WO1998049521A1 - Equipment for inspecting semiconductor devices - Google Patents

Equipment for inspecting semiconductor devices Download PDF

Info

Publication number
WO1998049521A1
WO1998049521A1 PCT/JP1998/001916 JP9801916W WO9849521A1 WO 1998049521 A1 WO1998049521 A1 WO 1998049521A1 JP 9801916 W JP9801916 W JP 9801916W WO 9849521 A1 WO9849521 A1 WO 9849521A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
semiconductor device
inspection apparatus
imaging
device inspection
Prior art date
Application number
PCT/JP1998/001916
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyuki Yamamoto
Tatsunori Hibara
Masamitsu Okamura
Masahiko Sakamoto
Masahiko Uno
Masaharu Yoshida
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Publication of WO1998049521A1 publication Critical patent/WO1998049521A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/859Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Definitions

  • the present invention relates to a semiconductor device inspection apparatus for inspecting the appearance of a wire bonded to a pad of a semiconductor chip and a lead of a lead frame.
  • FIG. 10 is a configuration diagram of a conventional key bonding inspection apparatus described in, for example, Japanese Patent Application Laid-Open No. 7-63528.
  • 1 is a semiconductor chip to be inspected
  • 3 is oblique illumination for illuminating the semiconductor chip 1
  • 4 is epi-illumination for illuminating the semiconductor chip 1
  • 5 is an image of the semiconductor chip 1.
  • 6 is an oblique illumination 3, an epi-illumination 4, an optical head having an imaging means 5 assembled thereto
  • 2 is an XYZ for positioning the imaging means 5 (optical head 6) with respect to the semiconductor chip 1.
  • a stage, 7 is an illumination control unit that adjusts the amount of light for the oblique illumination 3 and epi-illumination 4, and switches the illumination.
  • 8 is an image processing unit that analyzes image data captured by the imaging means 5.9 is an XYZ stage 2.
  • a stage control unit 10 controls the operation of the system, and 10 is an overall control unit for controlling the entire system.
  • FIG. 6 is a schematic diagram of a semiconductor chip 1 to be inspected by this apparatus.
  • 11 denotes a ball
  • 12 denotes a wire
  • 13 denotes a stitch
  • 14 denotes a lead.
  • the imaging means 5 is moved to the position where the first pole part exists with respect to the semiconductor chip 1 to be the object using the XYZ stage 2, and the image of the pole 11 is captured after focusing.
  • the image at this time is, for example, as shown in Fig. F.
  • a plurality of balls 11a, 11b, and 11c are captured in one screen.
  • Wires 1 2 and stitches 13 are also moved to the first target item position in the same way as ball 11, and after focusing, they can be taken into the screen (the total number of wires in the chip-screen
  • the stage is moved in the X and Y directions by repeating the stage in the X and Y directions (the total number of stitches in the chip minus the number of stitches that can be captured in the screen).
  • Fig. 8 for wire 12 and Fig. 9 for stitch 13 as shown in Fig. 9 multiple wires 12a, 12b, 12 c, Stitches 13a, 13b are taken.
  • the inspection time by this method is, for example, in the case of a 200-pin semiconductor chip, it takes about two minutes per chip to inspect all items.
  • the XY of the XYZ stage 2 instead of reducing the number of movements in the direction, the number of focusing operations for each test item, that is, the number of movements in the Z-axis direction, increases.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor device inspection apparatus capable of capturing an image of a wide area at a high resolution and at a high speed.
  • a semiconductor device inspection apparatus for inspecting the appearance of a wire bonded to a pad of a semiconductor chip and a lead of a lead frame.
  • the semiconductor device inspection apparatus uses a galvanomirror as the optical axis deflection switching means.
  • the semiconductor device inspection apparatus uses a CCD line sensor as the imaging means.
  • the semiconductor device inspection apparatus is characterized in that the optical axis deflection switching is performed while synchronizing with the image capturing timing of the imaging unit.
  • a two-dimensional image is formed by giving a driving system a moving speed corresponding to the image sensor size corresponding to the line sensor element size every time a video is captured.
  • two sets of the optical axis deflection switching unit and the imaging unit are arranged for scanning in the X and Y axis directions.
  • the semiconductor device inspection apparatus is arranged such that the imaging unit is connected to the driving unit, and the line sensor is connected to the driving unit every time the image is captured while synchronizing with the video capturing timing of the imaging unit.
  • the imaging unit is connected to the driving unit, and the line sensor is connected to the driving unit every time the image is captured while synchronizing with the video capturing timing of the imaging unit.
  • FIG. 1 is a configuration diagram showing a semiconductor device inspection apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view of a semiconductor chip for explaining an image capturing method according to Embodiment 1 of the present invention.
  • FIG. 3 is an enlarged view of the pole portion for explaining the effect of the image capturing method according to the first embodiment of the present invention.
  • FIG. 4 is a principle diagram of an optical system for describing an image capturing method according to the first embodiment of the present invention.
  • FIG. 5 is a supplementary configuration diagram showing an additional portion of the configuration diagram of the semiconductor device inspection device according to the second embodiment of the present invention.
  • FIG. 6 is a schematic view of a semiconductor chip as an object of the present invention.
  • FIG. 3 is an enlarged view of a pole portion.
  • FIG. 8 is an enlarged view of a wire portion.
  • FIG. 9 is an enlarged view of a stitch portion.
  • FIG. 10 is a configuration diagram showing a conventional semiconductor device inspection apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram showing a semiconductor device inspection apparatus according to a first embodiment of the present invention. Specifically, a semiconductor device inspection apparatus that performs an appearance inspection of a wire bonded to a pad of a semiconductor chip and a lead of a lead frame. The configuration is shown.
  • reference numeral 1 denotes a semiconductor chip to be inspected, which is positioned on an inspection table.
  • 15a and 15b denote optical axis deflection switching means, respectively, a galvanomirror for X-axis deflection (hereinafter, X-direction galvanomirror), a galvanomirror for Y-axis deflection (hereinafter, Y-direction galvanomirror), 16a, 16b is a CCD line sensor for capturing in the X-axis direction (hereinafter referred to as X-direction CCD line sensor), a CCD line sensor for capturing in the Y-axis direction (hereinafter referred to as Y-direction CCD line sensor),
  • Reference numeral 18 denotes an objective lens and an imaging lens which are lens means, respectively.
  • Reference numeral 19 denotes an optical axis group deflected by the galvanomirror 15. The entire area of the semiconductor chip 1 to be inspected is recovered by the X and Y direction galvanomirrors 15a and 15b.
  • Reference numeral 20 denotes oblique illumination as illumination means, which is provided between the semiconductor chip 1 and the objective lens 1.
  • 2 1 is epi-illumination, which is also the illumination means, X,
  • the Y-direction galvanometer mirrors 15a and 15b are installed so as to be incident from between the imaging lens 18 and the imaging lens 18.
  • 22 and 23 are optical axis branching mirror groups.
  • An image processing unit 26 is an illumination control unit for controlling the amount of light of the oblique illumination 20 and the epi-illumination 21 and switching the illumination, and 27 is an overall control unit for controlling the entire system.
  • FIG. 2 is a schematic view of a semiconductor chip for explaining the effect of the image capturing method according to the first embodiment of the present invention
  • FIG. 3 is an effect of the image capturing method according to the first embodiment of the present invention
  • FIG. 4 is a principle diagram of an optical system for explaining an image capturing method according to the first embodiment of the present invention.
  • the X and Y direction galvanometer mirrors 15a and 15b are adjusted so that the optical axis is aligned with the reference position 28a. Drive and position.
  • the image of the region 29a of the semiconductor chip 1 is formed by the objective lens 19, the X and Y galvano mirrors 15a and 15b, the half mirror 22, the imaging lens 18 and the mirror group 23 for optical axis branching.
  • the image is formed on the CCD line sensor 16a in the X direction.
  • the Y direction CCD line sensor 16b is not used when capturing an image in which the X direction is horizontally long as in the area 29a.
  • the X-direction line sensor 16a passes over the reference position 28a Image data for one line in the X-axis direction is captured. Therefore, in order to capture the image data of the rectangular area indicated by 29 a, as shown in FIG. 4, as shown in FIG.
  • the galvano mirror Y 15 b is driven by a distance corresponding to the imaging size (aZn) corresponding to the size of one element of the X-direction line sensor 16 a.
  • the galvanomirror Y 1 has the number of lines required to measure the ball 11 1 while synchronizing with the X-direction line sensor 16 a taking in the image data.
  • 5b is driven to form two-dimensional image data of the rectangular area 29a in the image processing unit 25.
  • FIG. 3 shows an example of the image area 30 of the pole 11 taken in the above procedure.
  • the element of the X-direction line sensor 16a is composed of 5000 pixels per line and captured with a resolution of about 2 im per pixel, an image with a size of about 1 Omm in the line direction (X direction)
  • the galvanomirror 15b is sufficient to drive the galvanomirror 15b in the Y direction only for the required number of lines in the Y direction, for example, for 150 lines if 0.3 mm is required in the Y direction.
  • the oblique angle is set so as to realize the optimum imaging state for the stitch 13 as in the case of the ball 11 measurement.
  • the image of the part is passed through the objective lens 19, the X and Y direction galvanometer mirrors 15a and 15b, the half mirror 22, the imaging lens 18 and the optical axis branching mirror group 23 and the Y direction line.
  • the X-direction line sensor 16a is not used when capturing an image that is horizontally long in the Y direction as in the area 29b.
  • the CCD line sensor Y16b captures image data one line at a time, and Two-dimensional image data of a rectangular area 29 b is formed in the processing unit 25.
  • the inspection time by the above method is, for example, about 40 seconds per chip for inspecting all the items of a 200-pin semiconductor chip.
  • the epi-illumination 21 when installed so as to be incident from between the X and Y galvanometer mirrors 15 a and 15 b and the imaging lens 18 via the optical axis branching mirror 22.
  • the optical axis splitting mirror 22 is installed between the imaging lens 18 and the optical axis splitting mirror 23, and is incident from between the imaging lens 18 and the optical axis splitting mirror 23.
  • a similar effect can be obtained in lighting.
  • the galvanomies in the X and Y directions are respectively used.
  • La 15a, 15b, X, Y direction line sensors 16a, 16b were used separately.
  • the X-direction landscape image like 29a was taken, and the 29a image was taken.
  • parallel processing of image capture and image data analysis such as capture of a landscape image in the Y-direction such as 29b during data analysis, is possible. By performing the two types of processing in parallel in this manner, the inspection time can be further reduced.
  • the Y-direction line sensor 16b can also be driven in the X direction orthogonal to its own sensor array, it can be applied to image capture of rectangular areas that are horizontally long in the Y-axis direction, such as area 29b. it can.
  • the X- and Y-direction line sensors 16a and 16b which are the imaging means, also have the optical axis deflection switching function.
  • the semiconductor chip 1 that requires a horizontally long inspection area in both XY directions, such as the areas 29a and 29b, has been described.
  • X or For semiconductor chip 1 requiring only horizontally long inspection area in one direction Y In this case, the present invention can be applied.
  • the Y direction line sensor 16b is unnecessary in FIG.
  • the present invention is configured as described above, and has the following effects.
  • a semiconductor device inspection apparatus that performs an appearance inspection of a wire bonded to a pad of a semiconductor chip and a lead of a lead frame is provided.
  • the image of the target area to be captured can be captured by the imaging unit that captures the optical image obtained from the lens unit, and it is not necessary to separately provide a driving unit on the lens unit or the object mounting table.
  • high-speed positioning can be performed by using the galvanomirror for the optical axis deflection switching means, and the target image data on the object can be obtained by the aforementioned method. It becomes possible to take in the image pickup means.
  • the semiconductor device inspection apparatus of the third configuration of the present invention by using the CCD line sensor as the imaging means, it is possible to capture high-resolution and wide-field image data into the imaging means. It becomes possible.
  • the semiconductor device inspection apparatus of the fourth configuration of the present invention while synchronizing with the video capturing timing of the imaging means, the drive system of the optical axis deflection switching means is provided with the above-mentioned line every time the video is captured.
  • Sensor element size equivalent High-speed positioning can be performed by giving a moving speed corresponding to the imaging size of, and the target image data on the object can be taken into the imaging means and developed into a wide-field, high-resolution two-dimensional image. Yes.
  • the semiconductor device inspection apparatus of the fifth configuration of the present invention by limiting the driving points of the optical axis deflection switching means, it is possible to capture image data of a rectangular area only at a necessary portion into the imaging means. As a result, high-speed image capture is possible without the need for imaging processing of parts unnecessary for measurement.
  • the semiconductor device inspection apparatus of the sixth configuration of the present invention by arranging two sets of the optical axis deflection switching means and the imaging means for scanning in the X and Y axis directions, Efficient image capture according to the shape becomes possible.
  • the image pickup means is connected to the drive means, and the image pickup means is connected to the drive means while synchronizing with the image pickup timing of the image pickup means.
  • the image pickup unit By providing a moving speed corresponding to the image size corresponding to the size of the licensor element and driving the image pickup unit itself, the image pickup unit itself has an optical axis deflection switching function.
  • the replacement means it becomes possible to capture the target image data on the object into the imaging means and develop it into a two-dimensional image with a wide field of view and high resolution.

Abstract

Equipment for inspecting semiconductor devices which can take in target image data in a region to be inspected with a high resolution at a high speed, wherein a galvano-mirror (15) is used as an optical axis deflection switching means, while a CCD line sensor (16) is used as an image pickup means, and the galvano-mirror (15) is driven synchronously with the image pickup operation of the CCD line sensor (16) so as to take in only the image of a rectangular region necessary for measurement at a high speed with a wide field of vision and with a high resolution without providing any additional driving means to a lens means and an object mounting table.

Description

明 細 書 半導体装置検査装置 技術分野  Description Semiconductor device inspection equipment Technical field
この発明は、 半導体チップのパッ ドとリードフレームのリードにボン ディングされたワイヤの外観検査を行う半導体装置検査装置に関するも のである。  The present invention relates to a semiconductor device inspection apparatus for inspecting the appearance of a wire bonded to a pad of a semiconductor chip and a lead of a lead frame.
宜量腿 Slim thigh
昨今の半導体素子製造技術においては、 素子の集積化に伴う大型化、 リードのファインピッチ化が急速に進んでおリ、 これに伴い製造工程へ の自動化設備投入による無人化が進んでいる。  In recent semiconductor device manufacturing technology, the size of the device has been increased due to the integration of the device, and the fine pitch of the leads has been rapidly progressing. As a result, the use of automated equipment in the manufacturing process has led to the unmanned operation.
一方、 後工程となる検査工程については、 ようやく目視検査から自動 化への転換が図られつつある状況である。  On the other hand, in the inspection process, which is a post-process, the shift from visual inspection to automation is finally being attempted.
図 1 0は例えば、 特開平 7— 6 3 5 2 8号公報に記載された従来のヮ ィャボンディング検査装置の構成図である。 図において、 1 は被検査対 象物である半導体チップ、 3は半導体チップ 1 を照明するための斜方照 明、 4は半導体チップ 1 を照明するための落射照明、 5は半導体チップ 1の画像を取り込むための撮像手段、 6は、 斜方照明 3、 落射照明 4、 撮像手段 5を組み付けた光学ヘッ ド、 2は撮像手段 5 (光学ヘッ ド 6 ) を半導体チップ 1 に対して位置決めする X Y Zステージ、 7は斜方照明 3、 落射照明 4の光量調整、 照明切替えを行う照明制御ユニッ ト、 8は 撮像手段 5よリ取り込まれた画像データを解析する画像処理ュニッ ト、 9は X Y Zステージ 2を駆動制御するステージ制御ユニッ ト、 1 0はシ ステム全体の制御を行う全体制御ュニッ トである。  FIG. 10 is a configuration diagram of a conventional key bonding inspection apparatus described in, for example, Japanese Patent Application Laid-Open No. 7-63528. In the figure, 1 is a semiconductor chip to be inspected, 3 is oblique illumination for illuminating the semiconductor chip 1, 4 is epi-illumination for illuminating the semiconductor chip 1, and 5 is an image of the semiconductor chip 1. 6 is an oblique illumination 3, an epi-illumination 4, an optical head having an imaging means 5 assembled thereto, and 2 is an XYZ for positioning the imaging means 5 (optical head 6) with respect to the semiconductor chip 1. A stage, 7 is an illumination control unit that adjusts the amount of light for the oblique illumination 3 and epi-illumination 4, and switches the illumination.8 is an image processing unit that analyzes image data captured by the imaging means 5.9 is an XYZ stage 2. A stage control unit 10 controls the operation of the system, and 10 is an overall control unit for controlling the entire system.
また、 図 6は本装置の検査対象となる半導体チップ 1の概略図である, 1 1 はボール、 1 2はワイヤ、 1 3はステッチ、 1 4はリード部をそれ ぞれ表す。 FIG. 6 is a schematic diagram of a semiconductor chip 1 to be inspected by this apparatus. 11 denotes a ball, 12 denotes a wire, 13 denotes a stitch, and 14 denotes a lead.
対象物となる半導体チップ 1 に対して、 X Y Zステージ 2を使って撮 像手段 5を一番目のポール部の存在する位置に移動させ、 焦点を合わせ たうえでポール 1 1 の画像を取り込む。 このときの画像は、 例えば図フ のようになリ、 一画面内に複数個のボール 1 1 a、 1 1 b、 1 1 cが取 リ込まれる。  The imaging means 5 is moved to the position where the first pole part exists with respect to the semiconductor chip 1 to be the object using the XYZ stage 2, and the image of the pole 11 is captured after focusing. The image at this time is, for example, as shown in Fig. F. A plurality of balls 11a, 11b, and 11c are captured in one screen.
その後、 半導体チップ 1 内の全ポールに対して計測を行うため、 ポー ルの検査の都度、 チップ内の全ボール数 ー画面内に取り込み可能な ポール数) 回の回数だけステージの X Y方向への移動を繰り返す。  After that, since the measurement is performed for all the poles in the semiconductor chip 1, every time the pole is inspected, the number of the balls in the chip-the number of poles that can be captured in the screen) is repeated the number of times in the XY direction. Repeat the move.
また、 ワイヤ 1 2、 ステッチ 1 3についてもボール 1 1 と同様に各々 1番目の対象項目位置に移動させ、 焦点を合わせたうえで、 それぞれ、 (チップ内の全ワイヤ数 ー画面内に取り込み可能なワイヤ数) 回 (チップ内の全ステッチ数 ー画面内に取り込み可能なステッチ 数) 回のステージの X Y方向への移動を繰り返し、 各項目の画像を取り 込む。 これらの画像は、 ワイヤ 1 2については図 8、 ステッチ 1 3につ いては図 9のように、 ポール 1 1 と同様、 一画面内に複数個のワイヤ 1 2 a、 1 2 b、 1 2 c、 ステッチ 1 3 a、 1 3 bが取リ込まれる。 この 方法による検査時間は、 例えば 2 0 0ピンの半導体チップの場合、 全項 目検査するのに 1チップあたリおよそ 2分かかる。  Wires 1 2 and stitches 13 are also moved to the first target item position in the same way as ball 11, and after focusing, they can be taken into the screen (the total number of wires in the chip-screen The stage is moved in the X and Y directions by repeating the stage in the X and Y directions (the total number of stitches in the chip minus the number of stitches that can be captured in the screen). As shown in Fig. 8 for wire 12 and Fig. 9 for stitch 13 as shown in Fig. 9, multiple wires 12a, 12b, 12 c, Stitches 13a, 13b are taken. The inspection time by this method is, for example, in the case of a 200-pin semiconductor chip, it takes about two minutes per chip to inspect all items.
また、 別の方法として、 撮像手段 5が取り込む一画面内に、 ポール 1 1、 ワイヤ 1 2、 ステッチ 1 3がすべて、 あるいはそのうちのいずれか 2項目が取り込まれていれば、 X Y Zステージ 2の X Y方向への移動回 数が減少する代わりに各検査項目における焦点合わせ作業、 すなわち Z 軸方向への移動回数が増加する。  Alternatively, if one or all of the poles 11, wires 12, and stitches 13, or any two of them are captured in one screen captured by the imaging means 5, the XY of the XYZ stage 2 Instead of reducing the number of movements in the direction, the number of focusing operations for each test item, that is, the number of movements in the Z-axis direction, increases.
前述したように、 半導体チップは、 集積化に伴う大型化、 リードの ファインピッチ化が急速に進み、 微細検査精度にて、 かつ検査対象領域 が広範囲に渡るため、 上記のような手順にて半導体チップの各項目全域 について検査するには、 高速なステージ移動が必要である。 さらに、 高 精度な検査のためには、 高分解能な撮像手段を利用し撮像倍率を上げれ ばよいが、 それに伴い一画面に取り込める検査部分の個数が減少し、 X Y Zステージ 2の移動回数は増加する。 ところが、 斜方照明 3、 落射照 明 4、 撮像手段 5を組み付けた光学へッ ド 6は構造的にも大型かつ重量 物であるために、 X Y Zステージ 2を使って高速でかつ頻繁な光学へッ ド 6の移動は難しい。 As mentioned earlier, semiconductor chips have become larger due to integration, Since the fine pitch is rapidly progressing, and the inspection area is wide with a fine inspection accuracy, a high-speed stage movement is required to inspect the entire area of each item of the semiconductor chip by the above procedure. is there. Furthermore, for high-precision inspection, it is sufficient to increase the imaging magnification using high-resolution imaging means, but with this, the number of inspection parts that can be captured on one screen decreases, and the number of movements of the XYZ stage 2 increases . However, since the optical head 6 with the oblique illumination 3, the epi-illumination 4, and the imaging means 5 is large and heavy in terms of structure, high-speed and frequent optical Moving head 6 is difficult.
この発明は上記のような課題を解決するためになされたもので、 広範 囲な領域の画像を、 高分解能でかつ高速に取り込むことが可能な半導体 装置検査装置の提供を目的とする。 體 龃丞  The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor device inspection apparatus capable of capturing an image of a wide area at a high resolution and at a high speed. Body
この発明の第 1 の構成による半導体装置検査装置は、 半導体チップの パッ ドとリードフレームのリードにボンディングされたワイヤの外観検 査を行う半導体装置検査装置において、 対象物となる半導体チップの対 象物の光学的な像を得るレンズ手段と、 対象物視野を切り替える光軸偏 向切り替え手段と、 対象物に対する照明手段と、 前記レンズ手段から得 られた光学的な像を撮像する撮像手段とを備えたものである。  According to a first aspect of the present invention, there is provided a semiconductor device inspection apparatus for inspecting the appearance of a wire bonded to a pad of a semiconductor chip and a lead of a lead frame. Lens means for obtaining an optical image of the object, optical axis direction switching means for switching the field of view of the object, illumination means for the object, and imaging means for imaging the optical image obtained from the lens means. It is provided.
また、 この発明の第 2の構成による半導体装置検査装置は、 前記光軸 偏向切り替え手段としてガルバノミラーを用いたものである。  The semiconductor device inspection apparatus according to the second configuration of the present invention uses a galvanomirror as the optical axis deflection switching means.
また、 この発明の第 3の構成による半導体装置検査装置は、 前記撮像 手段として C C Dラインセンサーを用いたものである。  Further, the semiconductor device inspection apparatus according to the third configuration of the present invention uses a CCD line sensor as the imaging means.
また、 この発明の第 4の構成による半導体装置検査装置は、 前記撮像 手段の映像取り込みタイミングと同期を取りながら前記光軸偏向切リ替 え手段の駆動系に映像取り込み毎に前記ラインセンサー素子サイズ相当 分の撮像サイズだけ移動する速度を与えることにより、 2次元画像を形 成するものである。 Further, the semiconductor device inspection apparatus according to the fourth configuration of the present invention is characterized in that the optical axis deflection switching is performed while synchronizing with the image capturing timing of the imaging unit. A two-dimensional image is formed by giving a driving system a moving speed corresponding to the image sensor size corresponding to the line sensor element size every time a video is captured.
また、 この発明の第 5の構成による半導体装置検査装置は、 前記光軸 偏向切り替え手段の駆動ポイン卜を限定することにより、 必要箇所のみ の矩形領域の画像を前記撮像手段に取り込むものである。  Further, in the semiconductor device inspection apparatus according to the fifth configuration of the present invention, by limiting the drive points of the optical axis deflection switching means, an image of a rectangular area of only a necessary portion is taken into the imaging means.
また、 この発明の第 6の構成による半導体装置検査装置は、 前記光軸 偏向切り替え手段と撮像手段の各々を、 X、 Y各軸方向のスキャン用と して 2組配置したものである。  In a semiconductor device inspection apparatus according to a sixth configuration of the present invention, two sets of the optical axis deflection switching unit and the imaging unit are arranged for scanning in the X and Y axis directions.
また、 この発明の第 7の構成による半導体装置検査装置は、 撮像手段 を駆動手段に接続し、 撮像手段の映像取リ込みタイミングと同期を取り ながら、 駆動手段に映像取り込み毎に前記ラインセンサ一素子サイズ相 当分の撮像サイズだけ移動する速度を与えることによリ撮像手段自身を 駆動させ、 2次元画像を形成するものである。 図面の簡単な説明  Further, the semiconductor device inspection apparatus according to the seventh configuration of the present invention is arranged such that the imaging unit is connected to the driving unit, and the line sensor is connected to the driving unit every time the image is captured while synchronizing with the video capturing timing of the imaging unit. By giving a moving speed corresponding to the imaging size corresponding to the element size, the imaging means itself is driven to form a two-dimensional image. BRIEF DESCRIPTION OF THE FIGURES
図 1 はこの発明の実施の形態 1である半導体装置検査装置を示す構成 図である。  FIG. 1 is a configuration diagram showing a semiconductor device inspection apparatus according to Embodiment 1 of the present invention.
図 2はこの発明の実施の形態 1 による画像の取リ込み方法を説明する ための半導体チップの概略図である。  FIG. 2 is a schematic view of a semiconductor chip for explaining an image capturing method according to Embodiment 1 of the present invention.
図 3はこの発明の実施の形態 1 による画像取り込み方法による効果を 説明するためのポール部の拡大図である。  FIG. 3 is an enlarged view of the pole portion for explaining the effect of the image capturing method according to the first embodiment of the present invention.
図 4はこの発明の実施の形態 1 による画像取り込み方法を説明するた めの光学系の原理図である。  FIG. 4 is a principle diagram of an optical system for describing an image capturing method according to the first embodiment of the present invention.
図 5はこの発明の実施の形態 2である半導体装置検査装置の構成図の 追加部分を示す補足構成図である。 図 6はこの発明の被対象物である半導体チップの概略図である。 FIG. 5 is a supplementary configuration diagram showing an additional portion of the configuration diagram of the semiconductor device inspection device according to the second embodiment of the present invention. FIG. 6 is a schematic view of a semiconductor chip as an object of the present invention.
図つはポール部分の拡大図である。  FIG. 3 is an enlarged view of a pole portion.
図 8はワイヤ部分の拡大図である。  FIG. 8 is an enlarged view of a wire portion.
図 9はステッチ部分の拡大図である。  FIG. 9 is an enlarged view of a stitch portion.
図 1 0は従来の半導体装置検査装置を示す構成図である。 発明を実施するための最良の形態  FIG. 10 is a configuration diagram showing a conventional semiconductor device inspection apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明をその実施の形態を示す図面に基づいて具体的に説明 する。  Hereinafter, the present invention will be specifically described with reference to the drawings showing the embodiments.
実施の形態 1 . Embodiment 1
図 1 はこの発明の実施の形態 1 である半導体装置検査装置を示す構成 図であり、 詳しくは、 半導体チップのパッ ドとリードフレームのリード にボンディングされたワイヤの外観検査を行う半導体装置検査装置の構 成を示している。 図において、 1 は被検査対象物である半導体チップで あり、 検査台上に位置決めされている。 1 5 a、 1 5 bはそれぞれ光軸 偏向切り替え手段である X軸偏向用ガルバノミラー (以下、 X方向ガル バノミラー) 、 Y軸偏向用ガルバノミラー (以下、 Y方向ガルバノミ ラー) 、 1 6 a、 1 6 bはそれぞれ撮像手段である X軸方向取り込み用 C C Dラインセンサ一 (以下、 X方向 C C Dラインセンサー) 、 Y軸方 向取り込み用 C C Dラインセンサー (以下、 Y方向 C C Dラインセン サー) 、 1 フ、 1 8はそれぞれレンズ手段である対物レンズ、 結像レン ズである。 1 9はガルバノミラ一 1 5により偏向される光軸群であり、 半導体チップ 1の検査対象となる全領域が X、 Y方向ガルバノミラー 1 5 a , 1 5 bによリカバーされる。  FIG. 1 is a configuration diagram showing a semiconductor device inspection apparatus according to a first embodiment of the present invention. Specifically, a semiconductor device inspection apparatus that performs an appearance inspection of a wire bonded to a pad of a semiconductor chip and a lead of a lead frame. The configuration is shown. In the figure, reference numeral 1 denotes a semiconductor chip to be inspected, which is positioned on an inspection table. 15a and 15b denote optical axis deflection switching means, respectively, a galvanomirror for X-axis deflection (hereinafter, X-direction galvanomirror), a galvanomirror for Y-axis deflection (hereinafter, Y-direction galvanomirror), 16a, 16b is a CCD line sensor for capturing in the X-axis direction (hereinafter referred to as X-direction CCD line sensor), a CCD line sensor for capturing in the Y-axis direction (hereinafter referred to as Y-direction CCD line sensor), Reference numeral 18 denotes an objective lens and an imaging lens which are lens means, respectively. Reference numeral 19 denotes an optical axis group deflected by the galvanomirror 15. The entire area of the semiconductor chip 1 to be inspected is recovered by the X and Y direction galvanomirrors 15a and 15b.
2 0は照明手段である斜方照明で、 半導体チップ 1 と対物レンズ 1 フ の間に設置されている。 2 1 は同じく照明手段である落射照明で、 X、 Y方向ガルバノ ミラー 1 5 a, 1 5 bと結像レンズ 1 8の間から入射す るように設置されている。 22、 23はともに光軸分岐用ミラー群であ る。 24は 、 Y方向ガルバノミラ一 1 5 a, 1 5 bを駆動制御するガ ルバノ制御ユニッ ト、 25は乂、 Y方 C C Dラインセンサー 1 6 a , 1 6 bよリ取り込まれた画像データを解析する画像処理ュニッ 卜、 26は 斜方照明 20、 落射照明 2 1の光量調整、 照明切り替えの制御を行う照 明制御ュニッ ト、 27はシステム全体の制御を行う全体制御ュニッ 卜で ある。 Reference numeral 20 denotes oblique illumination as illumination means, which is provided between the semiconductor chip 1 and the objective lens 1. 2 1 is epi-illumination, which is also the illumination means, X, The Y-direction galvanometer mirrors 15a and 15b are installed so as to be incident from between the imaging lens 18 and the imaging lens 18. 22 and 23 are optical axis branching mirror groups. 24 is a galvano control unit that drives and controls the Y-direction galvanometer mirrors 15a and 15b, 25 is an ala, Y-direction CCD line sensor 16a and 16b that analyzes image data captured by the An image processing unit 26 is an illumination control unit for controlling the amount of light of the oblique illumination 20 and the epi-illumination 21 and switching the illumination, and 27 is an overall control unit for controlling the entire system.
次に、 図 2乃至図 4を参照しながら計測方法について説明する。 図 2 はこの発明の実施の形態 1 による画像の取リ込み方法の効果を説明する ための半導体チップの概略図、 図 3はこの発明の実施の形態 1 による画 像の取リ込み方法の効果を説明するためのポール部の拡大図、 図 4はこ の発明の実施の形態 1 による画像の取リ込み方法を説明するための光学 系の原理図である。 半導体チップ 1が検査台 (図示せず) 上で位置決め されると、 対象検査項目の最適な撮像状態を実現するように斜方照明 2 0、 落射照明 2 1の照射状態を設定し、 X、 Y方向ガルバノミラー 1 5 a, 1 5 bが駆動され、 はじめの検査項目となる部分の基準位置上に光 軸が合うようにする。 例えば、 図 2に示すように、 領域 29 aに含まれ るポール 1 1 を計測する場合は、 光軸が基準位置 28 aに合うように X, Y方向ガルバノミラー 1 5 a, 1 5 bを駆動、 位置決めする。 半導体 チップ 1の領域 29 aの部分の像は対物レンズ 1 9、 X、 Y方向ガルバ ノミラー 1 5 a, 1 5 b, ハーフミラー 22、 結像レンズ 1 8、 光軸分 岐用ミラー群 23を通って X方向 C C Dラインセンサー 1 6 a上に結像 される。 なお、 領域 29 aのように X方向が横長である画像取り込みの 時は Y方向 C C Dラインセンサー 1 6 bは使用しない。  Next, the measurement method will be described with reference to FIGS. FIG. 2 is a schematic view of a semiconductor chip for explaining the effect of the image capturing method according to the first embodiment of the present invention, and FIG. 3 is an effect of the image capturing method according to the first embodiment of the present invention. FIG. 4 is a principle diagram of an optical system for explaining an image capturing method according to the first embodiment of the present invention. When the semiconductor chip 1 is positioned on the inspection table (not shown), the illumination state of the oblique illumination 20 and the epi-illumination 21 is set so as to realize the optimal imaging state of the target inspection item. The Y-direction galvanometer mirrors 15a and 15b are driven so that the optical axis is aligned with the reference position of the first inspection item. For example, as shown in Fig. 2, when measuring the pole 11 included in the area 29a, the X and Y direction galvanometer mirrors 15a and 15b are adjusted so that the optical axis is aligned with the reference position 28a. Drive and position. The image of the region 29a of the semiconductor chip 1 is formed by the objective lens 19, the X and Y galvano mirrors 15a and 15b, the half mirror 22, the imaging lens 18 and the mirror group 23 for optical axis branching. The image is formed on the CCD line sensor 16a in the X direction. Note that the Y direction CCD line sensor 16b is not used when capturing an image in which the X direction is horizontally long as in the area 29a.
ここで、 X方向ラインセンサー 1 6 aには、 基準位置 28 a上を通る X軸方向の 1 ライン分の画像データが取り込まれる。 そのため、 29 a で示される矩形領域の画像データを取リ込むためには、 図 4に示すよう に、 X方向ラインセンサー 1 6 aの 1 ライン分の画像データ取リ込み時 間 t内に、 X方向ラインセンサー 1 6 aの素子 1個の大きさに相当する 撮像サイズ分 (aZn ) の距離だけガルバノミラ一 Y 1 5 bを駆動させ る。 つまり、 下記の計算式から求められる速度 Vで、 X方向ラインセン サー 1 6 aが画像データを取り込むのと同期を取りながら、 ボール 1 1 を計測するのに必要なライン分だけ、 ガルバノミラー Y 1 5 bを駆動さ せ、 画像処理ュニッ ト 25内に矩形領域 29 aの 2次元画像データを形 成させる。 Here, the X-direction line sensor 16a passes over the reference position 28a Image data for one line in the X-axis direction is captured. Therefore, in order to capture the image data of the rectangular area indicated by 29 a, as shown in FIG. 4, as shown in FIG. The galvano mirror Y 15 b is driven by a distance corresponding to the imaging size (aZn) corresponding to the size of one element of the X-direction line sensor 16 a. In other words, at the speed V obtained from the following formula, the galvanomirror Y 1 has the number of lines required to measure the ball 11 1 while synchronizing with the X-direction line sensor 16 a taking in the image data. 5b is driven to form two-dimensional image data of the rectangular area 29a in the image processing unit 25.
V = ( aZ n ) t … ( 1 ) 図 3は、 上記の手順にて取り込んだポール 1 1部分の画像領域 30の 例を示す。 ここで、 例えば X方向ラインセンサー 1 6 aの素子が 1 ライ ン 5000画素で構成され、 1画素 2 i m程度の分解能で取り込んだ場 合、 ライン方向 (X方向) 約 1 Ommの大きさの画像が取り込め、 しか も Y方向に必要ライン数分だけ、 例えば、 Y方向に 0. 3mm必要なら 1 50ライン分だけ、 Y方向ガルバノミラー 1 5 bを駆動するように設 定すればよい。 このようにすれば、 一回の画像取り込み動作で 1 Omm X 0. 3mmのような、 広視野でしかも検査に必要とする矩形領域のみ の画像取り込みが、 高速かつ高分解能で可能となる。  V = (aZn) t (1) FIG. 3 shows an example of the image area 30 of the pole 11 taken in the above procedure. Here, for example, if the element of the X-direction line sensor 16a is composed of 5000 pixels per line and captured with a resolution of about 2 im per pixel, an image with a size of about 1 Omm in the line direction (X direction) It is sufficient to drive the galvanomirror 15b in the Y direction only for the required number of lines in the Y direction, for example, for 150 lines if 0.3 mm is required in the Y direction. In this way, it is possible to capture a wide field of view, such as 1 Omm x 0.3 mm, and capture only the rectangular area required for inspection with high speed and high resolution in one image capturing operation.
ところで、 上記の C C Dラインセンサーと同等の分解能にて、 一般的 な C C Dエリアセンサー ( 500 X 500画素程度) で画像を取り込ん だ場合、 一回の取り込み動作で、 図 3に示すような領域 3 1の 1 mm x mm程度の大きさの画像を取り込むことになリ、 上記の CC Dライン センサーで取り込んだ領域 30と同じ大きさの領域を取り込むには、 X 方向についてはおよそ 1 0回分の取り込みが必要である。 その上、 Y方 向についてはボール 1 1 以外の検査には必要のない領域が無駄に取リ込 まれてしまうことになる。 この例では、 約 3倍の無駄が生じる。 By the way, when an image is captured by a general CCD area sensor (about 500 x 500 pixels) with the same resolution as the above-mentioned CCD line sensor, a single capture operation will result in an area 3 1 In order to capture an area of the same size as the area 30 captured by the above CCD line sensor, it is necessary to capture about 10 times in the X direction. is necessary. Besides, Y direction As for the direction, an area other than the ball 11 that is not necessary for the inspection is taken in vain. In this example, about three times more waste occurs.
同様に、 図 2に示すように領域 2 9 bのステッチ 1 3を計測する場合 は、 ボール 1 1 計測のときと同様にステッチ 1 3に対して最適な撮像状 態を実現するように斜方照明 2 0、 落射照明 2 1 の照射状態を設定し、 光軸が基準位置 2 8 bに合うように X、 Y方向ガルバノ ミラー 1 5 a , 1 5 bを駆動、 位置決めし、 領域 2 9 bの部分の像を対物レンズ 1 9、 X、 Y方向ガルバノ ミラー 1 5 a, 1 5 b、 ハーフミラー 2 2、 結像レ ンズ 1 8、 光軸分岐用ミラー群 2 3を通って Y方向ラインセンサー 1 6 b上に結像させる。 なお、 領域 2 9 bのように Y方向が横長である画像 取リ込みの時は X方向ラインセンサー 1 6 aは使用しない。  Similarly, when measuring the stitch 13 in the area 29 b as shown in FIG. 2, the oblique angle is set so as to realize the optimum imaging state for the stitch 13 as in the case of the ball 11 measurement. Set the illumination state of illumination 20 and epi-illumination 2 1, drive and position galvanometer mirrors 15 a, 15 b in X and Y directions so that the optical axis is aligned with reference position 28 b, area 29 b The image of the part is passed through the objective lens 19, the X and Y direction galvanometer mirrors 15a and 15b, the half mirror 22, the imaging lens 18 and the optical axis branching mirror group 23 and the Y direction line. Form an image on sensor 16b. Note that the X-direction line sensor 16a is not used when capturing an image that is horizontally long in the Y direction as in the area 29b.
そして、 領域 2 9 aのボール 1 1 計測の時と同様に、 今度はガルバノ ミラ一 X 1 5 aを駆動しながら、 C C Dラインセンサ Y 1 6 bで 1 ライ ン分ずつ画像データを取り込み、 画像処理ュニッ ト 2 5内に矩形領域 2 9 bの 2次元画像データを形成させる。  Then, in the same way as when measuring the ball 11 in the area 29a, this time, while driving the galvanometer mirror X15a, the CCD line sensor Y16b captures image data one line at a time, and Two-dimensional image data of a rectangular area 29 b is formed in the processing unit 25.
上記のような方法による検査時間は、 例えば、 2 0 0ピンの半導体 チップに対して全項目検査するのに、 1 チップあたりおよそ 4 0秒ほど になる。  The inspection time by the above method is, for example, about 40 seconds per chip for inspecting all the items of a 200-pin semiconductor chip.
上記実施例 1 では、 落射照明 2 1 は光軸分岐用ミラー 2 2を介して X , Y方向ガルバノミラー 1 5 a, 1 5 bと結像レンズ 1 8の間から入射す るように設置すると説明したが、 光軸分岐用ミラー 2 2を結像レンズ 1 8と光軸分岐用ミラー 2 3の間に設置して、 結像レンズ 1 8と光軸分岐 用ミラー 2 3の間から入射しても、 照明上同様な効果が得られる。  In the first embodiment, when the epi-illumination 21 is installed so as to be incident from between the X and Y galvanometer mirrors 15 a and 15 b and the imaging lens 18 via the optical axis branching mirror 22. As described above, the optical axis splitting mirror 22 is installed between the imaging lens 18 and the optical axis splitting mirror 23, and is incident from between the imaging lens 18 and the optical axis splitting mirror 23. However, a similar effect can be obtained in lighting.
実施の形態 2 . Embodiment 2
前記の実施の形態においては、 画像データの矩形領域が X方向に横長, および Y方向に横長のときについて、 それぞれ X、 Y方向ガルバノ ミ ラ一 1 5 a, 1 5 b , X、 Y方向ラインセンサー 1 6 a , 1 6 bを使い 分けたが、 たとえば、 2 9 aのような X方向横長画像を取り終わり、 2 9 aの画像データの解析を行っている間に、 2 9 bのような Y方向横長 画像の取り込みを行うような、 画像取り込みと画像データ解析の並行処 理が、 本発明の構成では可能である。 このように 2種類の処理を並行し て行うことによリ、 検査時間を更に短縮することができる。 In the above embodiment, when the rectangular area of the image data is horizontally long in the X direction and horizontally long in the Y direction, the galvanomies in the X and Y directions are respectively used. La 15a, 15b, X, Y direction line sensors 16a, 16b were used separately. For example, the X-direction landscape image like 29a was taken, and the 29a image was taken. In the configuration of the present invention, parallel processing of image capture and image data analysis, such as capture of a landscape image in the Y-direction such as 29b during data analysis, is possible. By performing the two types of processing in parallel in this manner, the inspection time can be further reduced.
実施の形態 3 . Embodiment 3.
上記実施の形態 1 では、 領域 2 9 aのボール 1 1の検査を行うときの ような X軸方向に横長の矩形領域の画像の X方向 C C Dラインセンサ 1 6 aへの取リ込みは、 Y方向ガルバノ ミラー 1 5 bを駆動させながら行 うように説明したが、 図 5に示すように、 センサ一駆動ユニッ ト 3 2を 用いて、 X方向ラインセンサ一 1 6 a自身をセンサー配列方向とは直交 する Y方向に駆動できるようにして、 ガルバノミラーは基準位置 2 8 a に光軸を合わせるためのみに使用し、 取リ込み動作時には X方向ライン センサー 1 6 a自身を図 4で示した速度で取り込み動作と同期を取りな がら駆動し、 矩形領域 2 9 aを取り込むことが可能となる。 Y方向ライ ンセンサー 1 6 bについても、 自身のセンサー配列とは直交する X方向 に駆動できるようすれば、 領域 2 9 bのような Y軸方向に横長の矩形領 域の画像取り込みにも適用できる。 すなわち、 光軸偏向切り替え機能を 撮像手段である X、 Y方向ラインセンサー 1 6 a, 1 6 b自身が兼ね備 えることになる。  In the first embodiment described above, when an image of a rectangular area horizontally long in the X-axis direction is taken into the X-direction CCD line sensor 16a as in the case of inspecting the ball 11 in the area 29a, Y Although the description was made while driving the galvanometer mirror 15b in the direction, as shown in Fig. 5, the X-line sensor 16a itself was moved in the sensor array direction using the sensor-drive unit 32. Can be driven in the orthogonal Y direction, the galvanomirror is used only to align the optical axis with the reference position 28a, and the X-direction line sensor 16a itself is shown in Fig. 4 during the retrieving operation. Driving while synchronizing with the capturing operation at the speed, the rectangular area 29a can be captured. If the Y-direction line sensor 16b can also be driven in the X direction orthogonal to its own sensor array, it can be applied to image capture of rectangular areas that are horizontally long in the Y-axis direction, such as area 29b. it can. In other words, the X- and Y-direction line sensors 16a and 16b, which are the imaging means, also have the optical axis deflection switching function.
実施の形態 4 . Embodiment 4.
上記実施の形態 1 では、 領域 2 9 a、 2 9 bのように、 X Y両方向に 対して横長の検査領域が必要な半導体チップ 1 について説明したが、 デュアルインラインタイプのチップのように X、 あるいは Yの一方向の みの横長形状の検査領域しか必要としない半導体チップ 1 を対象とする 場合にもこの発明は適用できる。 例えば、 X方向に横長な検査領域しか 必要としない場合は、 図 1 において、 Y方向ラインセンサー 1 6 bが不 要となる。 In the first embodiment, the semiconductor chip 1 that requires a horizontally long inspection area in both XY directions, such as the areas 29a and 29b, has been described. However, as in the dual in-line type chip, X or For semiconductor chip 1 requiring only horizontally long inspection area in one direction Y In this case, the present invention can be applied. For example, if only an inspection area that is horizontally long in the X direction is required, the Y direction line sensor 16b is unnecessary in FIG.
この発明は、 以上説明したように構成されているので、 以下に記載す るような効果を奏する。 The present invention is configured as described above, and has the following effects.
この発明の第 1の構成である半導体装置検査装置によれば、 半導体 チップのパッドとリードフレームのリードにボンディングされたワイヤ の外観検査を行う半導体装置検査装置において、 対象物となる半導体 チップの対象物視野を切リ替える光軸偏向切リ替え手段を制御すること により、 対象物の光学的な像を得るレンズ手段と照明手段と、 対象物に 対する照明手段のみで、 対象物上の目標とする対象領域の画像を、 前記 レンズ手段から得られた光学的な像を撮像する撮像手段に取り込むこと が可能となり、 レンズ手段あるいは対象物搭載テーブルに駆動手段を別 途設ける必要がなくなる。  According to the semiconductor device inspection apparatus having the first configuration of the present invention, a semiconductor device inspection apparatus that performs an appearance inspection of a wire bonded to a pad of a semiconductor chip and a lead of a lead frame is provided. By controlling the optical axis deflection switching means for switching the field of view of the object, lens means and illumination means for obtaining an optical image of the object, and illumination means for the object only, The image of the target area to be captured can be captured by the imaging unit that captures the optical image obtained from the lens unit, and it is not necessary to separately provide a driving unit on the lens unit or the object mounting table.
また、 この発明の第 2の構成である半導体装置検査装置によれば、 光 軸偏向切り替え手段にガルバノミラ一を用いることにより、 高速な位置 決めが行え、 対象物上の目標とする画像データを前記撮像手段に取り込 むことが可能となる。  Further, according to the semiconductor device inspection apparatus of the second configuration of the present invention, high-speed positioning can be performed by using the galvanomirror for the optical axis deflection switching means, and the target image data on the object can be obtained by the aforementioned method. It becomes possible to take in the image pickup means.
また、 この発明の第 3の構成である半導体装置検査装置によれば、 撮 像手段に C C Dラインセンサ一を用いることにより、 広視野で、 しかも 高分解能な画像データを前記撮像手段に取り込むことが可能となる。 また、 この発明の第 4の構成である半導体装置検査装置によれば、 撮 像手段の映像取り込みタイミングと同期を取りながら、 光軸偏向切リ替 え手段の駆動系に映像取り込み毎に前記ライセンサー素子サイズ相当分 の撮像サイズだけ移動する速度を与えることによリ、 高速な位置決めが 行え、 対象物上の目標とする画像データを前記撮像手段に取り込み、 広 視野 ·高分解能な 2次元画像に展開することが可となる。 Further, according to the semiconductor device inspection apparatus of the third configuration of the present invention, by using the CCD line sensor as the imaging means, it is possible to capture high-resolution and wide-field image data into the imaging means. It becomes possible. Further, according to the semiconductor device inspection apparatus of the fourth configuration of the present invention, while synchronizing with the video capturing timing of the imaging means, the drive system of the optical axis deflection switching means is provided with the above-mentioned line every time the video is captured. Sensor element size equivalent High-speed positioning can be performed by giving a moving speed corresponding to the imaging size of, and the target image data on the object can be taken into the imaging means and developed into a wide-field, high-resolution two-dimensional image. Yes.
また、 この発明の第 5の構成である半導体装置検査装置によれば、 光 軸偏向切り替え手段の駆動ポイントを限定することにより、 必要箇所の みの矩形領域の画像データを撮像手段に取り込むことが可能となり、 計 測に不必要な部分の撮像処理が無くなリ、 高速な画像取リ込みが可能と なる。  Further, according to the semiconductor device inspection apparatus of the fifth configuration of the present invention, by limiting the driving points of the optical axis deflection switching means, it is possible to capture image data of a rectangular area only at a necessary portion into the imaging means. As a result, high-speed image capture is possible without the need for imaging processing of parts unnecessary for measurement.
また、 この発明の第 6の構成である半導体装置検査装置によれば、 光 軸偏向切り替え手段と撮像手段の各々を、 X、 Y各軸方向のスキャン用 として 2組配置することにより、 対象物形状に即した効率的な画像取り 込みが可能となる。  Further, according to the semiconductor device inspection apparatus of the sixth configuration of the present invention, by arranging two sets of the optical axis deflection switching means and the imaging means for scanning in the X and Y axis directions, Efficient image capture according to the shape becomes possible.
また、 この発明の第 7の構成である半導体装置検査装置によれば、 撮 像手段を駆動手段に接続し、 撮像手段の映像取リ込みタイミングと同期 を取リながら、 駆動手段に映像取リ込み毎に前記ライセンサー素子サイ ズ相当分の撮像サイズだけ移動する速度を与え撮像手段自身を駆動させ ることにより、 光軸偏向切り替え機能を撮像手段自身が兼ね備えた上で、 光軸偏向切リ替え手段を用いたときと同様に、 対象物上の目標とする画 像データを撮像手段に取り込み、 広視野■高分解能な 2次元画像に展開 することが可能となる。  Further, according to the semiconductor device inspection apparatus of the seventh configuration of the present invention, the image pickup means is connected to the drive means, and the image pickup means is connected to the drive means while synchronizing with the image pickup timing of the image pickup means. By providing a moving speed corresponding to the image size corresponding to the size of the licensor element and driving the image pickup unit itself, the image pickup unit itself has an optical axis deflection switching function. As in the case of using the replacement means, it becomes possible to capture the target image data on the object into the imaging means and develop it into a two-dimensional image with a wide field of view and high resolution.

Claims

請求の範囲 The scope of the claims
1 . 半導体チップのパッ ドとリードフレームのリ一ドにボンディング されたワイヤの外観検査を行う半導体装置検査装置において、 対象物と なる半導体チップの光学的な像を得るレンズ手段と、 対象物視野を切り 替える光軸偏向切り替え手段と、 対象物に対する照明手段と、 前記レン ズ手段から得られた光学的な像を撮像する撮像手段とを備えたことを特 徴とする半導体装置検査装置。 1. In a semiconductor device inspection apparatus for inspecting the appearance of a wire bonded to a pad of a semiconductor chip and a lead of a lead frame, a lens means for obtaining an optical image of a semiconductor chip as an object, and a visual field of the object A semiconductor device inspection apparatus, comprising: an optical axis deflection switching unit that switches between the two; a illuminating unit for an object; and an imaging unit that captures an optical image obtained from the lens unit.
2 . 前記光軸偏向切リ替え手段がガルバノミラーであることを特徴と する請求項 1記載の半導体装置検査装置。 2. The semiconductor device inspection apparatus according to claim 1, wherein the optical axis deflection switching means is a galvanomirror.
3 . 前記撮像手段がラインセンサ一であることを特徴とする請求項 1 記載の半導体装置検査装置。 3. The semiconductor device inspection apparatus according to claim 1, wherein the imaging unit is a line sensor.
4 . 前記撮像手段の映像取リ込みタイミングと同期を取りながら前記 光軸偏向切リ替え手段の駆動系に映像取り込み毎に前記ラインセンサー 素子サイズ相当分の撮像サイズだけ移動する速度を与えることにより、4. By synchronizing with the image capture timing of the image pickup means, by giving the driving system of the optical axis deflection switching means a speed of moving by an image size corresponding to the line sensor element size for each image capture. ,
2次元画像を形成することを特徴とする請求項 3記載の半導体装置検査 装置。 4. The semiconductor device inspection apparatus according to claim 3, wherein a two-dimensional image is formed.
5 . 前記光軸偏向切り替え手段の駆動範囲を限定することにより、 必 要箇所のみの矩形領域の画像を前記撮像手段に取り込むことを特徴とす る請求項 3記載の半導体装置検査装置。 5. The semiconductor device inspection apparatus according to claim 3, wherein the drive range of the optical axis deflection switching means is limited to capture an image of a rectangular area of only a necessary portion into the imaging means.
6 . 前記光軸偏向切り替え手段と撮像手段の各々を、 X、 Y各軸方向 のスキャン用として 2組配置したことを特徴とする請求項 1 記載の半導 体装置検査装置。 6. Each of the optical axis deflection switching means and the imaging means is set in the X and Y axis directions. 2. The semiconductor device inspection apparatus according to claim 1, wherein two sets are arranged for scanning.
7 . 前記撮像手段を駆動手段に接続し、 前記撮像手段の映像取り込み タイミングと同期を取リながら、 前記駆動手段に映像取リ込み毎に前記 ラインセンサ一素子サイズ相当分の撮像サイズだけ移動する速度を与え ることにより前記撮像手段自身を駆動させ、 2次元画像を形成すること を特徴とする請求項 3記載の半導体装置検査装置。 7. Connect the imaging unit to the driving unit, and move the imaging unit by the imaging size equivalent to the line sensor element size every time the video is captured in the driving unit while synchronizing with the video capturing timing of the imaging unit. 4. The semiconductor device inspection apparatus according to claim 3, wherein the imaging means itself is driven by giving a speed to form a two-dimensional image.
PCT/JP1998/001916 1997-04-25 1998-04-24 Equipment for inspecting semiconductor devices WO1998049521A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/109363 1997-04-25
JP9109363A JPH10300441A (en) 1997-04-25 1997-04-25 Semiconductor inspecting device

Publications (1)

Publication Number Publication Date
WO1998049521A1 true WO1998049521A1 (en) 1998-11-05

Family

ID=14508341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001916 WO1998049521A1 (en) 1997-04-25 1998-04-24 Equipment for inspecting semiconductor devices

Country Status (2)

Country Link
JP (1) JPH10300441A (en)
WO (1) WO1998049521A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976445A (en) * 2016-10-21 2018-05-01 上海交通大学 Plan-position measuring method and system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296253A (en) * 2000-04-12 2001-10-26 Mitsubishi Electric Corp Inspection device for semiconductor device, and inspection method of semiconductor device
CN102944561B (en) * 2012-11-16 2015-07-29 北京金橙子科技有限公司 A kind of appearance detecting method of matrix form gadget and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118820A (en) * 1991-10-29 1993-05-14 Toshiba Corp Visual recognition apparatus
JPH06222012A (en) * 1992-12-01 1994-08-12 Hitachi Ltd Image processor, image processing method and outer view inspection system for semiconductor package

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118820A (en) * 1991-10-29 1993-05-14 Toshiba Corp Visual recognition apparatus
JPH06222012A (en) * 1992-12-01 1994-08-12 Hitachi Ltd Image processor, image processing method and outer view inspection system for semiconductor package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976445A (en) * 2016-10-21 2018-05-01 上海交通大学 Plan-position measuring method and system
CN107976445B (en) * 2016-10-21 2022-08-19 上海交通大学 Plane position measuring method and system

Also Published As

Publication number Publication date
JPH10300441A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
JP5852527B2 (en) Three-dimensional shape measuring method and substrate inspection method
KR101074560B1 (en) Microscope and sample observing method
US8508246B2 (en) Substrate surface inspecting apparatus and substrate surface inspecting method
US20070188859A1 (en) Visual inspection apparatus
US11153508B2 (en) Unscanned optical inspection system using a micro camera array
KR20010033900A (en) Electronics assembly apparatus with stereo vision linescan sensor
KR20010013904A (en) Method and apparatus for chip placement
US6317258B1 (en) Scanning confocal microscope
KR960001824B1 (en) Wire bonding inspecting apparatus
JP3300479B2 (en) Semiconductor device inspection system
WO2015011850A1 (en) Electronic component mounting apparatus and electronic component mounting method
WO1998049521A1 (en) Equipment for inspecting semiconductor devices
JP4279412B2 (en) Semiconductor device inspection equipment
JP2002168800A (en) Appearance inspection device
CN1518085A (en) High-speed in-line electro-optics testing method and system for defects on chip
JP4564312B2 (en) Imaging method, imaging apparatus, and pattern inspection apparatus
JP2000275183A (en) Image-capturing apparatus
JP2003139721A (en) Device for inspecting substrate
WO2015011851A1 (en) Electronic component mounting apparatus and electronic component mounting method
JPH1137723A (en) Height inspection device
WO2015011852A1 (en) Electronic component mounting apparatus and electronic component mounting method
KR100312081B1 (en) Programmable area scan vision inspection system
WO2015023231A1 (en) A system and method for inspection
JP5362368B2 (en) Appearance inspection apparatus and appearance inspection method
JPH11218412A (en) Bonding device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642