoding strand of the mutant ras gene, such that three fingers contact 'anticodons' 10, 11 and 12 in series, as shown in Fig.5.
  • the rationale of this assignment takes into account the fact that zinc fingers make most contacts to one DNA strand, and the mutant noncoding strand carries an adenine which can be strongly discriminated from the cytosine present in the wild-type ras, by a bidentate contact from an asparagine residue.
  • the first finger of the designer lead peptide is designed according to the rules set forth herein to bind the triplet 5'-GCC-3', which corresponds to 'anticodon' 10 of the designated binding site.
  • the finger has the following sequence:
  • a DNA coding sequence encoding this polypeptide is constructed from synthesised oligonucleotides.
  • the second and third fingers of the DNA-binding domain are direct repeats of this first finger, but in which the third ⁇ -helical residue which contacts the middle nucleotide of a triplet, +3, is mutated according to recognition rules, to histidine in finger 2 and asparagine in finger 3 , such that the specificity of these fingers is predicted to be 5'-GGC-3' ('anticodon' 11) and 5'-GAC-3' ('anticodon' 12) respectively.
  • the second and third finger polypeptides have the sequences
  • the DNA-binding domain is able to bind the mutated ras sequence with an apparent Kd of 17nM, and to discriminate strongly against the wild-type sequence.
  • the first finger of the lead peptide could contact cytosine using one of Asp, Glu, Ser or Thr in the third ⁇ -helix position.
  • Selections from this mini-library are over one round of phage binding to 5nM mutant DNA oligo in 100 ⁇ l PBS containing 50 ⁇ M ZnCl2, 2% (w/v) fat-free dried milk (Marvel) and 1 % (v/v) Tween-20, with l ⁇ g poly dldC as competitor, followed by six washes with PBS containing 50 ⁇ M ZnCto and 1 % (v/v) Tween-20.
  • Bound phage are eluted with 0.1M triethylamine for 3 mins, and immediately transferred to an equal volume of 1M Tris-Cl pH 7.4.
  • a single round of randomisation and selection is found to be sufficient to improve the affinity of the lead zinc finger peptide to this standard.
  • a small library of mutants is constructed with limited variations specifically in the third ⁇ -helical position ( + 3) of finger 1 of the designed peptide. Selection from this library yields an optimised DNA-binding domain with asparagine at the variable position, which is able to bind the mutant ras sequence with an apparent K of 3nM, i.e. equal to that of the wild-type Zif268 DNA- binding domain (Fig. 6).
  • the selection of asparagine at this position to bind opposite a cytosine is an unexpected deviation from the recognition rules, which normally pair asparagine with adenine.
  • asparagine is, however, consistent with physical considerations of the protein-DNA interface.
  • asparagine has been observed to bridge a base-pair step in the major groove of DNA, for example in the co-crystal structures of the GCN4 DNA-binding domain.
  • a number of different base-pair steps provide the correct stereochemical pairings of hydrogen bond donors and acceptors which could satisfy asparagine, including the underlined step GCC of ras 'anticodon' 10.
  • the sequence-dependent deformation of ras DNA could account for our observation that wild-type and EJ ras gene fragments have different electrophoretic mobility in polyacrylamide gels, since the wild-type ras gene has two GGC sequences 5 bp apart and hence out of helical phase (resulting in no net bend), while the EJ mutation affects one of these GGC triplets.
  • the optimised DNA-binding domain displayed on phage is applied in the diagnosis of the activating point mutation of the EJ ras oncogene.
  • Bacterial culmre supernatant containing the diagnostic phage is diluted 1 :1 with PBS containing 50 ⁇ M ZnC_2, 4% (w/v) fat-free dried milk (Marvel) and 2% (v/v) Tween-20.
  • Biotinylated oligonucleotides (7.5pmol) containing double stranded DNA comprising codons 8-16 from the wild type or the point- mutated ras gene are added to 50 ⁇ l of the diluted phage and incubated for lh at 20°C. In the experiment shown in Fig.
  • bound phage are captured with 0.5mg streptavidin coated paramagnetic beads (Dynal) - however streptavidin coated microtitre plates (Boehringer Mannheim) can also be used without alteration to the protocol. Unbound phage are removed by washing the beads 6 times with PBS containing 50 ⁇ M ZnC_2 and 1 % (v/v) Tween-20. The beads are subsequently incubated for lh at RT with anti-M13 IgG conjugated to horseradish peroxidase (Pharmacia Biotech) diluted 1:5000 in PBS containing 50 ⁇ M ZnCl2 and 2% (w/v) fat-free dried milk (Marvel).
  • Phage are retained specifically by DNA bearing the mutant, but not the wild-type ras sequence, allowing the detection of the point mutation by ELISA (Fig. 7).
  • HIV TAR The sequence of the HIV TAR, the region of the LTR which is responsible for trans- activation by Tat, is known (Jones and Peterlin, (1994) Ann. Rev. Biochem. 63:717-743). A sequence with the TAT region is identified and a zinc finger polypeptide designed to bind thereto.
  • the selected sequence is 5' - AGA GAG CTC - 3', which is the complement of nucleotides 4-34 to 4-42 of HIV.
  • the corresponding amino acids required in fingers 1, 2 and 3 of a zinc finger binding protein are determined according to the rules set forth above, as follows:
  • Finger 3 target 5' - AGA - 3'
  • Finger 2 target 5' - GAG - 3'
  • Finger 1 target 5' - CTC - 3'
  • the framework of the polypeptide is taken from the Zif 268 middle finger.
  • the sequence of the entire polypeptide is shown in SEQ. ID. No. 2.
  • Residues 4-2 and 4-6 of finger 3 are partially selected by randomisation and phage display selection. At position 2, two triplets are used, GAT and GGT, coding for Asp or Gly. Position 4-6 was randomised. In these positions, the residues Gly and Val are selected.
  • the methodology employed is as follows: colony PCR is performed with one primer containing a single mismatch to create the required randomisations in finger 3. Cloning of PCR product in phage vector is as described previously (Choo, Y. & Klug, A. (1994) Proc. Natl. Acad. Sci. USA 91, 11163-11167; Choo, Y. & Klug, A. (1994) Proc. Natl. Acad. Sci.
  • forward and backward PCR primers contained unique restriction sites for Not I or Sfi I respectively and amplified an approximately 300 base pair region encompassing three zinc fingers.
  • PCR products are digested with Sfi I and Not I to create cohesive ends and are ligated to lOOng of similarly digested fd-Tet-S ⁇ vector.
  • Electrocompetent TGI cells are transformed with the recombinant vector. Single colonies of transformants are grown overnight in 2xTY containing 50 ⁇ M ZnC-2 15 ⁇ g/ml tetracycline.
  • Single stranded D ⁇ A is prepared from phage in the culmre supernatant and sequenced with Sequenase 2.0 (United States Biochemical).
  • Arrays of zinc fingers bind to asymmetric DNA sequences but are not known to bind palindromes.
  • a three finger domain is engineered to recognise the 8bp palindromic sequence GCGGCCGC which is bound and cleaved by the restriction endonuclease Notl.
  • a zinc finger domain is selected from the a Zif268 middle finger library (see WO 96/06166) to bind the middle triplet GCC in the context of the Zif268 binding site.
  • the sequence bound by this domain is GCG-GCC-GCG.
  • Position -2 is Ser in WT Zif268 and could make a water mediated H-bond to a D ⁇ A phosphate: this is mutated to Arg in order to make a direct phosphate contact.
  • Positions - 1, 1 and 2 are mutated to Gly or Ala (Gly for -1 which is just outside the helix, and Ala for the other positions on the helix) in order to eliminate H-bonding groups which might function in D ⁇ A recognition.
  • the protein is able to accept any base ( ⁇ ) in the sequence GCG-GCC-GC ⁇ with a small preference for A over G/T/C.
  • the binding strength is not affected, even though the Arg- > G contact of WT Zif268 is deleted, owing to compensation from the engineered phosphate contact.
  • a protein that bound the 8bp palindromic recognition site of ⁇ otl is engineered from a three finger domain based on Zif268.
  • the zinc finger domain selected from the library originally had Ser at position 4-3 of F2 and recognises the sequence GCGGYC-GCG where Y is C or T. Since recognition of the Notl site requires specifying C at that D ⁇ A position, the mutation Ser- > Asp is made at position 4-3 of F2 to narrow the D ⁇ A binding specificity from Y to C. This mutation is according to the rules set forth above. The final construct binds the sequence GCG-GCC- GC specifically. SEQUENCE LISTING
  • MOLECULE TYPE other nucleic acid
  • Arg lie Cys Met Arg Asn Phe Arg Gin Ala Asp His Leu Gin Glu His 65 70 75 80

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

L'invention concerne une méthode de préparation d'une protéine de liaison d'acide nucléique de la classe des doigts à zinc Cys2-His2 capable de se lier à une séquence d'acide nucléique cible, la liaison à la base 5' du triplet par un motif de liaison d'acide nucléique de doigt à zinc α-hélicoïdal dans la protéine étant déterminée comme suit: si la base 5' dans le triplet est A, alors la position +6 dans l'hélice α est Glu, Asn ou Val; si la base 5' dans le triplet est C, alors la position +6 dans l'hélice α est Ser, Thr, Val, Ala, Glu ou Asn.
PCT/GB1998/001514 1997-05-23 1998-05-26 Proteines de liaison d'acide nucleique WO1998053059A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU75424/98A AU7542498A (en) 1997-05-23 1998-05-26 Nucleic acid binding proteins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9710807.0 1997-05-23
GBGB9710807.0A GB9710807D0 (en) 1997-05-23 1997-05-23 Nucleic acid binding proteins

Publications (1)

Publication Number Publication Date
WO1998053059A1 true WO1998053059A1 (fr) 1998-11-26

Family

ID=10813048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1998/001514 WO1998053059A1 (fr) 1997-05-23 1998-05-26 Proteines de liaison d'acide nucleique

Country Status (3)

Country Link
AU (1) AU7542498A (fr)
GB (1) GB9710807D0 (fr)
WO (1) WO1998053059A1 (fr)

Cited By (354)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999047656A2 (fr) * 1998-03-17 1999-09-23 Gendaq Limited Proteines de fixation a l'acide nucleique
WO2000027878A1 (fr) * 1998-11-09 2000-05-18 Gendaq Limited Systeme de criblage de polypeptides a motifs en doigt de zinc, destine a mettre en evidence une certaine capacite de liaison
EP1075540A1 (fr) * 1999-01-12 2001-02-14 Sangamo Biosciences Inc. Selection de sites cibles pour proteines a doigts de zinc et methodes de fabrication de proteines a doigts de zinc destinees a se lier avec des sites preselectionnes
WO2002008286A2 (fr) * 2000-07-21 2002-01-31 Syngenta Participations Ag Code de reconnaissance pour domaines en doigt de zinc et ses utilisations
WO2002018648A2 (fr) * 2000-08-25 2002-03-07 President And Fellows Of Harvard College Analyse d'interactions de liaison
US6410248B1 (en) 1998-01-30 2002-06-25 Massachusetts Institute Of Technology General strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites
WO2002057308A2 (fr) * 2001-01-22 2002-07-25 Sangamo Biosciences, Inc. Polypeptides se liant a un acide nucleique
WO2001085780A3 (fr) * 2000-05-08 2002-09-06 Gendaq Ltd Polypeptides de liaison aux acides nucleiques
US6479626B1 (en) 1998-03-02 2002-11-12 Massachusetts Institute Of Technology Poly zinc finger proteins with improved linkers
US6503717B2 (en) 1999-12-06 2003-01-07 Sangamo Biosciences, Inc. Methods of using randomized libraries of zinc finger proteins for the identification of gene function
US6511808B2 (en) 2000-04-28 2003-01-28 Sangamo Biosciences, Inc. Methods for designing exogenous regulatory molecules
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US6599692B1 (en) 1999-09-14 2003-07-29 Sangamo Bioscience, Inc. Functional genomics using zinc finger proteins
US6610489B2 (en) 2000-04-28 2003-08-26 Sangamo Biosciences, Inc. Pharmacogenomics and identification of drug targets by reconstruction of signal transduction pathways based on sequences of accessible regions
US6746838B1 (en) 1997-05-23 2004-06-08 Gendaq Limited Nucleic acid binding proteins
US6790941B2 (en) 1994-01-18 2004-09-14 The Scripps Research Institute Zinc finger protein derivatives and methods therefor
US6794136B1 (en) 2000-11-20 2004-09-21 Sangamo Biosciences, Inc. Iterative optimization in the design of binding proteins
WO2005014791A2 (fr) 2003-08-08 2005-02-17 Sangamo Biosciences, Inc. Methodes et compositions permettant un clivage et une recombinaison cibles
US7013219B2 (en) 1999-01-12 2006-03-14 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US7026462B2 (en) 2000-12-07 2006-04-11 Sangamo Biosciences, Inc. Regulation of angiogenesis with zinc finger proteins
US7030215B2 (en) 1999-03-24 2006-04-18 Sangamo Biosciences, Inc. Position dependent recognition of GNN nucleotide triplets by zinc fingers
US7067317B2 (en) 2000-12-07 2006-06-27 Sangamo Biosciences, Inc. Regulation of angiogenesis with zinc finger proteins
US7070934B2 (en) 1999-01-12 2006-07-04 Sangamo Biosciences, Inc. Ligand-controlled regulation of endogenous gene expression
USRE39229E1 (en) 1994-08-20 2006-08-08 Gendaq Limited Binding proteins for recognition of DNA
US7217509B2 (en) 2000-04-28 2007-05-15 Sangamo Biosciences, Inc. Databases of regulatory sequences; methods of making and using same
US7262055B2 (en) 1998-08-25 2007-08-28 Gendaq Limited Regulated gene expression in plants
US7262054B2 (en) 2002-01-22 2007-08-28 Sangamo Biosciences, Inc. Zinc finger proteins for DNA binding and gene regulation in plants
US7273923B2 (en) 2001-01-22 2007-09-25 Sangamo Biosciences, Inc. Zinc finger proteins for DNA binding and gene regulation in plants
US7358085B2 (en) 2005-02-28 2008-04-15 Sangamo Biosciences, Inc. Anti-angiogenic methods and compositions
US7361635B2 (en) 2002-08-29 2008-04-22 Sangamo Biosciences, Inc. Simultaneous modulation of multiple genes
US7407776B2 (en) 2003-09-19 2008-08-05 Sangamo Biosciences, Inc. Engineered zinc finger proteins for regulation of gene expression
EP2036984A2 (fr) 2002-07-26 2009-03-18 BASF Plant Science GmbH Reversion de l'effet sélectif négatif d'un protéin de marquage comme procédure de sélection
US7534775B2 (en) 2004-04-08 2009-05-19 Sangamo Biosciences, Inc. Methods and compositions for modulating cardiac contractility
US7566533B2 (en) 2000-11-27 2009-07-28 Intelligent Medical Devices, Inc. Clinically intelligent diagnostic devices and methods
US7585849B2 (en) 1999-03-24 2009-09-08 Sangamo Biosciences, Inc. Position dependent recognition of GNN nucleotide triplets by zinc fingers
WO2009151591A2 (fr) 2008-06-10 2009-12-17 Sangamo Biosciences, Inc. Procédés et compositions pour la génération de lignées cellulaires déficientes en bax et bak
WO2010021692A1 (fr) 2008-08-22 2010-02-25 Sangamo Biosciences, Inc. Procédés et compositions pour un clivage simple brin ciblé et une intégration ciblée
WO2010065123A1 (fr) 2008-12-04 2010-06-10 Sangamo Biosciences, Inc. Édition de génome chez des rats au moyen de nucléases en doigt de zinc
WO2010077319A1 (fr) 2008-12-17 2010-07-08 Dow Agrosciences Llc Intégration ciblée dans le locus zp15
EP2206782A1 (fr) 2006-05-25 2010-07-14 Sangamo BioSciences, Inc. Procédés et compositions pour l'inactivation de gènes
EP2213731A1 (fr) 2006-05-25 2010-08-04 Sangamo BioSciences, Inc. Variants des demi-domaines de foki
WO2010090744A1 (fr) 2009-02-04 2010-08-12 Sangamo Biosciences, Inc. Procédés et compositions pour traiter des neuropathies
US7851216B2 (en) 2000-01-24 2010-12-14 Gendaq, Ltd. Methods and compositions for linking binding domains in nucleic acid binding proteins
EP2266396A2 (fr) 2001-09-24 2010-12-29 Sangamo BioSciences, Inc. Modulation de cellules souches au moyen de protéines à doigts de zinc
WO2011002503A1 (fr) 2009-06-30 2011-01-06 Sangamo Biosciences, Inc. Criblage rapide de nucléases biologiquement actives et isolement de cellules modifiées par nucléases
US7888121B2 (en) 2003-08-08 2011-02-15 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
EP2292274A1 (fr) 2004-09-16 2011-03-09 Sangamo BioSciences, Inc. Compositions et procédés pour la production de protéines
US7919313B2 (en) 2007-07-12 2011-04-05 Sangamo Biosciences, Inc. Methods and compositions for inactivating alpha 1,6 fucosyltransferase (FUT8) gene expression
US7923542B2 (en) 2000-04-28 2011-04-12 Sangamo Biosciences, Inc. Libraries of regulatory sequences, methods of making and using same
WO2011048600A1 (fr) 2009-10-21 2011-04-28 Danziger Innovations Ltd. Génération de variations génotypiques dans des génomes de plantes par infection d'un gamète
US7943731B1 (en) 1999-08-11 2011-05-17 Massachusetts Institute Of Technology Dimerizing peptides
WO2011064736A1 (fr) 2009-11-27 2011-06-03 Basf Plant Science Company Gmbh Endonucléases optimisées et leurs utilisations
US7972854B2 (en) 2004-02-05 2011-07-05 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
EP2348119A2 (fr) 2002-02-01 2011-07-27 Oxford BioMedica (UK) Limited Vecteur de lentivirus multicistronique
EP2360272A1 (fr) 2002-12-04 2011-08-24 Agency for Science, Technology and Research Procédé permettant de générer ou déterminer des etiquettes d'acide nucléique correspondant aux extremités dermiques de molécules d'ADN par une analyse séquences de l'expression génique (SAGE terminal)
EP2395081A1 (fr) 2006-08-11 2011-12-14 Dow AgroSciences LLC Recombinaison homologue médiée par une nucléase à doigts de zinc
WO2012012667A2 (fr) 2010-07-21 2012-01-26 Sangamo Biosciences, Inc. Méthodes et compositions pour modifier un locus hla
US8106255B2 (en) 2002-01-23 2012-01-31 Dana Carroll Targeted chromosomal mutagenasis using zinc finger nucleases
EP2412812A1 (fr) 2006-12-14 2012-02-01 Dow AgroSciences LLC Protéines à doigts de zinc non canoniques optimisés
US8110379B2 (en) 2007-04-26 2012-02-07 Sangamo Biosciences, Inc. Targeted integration into the PPP1R12C locus
US8153399B2 (en) 2008-10-29 2012-04-10 Sangamo Biosciences, Inc. Methods and compositions for inactivating glutamine synthetase gene expression
WO2012047598A1 (fr) 2010-09-27 2012-04-12 Sangamo Biosciences, Inc. Procédés et compositions d'inhibition d'entrée de virus dans cellules
WO2012051343A1 (fr) 2010-10-12 2012-04-19 The Children's Hospital Of Philadelphia Procédés et compositions pour traiter l'hémophilie b
WO2012139045A1 (fr) 2011-04-08 2012-10-11 Gilead Biologics, Inc. Procédés et compositions pour normaliser le système vasculaire tumoral par inhibition de la loxl2
US8313925B2 (en) 2005-07-26 2012-11-20 Sangamo Biosciences, Inc. Zinc finger proteins and method for inactivating a dhfr gene in a chinese hamster ovary cell
US8399218B2 (en) 2007-09-27 2013-03-19 Dow Agrosciences, Llc Engineered zinc finger proteins targeting 5-enolpyruvyl shikimate-3-phosphate synthase genes
WO2013044008A2 (fr) 2011-09-21 2013-03-28 Sangamo Biosciences, Inc. Procédés et compositions de régulation de l'expression d'un transgène
US8409861B2 (en) 2003-08-08 2013-04-02 Sangamo Biosciences, Inc. Targeted deletion of cellular DNA sequences
EP2597155A1 (fr) 2007-10-25 2013-05-29 Sangamo BioSciences, Inc. Procédés et compositions pour une intégration ciblée
EP2615106A1 (fr) 2010-02-08 2013-07-17 Sangamo BioSciences, Inc. Demi-domaines résultant de clivage technique
WO2013112917A1 (fr) 2012-01-27 2013-08-01 Sanbio, Inc. Procédés et compositions de modulation de l'angiogenèse et de la vasculogenèse
WO2013130824A1 (fr) 2012-02-29 2013-09-06 Sangamo Biosciences, Inc. Procédés et compositions permettant de traiter la maladie de huntington
US8530638B2 (en) 2004-04-23 2013-09-10 The Brigham And Women's Hospital, Inc. Space efficient polymer sets
US8563314B2 (en) 2007-09-27 2013-10-22 Sangamo Biosciences, Inc. Methods and compositions for modulating PD1
EP2660318A1 (fr) 2010-02-09 2013-11-06 Sangamo BioSciences, Inc. Modification génomique ciblée de molécules partiellement donneuses à simple brin
WO2013166315A1 (fr) 2012-05-02 2013-11-07 Dow Agrosciences Llc Modification ciblée de malate déshydrogénase
WO2013169802A1 (fr) 2012-05-07 2013-11-14 Sangamo Biosciences, Inc. Procédés et compositions pour l'intégration médiée par nucléase de transgènes
WO2013169398A2 (fr) 2012-05-09 2013-11-14 Georgia Tech Research Corporation Systèmes et procédés pour améliorer la spécificité et l'activité de nucléases
US8586526B2 (en) 2010-05-17 2013-11-19 Sangamo Biosciences, Inc. DNA-binding proteins and uses thereof
US8592645B2 (en) 2009-10-22 2013-11-26 Dow Agrosciences Llc Engineered zinc finger proteins targeting plant genes involved in fatty acid biosynthesis
WO2014011237A1 (fr) 2012-07-11 2014-01-16 Sangamo Biosciences, Inc. Méthodes et compositions pour le traitement de maladies lysosomales
WO2014011901A2 (fr) 2012-07-11 2014-01-16 Sangamo Biosciences, Inc. Procédés et compositions pour la délivrance d'agents biologiques
WO2014036219A2 (fr) 2012-08-29 2014-03-06 Sangamo Biosciences, Inc. Procédés et compositions de traitement d'un état génétique
WO2014039692A2 (fr) 2012-09-07 2014-03-13 Dow Agrosciences Llc Loci de performance fad2 et protéines se liant à un site spécifique cible correspondantes pouvant induire des cassures ciblées
WO2014039872A1 (fr) 2012-09-07 2014-03-13 Dow Agrosciences Llc Plateforme d'intégration de transgène génétiquement modifié (etip) pour le ciblage génique et l'empilement de caractères
WO2014059173A2 (fr) 2012-10-10 2014-04-17 Sangamo Biosciences, Inc. Composés modifiant les lymphocytes t et leurs utilisations
EP2727600A1 (fr) 2009-07-28 2014-05-07 Sangamo BioSciences, Inc. Procédés et compositions pour le traitement de maladies à répétition trinucléotidique
US8772009B2 (en) 2009-05-18 2014-07-08 Sangamo Biosciences, Inc. Methods and compositions for increasing nuclease activity
US8771985B2 (en) 2010-04-26 2014-07-08 Sangamo Biosciences, Inc. Genome editing of a Rosa locus using zinc-finger nucleases
US8772453B2 (en) 2010-05-03 2014-07-08 Sangamo Biosciences, Inc. Compositions for linking zinc finger modules
WO2014130955A1 (fr) 2013-02-25 2014-08-28 Sangamo Biosciences, Inc. Méthodes et compositions pour améliorer une disruption génique à médiation nucléase
WO2014165612A2 (fr) 2013-04-05 2014-10-09 Dow Agrosciences Llc Procédés et compositions permettant d'intégrer une séquence exogène au sein du génome de plantes
US8871905B2 (en) 2009-03-20 2014-10-28 Sangamo Biosciences, Inc. Modification of CXCR4 using engineered zinc finger proteins
US8895264B2 (en) 2011-10-27 2014-11-25 Sangamo Biosciences, Inc. Methods and compositions for modification of the HPRT locus
US8956828B2 (en) 2009-11-10 2015-02-17 Sangamo Biosciences, Inc. Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases
WO2015031619A1 (fr) 2013-08-28 2015-03-05 Sangamo Biosciences, Inc. Compositions de liaison de domaines de liaison à l'adn et de domaines de clivage
WO2015057980A1 (fr) 2013-10-17 2015-04-23 Sangamo Biosciences, Inc. Procédés d'administration et compositions pour génie génomique médié par nucléase
WO2015057976A1 (fr) 2013-10-17 2015-04-23 Sangamo Biosciences, Inc. Procédés d'apport et compositions pour ingénierie génomique à médiation par des nucléases dans des cellules souches hématopoïétiques
WO2015066636A2 (fr) 2013-11-04 2015-05-07 Dow Agrosciences Llc Loci optimaux de maïs
WO2015066643A1 (fr) 2013-11-04 2015-05-07 Dow Agrosciences Llc Loci de soja optimaux
WO2015066638A2 (fr) 2013-11-04 2015-05-07 Dow Agrosciences Llc Loci optimaux de maïs
WO2015070212A1 (fr) 2013-11-11 2015-05-14 Sangamo Biosciences, Inc. Méthodes et compositions pour traiter la maladie de huntington
US9045763B2 (en) 2005-07-26 2015-06-02 Sangamo Biosciences, Inc. Linear donor constructs for targeted integration
US9074224B2 (en) 2009-08-03 2015-07-07 Recombinetics, Inc. Methods and compositions for targeted gene modification
WO2015117081A2 (fr) 2014-02-03 2015-08-06 Sangamo Biosciences, Inc. Méthodes et compositions pour le traitement de la bêta-thalassémie
WO2015130931A1 (fr) 2014-02-28 2015-09-03 Dow Agrosciences Llc Expression spécifique des racines conférée par des éléments régulateurs de gène chimère
WO2015143046A2 (fr) 2014-03-18 2015-09-24 Sangamo Biosciences, Inc. Procédés et compositions pour la régulation sélective de l'expression de protéine à doigt à zinc
US9161995B2 (en) 2011-07-25 2015-10-20 Sangamo Biosciences, Inc. Methods and compositions for alteration of a cystic fibrosis transmembrane conductance regulator (CFTR) gene
EP2936976A1 (fr) 2008-04-21 2015-10-28 Danziger Innovations Ltd. Vecteurs d'expression de virus de plante et leur utilisation pour générer des variations génotypiques dans des génomes de plantes
US9217026B2 (en) 2006-11-13 2015-12-22 Sangamo Biosciences, Inc. Method of inactivating a glucocorticoid receptor gene in an isolated cell
WO2016005449A1 (fr) 2014-07-08 2016-01-14 Vib Vzw Moyens et procédés d'augmentation du rendement de plante
WO2016011381A1 (fr) 2014-07-18 2016-01-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Diminution de l'expression et/ou de la fonction de cxcr4 pour améliorer la prise de greffe de cellules souches hématopoïétiques
WO2016011029A2 (fr) 2014-07-14 2016-01-21 Washington State University Knock-out nanos qui permet de pratiquer l'ablation des cellules de la lignée germinale
US9249428B2 (en) 2003-08-08 2016-02-02 Sangamo Biosciences, Inc. Methods and compositions for targeted genomic deletion
US9255250B2 (en) 2012-12-05 2016-02-09 Sangamo Bioscience, Inc. Isolated mouse or human cell having an exogenous transgene in an endogenous albumin gene
US9267123B2 (en) 2011-01-05 2016-02-23 Sangamo Biosciences, Inc. Methods and compositions for gene correction
WO2016044416A1 (fr) 2014-09-16 2016-03-24 Sangamo Biosciences, Inc. Procédés et compositions pour ingénierie génomique à médiation par des nucléases et correction du génome dans des cellules souches hématopoïétiques
US9394531B2 (en) 2008-05-28 2016-07-19 Sangamo Biosciences, Inc. Compositions for linking DNA-binding domains and cleavage domains
WO2016118726A2 (fr) 2015-01-21 2016-07-28 Sangamo Biosciences, Inc. Méthodes et compositions pour l'identification de nucléases à spécificité élevée
US9447434B2 (en) 2002-09-05 2016-09-20 California Institute Of Technology Use of chimeric nucleases to stimulate gene targeting
US9458205B2 (en) 2011-11-16 2016-10-04 Sangamo Biosciences, Inc. Modified DNA-binding proteins and uses thereof
WO2016161446A1 (fr) 2015-04-03 2016-10-06 Dana-Farber Cancer Institute, Inc. Composition et procédés de correction génomique de cellules b
WO2016168229A1 (fr) 2015-04-15 2016-10-20 Dow Agrosciences Llc Promoteur de plante pour l'expression d'un transgène
WO2016168230A2 (fr) 2015-04-15 2016-10-20 Dow Agrosciences Llc Promoteur végétal pour l'expression d'un transgène
WO2016178207A1 (fr) 2015-05-04 2016-11-10 Ramot At Tel-Aviv University Ltd. Procédés et kits pour fragmenter l'adn
US9506120B2 (en) 2007-09-27 2016-11-29 Sangamo Biosciences, Inc. Rapid in vivo identification of biologically active nucleases
WO2016196388A1 (fr) 2015-05-29 2016-12-08 Juno Therapeutics, Inc. Composition et procédés de régulation des interactions inhibitrices dans les cellules génétiquement modifiées
US9522936B2 (en) 2014-04-24 2016-12-20 Sangamo Biosciences, Inc. Engineered transcription activator like effector (TALE) proteins
EP3118308A1 (fr) 2008-04-30 2017-01-18 SanBio, Inc. Cellules régénérantes neurales présentant des modifications dans la méthylation de l'adn
WO2017011519A1 (fr) 2015-07-13 2017-01-19 Sangamo Biosciences, Inc. Procédés d'administration et compositions pour génie génomique médié par nucléase
WO2017023570A1 (fr) 2015-08-06 2017-02-09 The Curators Of The University Of Missouri Animaux résistant aux pathogènes ayant des gènes cd163 modifiés
US9574211B2 (en) 2014-05-13 2017-02-21 Sangamo Biosciences, Inc. Methods and compositions for prevention or treatment of a disease
WO2017053164A1 (fr) 2015-09-22 2017-03-30 Dow Agrosciences Llc Promoteur et 3'utr de plante pour l'expression d'un transgène
US9616090B2 (en) 2014-07-30 2017-04-11 Sangamo Biosciences, Inc. Gene correction of SCID-related genes in hematopoietic stem and progenitor cells
EP3156504A1 (fr) 2009-08-11 2017-04-19 Sangamo BioSciences, Inc. Organismes homozygotes destinés à une modification ciblée
WO2017070298A1 (fr) 2015-10-22 2017-04-27 Dow Agrosciences Llc Promoteur végétal pour l'expression d'un transgène
WO2017079673A1 (fr) 2015-11-04 2017-05-11 Fate Therapeutics, Inc. Ingénierie génomique de cellules pluripotentes
WO2017078935A1 (fr) 2015-11-04 2017-05-11 Dow Agrosciences Llc Promoteur végétal pour l'expression d'un transgène
WO2017106537A2 (fr) 2015-12-18 2017-06-22 Sangamo Biosciences, Inc. Disruption ciblée du récepteur des cellules du cmh
WO2017106528A2 (fr) 2015-12-18 2017-06-22 Sangamo Biosciences, Inc. Disruption ciblée du récepteur des lymphocytes t
WO2017123757A1 (fr) 2016-01-15 2017-07-20 Sangamo Therapeutics, Inc. Méthodes et compositions pour le traitement d'une maladie neurologique
WO2017143061A1 (fr) 2016-02-16 2017-08-24 Yale University Compositions et procédés pour le traitement de la mucoviscidose
WO2017143042A2 (fr) 2016-02-16 2017-08-24 Yale University Compositions permettant d'améliorer l'édition ciblée de gènes et leurs procédés d'utilisation
US9757420B2 (en) 2014-07-25 2017-09-12 Sangamo Therapeutics, Inc. Gene editing for HIV gene therapy
US9771403B2 (en) 2013-12-09 2017-09-26 Sangamo Therapeutics, Inc. Methods and compositions for treating hemophilia
WO2017165655A1 (fr) 2016-03-23 2017-09-28 Dana-Farber Cancer Institute, Inc. Méthodes pour améliorer l'efficacité d'édition de gènes
WO2017173453A1 (fr) 2016-04-01 2017-10-05 The Brigham And Women's Hospital, Inc. Nanoparticules sensibles aux stimuli pour applications biomédicales
WO2017180180A2 (fr) 2015-09-22 2017-10-19 Dow Agrosciences Llc Promoteur de plante et 3'utr pour l'expression de transgènes
WO2017189870A1 (fr) 2016-04-27 2017-11-02 Massachusetts Institute Of Technology Ensembles d'acides nucléiques nanométriques stables et procédés associés
US9816074B2 (en) 2014-07-25 2017-11-14 Sangamo Therapeutics, Inc. Methods and compositions for modulating nuclease-mediated genome engineering in hematopoietic stem cells
US9834787B2 (en) 2009-04-09 2017-12-05 Sangamo Therapeutics, Inc. Targeted integration into stem cells
WO2018005556A1 (fr) 2016-06-27 2018-01-04 Juno Therapeutics, Inc. Épitopes à restriction cmh-e, molécules de liaison et procédés et utilisations associés
WO2018005559A1 (fr) 2016-06-27 2018-01-04 Juno Therapeutics, Inc. Procédé d'identification d'épitopes peptidiques, molécules qui se lient à de tels épitopes et utilisations associées
WO2018013840A1 (fr) 2016-07-13 2018-01-18 Vertex Pharmaceuticals Incorporated Procédés, compositions et kits pour augmenter l'efficacité d'édition du génome
US9873894B2 (en) 2013-05-15 2018-01-23 Sangamo Therapeutics, Inc. Methods and compositions for treatment of a genetic condition
WO2018029034A1 (fr) 2016-08-09 2018-02-15 Vib Vzw Inhibiteurs de cellulose synthase et plantes mutantes
WO2018039448A1 (fr) 2016-08-24 2018-03-01 Sangamo Therapeutics, Inc. Nucléases spécifiques de cible spécifiquement modifiées
WO2018039440A1 (fr) 2016-08-24 2018-03-01 Sangamo Therapeutics, Inc. Régulation de l'expression génique à l'aide de nucléases modifiées
US9914930B2 (en) 2012-09-07 2018-03-13 Dow Agrosciences Llc FAD3 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks
US9932607B2 (en) 2013-11-15 2018-04-03 The Board Of Trustees Of The Leland Stanford Junior University Site-specific integration of transgenes into human cells
US9937207B2 (en) 2013-03-21 2018-04-10 Sangamo Therapeutics, Inc. Targeted disruption of T cell receptor genes using talens
WO2018067264A1 (fr) 2016-10-03 2018-04-12 Dow Agrosciences Llc Promoteur de plantes pour l'expression transgénique
WO2018067618A1 (fr) 2016-10-03 2018-04-12 Juno Therapeutics, Inc. Molécules se liant spécifiquement au vph
WO2018067826A1 (fr) 2016-10-05 2018-04-12 Cellular Dynamics International, Inc. Génération de lignées matures à partir de cellules souches pluripotentes induites avec une interruption mecp2
WO2018067265A1 (fr) 2016-10-03 2018-04-12 Dow Agrosciences Llc Promoteur de plantes pour l'expression transgénique
WO2018071873A2 (fr) 2016-10-13 2018-04-19 Juno Therapeutics, Inc. Méthodes et compositions d'immunothérapie impliquant des modulateurs de la voie métabolique du tryptophane
US9957501B2 (en) 2015-06-18 2018-05-01 Sangamo Therapeutics, Inc. Nuclease-mediated regulation of gene expression
WO2018081775A1 (fr) 2016-10-31 2018-05-03 Sangamo Therapeutics, Inc. Correction génique de gènes liés à la scid dans des cellules souches hématopoïétiques et progénitrices
US9970001B2 (en) 2014-06-05 2018-05-15 Sangamo Therapeutics, Inc. Methods and compositions for nuclease design
WO2018102612A1 (fr) 2016-12-02 2018-06-07 Juno Therapeutics, Inc. Cellules b modifiées et compositions et méthodes associées
WO2018106732A1 (fr) 2016-12-05 2018-06-14 Juno Therapeutics, Inc. Production de cellules modifiées pour une thérapie cellulaire adoptive
WO2018106782A1 (fr) 2016-12-08 2018-06-14 Case Western Reserve University Procédés et compositions pour améliorer la production de myéline fonctionnelle
WO2018112470A1 (fr) 2016-12-16 2018-06-21 The Brigham And Women's Hospital, Inc. Co-administration d'acides nucléiques pour la suppression et l'expression simultanées de gènes cibles
WO2018187493A1 (fr) 2017-04-04 2018-10-11 Yale University Compositions et procédés d'administration in utero
WO2018195418A1 (fr) 2017-04-20 2018-10-25 Oregon Health & Science University Correction de gène humain
US10179918B2 (en) 2015-05-07 2019-01-15 Sangamo Therapeutics, Inc. Methods and compositions for increasing transgene activity
GB201820109D0 (en) 2018-12-11 2019-01-23 Vib Vzw Plants with a lignin trait and udp-glycosyltransferase mutation
US10233465B2 (en) 2013-11-04 2019-03-19 Dow Agrosciences Llc Optimal soybean loci
WO2019070541A1 (fr) 2017-10-03 2019-04-11 Juno Therapeutics, Inc. Molécules de liaison spécifique à l'hpv
US10260062B2 (en) 2010-01-22 2019-04-16 Sangamo Therapeutics, Inc. Targeted genomic alteration
WO2019089982A1 (fr) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Procédé d'évaluation de l'activité de récepteurs antigéniques de recombinaison
WO2019094928A1 (fr) 2017-11-10 2019-05-16 Massachusetts Institute Of Technology Production microbienne d'acides nucléiques simple brin purs
WO2019100053A1 (fr) 2017-11-20 2019-05-23 University Of Georgia Research Foundation, Inc. Compositions et procédés pour moduler hif-2a afin d'améliorer la production et la réparation des muscles
EP3492593A1 (fr) 2013-11-13 2019-06-05 Children's Medical Center Corporation Régulation de l'expression génique médiée par la nucléase
US10328182B2 (en) 2013-05-14 2019-06-25 University Of Georgia Research Foundation, Inc. Compositions and methods for reducing neointima formation
WO2019143678A1 (fr) 2018-01-17 2019-07-25 Vertex Pharmaceuticals Incorporated Inhibiteurs de la protéine kinase dépendante de l'adn
WO2019143677A1 (fr) 2018-01-17 2019-07-25 Vertex Pharmaceuticals Incorporated Composés de quinoxalinone, compositions, procédés et kits pour augmenter l'efficacité d'édition du génome
WO2019143675A1 (fr) 2018-01-17 2019-07-25 Vertex Pharmaceuticals Incorporated Inhibiteurs d'adn-pk
US10370680B2 (en) 2014-02-24 2019-08-06 Sangamo Therapeutics, Inc. Method of treating factor IX deficiency using nuclease-mediated targeted integration
US10415046B2 (en) 2012-12-13 2019-09-17 Dow Agrosciences Llc Precision gene targeting to a particular locus in maize
WO2019191495A1 (fr) 2018-03-29 2019-10-03 Fate Therapeutics, Inc. Cellules effectrices immunes améliorées et leur utilisation
US10435441B2 (en) 2015-09-23 2019-10-08 Sangamo Therapeutics, Inc. HTT repressors and uses thereof
WO2019195492A1 (fr) 2018-04-05 2019-10-10 Juno Therapeutics, Inc. Procédés de production de cellules exprimant un récepteur recombinant et compositions associées
WO2019195491A1 (fr) 2018-04-05 2019-10-10 Juno Therapeutics, Inc. Lymphocytes t exprimant un récepteur recombinant, polynucléotides et procédés associés
WO2019215500A1 (fr) 2018-05-11 2019-11-14 Crispr Therapeutics Ag Procédés et compositions pour le traitement du cancer
WO2019234141A1 (fr) 2018-06-06 2019-12-12 Vib Vzw Nouvelles protéines mutantes de cinnamoyl-coa reductase de plante
WO2019234754A1 (fr) 2018-06-07 2019-12-12 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center) Constructions d'acide nucléique et procédés d'utilisation de celles-ci
WO2019234750A1 (fr) 2018-06-07 2019-12-12 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center) Procédés de régénération et de transformation de cannabis
US10507232B2 (en) 2014-04-02 2019-12-17 University Of Florida Research Foundation, Incorporated Materials and methods for the treatment of latent viral infection
WO2020047353A1 (fr) 2018-08-31 2020-03-05 Yale University Compositions et procédés pour améliorer l'édition de gènes à base de triplex et de nucléase
US10612041B2 (en) 2014-03-21 2020-04-07 The Board Of Trustees Of The Leland Stanford Junior University Genome editing without nucleases
US10626372B1 (en) 2015-01-26 2020-04-21 Fate Therapeutics, Inc. Methods and compositions for inducing hematopoietic cell differentiation
US10639383B2 (en) 2015-11-23 2020-05-05 Sangamo Therapeutics, Inc. Methods and compositions for engineering immunity
US10648001B2 (en) 2012-07-11 2020-05-12 Sangamo Therapeutics, Inc. Method of treating mucopolysaccharidosis type I or II
WO2020095107A1 (fr) 2018-11-07 2020-05-14 Crispr Therapeutics Ag Immunothérapie cellulaire anti-cd33 contre le cancer
WO2020095249A1 (fr) 2018-11-07 2020-05-14 Crispr Therapeutics Ag Thérapie contre le cancer des cellules immunitaires anti-liv1
WO2020095248A1 (fr) 2018-11-07 2020-05-14 Crispr Therapeutics Ag Thérapie contre le cancer des cellules immunitaires anti-ptk7
WO2020112195A1 (fr) 2018-11-30 2020-06-04 Yale University Compositions, technologies et procédés d'utilisation de plérixafor pour améliorer l'édition de gènes
WO2020118073A1 (fr) 2018-12-05 2020-06-11 Vertex Pharmaceuticals Incorporated Systèmes d'édition de gènes pour l'édition d'un gène cftr
US10724020B2 (en) 2016-02-02 2020-07-28 Sangamo Therapeutics, Inc. Compositions for linking DNA-binding domains and cleavage domains
US10738278B2 (en) 2014-07-15 2020-08-11 Juno Therapeutics, Inc. Engineered cells for adoptive cell therapy
US10774338B2 (en) 2014-01-16 2020-09-15 The Regents Of The University Of California Generation of heritable chimeric plant traits
WO2020185628A1 (fr) 2019-03-08 2020-09-17 Obsidian Therapeutics, Inc. Compositions de cd40l et procédés de régulation accordable
US10786533B2 (en) 2015-07-15 2020-09-29 Juno Therapeutics, Inc. Engineered cells for adoptive cell therapy
WO2020205838A1 (fr) 2019-04-02 2020-10-08 Sangamo Therapeutics, Inc. Procédés pour le traitement de béta-thalassémie
US10808020B2 (en) 2015-05-12 2020-10-20 Sangamo Therapeutics, Inc. Nuclease-mediated regulation of gene expression
WO2020219726A1 (fr) 2019-04-23 2020-10-29 Sangamo Therapeutics, Inc. Modulateurs de l'expression du gène cadre de lecture ouvert 72 sur le chromosome 9 et leurs utilisations
WO2020223571A1 (fr) 2019-05-01 2020-11-05 Juno Therapeutics, Inc. Cellules exprimant un récepteur chimérique à partir d'un locus cd247 modifié, polynucléotides et procédés associés
WO2020223535A1 (fr) 2019-05-01 2020-11-05 Juno Therapeutics, Inc. Cellules exprimant un récepteur recombinant à base d'un locus modifié du tgfbr2, et polynucléotides et méthodes associés
US10858628B2 (en) 2015-11-04 2020-12-08 Fate Therapeutics, Inc. Methods and compositions for inducing hematopoietic cell differentiation
WO2020261219A1 (fr) 2019-06-27 2020-12-30 Crispr Therapeutics Ag Utilisation de lymphocytes t récepteurs d'antigènes chimériques et d'inhibiteurs de cellules nk pour le traitement du cancer
US10889834B2 (en) 2014-12-15 2021-01-12 Sangamo Therapeutics, Inc. Methods and compositions for enhancing targeted transgene integration
WO2021022223A1 (fr) 2019-08-01 2021-02-04 Sana Biotechnology, Inc. Cellules exprimant dux4 et utilisations associées
US20210040460A1 (en) 2012-04-27 2021-02-11 Duke University Genetic correction of mutated genes
US10927346B2 (en) 2017-12-22 2021-02-23 Fate Therapeutics, Inc. Enhanced immune effector cells and use thereof
WO2021042060A1 (fr) 2019-08-30 2021-03-04 Yale University Compositions et méthodes d'administration d'acides nucléiques à des cellules
WO2021041316A1 (fr) 2019-08-23 2021-03-04 Sana Biotechnology, Inc. Cellules exprimant cd24 et utilisations associées
WO2021044378A1 (fr) 2019-09-06 2021-03-11 Crispr Therapeutics Ag Lymphocytes t génétiquement modifiés présentant une persistance améliorée en culture
US10960085B2 (en) 2016-09-07 2021-03-30 Sangamo Therapeutics, Inc. Modulation of liver genes
WO2021067864A1 (fr) 2019-10-02 2021-04-08 Sangamo Therapeutics, Inc. Facteurs de transcription de protéine de doigt de zinc pour le traitement d'une maladie à prion
WO2021067871A1 (fr) 2019-10-02 2021-04-08 Sangamo Therapeutics, Inc. Facteurs de transcription de protéine à doigt de zinc pour réprimer l'expression de l'alpha-synucléine
WO2021087358A1 (fr) 2019-11-01 2021-05-06 Sangamo Therapeutics, Inc. Variants de la recombinase gin
WO2021087366A1 (fr) 2019-11-01 2021-05-06 Sangamo Therapeutics, Inc. Compositions et méthodes d'ingénierie génomique
EP3838287A2 (fr) 2016-07-27 2021-06-23 Case Western Reserve University Composés et procédés pour favoriser la myélinisation
EP3839050A2 (fr) 2012-04-18 2021-06-23 The Board of Trustees of the Leland Stanford Junior University Ciblage génique non disruptif
WO2021142376A1 (fr) 2020-01-08 2021-07-15 Obsidian Therapeutics, Inc. Compositions et procédés pour la régulation accordable de la transcription
WO2021151012A1 (fr) 2020-01-22 2021-07-29 Sangamo Therapeutics, Inc. Facteurs de transcription de protéines à doigt de zinc pour réprimer l'expression de la protéine tau
WO2021155065A1 (fr) 2020-01-28 2021-08-05 The Broad Institute, Inc. Éditeurs de bases, compositions, et procédés de modification du génome mitochondrial
US11110154B2 (en) 2014-05-08 2021-09-07 Sangamo Therapeutics, Inc. Methods and compositions for treating Huntington's Disease
WO2021195426A1 (fr) 2020-03-25 2021-09-30 Sana Biotechnology, Inc. Cellules neurales hypoimmunogènes pour le traitement de troubles et d'états neurologiques
US11155796B2 (en) 2015-02-09 2021-10-26 Duke University Compositions and methods for epigenome editing
WO2021224395A1 (fr) 2020-05-06 2021-11-11 Cellectis S.A. Procédés d'insertion ciblée de séquences exogènes dans des génomes cellulaires
WO2021224416A1 (fr) 2020-05-06 2021-11-11 Cellectis S.A. Procédés de modification génétique de cellules pour l'administration de protéines thérapeutiques
WO2021231661A2 (fr) 2020-05-13 2021-11-18 Juno Therapeutics, Inc. Procédé de production de lots de cellules donneuses exprimant un récepteur recombinant
WO2021236852A1 (fr) 2020-05-20 2021-11-25 Sana Biotechnology, Inc. Méthodes et compositions pour le traitement d'infections virales
WO2021247836A1 (fr) 2020-06-03 2021-12-09 Board Of Regents, The University Of Texas System Méthodes de ciblage de shp-2 pour surmonter une résistance
WO2021260186A1 (fr) 2020-06-26 2021-12-30 Juno Therapeutics Gmbh Lymphocytes t modifiés exprimant un récepteur recombiné, polynucléotides et procédés associés
US11219695B2 (en) 2016-10-20 2022-01-11 Sangamo Therapeutics, Inc. Methods and compositions for the treatment of Fabry disease
US11235026B2 (en) 2007-09-27 2022-02-01 Sangamo Therapeutics, Inc. Methods and compositions for modulating PD1
WO2022036150A1 (fr) 2020-08-13 2022-02-17 Sana Biotechnology, Inc. Méthodes de traitement de patients sensibilisés avec des cellules hypo-immunogènes, ainsi que méthodes et compositions associés
WO2022047424A1 (fr) 2020-08-31 2022-03-03 Yale University Compositions et méthodes d'administration d'acides nucléiques à des cellules
WO2022046760A2 (fr) 2020-08-25 2022-03-03 Kite Pharma, Inc. Lymphocytes t à fonctionnalité améliorée
WO2022064428A1 (fr) 2020-09-23 2022-03-31 Crispr Therapeutics Ag Lymphocytes t génétiquement modifiés à interruption de regnase-1 et/ou de tgfbrii ayant une fonctionnalité et une persistance améliorées
WO2022067122A1 (fr) 2020-09-25 2022-03-31 Sangamo Therapeutics, Inc. Protéines de fusion à doigt de zinc pour l'édition des nucléobases
WO2022072826A1 (fr) 2020-10-02 2022-04-07 Sangamo Therapeutics, Inc. Nouveaux facteurs de transcription de protéines à doigts de zinc pour réprimer l'expression de l'alpha-synucléine
US11311574B2 (en) 2003-08-08 2022-04-26 Sangamo Therapeutics, Inc. Methods and compositions for targeted cleavage and recombination
WO2022098787A1 (fr) 2020-11-04 2022-05-12 Juno Therapeutics, Inc. Cellules exprimant un récepteur chimérique à partir d'un locus de chaîne de la superfamille des immunoglobines cd3 invariable modifié, polynucléotides et procédés associés
WO2022101641A1 (fr) 2020-11-16 2022-05-19 Pig Improvement Company Uk Limited Animaux résistants à la grippe a ayant des gènes anp32 modifiés
WO2022120334A1 (fr) 2020-12-03 2022-06-09 Century Therapeutics, Inc. Cellules génétiquement modifiées et leurs utilisations
WO2022137181A1 (fr) 2020-12-23 2022-06-30 Crispr Therapeutics Ag Utilisation conjointe de lénalidomide et de lymphocytes car-t
WO2022146891A2 (fr) 2020-12-31 2022-07-07 Sana Biotechnology, Inc. Méthodes et compositions pour moduler une activité de car-t
WO2022155265A2 (fr) 2021-01-12 2022-07-21 Mitolab Inc. Désaminases spécifiques de l'adn à double brin dépendant du contexte et leurs utilisations
US11401512B2 (en) 2018-02-08 2022-08-02 Sangamo Therapeutics, Inc. Engineered target specific nucleases
US11419932B2 (en) 2019-01-24 2022-08-23 Massachusetts Institute Of Technology Nucleic acid nanostructure platform for antigen presentation and vaccine formulations formed therefrom
US11421007B2 (en) 2018-04-18 2022-08-23 Sangamo Therapeutics, Inc. Zinc finger protein compositions for modulation of huntingtin (Htt)
WO2022189967A1 (fr) 2021-03-09 2022-09-15 Crispr Therapeutics Ag Lymphocytes t génétiquement modifiés ayant une inactivation de ptpn2 ayant une fonctionnalité améliorée et une activité antitumorale
US11453639B2 (en) 2019-01-11 2022-09-27 Acuitas Therapeutics, Inc. Lipids for lipid nanoparticle delivery of active agents
WO2022204071A1 (fr) 2021-03-22 2022-09-29 Juno Therapeutics, Inc. Procédé d'évaluation de la puissance de particules de vecteur viral
WO2022216514A1 (fr) 2021-04-07 2022-10-13 Century Therapeutics, Inc. Compositions et méthodes pour générer des lymphocytes t gamma-delta à partir de cellules souches pluripotentes induites
WO2022216624A1 (fr) 2021-04-07 2022-10-13 Century Therapeutics, Inc. Compositions et méthodes pour générer des lymphocytes t alpha-bêta à partir de cellules souches pluripotentes induites
WO2022216524A1 (fr) 2021-04-07 2022-10-13 Century Therapeutics, Inc. Polypeptide artificiel combiné de mort cellulaire/système rapporteur pour cellule à récepteur antigénique chimérique et ses utilisations
US11471489B2 (en) 2018-04-05 2022-10-18 Juno Therapeutics, Inc. T cell receptors and engineered cells expressing same
WO2022235911A1 (fr) 2021-05-05 2022-11-10 FUJIFILM Cellular Dynamics, Inc. Procédés et compositions pour la microglie dérivée d'ipsc
US11504389B2 (en) 2016-12-01 2022-11-22 Sangamo Therapeutics, Inc. Tau modulators and methods and compositions for delivery thereof
US11512287B2 (en) 2017-06-16 2022-11-29 Sangamo Therapeutics, Inc. Targeted disruption of T cell and/or HLA receptors
US11514331B2 (en) 2016-04-27 2022-11-29 Massachusetts Institute Of Technology Sequence-controlled polymer random access memory storage
WO2022251367A1 (fr) 2021-05-27 2022-12-01 Sana Biotechnology, Inc. Cellules hypoimmunogènes comprenant hla-e ou hla-g génétiquement modifiés
WO2022251443A1 (fr) 2021-05-26 2022-12-01 FUJIFILM Cellular Dynamics, Inc. Procédés pour empêcher le silençage rapide de gènes dans des cellules souches pluripotentes
WO2023287827A2 (fr) 2021-07-14 2023-01-19 Sana Biotechnology, Inc. Expression modifiée d'antigènes liés au chromosome y dans des cellules hypo-immunogènes
WO2023010135A1 (fr) 2021-07-30 2023-02-02 Tune Therapeutics, Inc. Compositions et procédés pour moduler l'expression de la protéine 2 de liaison méthyle-cpg (mecp2)
WO2023010133A2 (fr) 2021-07-30 2023-02-02 Tune Therapeutics, Inc. Compositions et procédés de modulation de l'expression de la frataxine
WO2023019227A1 (fr) 2021-08-11 2023-02-16 Sana Biotechnology, Inc. Cellules génétiquement modifiées pour une thérapie cellulaire allogénique pour réduire les réactions inflammatoires induites par le complément
WO2023019225A2 (fr) 2021-08-11 2023-02-16 Sana Biotechnology, Inc. Cellules génétiquement modifiées pour une thérapie cellulaire allogénique permettant de réduire les réactions inflammatoires à médiation par le sang instantanée
WO2023019226A1 (fr) 2021-08-11 2023-02-16 Sana Biotechnology, Inc. Cellules génétiquement modifiées pour une thérapie cellulaire allogénique
WO2023019229A1 (fr) 2021-08-11 2023-02-16 Sana Biotechnology, Inc. Cellules primaires génétiquement modifiées pour une thérapie cellulaire allogénique
WO2023019203A1 (fr) 2021-08-11 2023-02-16 Sana Biotechnology, Inc. Systèmes inductibles pour modifier l'expression génique dans des cellules hypoimmunogènes
WO2023039567A2 (fr) 2021-09-10 2023-03-16 FUJIFILM Cellular Dynamics, Inc. Compositions de cellules dérivées de cellules souches pluripotentes induites et leurs procédés d'utilisation
WO2023042079A1 (fr) 2021-09-14 2023-03-23 Crispr Therapeutics Ag Cellules immunitaires génétiquement modifiées ayant un gène cd83 déficient
WO2023070043A1 (fr) 2021-10-20 2023-04-27 Yale University Compositions et procédés pour l'édition et l'évolution ciblées d'éléments génétiques répétitifs
WO2023069790A1 (fr) 2021-10-22 2023-04-27 Sana Biotechnology, Inc. Procédés de modification de lymphocytes t allogéniques avec un transgène dans un locus de tcr et compositions et procédés associés
WO2023070019A1 (fr) 2021-10-21 2023-04-27 Vertex Pharmaceuticals Incorporated Cellules hypoimmunitaires
WO2023076880A1 (fr) 2021-10-25 2023-05-04 Board Of Regents, The University Of Texas System Thérapie ciblant le foxo1 pour le traitement du cancer
WO2023077050A1 (fr) 2021-10-29 2023-05-04 FUJIFILM Cellular Dynamics, Inc. Neurones dopaminergiques comprenant des mutations et leurs procédés d'utilisation
WO2023081900A1 (fr) 2021-11-08 2023-05-11 Juno Therapeutics, Inc. Lymphocytes t modifiés exprimant un récepteur recombiné de lymphocytes t (tcr) et systèmes et procédés apparentés
US11655275B2 (en) 2017-05-03 2023-05-23 Sangamo Therapeutics, Inc. Methods and compositions for modification of a cystic fibrosis transmembrane conductance regulator (CFTR) gene
US11661459B2 (en) 2020-12-03 2023-05-30 Century Therapeutics, Inc. Artificial cell death polypeptide for chimeric antigen receptor and uses thereof
US11661611B2 (en) 2017-11-09 2023-05-30 Sangamo Therapeutics, Inc. Genetic modification of cytokine inducible SH2-containing protein (CISH) gene
WO2023105244A1 (fr) 2021-12-10 2023-06-15 Pig Improvement Company Uk Limited Édition de tmprss2/4 pour la résistance aux maladies chez le bétail
WO2023111913A1 (fr) 2021-12-15 2023-06-22 Crispr Therapeutics Ag Cellule anti-liv1 modifiée avec lyse de régnase-1 et/ou tgfbrii
WO2023119201A2 (fr) 2021-12-22 2023-06-29 Crispr Therapeutics Ag Lymphocytes t génétiquement modifiés avec un proto-oncogène-b de lymphome de lignée de casitas interrompu (cblb) et leurs utilisations
WO2023122337A1 (fr) 2021-12-23 2023-06-29 Sana Biotechnology, Inc. Lymphocytes t à récepteur antigénique chimérique (car) pour le traitement d'une maladie auto-immune et méthodes associées
WO2023122722A1 (fr) 2021-12-22 2023-06-29 Sangamo Therapeutics, Inc. Nouvelles protéines de fusion à doigt de zinc pour l'édition de nucléobases
US11690921B2 (en) 2018-05-18 2023-07-04 Sangamo Therapeutics, Inc. Delivery of target specific nucleases
WO2023129937A1 (fr) 2021-12-29 2023-07-06 Century Therapeutics, Inc. Cellules génétiquement modifiées ayant des récepteurs antigéniques chimériques anti-cd19/anti-cd22, et leurs utilisations
WO2023131616A1 (fr) 2022-01-05 2023-07-13 Vib Vzw Moyens et procédés pour augmenter la tolérance au stress abiotique dans des plantes
WO2023131637A1 (fr) 2022-01-06 2023-07-13 Vib Vzw Graminées d'ensilage améliorées
WO2023137472A2 (fr) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systèmes et procédés de programmation de phénotypes de lymphocytes t par répression génique ciblée
WO2023137471A1 (fr) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systèmes et procédés de programmation de phénotypes de lymphocytes t par activation génique ciblée
WO2023144199A1 (fr) 2022-01-26 2023-08-03 Vib Vzw Plantes ayant des niveaux réduits de métabolites de goût amer
WO2023154578A1 (fr) 2022-02-14 2023-08-17 Sana Biotechnology, Inc. Méthodes de traitement de patients présentant une thérapie préalable ayant échoué avec des cellules hypoimmunogènes
WO2023158836A1 (fr) 2022-02-17 2023-08-24 Sana Biotechnology, Inc. Protéines cd47 modifiées et leurs utilisations
EP4234570A2 (fr) 2018-09-18 2023-08-30 Sangamo Therapeutics, Inc. Nucléases spécifiques de la mort cellulaire programmée 1 (pd1)
WO2023164688A1 (fr) 2022-02-28 2023-08-31 Kite Pharma, Inc. Cellules thérapeutiques allogéniques
WO2023166425A1 (fr) 2022-03-01 2023-09-07 Crispr Therapeutics Ag Procédés et compositions pour le traitement d'affections liées à la protéine 3 de type angiopoïétine (angptl3)
WO2023173123A1 (fr) 2022-03-11 2023-09-14 Sana Biotechnology, Inc. Cellules génétiquement modifiées et compositions et utilisations associées
US11766400B2 (en) 2016-10-24 2023-09-26 Yale University Biodegradable contraceptive implants
WO2023180968A1 (fr) 2022-03-23 2023-09-28 Crispr Therapeutics Ag Cellules car-t anti-cd19 avec de multiples éditions géniques et leurs utilisations thérapeutiques
WO2023180967A1 (fr) 2022-03-23 2023-09-28 Crispr Therapeutics Ag Cellules car-t anti-cd83 portant une perturbation de regnase-1 et/ou tgfbrii
WO2023180904A1 (fr) 2022-03-21 2023-09-28 Crispr Therapeutics Ag Méthodes et compositions pour traiter les maladies liées aux lipoprotéines
WO2023192872A1 (fr) 2022-03-28 2023-10-05 Massachusetts Institute Of Technology Origami arn filaire à structure échafaudée et procédés associés
WO2023230613A1 (fr) 2022-05-27 2023-11-30 The Broad Institute, Inc. Éditeurs de base mitochondriale améliorés et méthodes d'édition d'adn mitochondrial
US11834686B2 (en) 2018-08-23 2023-12-05 Sangamo Therapeutics, Inc. Engineered target specific base editors
WO2023240212A2 (fr) 2022-06-08 2023-12-14 Century Therapeutics, Inc. Cellules génétiquement modifiées ayant des récepteurs antigéniques chimériques anti-cd133/anti-cd22, et leurs utilisations
WO2023240147A1 (fr) 2022-06-08 2023-12-14 Century Therapeutics, Inc. Cellules génétiquement modifiées exprimant des variants du cd16 et nkg2d et leurs utilisations
WO2023240169A1 (fr) 2022-06-08 2023-12-14 Century Therapeutics, Inc. Cellules immunoeffectrices issues de cellules souches pluripotentes induites génétiquement modifiées avec une il12 membranaire et leurs utilisations
WO2023242827A2 (fr) 2022-06-17 2023-12-21 Crispr Therapeutics Ag Administration oculaire à base de nanoparticules lipidiques (lnp)
WO2023250511A2 (fr) 2022-06-24 2023-12-28 Tune Therapeutics, Inc. Compositions, systèmes et procédés de réduction de lipoprotéine de faible densité par répression génique ciblée
WO2023248147A1 (fr) 2022-06-21 2023-12-28 Crispr Therapeutics Ag Procédés et compositions pour l'édition de cellules souches in vivo
WO2023248145A1 (fr) 2022-06-21 2023-12-28 Crispr Therapeutics Ag Compositions et méthodes de traitement du virus de l'immunodéficience humaine
US11857641B2 (en) 2019-02-06 2024-01-02 Sangamo Therapeutics, Inc. Method for the treatment of mucopolysaccharidosis type I
WO2024003786A1 (fr) 2022-06-29 2024-01-04 Crispr Therapeutics Ag Récepteur antigénique chimérique ciblant gpc-3 et cellules immunitaires exprimant celui-ci pour des utilisations thérapeutiques
WO2024006911A1 (fr) 2022-06-29 2024-01-04 FUJIFILM Holdings America Corporation Astrocytes dérivés d'ipsc et leurs procédés d'utilisation
WO2024015881A2 (fr) 2022-07-12 2024-01-18 Tune Therapeutics, Inc. Compositions, systèmes et procédés d'activation transcriptionnelle ciblée
WO2024013514A2 (fr) 2022-07-15 2024-01-18 Pig Improvement Company Uk Limited Animaux d'élevage ayant subi une édition génique et présentant une résistance aux coronavirus
WO2024020597A1 (fr) 2022-07-22 2024-01-25 The Johns Hopkins University Administration de système crispr/cas intracellulaire ciblé activé par dendrimère et édition de gène
WO2024023802A2 (fr) 2022-07-29 2024-02-01 Crispr Therapeutics Ag Cellules immunitaires génétiquement modifiées ayant un gène transporteur associé au traitement des antigènes-2 (tap-2) interrompu
WO2024023804A2 (fr) 2022-07-29 2024-02-01 Crispr Therapeutics Ag Cellules immunitaires génétiquement modifiées ayant un gène protéine de liaison transporteur associé au traitement des antigènes (tapbp) interrompu
WO2024023801A2 (fr) 2022-07-29 2024-02-01 Crispr Therapeutics Ag Cellules immunitaires génétiquement modifiées ayant un transporteur interrompu associé à un gène de traitement d'antigène -1 (tap -1)
US11896686B2 (en) 2014-05-09 2024-02-13 Yale University Hyperbranched polyglycerol-coated particles and methods of making and using thereof
US11905532B2 (en) 2019-06-25 2024-02-20 Massachusetts Institute Of Technology Compositions and methods for molecular memory storage and retrieval
WO2024040254A2 (fr) 2022-08-19 2024-02-22 Tune Therapeutics, Inc. Compositions, systèmes et méthodes de régulation du virus de l'hépatite b par répression génique ciblée
US11920148B2 (en) 2017-02-22 2024-03-05 Crispr Therapeutics Ag Compositions and methods for gene editing
US11918695B2 (en) 2014-05-09 2024-03-05 Yale University Topical formulation of hyperbranched polymer-coated particles
US11939593B2 (en) 2018-08-01 2024-03-26 University Of Georgia Research Foundation, Inc. Compositions and methods for improving embryo development
WO2024062388A2 (fr) 2022-09-20 2024-03-28 Crispr Therapeutics Ag Cellules immunitaires génétiquement modifiées exprimant un récepteur antigénique chimérique ciblant cd20
WO2024064642A2 (fr) 2022-09-19 2024-03-28 Tune Therapeutics, Inc. Compositions, systèmes et méthodes de modulation de fonction de lymphocyte t
WO2024081736A2 (fr) 2022-10-11 2024-04-18 Yale University Compositions et procédés d'utilisation d'anticorps de pénétration cellulaire
US11970710B2 (en) 2015-10-13 2024-04-30 Duke University Genome engineering with Type I CRISPR systems in eukaryotic cells
US11976019B2 (en) 2020-07-16 2024-05-07 Acuitas Therapeutics, Inc. Cationic lipids for use in lipid nanoparticles
WO2024102838A1 (fr) 2022-11-09 2024-05-16 Century Therapeutics, Inc. Récepteurs d'interleukine-7 génétiquement modifiés et leurs utilisations
WO2024103017A2 (fr) 2022-11-10 2024-05-16 Century Therapeutics, Inc. Cellules génétiquement modifiées ayant des récepteurs antigéniques chimériques anti-nectine-4, et leurs utilisations
WO2024100604A1 (fr) 2022-11-09 2024-05-16 Juno Therapeutics Gmbh Procédés de fabrication de cellules immunitaires modifiées
WO2024119101A1 (fr) 2022-12-01 2024-06-06 Yale University Plateforme d'ingénierie sans trace sensible aux stimuli pour distribution de charge utile intracellulaire
US12031146B2 (en) 2021-05-17 2024-07-09 The Board Of Trustees Of The Leland Stanford Junior University Genome editing without nucleases

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006166A1 (fr) * 1994-08-20 1996-02-29 Medical Research Council Ameliorations concernant des proteines de liaison permettant de reconnaitre l'adn

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006166A1 (fr) * 1994-08-20 1996-02-29 Medical Research Council Ameliorations concernant des proteines de liaison permettant de reconnaitre l'adn

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
A.C. JAMIESON ET AL.: "In vitro selection of zinc fingers with altered DNA-binding specificity", BIOCHEMISTRY, vol. 33, no. 19, 17 May 1994 (1994-05-17), AM. CHEM. SOC.,WASHINGTON,DC,US, pages 5689 - 5695, XP002075344 *
CHOO Y ET AL: "Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 91 (23). 1994. 11168-11172. ISSN: 0027-8424, 8 November 1994 (1994-11-08), XP002075339 *
CHOO Y ET AL: "Toward a code for the interactions of zinc fingers with DNA: Selection of randomized fingers displayed on phage.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 91 (23). 1994. 11163-11167. ISSN: 0027-8424, 8 November 1994 (1994-11-08), XP002075340 *
H. WU ET AL.: "Building zinc fingers by selection: Toward a therapeutic application", PROC. NATL.ACAD SCI., vol. 92, no. 2, 17 January 1995 (1995-01-17), NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 344 - 348, XP002075342 *
H.B. HOUBAVIY ET AL: "Cocrystal structure of YY1 bound to the adeno-associated virus P5 initiator", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 93, November 1996 (1996-11-01), WASHINGTON US, pages 13577 - 13582, XP002075348 *
IKEDA M ET AL: "A fusion protein library: an improved method for rapid screening and characterization of DNA binding or interacting proteins", GENE, vol. 181, no. 1-2, 28 November 1996 (1996-11-28), pages 167-171, XP004071876 *
L. FAIRALL ET AL.: "The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition", NATURE, vol. 366, 2 December 1993 (1993-12-02), LONDON GB, pages 483 - 487, XP002075345 *
M. ELROD-ERICKSON ET AL: "Zif268 protein-DNA complex refined at 1.6A: a model system for understanding zinc finger-DNA interactions", STRUCTURE, vol. 4, no. 10, 1996, pages 1171 - 1180, XP002075347 *
M. ISALAN ET AL: "Synergy between adjacent zinc fingers in sequence-specific DNA recognistion", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 94, 27 May 1997 (1997-05-27), WASHINGTON US, pages 5617 - 5621, XP002075337 *
M. SUZUKI AND N. YAGI: "DNA recognition code of transcription factors in the helix-turn-helix ... and zinc finger families", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 91, 1994, WASHINGTON US, pages 12357 - 12361, XP002075341 *
N.P.PAVLETICH ET AL: "Crystal structure of a five-finger GLI-DNA complex: new perspectives on Zinc fingers", SCIENCE., vol. 261, September 1993 (1993-09-01), US, pages 1701 - 1707, XP002075346 *
Y. CHOO, A. KLUG: "Physical basis of a protein-DNA recognition code", CURR. OP. STRUCT. BIOL., vol. 7, no. 1, February 1997 (1997-02-01), pages 117 - 125, XP002075338 *

Cited By (672)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790941B2 (en) 1994-01-18 2004-09-14 The Scripps Research Institute Zinc finger protein derivatives and methods therefor
USRE45795E1 (en) 1994-08-20 2015-11-10 Gendaq, Ltd. Binding proteins for recognition of DNA
USRE39229E1 (en) 1994-08-20 2006-08-08 Gendaq Limited Binding proteins for recognition of DNA
USRE45721E1 (en) 1994-08-20 2015-10-06 Gendaq, Ltd. Relating to binding proteins for recognition of DNA
USRE42150E1 (en) 1994-08-20 2011-02-15 Gendaq, Limited Binding proteins for recognition of DNA
USRE42211E1 (en) 1994-08-20 2011-03-08 Gendaq, Limited Relating to binding proteins for recognition of DNA
US7700523B2 (en) 1997-05-23 2010-04-20 Gendaq Limited Nucleic acid binding polypeptide library
US8617807B2 (en) 1997-05-23 2013-12-31 Gendaq Limited Nucleic acid binding proteins
US6866997B1 (en) 1997-05-23 2005-03-15 Gendaq Limited Nucleic acid binding proteins
US7759059B2 (en) 1997-05-23 2010-07-20 Gendaq Limited, C/O Brobeck Hale And Dorr Nucleic acid binding proteins
US6746838B1 (en) 1997-05-23 2004-06-08 Gendaq Limited Nucleic acid binding proteins
US7241574B2 (en) 1997-05-23 2007-07-10 Gendaq Ltd. Nucleic acid binding proteins
US6410248B1 (en) 1998-01-30 2002-06-25 Massachusetts Institute Of Technology General strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites
US6479626B1 (en) 1998-03-02 2002-11-12 Massachusetts Institute Of Technology Poly zinc finger proteins with improved linkers
US7153949B2 (en) 1998-03-02 2006-12-26 Massachusetts Institute Of Technology Nucleic acid encoding poly-zinc finger proteins with improved linkers
US7595376B2 (en) 1998-03-02 2009-09-29 Massachusetts Institute Of Technology Poly zinc finger proteins with improved linkers
US6903185B2 (en) 1998-03-02 2005-06-07 Massachusetts Institute Of Technology Poly zinc finger proteins with improved linkers
US7928195B2 (en) 1998-03-02 2011-04-19 Massachusetts Institute Of Technology Poly zinc finger proteins with improved linkers
US6977154B1 (en) 1998-03-17 2005-12-20 Gendaq Limited Nucleic acid binding proteins
WO1999047656A2 (fr) * 1998-03-17 1999-09-23 Gendaq Limited Proteines de fixation a l'acide nucleique
WO1999047656A3 (fr) * 1998-03-17 1999-11-25 Medical Res Council Proteines de fixation a l'acide nucleique
US7262055B2 (en) 1998-08-25 2007-08-28 Gendaq Limited Regulated gene expression in plants
WO2000027878A1 (fr) * 1998-11-09 2000-05-18 Gendaq Limited Systeme de criblage de polypeptides a motifs en doigt de zinc, destine a mettre en evidence une certaine capacite de liaison
US7163824B2 (en) 1999-01-12 2007-01-16 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
EP1075540A4 (fr) * 1999-01-12 2001-07-25 Sangamo Biosciences Inc Selection de sites cibles pour proteines a doigts de zinc et methodes de fabrication de proteines a doigts de zinc destinees a se lier avec des sites preselectionnes
US6785613B2 (en) 1999-01-12 2004-08-31 Sangamo Biosciences, Inc. Selection of sites for targeting by zinc finger proteins and methods of designing zinc finger proteins to bind to preselected sites
EP1352975A2 (fr) * 1999-01-12 2003-10-15 Sangamo Biosciences Inc. Sélection des sites cibles pour des protéines à doigts de zinc, et procédés de remodelage des protéines à doigts de zinc pour les attacher à ces sites cibles
US7788044B2 (en) 1999-01-12 2010-08-31 Sangamo Biosciences, Inc. Selection of sites for targeting by zinc finger proteins and methods of designing zinc finger proteins to bind to preselected sites
US6824978B1 (en) 1999-01-12 2004-11-30 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US6607882B1 (en) 1999-01-12 2003-08-19 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US7013219B2 (en) 1999-01-12 2006-03-14 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US6933113B2 (en) 1999-01-12 2005-08-23 Sangamo Biosciences, Inc. Modulation of endogenous gene expression in cells
US9491934B2 (en) 1999-01-12 2016-11-15 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US6979539B2 (en) 1999-01-12 2005-12-27 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US7220719B2 (en) 1999-01-12 2007-05-22 Sangamo Biosciences, Inc. Modulation of endogenous gene expression in cells
US6453242B1 (en) 1999-01-12 2002-09-17 Sangamo Biosciences, Inc. Selection of sites for targeting by zinc finger proteins and methods of designing zinc finger proteins to bind to preselected sites
EP1352975A3 (fr) * 1999-01-12 2004-02-04 Sangamo Biosciences Inc. Sélection des sites cibles pour des protéines à doigts de zinc, et procédés de remodelage des protéines à doigts de zinc pour les attacher à ces sites cibles
US8268618B2 (en) 1999-01-12 2012-09-18 Sangamo Biosciences, Inc. Repressing endogenous CCR5 gene expression in cells using engineered zinc finger proteins
US7070934B2 (en) 1999-01-12 2006-07-04 Sangamo Biosciences, Inc. Ligand-controlled regulation of endogenous gene expression
EP1075540A1 (fr) * 1999-01-12 2001-02-14 Sangamo Biosciences Inc. Selection de sites cibles pour proteines a doigts de zinc et methodes de fabrication de proteines a doigts de zinc destinees a se lier avec des sites preselectionnes
US7177766B2 (en) 1999-01-12 2007-02-13 Sangamo Biosciences, Inc. Selection of sites for targeting by zinc finger proteins and methods of designing zinc finger proteins to bind to preselected sites
US7985887B2 (en) 1999-01-12 2011-07-26 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US7030215B2 (en) 1999-03-24 2006-04-18 Sangamo Biosciences, Inc. Position dependent recognition of GNN nucleotide triplets by zinc fingers
US7585849B2 (en) 1999-03-24 2009-09-08 Sangamo Biosciences, Inc. Position dependent recognition of GNN nucleotide triplets by zinc fingers
US8524874B2 (en) 1999-03-24 2013-09-03 Sangamo Biosciences Position dependent recognition of GNN nucleotide triplets by zinc fingers
US8383766B2 (en) 1999-03-24 2013-02-26 Sangamo Biosciences, Inc. Position dependent recognition of GNN nucleotide triplets by zinc fingers
US7943731B1 (en) 1999-08-11 2011-05-17 Massachusetts Institute Of Technology Dimerizing peptides
US6777185B2 (en) 1999-09-14 2004-08-17 Sangamo Biosciences, Inc. Functional genomics using zinc finger proteins
US7235354B2 (en) 1999-09-14 2007-06-26 Sangamo Biosciences, Inc. Functional genomics using zinc finger proteins
US6599692B1 (en) 1999-09-14 2003-07-29 Sangamo Bioscience, Inc. Functional genomics using zinc finger proteins
US7491531B2 (en) 1999-12-06 2009-02-17 Sangamo Biosciences, Inc. Randomized libraries of zinc finger proteins
US7943553B2 (en) 1999-12-06 2011-05-17 Sangamo Biosciences, Inc. Randomized libraries of zinc finger proteins
US6503717B2 (en) 1999-12-06 2003-01-07 Sangamo Biosciences, Inc. Methods of using randomized libraries of zinc finger proteins for the identification of gene function
US7851216B2 (en) 2000-01-24 2010-12-14 Gendaq, Ltd. Methods and compositions for linking binding domains in nucleic acid binding proteins
US6511808B2 (en) 2000-04-28 2003-01-28 Sangamo Biosciences, Inc. Methods for designing exogenous regulatory molecules
US7217509B2 (en) 2000-04-28 2007-05-15 Sangamo Biosciences, Inc. Databases of regulatory sequences; methods of making and using same
US6610489B2 (en) 2000-04-28 2003-08-26 Sangamo Biosciences, Inc. Pharmacogenomics and identification of drug targets by reconstruction of signal transduction pathways based on sequences of accessible regions
US7923542B2 (en) 2000-04-28 2011-04-12 Sangamo Biosciences, Inc. Libraries of regulatory sequences, methods of making and using same
US7097978B2 (en) 2000-04-28 2006-08-29 Sangamo Biosciences, Inc. Screening methods based on isolating a collection of polynucleotides corresponding to accessible regions of chromatin
WO2001085780A3 (fr) * 2000-05-08 2002-09-06 Gendaq Ltd Polypeptides de liaison aux acides nucleiques
WO2002008286A2 (fr) * 2000-07-21 2002-01-31 Syngenta Participations Ag Code de reconnaissance pour domaines en doigt de zinc et ses utilisations
WO2002008286A3 (fr) * 2000-07-21 2002-07-11 Syngenta Participations Ag Code de reconnaissance pour domaines en doigt de zinc et ses utilisations
WO2002018648A3 (fr) * 2000-08-25 2003-01-09 Harvard College Analyse d'interactions de liaison
WO2002018648A2 (fr) * 2000-08-25 2002-03-07 President And Fellows Of Harvard College Analyse d'interactions de liaison
US6794136B1 (en) 2000-11-20 2004-09-21 Sangamo Biosciences, Inc. Iterative optimization in the design of binding proteins
US7998679B2 (en) 2000-11-27 2011-08-16 Intelligent Medical Devices, Inc. Devices and methods for diagnosis of susceptibility to diseases and disorders
US7622250B2 (en) 2000-11-27 2009-11-24 Intelligent Medical Devices, Inc. Clinically intelligent diagnostic devices and methods
US8883417B2 (en) 2000-11-27 2014-11-11 Intelligent Medical Devices, Inc. Clinically intelligent diagnostic methods utilizing micromixers disposed in wells
US7566533B2 (en) 2000-11-27 2009-07-28 Intelligent Medical Devices, Inc. Clinically intelligent diagnostic devices and methods
US7026462B2 (en) 2000-12-07 2006-04-11 Sangamo Biosciences, Inc. Regulation of angiogenesis with zinc finger proteins
US7067317B2 (en) 2000-12-07 2006-06-27 Sangamo Biosciences, Inc. Regulation of angiogenesis with zinc finger proteins
US8071564B2 (en) 2000-12-07 2011-12-06 Sangamo Biosciences, Inc. Regulation of angiogenesis with zinc finger proteins
US7560440B2 (en) 2000-12-07 2009-07-14 Sangamo Bioschiences, Inc. Regulation of angiogenesis with zinc finger proteins
US7605140B2 (en) 2000-12-07 2009-10-20 Sangamo Biosciences, Inc. Regulation of angiogenesis with zinc finger proteins
US7273923B2 (en) 2001-01-22 2007-09-25 Sangamo Biosciences, Inc. Zinc finger proteins for DNA binding and gene regulation in plants
US8680021B2 (en) 2001-01-22 2014-03-25 Sangamo Biosciences, Inc. Zinc finger proteins for DNA binding and gene regulation in plants
US9234187B2 (en) 2001-01-22 2016-01-12 Sangamo Biosciences, Inc. Modified zinc finger binding proteins
US7705139B2 (en) 2001-01-22 2010-04-27 Sangamo Biosciences, Inc. Zinc finger proteins for DNA binding and gene regulation in plants
US9234188B2 (en) 2001-01-22 2016-01-12 Sangamo Biosciences, Inc. Modified zinc finger binding proteins
WO2002057308A2 (fr) * 2001-01-22 2002-07-25 Sangamo Biosciences, Inc. Polypeptides se liant a un acide nucleique
US9238803B2 (en) 2001-01-22 2016-01-19 Sangamo Biosciences, Inc. Modified zinc finger binding proteins
WO2002057308A3 (fr) * 2001-01-22 2003-02-06 Sangamo Biosciences Inc Polypeptides se liant a un acide nucleique
US7947469B2 (en) 2001-01-22 2011-05-24 Gendaq, Ltd. Modulation of HIV infection
US10344271B2 (en) 2001-01-22 2019-07-09 Sangamo Therapeutics, Inc. Modified zinc finger binding proteins
US8735153B2 (en) 2001-09-24 2014-05-27 Sangamo Biosciences, Inc. Modulation of stem cells using zinc finger proteins
US10888589B2 (en) 2001-09-24 2021-01-12 Sangamo Therapeutics, Inc. Modulation of stem cells using zinc finger proteins
US9624509B2 (en) 2001-09-24 2017-04-18 Sangamo Biosciences, Inc. Modulation of stem cells using zinc finger proteins
EP2266396A2 (fr) 2001-09-24 2010-12-29 Sangamo BioSciences, Inc. Modulation de cellules souches au moyen de protéines à doigts de zinc
US7262054B2 (en) 2002-01-22 2007-08-28 Sangamo Biosciences, Inc. Zinc finger proteins for DNA binding and gene regulation in plants
US8106255B2 (en) 2002-01-23 2012-01-31 Dana Carroll Targeted chromosomal mutagenasis using zinc finger nucleases
US9145565B2 (en) 2002-01-23 2015-09-29 University Of Utah Research Foundation Targeted chromosomal mutagenesis using zinc finger nucleases
EP2348119A2 (fr) 2002-02-01 2011-07-27 Oxford BioMedica (UK) Limited Vecteur de lentivirus multicistronique
EP2036984A2 (fr) 2002-07-26 2009-03-18 BASF Plant Science GmbH Reversion de l'effet sélectif négatif d'un protéin de marquage comme procédure de sélection
US7361635B2 (en) 2002-08-29 2008-04-22 Sangamo Biosciences, Inc. Simultaneous modulation of multiple genes
US7939327B2 (en) 2002-08-29 2011-05-10 Sangamo Biosciences, Inc. Simultaneous modulation of multiple genes
US10006053B2 (en) 2002-09-05 2018-06-26 California Institute Of Technology Use of chimeric nucleases to stimulate gene targeting
US9447434B2 (en) 2002-09-05 2016-09-20 California Institute Of Technology Use of chimeric nucleases to stimulate gene targeting
EP2360272A1 (fr) 2002-12-04 2011-08-24 Agency for Science, Technology and Research Procédé permettant de générer ou déterminer des etiquettes d'acide nucléique correspondant aux extremités dermiques de molécules d'ADN par une analyse séquences de l'expression génique (SAGE terminal)
US9249428B2 (en) 2003-08-08 2016-02-02 Sangamo Biosciences, Inc. Methods and compositions for targeted genomic deletion
EP3222715A1 (fr) 2003-08-08 2017-09-27 Sangamo BioSciences, Inc. Procédés et compositions pour clivage et recombinaison ciblés
WO2005014791A2 (fr) 2003-08-08 2005-02-17 Sangamo Biosciences, Inc. Methodes et compositions permettant un clivage et une recombinaison cibles
US9695442B2 (en) 2003-08-08 2017-07-04 Sangamo Therapeutics, Inc. Targeted deletion of cellular DNA sequences
US10675302B2 (en) 2003-08-08 2020-06-09 Sangamo Therapeutics, Inc. Methods and compositions for targeted cleavage and recombination
US9782437B2 (en) 2003-08-08 2017-10-10 Sangamo Therapeutics, Inc. Methods and compositions for targeted cleavage and recombination
US9260726B2 (en) 2003-08-08 2016-02-16 Sangamo Biosciences, Inc. Targeted integration and expression on exogenous nucleic acid sequences
US9289451B2 (en) 2003-08-08 2016-03-22 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
US7888121B2 (en) 2003-08-08 2011-02-15 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
US10669557B2 (en) 2003-08-08 2020-06-02 Sangamo Therapeutics, Inc. Targeted deletion of cellular DNA sequences
US9752140B2 (en) 2003-08-08 2017-09-05 Sangamo Therapeutics, Inc. Methods and compostions for targeted genomic deletion
US11311574B2 (en) 2003-08-08 2022-04-26 Sangamo Therapeutics, Inc. Methods and compositions for targeted cleavage and recombination
US8524500B2 (en) 2003-08-08 2013-09-03 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
US8409861B2 (en) 2003-08-08 2013-04-02 Sangamo Biosciences, Inc. Targeted deletion of cellular DNA sequences
EP2927318A1 (fr) 2003-08-08 2015-10-07 Sangamo BioSciences, Inc. Procédés et compositions pour clivage et recombinaison ciblés
US7407776B2 (en) 2003-09-19 2008-08-05 Sangamo Biosciences, Inc. Engineered zinc finger proteins for regulation of gene expression
EP2947146A1 (fr) 2004-02-05 2015-11-25 Sangamo BioSciences, Inc. Procédés et compositions pour clivage et recombinaison ciblés
US8349810B2 (en) 2004-02-05 2013-01-08 Sangamo Biosciences, Inc. Methods for targeted cleavage and recombination of CCR5
US7972854B2 (en) 2004-02-05 2011-07-05 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
US7534775B2 (en) 2004-04-08 2009-05-19 Sangamo Biosciences, Inc. Methods and compositions for modulating cardiac contractility
US8530638B2 (en) 2004-04-23 2013-09-10 The Brigham And Women's Hospital, Inc. Space efficient polymer sets
US8771986B2 (en) 2004-08-06 2014-07-08 Sangamo Biosciences, Inc. Engineered cleavage half-domains
US8034598B2 (en) 2004-08-06 2011-10-11 Sangamo Biosciences, Inc. Engineered cleavage half-domains
EP2292274A1 (fr) 2004-09-16 2011-03-09 Sangamo BioSciences, Inc. Compositions et procédés pour la production de protéines
EP2314614A1 (fr) 2005-02-28 2011-04-27 Sangamo BioSciences, Inc. Procédés et compositions anti-angiogènes
US7358085B2 (en) 2005-02-28 2008-04-15 Sangamo Biosciences, Inc. Anti-angiogenic methods and compositions
US8012946B1 (en) 2005-02-28 2011-09-06 Sangamo Biosciences, Inc. Anti-angiogenic methods and compositions
US7893022B2 (en) 2005-02-28 2011-02-22 Sangamo Biosciences, Inc. Anti-angiogenic methods and compositions
US7795209B2 (en) 2005-02-28 2010-09-14 Sangamo Biosciences, Inc. Anti-angiogenic methods and compositions
US7732196B2 (en) 2005-02-28 2010-06-08 Sangamo Biosciences, Inc. Anti-angiogenic methods and compositions
US9376685B2 (en) 2005-07-26 2016-06-28 Sangamo Biosciences, Inc. Linear donor constructs for targeted integration
US9045763B2 (en) 2005-07-26 2015-06-02 Sangamo Biosciences, Inc. Linear donor constructs for targeted integration
US8313925B2 (en) 2005-07-26 2012-11-20 Sangamo Biosciences, Inc. Zinc finger proteins and method for inactivating a dhfr gene in a chinese hamster ovary cell
US9765360B2 (en) 2005-07-26 2017-09-19 Sangamo Therapeutics, Inc. Linear donor constructs for targeted integration
EP2206782A1 (fr) 2006-05-25 2010-07-14 Sangamo BioSciences, Inc. Procédés et compositions pour l'inactivation de gènes
US9434776B2 (en) 2006-05-25 2016-09-06 Sangamo Biosciences, Inc. Methods and compositions for gene inactivation
EP2447279A1 (fr) 2006-05-25 2012-05-02 Sangamo BioSciences, Inc. Procédés et compositions pour l'inactivation de gènes
EP2213731A1 (fr) 2006-05-25 2010-08-04 Sangamo BioSciences, Inc. Variants des demi-domaines de foki
US8569253B2 (en) 2006-05-25 2013-10-29 Sangamo Biosciences, Inc. Methods and compositions for gene inactivation
US7914796B2 (en) 2006-05-25 2011-03-29 Sangamo Biosciences, Inc. Engineered cleavage half-domains
US8524221B2 (en) 2006-05-25 2013-09-03 Sangamo Biosciences, Inc. Methods and compositions for gene inactivation
EP2765195A1 (fr) 2006-05-25 2014-08-13 Sangamo BioSciences, Inc. Procédés et compositions pour l'inactivation de gènes
US11648267B2 (en) 2006-05-25 2023-05-16 Sangamo Therapeutics, Inc. Methods and compositions for gene inactivation
US7951925B2 (en) * 2006-05-25 2011-05-31 Sangamo Biosciences, Inc. Methods and compositions for gene inactivation
EP2395081A1 (fr) 2006-08-11 2011-12-14 Dow AgroSciences LLC Recombinaison homologue médiée par une nucléase à doigts de zinc
US20160076056A1 (en) * 2006-11-13 2016-03-17 Sangamo Biosciences, Inc. Method of inactivating a glucocorticoid receptor gene in an isolated cell
US11884930B2 (en) 2006-11-13 2024-01-30 Sangamo Biosciences, Inc. Method of inactivating a glucocorticoid receptor gene in an isolated cell
US10907175B2 (en) * 2006-11-13 2021-02-02 Sangamo Therapeutics, Inc. Isolated human cell with an inactivated glucocorticoid receptor gene
US9217026B2 (en) 2006-11-13 2015-12-22 Sangamo Biosciences, Inc. Method of inactivating a glucocorticoid receptor gene in an isolated cell
EP2412812A1 (fr) 2006-12-14 2012-02-01 Dow AgroSciences LLC Protéines à doigts de zinc non canoniques optimisés
EP3070169A1 (fr) 2006-12-14 2016-09-21 Dow AgroSciences LLC Protéines à doigts de zinc non canoniques optimisées
EP2415873A1 (fr) 2006-12-14 2012-02-08 Dow AgroSciences LLC Protéines à doigts de zinc non canoniques optimisés
EP2415872A1 (fr) 2006-12-14 2012-02-08 Dow AgroSciences LLC Protéines à doigts de zinc non canoniques optimisés
US11649468B2 (en) 2007-04-26 2023-05-16 Sangamo Therapeutics, Inc. Targeted integration into the PPP1R12C locus
US8110379B2 (en) 2007-04-26 2012-02-07 Sangamo Biosciences, Inc. Targeted integration into the PPP1R12C locus
US9267154B2 (en) 2007-04-26 2016-02-23 Sangamo Biosciences, Inc. Targeted integration into the PPP1R12C locus
US9914940B2 (en) 2007-04-26 2018-03-13 Sangamo Therapeutics, Inc. Targeted integration into the PPP1R12C locus
US8822221B2 (en) 2007-04-26 2014-09-02 Sangamo Biosciences, Inc. Targeted integration into the PPP1R12C locus
US8772025B2 (en) 2007-07-12 2014-07-08 Sangamo Biosciences, Inc. Methods and compositions for inactivating alpha 1,6 fucosyltransferase (FUT8) gene expression
EP2527435A2 (fr) 2007-07-12 2012-11-28 Sangamo BioSciences, Inc. Procédés et compositions pour inactiver l'expression génique d'alpha-1,6-fucosyltransférase (FUT 8)
US9890395B2 (en) 2007-07-12 2018-02-13 Sangamo Therapeutics, Inc. Methods and compositions for inactivating alpha 1,6 fucosyltransferase (FUT8) gene expression
US9322036B2 (en) 2007-07-12 2016-04-26 Sangamo Biosciences, Inc. Methods and compositions for inactivating alpha 1,6 fucosyltransferase (FUT8) gene expression
US7919313B2 (en) 2007-07-12 2011-04-05 Sangamo Biosciences, Inc. Methods and compositions for inactivating alpha 1,6 fucosyltransferase (FUT8) gene expression
US9121072B2 (en) 2007-09-27 2015-09-01 Sangamo Biosciences, Inc. Rapid screening of biologically active nucleases and isolation of nuclease-modified cells
US9115409B2 (en) 2007-09-27 2015-08-25 Sangamo Biosciences, Inc. Rapid screening of biologically active nucleases and isolation of nuclease-modified cells
EP3072973A1 (fr) 2007-09-27 2016-09-28 Dow AgroSciences LLC Protéines à doigts de zinc synthétisées ciblant des gènes de la synthase shikimate-3-phosphate5-énolpyruvyl
US8889390B2 (en) 2007-09-27 2014-11-18 Dow Agrosciences Llc Engineered zinc finger proteins targeting 5-enolpyruvyl shikimate-3-phosphate synthase genes
US10046028B2 (en) 2007-09-27 2018-08-14 Sangamo Therapeutics, Inc. Methods and compositions for modulating PD1
US9506120B2 (en) 2007-09-27 2016-11-29 Sangamo Biosciences, Inc. Rapid in vivo identification of biologically active nucleases
US8399218B2 (en) 2007-09-27 2013-03-19 Dow Agrosciences, Llc Engineered zinc finger proteins targeting 5-enolpyruvyl shikimate-3-phosphate synthase genes
US11235026B2 (en) 2007-09-27 2022-02-01 Sangamo Therapeutics, Inc. Methods and compositions for modulating PD1
US10344289B2 (en) 2007-09-27 2019-07-09 Dow Agrosciences Llc Engineered zinc finger proteins targeting 5-enolpyruvyl shikimate-3-phosphate synthase genes
US9402879B2 (en) 2007-09-27 2016-08-02 Sangamo Biosciences, Inc. Methods and compositions for modulating PD1
US8563314B2 (en) 2007-09-27 2013-10-22 Sangamo Biosciences, Inc. Methods and compositions for modulating PD1
EP2597155A1 (fr) 2007-10-25 2013-05-29 Sangamo BioSciences, Inc. Procédés et compositions pour une intégration ciblée
US8936936B2 (en) 2007-10-25 2015-01-20 Sangamo Biosciences, Inc. Methods and compositions for targeted integration
EP2936976A1 (fr) 2008-04-21 2015-10-28 Danziger Innovations Ltd. Vecteurs d'expression de virus de plante et leur utilisation pour générer des variations génotypiques dans des génomes de plantes
US10316288B2 (en) 2008-04-30 2019-06-11 Sanbio, Inc. Neural regenerating cells with alterations in DNA methylation
EP3851520A1 (fr) 2008-04-30 2021-07-21 SanBio, Inc. Cellules régénérantes neurales présentant des modifications dans la méthylation de l'adn
EP3118308A1 (fr) 2008-04-30 2017-01-18 SanBio, Inc. Cellules régénérantes neurales présentant des modifications dans la méthylation de l'adn
US11608492B2 (en) 2008-05-28 2023-03-21 Sangamo Therapeutics, Inc. Compositions for linking DNA-binding domains and cleavage domains
US9982245B2 (en) 2008-05-28 2018-05-29 Sangamo Therapeutics, Inc. Compositions for linking DNA-binding domains and cleavage domains
US10822599B2 (en) 2008-05-28 2020-11-03 Sangamo Therapeutics, Inc. Compositions for linking DNA-binding domains and cleavage domains
US9394531B2 (en) 2008-05-28 2016-07-19 Sangamo Biosciences, Inc. Compositions for linking DNA-binding domains and cleavage domains
EP2910568A2 (fr) 2008-06-10 2015-08-26 Sangamo BioSciences, Inc. Procédés et composicions pour la génération de lignées cellulaires déficientes en BAX et BAK
WO2009151591A2 (fr) 2008-06-10 2009-12-17 Sangamo Biosciences, Inc. Procédés et compositions pour la génération de lignées cellulaires déficientes en bax et bak
US8597912B2 (en) 2008-06-10 2013-12-03 Sangamo Biosciences, Inc. Methods and compositions for generation of Bax-and Bak-deficient cell lines
US11149321B2 (en) 2008-08-22 2021-10-19 Sangamo Therapeutics, Inc. Methods and compositions for targeted single-stranded cleavage and targeted integration
WO2010021692A1 (fr) 2008-08-22 2010-02-25 Sangamo Biosciences, Inc. Procédés et compositions pour un clivage simple brin ciblé et une intégration ciblée
US10113207B2 (en) 2008-08-22 2018-10-30 Sangamo Therapeutics, Inc. Methods and compositions for targeted single-stranded cleavage and targeted integration
US8703489B2 (en) 2008-08-22 2014-04-22 Sangamo Biosciences, Inc. Methods and compositions for targeted single-stranded cleavage and targeted integration
US10689717B2 (en) 2008-08-22 2020-06-23 Sangamo Therapeutics, Inc. Methods and compositions for targeted single-stranded cleavage and targeted integration
US9200266B2 (en) 2008-08-22 2015-12-01 Sangamo Biosciences, Inc. Methods and compositions for targeted single-stranded cleavage and targeted integration
EP2789691A1 (fr) 2008-08-22 2014-10-15 Sangamo BioSciences, Inc. Procédés et compositions pour un clivage simple brin ciblé et une intégration ciblée
US9631186B2 (en) 2008-08-22 2017-04-25 Sangamo Biosciences, Inc. Methods and compositions for targeted single-stranded cleavage and targeted integration
US9388426B2 (en) 2008-10-29 2016-07-12 Sangamo Biosciences, Inc. Methods and compositions for inactivating glutamine synthetase gene expression
US8153399B2 (en) 2008-10-29 2012-04-10 Sangamo Biosciences, Inc. Methods and compositions for inactivating glutamine synthetase gene expression
WO2010065123A1 (fr) 2008-12-04 2010-06-10 Sangamo Biosciences, Inc. Édition de génome chez des rats au moyen de nucléases en doigt de zinc
US9206404B2 (en) 2008-12-04 2015-12-08 Sangamo Biosciences, Inc. Method of deleting an IgM gene in an isolated rat cell
EP3156494A1 (fr) 2008-12-04 2017-04-19 Sangamo BioSciences, Inc. Édition de génome chez des rats au moyen de nucléases en doigt de zinc
US8329986B2 (en) 2008-12-17 2012-12-11 Dow Agrosciences, Llc Targeted integration into the Zp15 locus
WO2010077319A1 (fr) 2008-12-17 2010-07-08 Dow Agrosciences Llc Intégration ciblée dans le locus zp15
US8551945B2 (en) 2009-02-04 2013-10-08 Sangamo Biosciences, Inc. Methods and compositions for treating neuropathies
EP3354275A1 (fr) 2009-02-04 2018-08-01 Sangamo Therapeutics, Inc. Procédés et compositions permettant de traiter des neuropathies
WO2010090744A1 (fr) 2009-02-04 2010-08-12 Sangamo Biosciences, Inc. Procédés et compositions pour traiter des neuropathies
US9717759B2 (en) 2009-03-20 2017-08-01 Sangamo Therapeutics, Inc. Modification of CXCR4 using engineered zinc finger proteins
US8871905B2 (en) 2009-03-20 2014-10-28 Sangamo Biosciences, Inc. Modification of CXCR4 using engineered zinc finger proteins
US9834787B2 (en) 2009-04-09 2017-12-05 Sangamo Therapeutics, Inc. Targeted integration into stem cells
US8772009B2 (en) 2009-05-18 2014-07-08 Sangamo Biosciences, Inc. Methods and compositions for increasing nuclease activity
US8772008B2 (en) 2009-05-18 2014-07-08 Sangamo Biosciences, Inc. Methods and compositions for increasing nuclease activity
WO2011002503A1 (fr) 2009-06-30 2011-01-06 Sangamo Biosciences, Inc. Criblage rapide de nucléases biologiquement actives et isolement de cellules modifiées par nucléases
US9943565B2 (en) 2009-07-28 2018-04-17 Sangamo Therapeutics, Inc. Methods and compositions for treating trinucleotide repeat disorders
US10646543B2 (en) 2009-07-28 2020-05-12 Sangamo Therapeutics, Inc. Methods and compositions for treating trinucleotide repeat disorders
US9234016B2 (en) 2009-07-28 2016-01-12 Sangamo Biosciences, Inc. Engineered zinc finger proteins for treating trinucleotide repeat disorders
EP2727600A1 (fr) 2009-07-28 2014-05-07 Sangamo BioSciences, Inc. Procédés et compositions pour le traitement de maladies à répétition trinucléotidique
US9074224B2 (en) 2009-08-03 2015-07-07 Recombinetics, Inc. Methods and compositions for targeted gene modification
EP3156504A1 (fr) 2009-08-11 2017-04-19 Sangamo BioSciences, Inc. Organismes homozygotes destinés à une modification ciblée
US10827731B2 (en) 2009-08-11 2020-11-10 Sangamo Therapeutics, Inc. Method of inactivating the IPK1 gene in corn
EP3428289A1 (fr) 2009-08-11 2019-01-16 Sangamo Therapeutics, Inc. Organismes homozygotes destinés à une modification ciblée
WO2011048600A1 (fr) 2009-10-21 2011-04-28 Danziger Innovations Ltd. Génération de variations génotypiques dans des génomes de plantes par infection d'un gamète
EP2722392A2 (fr) 2009-10-22 2014-04-23 Dow AgroSciences LLC Protéines à doigt de zinc modifiées ciblant des gènes de plante impliqués dans la biosynthèse des acides gras
US10017775B2 (en) 2009-10-22 2018-07-10 Dow Agrosciences Llc Engineered zinc finger proteins targeting plant genes involved in fatty acid biosynthesis
US8592645B2 (en) 2009-10-22 2013-11-26 Dow Agrosciences Llc Engineered zinc finger proteins targeting plant genes involved in fatty acid biosynthesis
US9631201B2 (en) 2009-10-22 2017-04-25 Sangamo Biosciences, Inc. Engineered zinc finger proteins targeting plant genes involved in fatty acid biosynthesis
US8956828B2 (en) 2009-11-10 2015-02-17 Sangamo Biosciences, Inc. Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases
US10155011B2 (en) 2009-11-10 2018-12-18 Sangamo Therapeutics, Inc. Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases
US11439666B2 (en) 2009-11-10 2022-09-13 Sangamo Therapeutics, Inc. Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases
DE112010004582T5 (de) 2009-11-27 2012-11-29 Basf Plant Science Company Gmbh Optimierte Endonukleasen und Anwendungen davon
WO2011064736A1 (fr) 2009-11-27 2011-06-03 Basf Plant Science Company Gmbh Endonucléases optimisées et leurs utilisations
US10260062B2 (en) 2010-01-22 2019-04-16 Sangamo Therapeutics, Inc. Targeted genomic alteration
US9376689B2 (en) 2010-02-08 2016-06-28 Sangamo Biosciences, Inc. Engineered cleavage half-domains
US8623618B2 (en) 2010-02-08 2014-01-07 Sangamo Biosciences, Inc. Engineered cleavage half-domains
US10066242B2 (en) 2010-02-08 2018-09-04 Sangamo Therapeutics, Inc. Artificial nucleases comprising engineered cleavage half-domains
US10640790B2 (en) 2010-02-08 2020-05-05 Sangamo Therapeutics, Inc. Artificial nucleases including engineered FokI cleavage half-domains
EP4328304A2 (fr) 2010-02-08 2024-02-28 Sangamo Therapeutics, Inc. Demi-domaines de clivage modifiés
EP3594333A1 (fr) 2010-02-08 2020-01-15 Sangamo Therapeutics, Inc. Demi-domaines de clivage techniques
US11725218B2 (en) 2010-02-08 2023-08-15 Sangamo Therapeutics, Inc. Artificial nucleases comprising engineered cleavage half-domains
US11136599B2 (en) 2010-02-08 2021-10-05 Sangamo Therapeutics, Inc. Artifical nucleases comprising engineered cleavage half-domains
US9150879B2 (en) 2010-02-08 2015-10-06 Sangamo Biosciences, Inc. Engineered cleavage half-domains
US8962281B2 (en) 2010-02-08 2015-02-24 Sangamo Biosciences, Inc. Engineered cleavage half-domains
US9765361B2 (en) 2010-02-08 2017-09-19 Sangamo Therapeutics, Inc. Engineered cleavage half-domains for generating nuclease-mediated genomic modifications in a cell
EP2615106A1 (fr) 2010-02-08 2013-07-17 Sangamo BioSciences, Inc. Demi-domaines résultant de clivage technique
US9255259B2 (en) 2010-02-09 2016-02-09 Sangamo Biosciences, Inc. Targeted genomic modification with partially single-stranded donor molecules
EP2660318A1 (fr) 2010-02-09 2013-11-06 Sangamo BioSciences, Inc. Modification génomique ciblée de molécules partiellement donneuses à simple brin
US9005973B2 (en) 2010-02-09 2015-04-14 Sangamo Biosciences, Inc. Targeted genomic modification with partially single-stranded donor molecules
US9970028B2 (en) 2010-02-09 2018-05-15 Sangamo Therapeutics, Inc. Targeted genomic modification with partially single-stranded donor molecules
US9567573B2 (en) 2010-04-26 2017-02-14 Sangamo Biosciences, Inc. Genome editing of a Rosa locus using nucleases
US8771985B2 (en) 2010-04-26 2014-07-08 Sangamo Biosciences, Inc. Genome editing of a Rosa locus using zinc-finger nucleases
US9163245B2 (en) 2010-05-03 2015-10-20 Sangamo Biosciences, Inc. Compositions for linking zinc finger modules
US8772453B2 (en) 2010-05-03 2014-07-08 Sangamo Biosciences, Inc. Compositions for linking zinc finger modules
EP3636766A1 (fr) 2010-05-03 2020-04-15 Sangamo Therapeutics, Inc. Compositions pour relier des modules en doigt de zinc
US11661612B2 (en) 2010-05-17 2023-05-30 Sangamo Therapeutics, Inc. DNA-binding proteins and uses thereof
US10253333B2 (en) 2010-05-17 2019-04-09 Sangamo Therapeutics, Inc. DNA-binding proteins and uses thereof
US9322005B2 (en) 2010-05-17 2016-04-26 Sangamo Biosciences, Inc. DNA-binding proteins and uses thereof
US9783827B2 (en) 2010-05-17 2017-10-10 Sangamo Therapeutics, Inc. DNA-binding proteins and uses thereof
US8586526B2 (en) 2010-05-17 2013-11-19 Sangamo Biosciences, Inc. DNA-binding proteins and uses thereof
US8912138B2 (en) 2010-05-17 2014-12-16 Sangamo Biosciences, Inc. DNA-binding proteins and uses thereof
US9493750B2 (en) 2010-05-17 2016-11-15 Sangamo Biosciences, Inc. DNA-binding proteins and uses thereof
WO2012012667A2 (fr) 2010-07-21 2012-01-26 Sangamo Biosciences, Inc. Méthodes et compositions pour modifier un locus hla
US8945868B2 (en) 2010-07-21 2015-02-03 Sangamo Biosciences, Inc. Methods and compositions for modification of a HLA locus
US10072062B2 (en) 2010-07-21 2018-09-11 Sangamo Therapeutics, Inc. Methods and compositions for modification of a HLA locus
EP3511420A1 (fr) 2010-09-27 2019-07-17 Sangamo Therapeutics, Inc. Procédés et compositions pour l'inhibition de l'entrée de virus dans des cellules
US9566352B2 (en) 2010-09-27 2017-02-14 Sangamo Biosciences, Inc. Methods and compositions for inhibiting viral entry into cells
WO2012047598A1 (fr) 2010-09-27 2012-04-12 Sangamo Biosciences, Inc. Procédés et compositions d'inhibition d'entrée de virus dans cellules
US9175280B2 (en) 2010-10-12 2015-11-03 Sangamo Biosciences, Inc. Methods and compositions for treating hemophilia B
US9629930B2 (en) 2010-10-12 2017-04-25 Sangamo Biosciences, Inc. Methods and compositions for treating hemophilia B
WO2012051343A1 (fr) 2010-10-12 2012-04-19 The Children's Hospital Of Philadelphia Procédés et compositions pour traiter l'hémophilie b
EP3311822A1 (fr) 2010-11-17 2018-04-25 Sangamo Therapeutics, Inc. Procédés et compositions pour la modulation de pd1
US9267123B2 (en) 2011-01-05 2016-02-23 Sangamo Biosciences, Inc. Methods and compositions for gene correction
US9631187B2 (en) 2011-01-05 2017-04-25 Sangamo Biosciences, Inc. Methods and compositions for gene correction
WO2012139045A1 (fr) 2011-04-08 2012-10-11 Gilead Biologics, Inc. Procédés et compositions pour normaliser le système vasculaire tumoral par inhibition de la loxl2
US9161995B2 (en) 2011-07-25 2015-10-20 Sangamo Biosciences, Inc. Methods and compositions for alteration of a cystic fibrosis transmembrane conductance regulator (CFTR) gene
US9777281B2 (en) 2011-09-21 2017-10-03 Sangamo Therapeutics, Inc. Methods and compositions for regulation of transgene expression
US9394545B2 (en) 2011-09-21 2016-07-19 Sangamo Biosciences, Inc. Methods and compositions for regulation of transgene expression
US11639504B2 (en) 2011-09-21 2023-05-02 Sangamo Therapeutics, Inc. Methods and compositions for regulation of transgene expression
US11859190B2 (en) 2011-09-21 2024-01-02 Sangamo Therapeutics, Inc. Methods and compositions for regulation of transgene expression
US10975375B2 (en) 2011-09-21 2021-04-13 Sangamo Therapeutics, Inc. Methods and compositions for regulation of transgene expression
US9150847B2 (en) 2011-09-21 2015-10-06 Sangamo Biosciences, Inc. Methods and compositions for regulation of transgene expression
WO2013044008A2 (fr) 2011-09-21 2013-03-28 Sangamo Biosciences, Inc. Procédés et compositions de régulation de l'expression d'un transgène
EP3498833A1 (fr) 2011-09-21 2019-06-19 Sangamo Therapeutics, Inc. Procédés et compositions de régulation de l'expression d'un transgène
US9222105B2 (en) 2011-10-27 2015-12-29 Sangamo Biosciences, Inc. Methods and compositions for modification of the HPRT locus
US8895264B2 (en) 2011-10-27 2014-11-25 Sangamo Biosciences, Inc. Methods and compositions for modification of the HPRT locus
US9458205B2 (en) 2011-11-16 2016-10-04 Sangamo Biosciences, Inc. Modified DNA-binding proteins and uses thereof
EP4218727A2 (fr) 2012-01-27 2023-08-02 SanBio, Inc. Procédés et compositions pour moduler l'angiogenèse et la vasculogenèse
WO2013112917A1 (fr) 2012-01-27 2013-08-01 Sanbio, Inc. Procédés et compositions de modulation de l'angiogenèse et de la vasculogenèse
US8841260B2 (en) 2012-02-29 2014-09-23 Sangamo Biosciences, Inc. Methods and compositions for treating Huntington's Disease
US11723952B2 (en) 2012-02-29 2023-08-15 Sangamo Therapeutics, Inc. Methods and compositions for treating Huntington's Disease
US10471123B2 (en) 2012-02-29 2019-11-12 Sangamo Therapeutics, Inc. Methods and compositions for treating Huntington's disease
US10857203B2 (en) 2012-02-29 2020-12-08 Sangamo Therapeutics, Inc. Methods and compositions for treating Huntington's disease
US9499597B2 (en) 2012-02-29 2016-11-22 Sangamo Biosciences, Inc. Methods and compositions for treating Huntington's disease
WO2013130824A1 (fr) 2012-02-29 2013-09-06 Sangamo Biosciences, Inc. Procédés et compositions permettant de traiter la maladie de huntington
US10265377B2 (en) 2012-02-29 2019-04-23 Sangamo Therapeutics, Inc. Methods and compositions for treating Huntington's Disease
EP3839050A2 (fr) 2012-04-18 2021-06-23 The Board of Trustees of the Leland Stanford Junior University Ciblage génique non disruptif
US11976307B2 (en) 2012-04-27 2024-05-07 Duke University Genetic correction of mutated genes
US20210040460A1 (en) 2012-04-27 2021-02-11 Duke University Genetic correction of mutated genes
US11085092B2 (en) 2012-05-02 2021-08-10 Corteva Agriscience Llc Targeted modification of malate dehydrogenase
WO2013166315A1 (fr) 2012-05-02 2013-11-07 Dow Agrosciences Llc Modification ciblée de malate déshydrogénase
US10358684B2 (en) 2012-05-02 2019-07-23 Dow Agrosciences Llc Targeted modification of malate dehydrogenase
US9523098B2 (en) 2012-05-02 2016-12-20 Dow Agrosciences Llc Targeted modification of malate dehydrogenase
WO2013169802A1 (fr) 2012-05-07 2013-11-14 Sangamo Biosciences, Inc. Procédés et compositions pour l'intégration médiée par nucléase de transgènes
US10174331B2 (en) 2012-05-07 2019-01-08 Sangamo Therapeutics, Inc. Methods and compositions for nuclease-mediated targeted integration of transgenes
WO2013169398A2 (fr) 2012-05-09 2013-11-14 Georgia Tech Research Corporation Systèmes et procédés pour améliorer la spécificité et l'activité de nucléases
US9956247B2 (en) 2012-07-11 2018-05-01 Sangamo Therapeutics, Inc. Method of treating lysosomal storage diseases
WO2014011237A1 (fr) 2012-07-11 2014-01-16 Sangamo Biosciences, Inc. Méthodes et compositions pour le traitement de maladies lysosomales
WO2014011901A2 (fr) 2012-07-11 2014-01-16 Sangamo Biosciences, Inc. Procédés et compositions pour la délivrance d'agents biologiques
US9877988B2 (en) 2012-07-11 2018-01-30 Sangamo Therapeutics, Inc. Method of treating lysosomal storage diseases using nucleases and a transgene
EP3816281A1 (fr) 2012-07-11 2021-05-05 Sangamo Therapeutics, Inc. Compositions et procédés pour le traitement de maladies lysosomiale congénitale
US10648001B2 (en) 2012-07-11 2020-05-12 Sangamo Therapeutics, Inc. Method of treating mucopolysaccharidosis type I or II
US10883119B2 (en) 2012-07-11 2021-01-05 Sangamo Therapeutics, Inc. Methods and compositions for delivery of biologics
EP3444342A1 (fr) 2012-07-11 2019-02-20 Sangamo Therapeutics, Inc. Compositions et procédés pour le traitement de maladies lysosomiale congénitale
EP3196301A1 (fr) 2012-07-11 2017-07-26 Sangamo BioSciences, Inc. Compositions et procédés pour le traitement de maladies génétiques monofactorielles
US10293000B2 (en) 2012-07-11 2019-05-21 Sangamo Therapeutics, Inc. Methods and compositions for the treatment of lysosomal storage diseases
US11040115B2 (en) 2012-07-11 2021-06-22 Sangamo Therapeutics, Inc. Method for the treatment of lysosomal storage diseases
US11898158B2 (en) 2012-07-11 2024-02-13 Sangamo Therapeutics, Inc. Methods and compositions for the treatment of lysosomal storage diseases
US9650648B2 (en) 2012-08-29 2017-05-16 Sangamo Biosciences, Inc. Methods and compositions for treatment of a genetic condition
WO2014036219A2 (fr) 2012-08-29 2014-03-06 Sangamo Biosciences, Inc. Procédés et compositions de traitement d'un état génétique
US9963715B2 (en) 2012-08-29 2018-05-08 Sangamo Therapeutics, Inc. Methods and compositions for treatment of a genetic condition
US11492643B2 (en) 2012-08-29 2022-11-08 Sangamo Therapeutics, Inc. Methods and compositions for treatment of a genetic condition
US9963711B2 (en) 2012-09-07 2018-05-08 Sangamo Therapeutics, Inc. FAD2 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks
US9914930B2 (en) 2012-09-07 2018-03-13 Dow Agrosciences Llc FAD3 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks
US10961540B2 (en) 2012-09-07 2021-03-30 Dow Agrosciences Llc FAD3 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks
US10287595B2 (en) 2012-09-07 2019-05-14 Dow Agrosciences Llc Fad2 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks
EP3406715A1 (fr) 2012-09-07 2018-11-28 Dow AgroSciences LLC Loci de performance fad3 et site cible correspondant, protéines de liaison spécifiques capables d'induire des ruptures ciblées
US10844389B2 (en) 2012-09-07 2020-11-24 Dow Agrosciences Llc FAD2 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks
EP3404099A1 (fr) 2012-09-07 2018-11-21 Dow AgroSciences LLC Loci de performance fad2 et protéines de liaison spécifiques à un site cible correspondant pouvant induire des ruptures ciblées
WO2014039872A1 (fr) 2012-09-07 2014-03-13 Dow Agrosciences Llc Plateforme d'intégration de transgène génétiquement modifié (etip) pour le ciblage génique et l'empilement de caractères
US9493779B2 (en) 2012-09-07 2016-11-15 Dow Agrosciences Llc FAD2 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks
WO2014039692A2 (fr) 2012-09-07 2014-03-13 Dow Agrosciences Llc Loci de performance fad2 et protéines se liant à un site spécifique cible correspondantes pouvant induire des cassures ciblées
US10577616B2 (en) 2012-09-07 2020-03-03 Dow Agrosciences Llc FAD2 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks
US10526610B2 (en) 2012-09-07 2020-01-07 Dow Agrosciences Llc FAD3 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks
EP3431600A1 (fr) 2012-09-07 2019-01-23 Dow AgroSciences LLC Loci de performance fad2 et site cible correspondant, protéines de liaison spécifiques capables d'induire des ruptures ciblées
WO2014039702A2 (fr) 2012-09-07 2014-03-13 Dow Agrosciences Llc Loci de performance fad2 et protéines correspondantes de liaison spécifique d'un site cible capables d'induire des cassures ciblées
EP3763810A2 (fr) 2012-10-10 2021-01-13 Sangamo Therapeutics, Inc. Composés de modification de cellules t et leurs utilisations
WO2014059173A2 (fr) 2012-10-10 2014-04-17 Sangamo Biosciences, Inc. Composés modifiant les lymphocytes t et leurs utilisations
US11236175B2 (en) 2012-10-10 2022-02-01 Sangamo Therapeutics, Inc. T cell modifying compounds and uses thereof
US9597357B2 (en) 2012-10-10 2017-03-21 Sangamo Biosciences, Inc. T cell modifying compounds and uses thereof
US9255250B2 (en) 2012-12-05 2016-02-09 Sangamo Bioscience, Inc. Isolated mouse or human cell having an exogenous transgene in an endogenous albumin gene
US10415046B2 (en) 2012-12-13 2019-09-17 Dow Agrosciences Llc Precision gene targeting to a particular locus in maize
WO2014130955A1 (fr) 2013-02-25 2014-08-28 Sangamo Biosciences, Inc. Méthodes et compositions pour améliorer une disruption génique à médiation nucléase
US10227610B2 (en) 2013-02-25 2019-03-12 Sangamo Therapeutics, Inc. Methods and compositions for enhancing nuclease-mediated gene disruption
US9937207B2 (en) 2013-03-21 2018-04-10 Sangamo Therapeutics, Inc. Targeted disruption of T cell receptor genes using talens
US10918668B2 (en) 2013-03-21 2021-02-16 Sangamo Therapeutics, Inc. Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases
US11198883B2 (en) 2013-04-05 2021-12-14 Dow Agrosciences Llc Methods and compositions for integration of an exogenous sequence within the genome of plants
EP3679785A2 (fr) 2013-04-05 2020-07-15 Dow AgroSciences LLC Procédés et compositions pour l'intégration d'une séquence exogène dans le génome de plantes
US10501748B2 (en) 2013-04-05 2019-12-10 Dow Agrosciences Llc Methods and compositions for integration of an exogenous sequence within the genome of plants
WO2014165612A2 (fr) 2013-04-05 2014-10-09 Dow Agrosciences Llc Procédés et compositions permettant d'intégrer une séquence exogène au sein du génome de plantes
US10328182B2 (en) 2013-05-14 2019-06-25 University Of Georgia Research Foundation, Inc. Compositions and methods for reducing neointima formation
US11246965B2 (en) 2013-05-14 2022-02-15 University Of Georgia Research Foundation, Inc. Compositions and methods for reducing neointima formation
US10196652B2 (en) 2013-05-15 2019-02-05 Sangamo Therapeutics, Inc. Methods and compositions for treatment of a genetic condition
US10196651B2 (en) 2013-05-15 2019-02-05 Sangamo Therapeutics, Inc. Methods and compositions for treatment of a genetic condition
US9902974B2 (en) 2013-05-15 2018-02-27 Sangamo Therapeutics, Inc. Methods and compositions for treatment of a genetic condition
US9873894B2 (en) 2013-05-15 2018-01-23 Sangamo Therapeutics, Inc. Methods and compositions for treatment of a genetic condition
EP3730615A2 (fr) 2013-05-15 2020-10-28 Sangamo Therapeutics, Inc. Procédés et compositions pour le traitement d'une maladie génétique
US9567609B2 (en) 2013-08-28 2017-02-14 Sangamo Biosciences, Inc. Compositions for linking DNA-binding domains and cleavage domains
US11041174B2 (en) 2013-08-28 2021-06-22 Sangamo Therapeutics, Inc. Compositions for linking DNA-binding domains and cleavage domains
US10538787B2 (en) 2013-08-28 2020-01-21 Sangamo Therapeutics, Inc. Compositions for linking DNA-binding domains and cleavage domains
EP3591045A1 (fr) 2013-08-28 2020-01-08 Sangamo Therapeutics, Inc. Compositions de liaison de domaines de liaison à l'adn et de domaines de clivage
WO2015031619A1 (fr) 2013-08-28 2015-03-05 Sangamo Biosciences, Inc. Compositions de liaison de domaines de liaison à l'adn et de domaines de clivage
EP3988654A1 (fr) 2013-08-28 2022-04-27 Sangamo Therapeutics, Inc. Compositions de liaison de domaines de liaison à l'adn et de domaines de clivage
US10117899B2 (en) 2013-10-17 2018-11-06 Sangamo Therapeutics, Inc. Delivery methods and compositions for nuclease-mediated genome engineering in hematopoietic stem cells
WO2015057980A1 (fr) 2013-10-17 2015-04-23 Sangamo Biosciences, Inc. Procédés d'administration et compositions pour génie génomique médié par nucléase
US10494648B2 (en) 2013-10-17 2019-12-03 Sangamo Therapeutics, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
EP3441468A2 (fr) 2013-10-17 2019-02-13 Sangamo Therapeutics, Inc. Procédés d'administration et compositions pour génie génomique médié par nucléase
WO2015057976A1 (fr) 2013-10-17 2015-04-23 Sangamo Biosciences, Inc. Procédés d'apport et compositions pour ingénierie génomique à médiation par des nucléases dans des cellules souches hématopoïétiques
US9957526B2 (en) 2013-10-17 2018-05-01 Sangamo Therapeutics, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
EP3862434A1 (fr) 2013-11-04 2021-08-11 Dow AgroSciences LLC Loci de soja optimaux
US9909131B2 (en) 2013-11-04 2018-03-06 Dow Agrosciences Llc Optimal soybean loci
US10106804B2 (en) 2013-11-04 2018-10-23 Dow Agrosciences Llc Optimal soybean loci
US10273493B2 (en) 2013-11-04 2019-04-30 Dow Agrosciences Llc Optimal maize loci
WO2015066643A1 (fr) 2013-11-04 2015-05-07 Dow Agrosciences Llc Loci de soja optimaux
US11149287B2 (en) 2013-11-04 2021-10-19 Corteva Agriscience Llc Optimal soybean loci
US10233465B2 (en) 2013-11-04 2019-03-19 Dow Agrosciences Llc Optimal soybean loci
US11198882B2 (en) 2013-11-04 2021-12-14 Corteva Agriscience Llc Optimal maize loci
US11098316B2 (en) 2013-11-04 2021-08-24 Corteva Agriscience Llc Optimal soybean loci
WO2015066638A2 (fr) 2013-11-04 2015-05-07 Dow Agrosciences Llc Loci optimaux de maïs
US11098317B2 (en) 2013-11-04 2021-08-24 Corteva Agriscience Llc Optimal maize loci
WO2015066636A2 (fr) 2013-11-04 2015-05-07 Dow Agrosciences Llc Loci optimaux de maïs
US10093940B2 (en) 2013-11-04 2018-10-09 Dow Agrosciences Llc Optimal maize loci
US10369201B2 (en) 2013-11-11 2019-08-06 Sangamo Therapeutics, Inc. Methods and compositions for treating Huntington's disease
WO2015070212A1 (fr) 2013-11-11 2015-05-14 Sangamo Biosciences, Inc. Méthodes et compositions pour traiter la maladie de huntington
US11021696B2 (en) 2013-11-13 2021-06-01 Children's Medical Center Corporation Nuclease-mediated regulation of gene expression
EP3492593A1 (fr) 2013-11-13 2019-06-05 Children's Medical Center Corporation Régulation de l'expression génique médiée par la nucléase
US9932607B2 (en) 2013-11-15 2018-04-03 The Board Of Trustees Of The Leland Stanford Junior University Site-specific integration of transgenes into human cells
US10407476B2 (en) 2013-12-09 2019-09-10 Sangamo Therapeutics, Inc. Methods and compositions for treating hemophilia
EP3757116A1 (fr) 2013-12-09 2020-12-30 Sangamo Therapeutics, Inc. Procédés et compositions pour l'ingénierie génomique
US10081661B2 (en) 2013-12-09 2018-09-25 Sangamo Therapeutics, Inc. Methods and compositions for genome engineering
US10968261B2 (en) 2013-12-09 2021-04-06 Sangamo Therapeutics, Inc. Methods and compositions for genome engineering
US9771403B2 (en) 2013-12-09 2017-09-26 Sangamo Therapeutics, Inc. Methods and compositions for treating hemophilia
US11634463B2 (en) 2013-12-09 2023-04-25 Sangamo Therapeutics, Inc. Methods and compositions for treating hemophilia
US10774338B2 (en) 2014-01-16 2020-09-15 The Regents Of The University Of California Generation of heritable chimeric plant traits
WO2015117081A2 (fr) 2014-02-03 2015-08-06 Sangamo Biosciences, Inc. Méthodes et compositions pour le traitement de la bêta-thalassémie
US10072066B2 (en) 2014-02-03 2018-09-11 Sangamo Therapeutics, Inc. Methods and compositions for treatment of a beta thalessemia
US10370680B2 (en) 2014-02-24 2019-08-06 Sangamo Therapeutics, Inc. Method of treating factor IX deficiency using nuclease-mediated targeted integration
US11591622B2 (en) 2014-02-24 2023-02-28 Sangamo Therapeutics, Inc. Method of making and using mammalian liver cells for treating hemophilia or lysosomal storage disorder
WO2015130931A1 (fr) 2014-02-28 2015-09-03 Dow Agrosciences Llc Expression spécifique des racines conférée par des éléments régulateurs de gène chimère
WO2015143046A2 (fr) 2014-03-18 2015-09-24 Sangamo Biosciences, Inc. Procédés et compositions pour la régulation sélective de l'expression de protéine à doigt à zinc
EP3929279A1 (fr) 2014-03-18 2021-12-29 Sangamo Therapeutics, Inc. Procédés et compositions de régulation de l'expression de protéines en doigt de zinc
US9624498B2 (en) 2014-03-18 2017-04-18 Sangamo Biosciences, Inc. Methods and compositions for regulation of zinc finger protein expression
US10612041B2 (en) 2014-03-21 2020-04-07 The Board Of Trustees Of The Leland Stanford Junior University Genome editing without nucleases
US10507232B2 (en) 2014-04-02 2019-12-17 University Of Florida Research Foundation, Incorporated Materials and methods for the treatment of latent viral infection
US9522936B2 (en) 2014-04-24 2016-12-20 Sangamo Biosciences, Inc. Engineered transcription activator like effector (TALE) proteins
US11110154B2 (en) 2014-05-08 2021-09-07 Sangamo Therapeutics, Inc. Methods and compositions for treating Huntington's Disease
US11896686B2 (en) 2014-05-09 2024-02-13 Yale University Hyperbranched polyglycerol-coated particles and methods of making and using thereof
US11918695B2 (en) 2014-05-09 2024-03-05 Yale University Topical formulation of hyperbranched polymer-coated particles
US9574211B2 (en) 2014-05-13 2017-02-21 Sangamo Biosciences, Inc. Methods and compositions for prevention or treatment of a disease
US9970001B2 (en) 2014-06-05 2018-05-15 Sangamo Therapeutics, Inc. Methods and compositions for nuclease design
WO2016005449A1 (fr) 2014-07-08 2016-01-14 Vib Vzw Moyens et procédés d'augmentation du rendement de plante
WO2016011029A2 (fr) 2014-07-14 2016-01-21 Washington State University Knock-out nanos qui permet de pratiquer l'ablation des cellules de la lignée germinale
EP4335926A2 (fr) 2014-07-14 2024-03-13 Washington State University Nanos knock-out qui ablit des cellules de lignée germinale
US10738278B2 (en) 2014-07-15 2020-08-11 Juno Therapeutics, Inc. Engineered cells for adoptive cell therapy
WO2016011381A1 (fr) 2014-07-18 2016-01-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Diminution de l'expression et/ou de la fonction de cxcr4 pour améliorer la prise de greffe de cellules souches hématopoïétiques
US9816074B2 (en) 2014-07-25 2017-11-14 Sangamo Therapeutics, Inc. Methods and compositions for modulating nuclease-mediated genome engineering in hematopoietic stem cells
US9757420B2 (en) 2014-07-25 2017-09-12 Sangamo Therapeutics, Inc. Gene editing for HIV gene therapy
US9616090B2 (en) 2014-07-30 2017-04-11 Sangamo Biosciences, Inc. Gene correction of SCID-related genes in hematopoietic stem and progenitor cells
US9833479B2 (en) 2014-07-30 2017-12-05 Sangamo Therapeutics, Inc. Gene correction of SCID-related genes in hematopoietic stem and progenitor cells
EP3878948A1 (fr) 2014-09-16 2021-09-15 Sangamo Therapeutics, Inc. Procédés et compositions pour ingénierie génomique à médiation par des nucléases et correction du génome dans des cellules souches hématopoïétiques
US10435677B2 (en) 2014-09-16 2019-10-08 Sangamo Therapeutics, Inc. Genetically modified human cell with a corrected mutant sickle cell mutation
WO2016044416A1 (fr) 2014-09-16 2016-03-24 Sangamo Biosciences, Inc. Procédés et compositions pour ingénierie génomique à médiation par des nucléases et correction du génome dans des cellules souches hématopoïétiques
US10889834B2 (en) 2014-12-15 2021-01-12 Sangamo Therapeutics, Inc. Methods and compositions for enhancing targeted transgene integration
WO2016118726A2 (fr) 2015-01-21 2016-07-28 Sangamo Biosciences, Inc. Méthodes et compositions pour l'identification de nucléases à spécificité élevée
US11634688B2 (en) 2015-01-26 2023-04-25 Fate Therapeutics, Inc. Methods and compositions for inducing hematopoietic cell differentiation
US10626372B1 (en) 2015-01-26 2020-04-21 Fate Therapeutics, Inc. Methods and compositions for inducing hematopoietic cell differentiation
US11155796B2 (en) 2015-02-09 2021-10-26 Duke University Compositions and methods for epigenome editing
WO2016161446A1 (fr) 2015-04-03 2016-10-06 Dana-Farber Cancer Institute, Inc. Composition et procédés de correction génomique de cellules b
EP4335918A2 (fr) 2015-04-03 2024-03-13 Dana-Farber Cancer Institute, Inc. Composition et procédés d'édition génomique de lymphocytes b
WO2017176806A1 (fr) 2015-04-03 2017-10-12 Dana-Farber Cancer Institute, Inc. Composition et méthodes d'édition génomique de lymphocytes b
WO2016168229A1 (fr) 2015-04-15 2016-10-20 Dow Agrosciences Llc Promoteur de plante pour l'expression d'un transgène
WO2016168230A2 (fr) 2015-04-15 2016-10-20 Dow Agrosciences Llc Promoteur végétal pour l'expression d'un transgène
WO2016178207A1 (fr) 2015-05-04 2016-11-10 Ramot At Tel-Aviv University Ltd. Procédés et kits pour fragmenter l'adn
US10179918B2 (en) 2015-05-07 2019-01-15 Sangamo Therapeutics, Inc. Methods and compositions for increasing transgene activity
US10808020B2 (en) 2015-05-12 2020-10-20 Sangamo Therapeutics, Inc. Nuclease-mediated regulation of gene expression
WO2016196388A1 (fr) 2015-05-29 2016-12-08 Juno Therapeutics, Inc. Composition et procédés de régulation des interactions inhibitrices dans les cellules génétiquement modifiées
US10619154B2 (en) 2015-06-18 2020-04-14 Sangamo Therapeutics, Inc. Nuclease-mediated regulation of gene expression
US9957501B2 (en) 2015-06-18 2018-05-01 Sangamo Therapeutics, Inc. Nuclease-mediated regulation of gene expression
WO2017011519A1 (fr) 2015-07-13 2017-01-19 Sangamo Biosciences, Inc. Procédés d'administration et compositions pour génie génomique médié par nucléase
US10450585B2 (en) 2015-07-13 2019-10-22 Sangamo Therapeutics, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
US10786533B2 (en) 2015-07-15 2020-09-29 Juno Therapeutics, Inc. Engineered cells for adoptive cell therapy
WO2017023570A1 (fr) 2015-08-06 2017-02-09 The Curators Of The University Of Missouri Animaux résistant aux pathogènes ayant des gènes cd163 modifiés
EP4361279A2 (fr) 2015-08-06 2024-05-01 The Curators of the University of Missouri Animaux résistants aux pathogènes ayant des gènes cd163 modifiés
WO2017180180A2 (fr) 2015-09-22 2017-10-19 Dow Agrosciences Llc Promoteur de plante et 3'utr pour l'expression de transgènes
WO2017053164A1 (fr) 2015-09-22 2017-03-30 Dow Agrosciences Llc Promoteur et 3'utr de plante pour l'expression d'un transgène
US11123443B2 (en) 2015-09-23 2021-09-21 Sangamo Therapeutics, Inc. Htt repressors and uses thereof
US10435441B2 (en) 2015-09-23 2019-10-08 Sangamo Therapeutics, Inc. HTT repressors and uses thereof
US11970710B2 (en) 2015-10-13 2024-04-30 Duke University Genome engineering with Type I CRISPR systems in eukaryotic cells
WO2017070298A1 (fr) 2015-10-22 2017-04-27 Dow Agrosciences Llc Promoteur végétal pour l'expression d'un transgène
US10287606B2 (en) 2015-11-04 2019-05-14 Fate Therapeutics, Inc. Genomic engineering of pluripotent cells
US11072781B2 (en) 2015-11-04 2021-07-27 Fate Therapeutics, Inc. Genomic engineering of pluripotent cells
US11162075B2 (en) 2015-11-04 2021-11-02 Fate Therapeutics, Inc. Methods and compositions for inducing hematopoietic cell differentiation
US10947505B2 (en) 2015-11-04 2021-03-16 Fate Therapeutics, Inc. Methods and compositions for inducing hematopoietic cell differentiation
US11352607B2 (en) 2015-11-04 2022-06-07 Fate Therapeutics, Inc. Genomic engineering of pluripotent cells
US10858628B2 (en) 2015-11-04 2020-12-08 Fate Therapeutics, Inc. Methods and compositions for inducing hematopoietic cell differentiation
WO2017079673A1 (fr) 2015-11-04 2017-05-11 Fate Therapeutics, Inc. Ingénierie génomique de cellules pluripotentes
US11162076B2 (en) 2015-11-04 2021-11-02 Fate Therapeutics, Inc. Methods and compositions for inducing hematopoietic cell differentiation
WO2017078935A1 (fr) 2015-11-04 2017-05-11 Dow Agrosciences Llc Promoteur végétal pour l'expression d'un transgène
EP4249074A2 (fr) 2015-11-04 2023-09-27 Fate Therapeutics, Inc. Ingénierie génomique de cellules pluripotentes
US10639383B2 (en) 2015-11-23 2020-05-05 Sangamo Therapeutics, Inc. Methods and compositions for engineering immunity
US11793888B2 (en) 2015-11-23 2023-10-24 Sangamo Therapeutics, Inc. Methods and compositions for engineering immunity
WO2017106528A2 (fr) 2015-12-18 2017-06-22 Sangamo Biosciences, Inc. Disruption ciblée du récepteur des lymphocytes t
US11285175B2 (en) 2015-12-18 2022-03-29 Sangamo Therapeutics, Inc. Targeted disruption of the MHC cell receptor
US11352631B2 (en) 2015-12-18 2022-06-07 Sangamo Therapeutics, Inc. Targeted disruption of the T cell receptor
US10500229B2 (en) 2015-12-18 2019-12-10 Sangamo Therapeutics, Inc. Targeted disruption of the MHC cell receptor
WO2017106537A2 (fr) 2015-12-18 2017-06-22 Sangamo Biosciences, Inc. Disruption ciblée du récepteur des cellules du cmh
WO2017123757A1 (fr) 2016-01-15 2017-07-20 Sangamo Therapeutics, Inc. Méthodes et compositions pour le traitement d'une maladie neurologique
US11920169B2 (en) 2016-02-02 2024-03-05 Sangamo Therapeutics, Inc. Compositions for linking DNA-binding domains and cleavage domains
EP3769775A2 (fr) 2016-02-02 2021-01-27 Sangamo Therapeutics, Inc. Compositions pour lier des domaines de liaison à l'adn et des domaines de clivage
US10724020B2 (en) 2016-02-02 2020-07-28 Sangamo Therapeutics, Inc. Compositions for linking DNA-binding domains and cleavage domains
US11136597B2 (en) 2016-02-16 2021-10-05 Yale University Compositions for enhancing targeted gene editing and methods of use thereof
WO2017143042A2 (fr) 2016-02-16 2017-08-24 Yale University Compositions permettant d'améliorer l'édition ciblée de gènes et leurs procédés d'utilisation
WO2017143061A1 (fr) 2016-02-16 2017-08-24 Yale University Compositions et procédés pour le traitement de la mucoviscidose
US11421218B2 (en) 2016-03-23 2022-08-23 Dana-Farber Cancer Institute, Inc. Methods for enhancing the efficiency of gene editing
WO2017165655A1 (fr) 2016-03-23 2017-09-28 Dana-Farber Cancer Institute, Inc. Méthodes pour améliorer l'efficacité d'édition de gènes
WO2017173453A1 (fr) 2016-04-01 2017-10-05 The Brigham And Women's Hospital, Inc. Nanoparticules sensibles aux stimuli pour applications biomédicales
US11961008B2 (en) 2016-04-27 2024-04-16 Massachusetts Institute Of Technology Sequence-controlled polymer random access memory storage
US11410746B2 (en) 2016-04-27 2022-08-09 Massachusetts Institute Of Technology Stable nanoscale nucleic acid assemblies and methods thereof
WO2017189870A1 (fr) 2016-04-27 2017-11-02 Massachusetts Institute Of Technology Ensembles d'acides nucléiques nanométriques stables et procédés associés
US11514331B2 (en) 2016-04-27 2022-11-29 Massachusetts Institute Of Technology Sequence-controlled polymer random access memory storage
WO2018005559A1 (fr) 2016-06-27 2018-01-04 Juno Therapeutics, Inc. Procédé d'identification d'épitopes peptidiques, molécules qui se lient à de tels épitopes et utilisations associées
EP3992632A1 (fr) 2016-06-27 2022-05-04 Juno Therapeutics, Inc. Épitopes restreints au cmh-e, molécules de liaison et procédés et utilisations associés
WO2018005556A1 (fr) 2016-06-27 2018-01-04 Juno Therapeutics, Inc. Épitopes à restriction cmh-e, molécules de liaison et procédés et utilisations associés
EP4219462A1 (fr) 2016-07-13 2023-08-02 Vertex Pharmaceuticals Incorporated Procédés, compositions et kits pour augmenter l'efficacité d'édition génomique
WO2018013840A1 (fr) 2016-07-13 2018-01-18 Vertex Pharmaceuticals Incorporated Procédés, compositions et kits pour augmenter l'efficacité d'édition du génome
EP3838287A2 (fr) 2016-07-27 2021-06-23 Case Western Reserve University Composés et procédés pour favoriser la myélinisation
WO2018029034A1 (fr) 2016-08-09 2018-02-15 Vib Vzw Inhibiteurs de cellulose synthase et plantes mutantes
US10975393B2 (en) 2016-08-24 2021-04-13 Sangamo Therapeutics, Inc. Engineered target specific nucleases
US11845965B2 (en) 2016-08-24 2023-12-19 Sangamo Therapeutics, Inc. Regulation of gene expression using engineered nucleases
US10563184B2 (en) 2016-08-24 2020-02-18 Sangamo Therapeutics, Inc. Regulation of gene expression using engineered nucleases
EP3964573A1 (fr) 2016-08-24 2022-03-09 Sangamo Therapeutics, Inc. Nucléases spécifiques de cible spécifiquement modifiées
EP3995574A1 (fr) 2016-08-24 2022-05-11 Sangamo Therapeutics, Inc. Régulation de l'expression génique à l'aide de nucléases modifiées
WO2018039448A1 (fr) 2016-08-24 2018-03-01 Sangamo Therapeutics, Inc. Nucléases spécifiques de cible spécifiquement modifiées
WO2018039440A1 (fr) 2016-08-24 2018-03-01 Sangamo Therapeutics, Inc. Régulation de l'expression génique à l'aide de nucléases modifiées
US11827900B2 (en) 2016-08-24 2023-11-28 Sangamo Therapeutics, Inc. Engineered target specific nucleases
US10960085B2 (en) 2016-09-07 2021-03-30 Sangamo Therapeutics, Inc. Modulation of liver genes
WO2018067265A1 (fr) 2016-10-03 2018-04-12 Dow Agrosciences Llc Promoteur de plantes pour l'expression transgénique
WO2018067264A1 (fr) 2016-10-03 2018-04-12 Dow Agrosciences Llc Promoteur de plantes pour l'expression transgénique
US11072660B2 (en) 2016-10-03 2021-07-27 Juno Therapeutics, Inc. HPV-specific binding molecules
WO2018067618A1 (fr) 2016-10-03 2018-04-12 Juno Therapeutics, Inc. Molécules se liant spécifiquement au vph
WO2018067826A1 (fr) 2016-10-05 2018-04-12 Cellular Dynamics International, Inc. Génération de lignées matures à partir de cellules souches pluripotentes induites avec une interruption mecp2
WO2018071873A2 (fr) 2016-10-13 2018-04-19 Juno Therapeutics, Inc. Méthodes et compositions d'immunothérapie impliquant des modulateurs de la voie métabolique du tryptophane
EP4190335A1 (fr) 2016-10-13 2023-06-07 Juno Therapeutics, Inc. Procédés et compositions d'immunothérapie impliquant des modulateurs de la voie métabolique du tryptophane
US11896615B2 (en) 2016-10-13 2024-02-13 Juno Therapeutics, Inc. Immunotherapy methods and compositions involving tryptophan metabolic pathway modulators
US11219695B2 (en) 2016-10-20 2022-01-11 Sangamo Therapeutics, Inc. Methods and compositions for the treatment of Fabry disease
US11766400B2 (en) 2016-10-24 2023-09-26 Yale University Biodegradable contraceptive implants
WO2018081775A1 (fr) 2016-10-31 2018-05-03 Sangamo Therapeutics, Inc. Correction génique de gènes liés à la scid dans des cellules souches hématopoïétiques et progénitrices
US11020492B2 (en) 2016-10-31 2021-06-01 Sangamo Therapeutics, Inc. Gene correction of SCID-related genes in hematopoietic stem and progenitor cells
US11504389B2 (en) 2016-12-01 2022-11-22 Sangamo Therapeutics, Inc. Tau modulators and methods and compositions for delivery thereof
US11793833B2 (en) 2016-12-02 2023-10-24 Juno Therapeutics, Inc. Engineered B cells and related compositions and methods
WO2018102612A1 (fr) 2016-12-02 2018-06-07 Juno Therapeutics, Inc. Cellules b modifiées et compositions et méthodes associées
WO2018106732A1 (fr) 2016-12-05 2018-06-14 Juno Therapeutics, Inc. Production de cellules modifiées pour une thérapie cellulaire adoptive
WO2018106782A1 (fr) 2016-12-08 2018-06-14 Case Western Reserve University Procédés et compositions pour améliorer la production de myéline fonctionnelle
EP4276187A2 (fr) 2016-12-08 2023-11-15 Case Western Reserve University Procédés et compositions pour améliorer la production de myéline fonctionnelle
WO2018112470A1 (fr) 2016-12-16 2018-06-21 The Brigham And Women's Hospital, Inc. Co-administration d'acides nucléiques pour la suppression et l'expression simultanées de gènes cibles
US11920148B2 (en) 2017-02-22 2024-03-05 Crispr Therapeutics Ag Compositions and methods for gene editing
WO2018187493A1 (fr) 2017-04-04 2018-10-11 Yale University Compositions et procédés d'administration in utero
WO2018195418A1 (fr) 2017-04-20 2018-10-25 Oregon Health & Science University Correction de gène humain
US11655275B2 (en) 2017-05-03 2023-05-23 Sangamo Therapeutics, Inc. Methods and compositions for modification of a cystic fibrosis transmembrane conductance regulator (CFTR) gene
US11512287B2 (en) 2017-06-16 2022-11-29 Sangamo Therapeutics, Inc. Targeted disruption of T cell and/or HLA receptors
US11952408B2 (en) 2017-10-03 2024-04-09 Juno Therapeutics, Inc. HPV-specific binding molecules
EP4215543A2 (fr) 2017-10-03 2023-07-26 Juno Therapeutics, Inc. Molécules de liaison spécifiques du vph
WO2019070541A1 (fr) 2017-10-03 2019-04-11 Juno Therapeutics, Inc. Molécules de liaison spécifique à l'hpv
US11851679B2 (en) 2017-11-01 2023-12-26 Juno Therapeutics, Inc. Method of assessing activity of recombinant antigen receptors
WO2019089982A1 (fr) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Procédé d'évaluation de l'activité de récepteurs antigéniques de recombinaison
US11661611B2 (en) 2017-11-09 2023-05-30 Sangamo Therapeutics, Inc. Genetic modification of cytokine inducible SH2-containing protein (CISH) gene
WO2019094928A1 (fr) 2017-11-10 2019-05-16 Massachusetts Institute Of Technology Production microbienne d'acides nucléiques simple brin purs
US10940171B2 (en) 2017-11-10 2021-03-09 Massachusetts Institute Of Technology Microbial production of pure single stranded nucleic acids
US10953036B2 (en) 2017-11-20 2021-03-23 University Of Georgia Research Foundation, Inc. Compositions and methods of modulating HIF-2A to improve muscle generation and repair
WO2019100053A1 (fr) 2017-11-20 2019-05-23 University Of Georgia Research Foundation, Inc. Compositions et procédés pour moduler hif-2a afin d'améliorer la production et la réparation des muscles
US10927346B2 (en) 2017-12-22 2021-02-23 Fate Therapeutics, Inc. Enhanced immune effector cells and use thereof
EP4083192A1 (fr) 2017-12-22 2022-11-02 Fate Therapeutics, Inc. Cellules effectrices immunes améliorées et leur utilisation
US11365394B2 (en) 2017-12-22 2022-06-21 Fate Therapeutics, Inc. Enhanced immune effector cells and use thereof
WO2019143677A1 (fr) 2018-01-17 2019-07-25 Vertex Pharmaceuticals Incorporated Composés de quinoxalinone, compositions, procédés et kits pour augmenter l'efficacité d'édition du génome
WO2019143675A1 (fr) 2018-01-17 2019-07-25 Vertex Pharmaceuticals Incorporated Inhibiteurs d'adn-pk
US12005127B2 (en) 2018-01-17 2024-06-11 Vertex Pharmaceuticals Incorporated DNA-PK inhibitors
WO2019143678A1 (fr) 2018-01-17 2019-07-25 Vertex Pharmaceuticals Incorporated Inhibiteurs de la protéine kinase dépendante de l'adn
US11401512B2 (en) 2018-02-08 2022-08-02 Sangamo Therapeutics, Inc. Engineered target specific nucleases
WO2019191495A1 (fr) 2018-03-29 2019-10-03 Fate Therapeutics, Inc. Cellules effectrices immunes améliorées et leur utilisation
WO2019195492A1 (fr) 2018-04-05 2019-10-10 Juno Therapeutics, Inc. Procédés de production de cellules exprimant un récepteur recombinant et compositions associées
WO2019195491A1 (fr) 2018-04-05 2019-10-10 Juno Therapeutics, Inc. Lymphocytes t exprimant un récepteur recombinant, polynucléotides et procédés associés
US11471489B2 (en) 2018-04-05 2022-10-18 Juno Therapeutics, Inc. T cell receptors and engineered cells expressing same
US11421007B2 (en) 2018-04-18 2022-08-23 Sangamo Therapeutics, Inc. Zinc finger protein compositions for modulation of huntingtin (Htt)
WO2019215500A1 (fr) 2018-05-11 2019-11-14 Crispr Therapeutics Ag Procédés et compositions pour le traitement du cancer
US11690921B2 (en) 2018-05-18 2023-07-04 Sangamo Therapeutics, Inc. Delivery of target specific nucleases
WO2019234141A1 (fr) 2018-06-06 2019-12-12 Vib Vzw Nouvelles protéines mutantes de cinnamoyl-coa reductase de plante
WO2019234754A1 (fr) 2018-06-07 2019-12-12 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center) Constructions d'acide nucléique et procédés d'utilisation de celles-ci
WO2019234750A1 (fr) 2018-06-07 2019-12-12 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center) Procédés de régénération et de transformation de cannabis
US11939593B2 (en) 2018-08-01 2024-03-26 University Of Georgia Research Foundation, Inc. Compositions and methods for improving embryo development
US11834686B2 (en) 2018-08-23 2023-12-05 Sangamo Therapeutics, Inc. Engineered target specific base editors
WO2020047353A1 (fr) 2018-08-31 2020-03-05 Yale University Compositions et procédés pour améliorer l'édition de gènes à base de triplex et de nucléase
EP4234570A2 (fr) 2018-09-18 2023-08-30 Sangamo Therapeutics, Inc. Nucléases spécifiques de la mort cellulaire programmée 1 (pd1)
WO2020095107A1 (fr) 2018-11-07 2020-05-14 Crispr Therapeutics Ag Immunothérapie cellulaire anti-cd33 contre le cancer
WO2020095248A1 (fr) 2018-11-07 2020-05-14 Crispr Therapeutics Ag Thérapie contre le cancer des cellules immunitaires anti-ptk7
WO2020095249A1 (fr) 2018-11-07 2020-05-14 Crispr Therapeutics Ag Thérapie contre le cancer des cellules immunitaires anti-liv1
WO2020112195A1 (fr) 2018-11-30 2020-06-04 Yale University Compositions, technologies et procédés d'utilisation de plérixafor pour améliorer l'édition de gènes
WO2020118073A1 (fr) 2018-12-05 2020-06-11 Vertex Pharmaceuticals Incorporated Systèmes d'édition de gènes pour l'édition d'un gène cftr
GB201820109D0 (en) 2018-12-11 2019-01-23 Vib Vzw Plants with a lignin trait and udp-glycosyltransferase mutation
US11453639B2 (en) 2019-01-11 2022-09-27 Acuitas Therapeutics, Inc. Lipids for lipid nanoparticle delivery of active agents
US11419932B2 (en) 2019-01-24 2022-08-23 Massachusetts Institute Of Technology Nucleic acid nanostructure platform for antigen presentation and vaccine formulations formed therefrom
US11857641B2 (en) 2019-02-06 2024-01-02 Sangamo Therapeutics, Inc. Method for the treatment of mucopolysaccharidosis type I
WO2020185628A1 (fr) 2019-03-08 2020-09-17 Obsidian Therapeutics, Inc. Compositions de cd40l et procédés de régulation accordable
WO2020205838A1 (fr) 2019-04-02 2020-10-08 Sangamo Therapeutics, Inc. Procédés pour le traitement de béta-thalassémie
WO2020219726A1 (fr) 2019-04-23 2020-10-29 Sangamo Therapeutics, Inc. Modulateurs de l'expression du gène cadre de lecture ouvert 72 sur le chromosome 9 et leurs utilisations
WO2020223535A1 (fr) 2019-05-01 2020-11-05 Juno Therapeutics, Inc. Cellules exprimant un récepteur recombinant à base d'un locus modifié du tgfbr2, et polynucléotides et méthodes associés
WO2020223571A1 (fr) 2019-05-01 2020-11-05 Juno Therapeutics, Inc. Cellules exprimant un récepteur chimérique à partir d'un locus cd247 modifié, polynucléotides et procédés associés
US11905532B2 (en) 2019-06-25 2024-02-20 Massachusetts Institute Of Technology Compositions and methods for molecular memory storage and retrieval
WO2020261219A1 (fr) 2019-06-27 2020-12-30 Crispr Therapeutics Ag Utilisation de lymphocytes t récepteurs d'antigènes chimériques et d'inhibiteurs de cellules nk pour le traitement du cancer
WO2021022223A1 (fr) 2019-08-01 2021-02-04 Sana Biotechnology, Inc. Cellules exprimant dux4 et utilisations associées
WO2021041316A1 (fr) 2019-08-23 2021-03-04 Sana Biotechnology, Inc. Cellules exprimant cd24 et utilisations associées
US11872286B2 (en) 2019-08-30 2024-01-16 Yale University Compositions and methods for delivery of nucleic acids to cells
US11850284B2 (en) 2019-08-30 2023-12-26 Yale University Compositions and methods for delivery of nucleic acids to cells
US12005121B2 (en) 2019-08-30 2024-06-11 Yale University Compositions and methods for delivery of nucleic acids to cells
WO2021042060A1 (fr) 2019-08-30 2021-03-04 Yale University Compositions et méthodes d'administration d'acides nucléiques à des cellules
WO2021044378A1 (fr) 2019-09-06 2021-03-11 Crispr Therapeutics Ag Lymphocytes t génétiquement modifiés présentant une persistance améliorée en culture
WO2021067871A1 (fr) 2019-10-02 2021-04-08 Sangamo Therapeutics, Inc. Facteurs de transcription de protéine à doigt de zinc pour réprimer l'expression de l'alpha-synucléine
WO2021067864A1 (fr) 2019-10-02 2021-04-08 Sangamo Therapeutics, Inc. Facteurs de transcription de protéine de doigt de zinc pour le traitement d'une maladie à prion
WO2021087361A1 (fr) 2019-11-01 2021-05-06 Sangamo Therapeutics, Inc. Variants de nucléase à doigt de zinc pour le traitement ou la prévention de maladies lysosomiques de surcharge
WO2021087358A1 (fr) 2019-11-01 2021-05-06 Sangamo Therapeutics, Inc. Variants de la recombinase gin
WO2021087366A1 (fr) 2019-11-01 2021-05-06 Sangamo Therapeutics, Inc. Compositions et méthodes d'ingénierie génomique
WO2021142376A1 (fr) 2020-01-08 2021-07-15 Obsidian Therapeutics, Inc. Compositions et procédés pour la régulation accordable de la transcription
WO2021151012A1 (fr) 2020-01-22 2021-07-29 Sangamo Therapeutics, Inc. Facteurs de transcription de protéines à doigt de zinc pour réprimer l'expression de la protéine tau
WO2021155065A1 (fr) 2020-01-28 2021-08-05 The Broad Institute, Inc. Éditeurs de bases, compositions, et procédés de modification du génome mitochondrial
WO2021195426A1 (fr) 2020-03-25 2021-09-30 Sana Biotechnology, Inc. Cellules neurales hypoimmunogènes pour le traitement de troubles et d'états neurologiques
WO2021224416A1 (fr) 2020-05-06 2021-11-11 Cellectis S.A. Procédés de modification génétique de cellules pour l'administration de protéines thérapeutiques
WO2021224395A1 (fr) 2020-05-06 2021-11-11 Cellectis S.A. Procédés d'insertion ciblée de séquences exogènes dans des génomes cellulaires
WO2021231661A2 (fr) 2020-05-13 2021-11-18 Juno Therapeutics, Inc. Procédé de production de lots de cellules donneuses exprimant un récepteur recombinant
WO2021236852A1 (fr) 2020-05-20 2021-11-25 Sana Biotechnology, Inc. Méthodes et compositions pour le traitement d'infections virales
WO2021247836A1 (fr) 2020-06-03 2021-12-09 Board Of Regents, The University Of Texas System Méthodes de ciblage de shp-2 pour surmonter une résistance
WO2021260186A1 (fr) 2020-06-26 2021-12-30 Juno Therapeutics Gmbh Lymphocytes t modifiés exprimant un récepteur recombiné, polynucléotides et procédés associés
US11976019B2 (en) 2020-07-16 2024-05-07 Acuitas Therapeutics, Inc. Cationic lipids for use in lipid nanoparticles
WO2022036150A1 (fr) 2020-08-13 2022-02-17 Sana Biotechnology, Inc. Méthodes de traitement de patients sensibilisés avec des cellules hypo-immunogènes, ainsi que méthodes et compositions associés
WO2022046760A2 (fr) 2020-08-25 2022-03-03 Kite Pharma, Inc. Lymphocytes t à fonctionnalité améliorée
WO2022047424A1 (fr) 2020-08-31 2022-03-03 Yale University Compositions et méthodes d'administration d'acides nucléiques à des cellules
WO2022064428A1 (fr) 2020-09-23 2022-03-31 Crispr Therapeutics Ag Lymphocytes t génétiquement modifiés à interruption de regnase-1 et/ou de tgfbrii ayant une fonctionnalité et une persistance améliorées
WO2022067122A1 (fr) 2020-09-25 2022-03-31 Sangamo Therapeutics, Inc. Protéines de fusion à doigt de zinc pour l'édition des nucléobases
WO2022072826A1 (fr) 2020-10-02 2022-04-07 Sangamo Therapeutics, Inc. Nouveaux facteurs de transcription de protéines à doigts de zinc pour réprimer l'expression de l'alpha-synucléine
WO2022098787A1 (fr) 2020-11-04 2022-05-12 Juno Therapeutics, Inc. Cellules exprimant un récepteur chimérique à partir d'un locus de chaîne de la superfamille des immunoglobines cd3 invariable modifié, polynucléotides et procédés associés
WO2022101641A1 (fr) 2020-11-16 2022-05-19 Pig Improvement Company Uk Limited Animaux résistants à la grippe a ayant des gènes anp32 modifiés
WO2022120334A1 (fr) 2020-12-03 2022-06-09 Century Therapeutics, Inc. Cellules génétiquement modifiées et leurs utilisations
US11661459B2 (en) 2020-12-03 2023-05-30 Century Therapeutics, Inc. Artificial cell death polypeptide for chimeric antigen receptor and uses thereof
WO2022137181A1 (fr) 2020-12-23 2022-06-30 Crispr Therapeutics Ag Utilisation conjointe de lénalidomide et de lymphocytes car-t
US11802157B2 (en) 2020-12-31 2023-10-31 Sana Biotechnology, Inc. Methods and compositions for modulating CAR-T activity
US11987628B2 (en) 2020-12-31 2024-05-21 Sana Biotechnology, Inc. Methods and compositions for modulating CAR-T activity
WO2022146891A2 (fr) 2020-12-31 2022-07-07 Sana Biotechnology, Inc. Méthodes et compositions pour moduler une activité de car-t
US11965022B2 (en) 2020-12-31 2024-04-23 Sana Biotechnology, Inc. Methods and compositions for modulating CAR-T activity
WO2022155265A2 (fr) 2021-01-12 2022-07-21 Mitolab Inc. Désaminases spécifiques de l'adn à double brin dépendant du contexte et leurs utilisations
WO2022189967A1 (fr) 2021-03-09 2022-09-15 Crispr Therapeutics Ag Lymphocytes t génétiquement modifiés ayant une inactivation de ptpn2 ayant une fonctionnalité améliorée et une activité antitumorale
WO2022204071A1 (fr) 2021-03-22 2022-09-29 Juno Therapeutics, Inc. Procédé d'évaluation de la puissance de particules de vecteur viral
WO2022216624A1 (fr) 2021-04-07 2022-10-13 Century Therapeutics, Inc. Compositions et méthodes pour générer des lymphocytes t alpha-bêta à partir de cellules souches pluripotentes induites
WO2022216524A1 (fr) 2021-04-07 2022-10-13 Century Therapeutics, Inc. Polypeptide artificiel combiné de mort cellulaire/système rapporteur pour cellule à récepteur antigénique chimérique et ses utilisations
WO2022216514A1 (fr) 2021-04-07 2022-10-13 Century Therapeutics, Inc. Compositions et méthodes pour générer des lymphocytes t gamma-delta à partir de cellules souches pluripotentes induites
WO2022235911A1 (fr) 2021-05-05 2022-11-10 FUJIFILM Cellular Dynamics, Inc. Procédés et compositions pour la microglie dérivée d'ipsc
US12031146B2 (en) 2021-05-17 2024-07-09 The Board Of Trustees Of The Leland Stanford Junior University Genome editing without nucleases
WO2022251443A1 (fr) 2021-05-26 2022-12-01 FUJIFILM Cellular Dynamics, Inc. Procédés pour empêcher le silençage rapide de gènes dans des cellules souches pluripotentes
WO2022251367A1 (fr) 2021-05-27 2022-12-01 Sana Biotechnology, Inc. Cellules hypoimmunogènes comprenant hla-e ou hla-g génétiquement modifiés
WO2023287827A2 (fr) 2021-07-14 2023-01-19 Sana Biotechnology, Inc. Expression modifiée d'antigènes liés au chromosome y dans des cellules hypo-immunogènes
WO2023010133A2 (fr) 2021-07-30 2023-02-02 Tune Therapeutics, Inc. Compositions et procédés de modulation de l'expression de la frataxine
WO2023010135A1 (fr) 2021-07-30 2023-02-02 Tune Therapeutics, Inc. Compositions et procédés pour moduler l'expression de la protéine 2 de liaison méthyle-cpg (mecp2)
WO2023019227A1 (fr) 2021-08-11 2023-02-16 Sana Biotechnology, Inc. Cellules génétiquement modifiées pour une thérapie cellulaire allogénique pour réduire les réactions inflammatoires induites par le complément
WO2023019226A1 (fr) 2021-08-11 2023-02-16 Sana Biotechnology, Inc. Cellules génétiquement modifiées pour une thérapie cellulaire allogénique
WO2023019229A1 (fr) 2021-08-11 2023-02-16 Sana Biotechnology, Inc. Cellules primaires génétiquement modifiées pour une thérapie cellulaire allogénique
WO2023019225A2 (fr) 2021-08-11 2023-02-16 Sana Biotechnology, Inc. Cellules génétiquement modifiées pour une thérapie cellulaire allogénique permettant de réduire les réactions inflammatoires à médiation par le sang instantanée
WO2023019203A1 (fr) 2021-08-11 2023-02-16 Sana Biotechnology, Inc. Systèmes inductibles pour modifier l'expression génique dans des cellules hypoimmunogènes
US12031150B2 (en) 2021-08-20 2024-07-09 Vertex Pharmaceuticals Incorporated Methods, compositions and kits for increasing genome editing efficiency
WO2023039567A2 (fr) 2021-09-10 2023-03-16 FUJIFILM Cellular Dynamics, Inc. Compositions de cellules dérivées de cellules souches pluripotentes induites et leurs procédés d'utilisation
WO2023042079A1 (fr) 2021-09-14 2023-03-23 Crispr Therapeutics Ag Cellules immunitaires génétiquement modifiées ayant un gène cd83 déficient
WO2023070043A1 (fr) 2021-10-20 2023-04-27 Yale University Compositions et procédés pour l'édition et l'évolution ciblées d'éléments génétiques répétitifs
WO2023070019A1 (fr) 2021-10-21 2023-04-27 Vertex Pharmaceuticals Incorporated Cellules hypoimmunitaires
WO2023069790A1 (fr) 2021-10-22 2023-04-27 Sana Biotechnology, Inc. Procédés de modification de lymphocytes t allogéniques avec un transgène dans un locus de tcr et compositions et procédés associés
WO2023076880A1 (fr) 2021-10-25 2023-05-04 Board Of Regents, The University Of Texas System Thérapie ciblant le foxo1 pour le traitement du cancer
WO2023077050A1 (fr) 2021-10-29 2023-05-04 FUJIFILM Cellular Dynamics, Inc. Neurones dopaminergiques comprenant des mutations et leurs procédés d'utilisation
WO2023081900A1 (fr) 2021-11-08 2023-05-11 Juno Therapeutics, Inc. Lymphocytes t modifiés exprimant un récepteur recombiné de lymphocytes t (tcr) et systèmes et procédés apparentés
WO2023105244A1 (fr) 2021-12-10 2023-06-15 Pig Improvement Company Uk Limited Édition de tmprss2/4 pour la résistance aux maladies chez le bétail
WO2023111913A1 (fr) 2021-12-15 2023-06-22 Crispr Therapeutics Ag Cellule anti-liv1 modifiée avec lyse de régnase-1 et/ou tgfbrii
WO2023122722A1 (fr) 2021-12-22 2023-06-29 Sangamo Therapeutics, Inc. Nouvelles protéines de fusion à doigt de zinc pour l'édition de nucléobases
WO2023119201A2 (fr) 2021-12-22 2023-06-29 Crispr Therapeutics Ag Lymphocytes t génétiquement modifiés avec un proto-oncogène-b de lymphome de lignée de casitas interrompu (cblb) et leurs utilisations
WO2023122337A1 (fr) 2021-12-23 2023-06-29 Sana Biotechnology, Inc. Lymphocytes t à récepteur antigénique chimérique (car) pour le traitement d'une maladie auto-immune et méthodes associées
WO2023129937A1 (fr) 2021-12-29 2023-07-06 Century Therapeutics, Inc. Cellules génétiquement modifiées ayant des récepteurs antigéniques chimériques anti-cd19/anti-cd22, et leurs utilisations
WO2023131616A1 (fr) 2022-01-05 2023-07-13 Vib Vzw Moyens et procédés pour augmenter la tolérance au stress abiotique dans des plantes
WO2023131637A1 (fr) 2022-01-06 2023-07-13 Vib Vzw Graminées d'ensilage améliorées
WO2023137471A1 (fr) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systèmes et procédés de programmation de phénotypes de lymphocytes t par activation génique ciblée
WO2023137472A2 (fr) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systèmes et procédés de programmation de phénotypes de lymphocytes t par répression génique ciblée
WO2023144199A1 (fr) 2022-01-26 2023-08-03 Vib Vzw Plantes ayant des niveaux réduits de métabolites de goût amer
WO2023154578A1 (fr) 2022-02-14 2023-08-17 Sana Biotechnology, Inc. Méthodes de traitement de patients présentant une thérapie préalable ayant échoué avec des cellules hypoimmunogènes
WO2023158836A1 (fr) 2022-02-17 2023-08-24 Sana Biotechnology, Inc. Protéines cd47 modifiées et leurs utilisations
WO2023164688A1 (fr) 2022-02-28 2023-08-31 Kite Pharma, Inc. Cellules thérapeutiques allogéniques
WO2023166425A1 (fr) 2022-03-01 2023-09-07 Crispr Therapeutics Ag Procédés et compositions pour le traitement d'affections liées à la protéine 3 de type angiopoïétine (angptl3)
WO2023173123A1 (fr) 2022-03-11 2023-09-14 Sana Biotechnology, Inc. Cellules génétiquement modifiées et compositions et utilisations associées
WO2023180904A1 (fr) 2022-03-21 2023-09-28 Crispr Therapeutics Ag Méthodes et compositions pour traiter les maladies liées aux lipoprotéines
WO2023180967A1 (fr) 2022-03-23 2023-09-28 Crispr Therapeutics Ag Cellules car-t anti-cd83 portant une perturbation de regnase-1 et/ou tgfbrii
WO2023180968A1 (fr) 2022-03-23 2023-09-28 Crispr Therapeutics Ag Cellules car-t anti-cd19 avec de multiples éditions géniques et leurs utilisations thérapeutiques
WO2023192872A1 (fr) 2022-03-28 2023-10-05 Massachusetts Institute Of Technology Origami arn filaire à structure échafaudée et procédés associés
WO2023230613A1 (fr) 2022-05-27 2023-11-30 The Broad Institute, Inc. Éditeurs de base mitochondriale améliorés et méthodes d'édition d'adn mitochondrial
WO2023240169A1 (fr) 2022-06-08 2023-12-14 Century Therapeutics, Inc. Cellules immunoeffectrices issues de cellules souches pluripotentes induites génétiquement modifiées avec une il12 membranaire et leurs utilisations
WO2023240147A1 (fr) 2022-06-08 2023-12-14 Century Therapeutics, Inc. Cellules génétiquement modifiées exprimant des variants du cd16 et nkg2d et leurs utilisations
WO2023240212A2 (fr) 2022-06-08 2023-12-14 Century Therapeutics, Inc. Cellules génétiquement modifiées ayant des récepteurs antigéniques chimériques anti-cd133/anti-cd22, et leurs utilisations
WO2023242827A2 (fr) 2022-06-17 2023-12-21 Crispr Therapeutics Ag Administration oculaire à base de nanoparticules lipidiques (lnp)
WO2023248145A1 (fr) 2022-06-21 2023-12-28 Crispr Therapeutics Ag Compositions et méthodes de traitement du virus de l'immunodéficience humaine
WO2023248147A1 (fr) 2022-06-21 2023-12-28 Crispr Therapeutics Ag Procédés et compositions pour l'édition de cellules souches in vivo
WO2023250511A2 (fr) 2022-06-24 2023-12-28 Tune Therapeutics, Inc. Compositions, systèmes et procédés de réduction de lipoprotéine de faible densité par répression génique ciblée
WO2024006911A1 (fr) 2022-06-29 2024-01-04 FUJIFILM Holdings America Corporation Astrocytes dérivés d'ipsc et leurs procédés d'utilisation
WO2024003786A1 (fr) 2022-06-29 2024-01-04 Crispr Therapeutics Ag Récepteur antigénique chimérique ciblant gpc-3 et cellules immunitaires exprimant celui-ci pour des utilisations thérapeutiques
WO2024015881A2 (fr) 2022-07-12 2024-01-18 Tune Therapeutics, Inc. Compositions, systèmes et procédés d'activation transcriptionnelle ciblée
WO2024013514A2 (fr) 2022-07-15 2024-01-18 Pig Improvement Company Uk Limited Animaux d'élevage ayant subi une édition génique et présentant une résistance aux coronavirus
WO2024020597A1 (fr) 2022-07-22 2024-01-25 The Johns Hopkins University Administration de système crispr/cas intracellulaire ciblé activé par dendrimère et édition de gène
WO2024023801A2 (fr) 2022-07-29 2024-02-01 Crispr Therapeutics Ag Cellules immunitaires génétiquement modifiées ayant un transporteur interrompu associé à un gène de traitement d'antigène -1 (tap -1)
WO2024023804A2 (fr) 2022-07-29 2024-02-01 Crispr Therapeutics Ag Cellules immunitaires génétiquement modifiées ayant un gène protéine de liaison transporteur associé au traitement des antigènes (tapbp) interrompu
WO2024023802A2 (fr) 2022-07-29 2024-02-01 Crispr Therapeutics Ag Cellules immunitaires génétiquement modifiées ayant un gène transporteur associé au traitement des antigènes-2 (tap-2) interrompu
WO2024040254A2 (fr) 2022-08-19 2024-02-22 Tune Therapeutics, Inc. Compositions, systèmes et méthodes de régulation du virus de l'hépatite b par répression génique ciblée
WO2024064642A2 (fr) 2022-09-19 2024-03-28 Tune Therapeutics, Inc. Compositions, systèmes et méthodes de modulation de fonction de lymphocyte t
WO2024062388A2 (fr) 2022-09-20 2024-03-28 Crispr Therapeutics Ag Cellules immunitaires génétiquement modifiées exprimant un récepteur antigénique chimérique ciblant cd20
WO2024081736A2 (fr) 2022-10-11 2024-04-18 Yale University Compositions et procédés d'utilisation d'anticorps de pénétration cellulaire
WO2024102838A1 (fr) 2022-11-09 2024-05-16 Century Therapeutics, Inc. Récepteurs d'interleukine-7 génétiquement modifiés et leurs utilisations
WO2024100604A1 (fr) 2022-11-09 2024-05-16 Juno Therapeutics Gmbh Procédés de fabrication de cellules immunitaires modifiées
WO2024103017A2 (fr) 2022-11-10 2024-05-16 Century Therapeutics, Inc. Cellules génétiquement modifiées ayant des récepteurs antigéniques chimériques anti-nectine-4, et leurs utilisations
WO2024119101A1 (fr) 2022-12-01 2024-06-06 Yale University Plateforme d'ingénierie sans trace sensible aux stimuli pour distribution de charge utile intracellulaire

Also Published As

Publication number Publication date
AU7542498A (en) 1998-12-11
GB9710807D0 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
EP0983350B1 (fr) Proteines de liaison d'acide nucleique
WO1998053059A1 (fr) Proteines de liaison d'acide nucleique
USRE45721E1 (en) Relating to binding proteins for recognition of DNA
US6977154B1 (en) Nucleic acid binding proteins
Rebar Selection studies of zinc finger-DNA recognition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998550157

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA