WO1998048284A2 - Method for detecting the direction of rotation of a wheel by means of hall probes - Google Patents

Method for detecting the direction of rotation of a wheel by means of hall probes Download PDF

Info

Publication number
WO1998048284A2
WO1998048284A2 PCT/DE1998/001140 DE9801140W WO9848284A2 WO 1998048284 A2 WO1998048284 A2 WO 1998048284A2 DE 9801140 W DE9801140 W DE 9801140W WO 9848284 A2 WO9848284 A2 WO 9848284A2
Authority
WO
WIPO (PCT)
Prior art keywords
hall
signal
evaluation
signals
rotation
Prior art date
Application number
PCT/DE1998/001140
Other languages
German (de)
French (fr)
Other versions
WO1998048284A3 (en
Inventor
Dieter Draxelmayr
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP98931990A priority Critical patent/EP0977997A2/en
Priority to JP54474098A priority patent/JP2001521630A/en
Priority to CA002287182A priority patent/CA2287182A1/en
Publication of WO1998048284A2 publication Critical patent/WO1998048284A2/en
Publication of WO1998048284A3 publication Critical patent/WO1998048284A3/en
Priority to US09/426,422 priority patent/US6242905B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • G01P13/045Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement with speed indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders

Definitions

  • the present invention relates to a method for detecting the direction of rotation of a wheel by means of Hall probes, which are arranged in the circumferential direction of the wheel, by means of evaluation signals which are phase-shifted from one another.
  • phase information is required, which can be provided by two Hall sensors offset by 90 ° to one another, as will be explained below with reference to FIGS. 5 and 6.
  • DE 41 04 902 AI discloses a method and an arrangement for detecting a direction of movement, in particular one.
  • Direction of rotation known.
  • two signals which are phase-shifted by 90 ° and which are derived from two receivers offset in the direction of movement of a signal source are formed by adding and subtracting the output signals.
  • the direction of rotation can be clearly determined from the sign of the 90 ° phase shift between the sum and difference signals.
  • this method is very sensitive to DC magnetic fields. So there is an offset of the sum signal compared to
  • the method should be insensitive to constant magnetic fields.
  • a first, a second and a third Hall probe are arranged so that the second Hall probe is positioned between the first and the third Hall probe.
  • Two evaluation signals shifted by 90 ° are obtained from the output signals of the first to third Hall probes, with one change the direction of rotation preferably results in a change of sign of the second evaluation signal in relation to the first evaluation signal.
  • the second Hall probe is advantageously located exactly in the middle between the first and the third Hall probe, since the vibration amplitudes of the evaluation signals are then maximum.
  • This method therefore only requires three Hall probes, which can be accommodated in a Hall sensor.
  • the direction of rotation for example of a gearwheel, can be reliably determined from a change in the sign of the second evaluation signal.
  • Figure 1 is a schematic representation of a sensor already known according to the prior art.
  • Fig. 2 output signals of the Hall probes of this known sensor
  • FIG. 3 and 4 are circuit diagrams of the evaluation electronics for obtaining the evaluation signals according to the method described here;
  • Fig. 5 shows an arrangement with two Hall sensors according to the prior art, and
  • Fig. 6 output signals of the Hall probes of these known Hall sensors.
  • FIG. 1 shows a known Hall sensor 13 which has Hall probes 14, 15 and 16 which are arranged in the direction of rotation of the gear wheel 8, the Hall probe 15 in the middle is provided between the Hall probes 14 and 16.
  • the Hall probes 14 to 16 deliver output signals S1 to S3 (see FIG. 2), which are approximately sinusoidal and are therefore also treated in the following. Hall sensor 14 thus delivers this
  • Output signal Sl which has a maximum value when the tooth 7 passes through the Hall sensor 14, while a gap between the teeth 7 results in a minimum value for the output signal Sl.
  • the output signals S1 to S3 can be easily digitized with the aid of a comparator, so that the signals S1 to S3 assume a course corresponding to the output signals 9 and 10 in FIG. 6. In the following, however, it should be assumed that the signals are processed further in an analog manner.
  • Evaluation signal A obtained from the subtraction of the output signal S3 from the output signal S1.
  • a second evaluation signal B is obtained from the addition of the output signal S3 to the output signal S1 and the subtraction of the double output signal S2 from this sum.
  • the method is not limited to the sampling at the zero crossing of the signal A.
  • the sampling can also take place at other values of the signal A.
  • the direction detection can take place by evaluating the tendency of the second evaluation signal B for the sample value.
  • sampling at the zero crossing of signal A in conjunction with direction detection using the sign of signal B represents a particularly preferred method.
  • one of the evaluation signals (A, B) can be used to generate switching edges and the respective other evaluation signal (A, B) can be sampled with these switching edges, the direction of rotation being determined from the relationship between the samples of the edges.
  • the method therefore enables reliable detection of the reversal of the direction of rotation of a gearwheel with only three Hall probes on one Hall sensor.
  • evaluation signals A and B For the generation of evaluation signals A and B, operational amplifier circuits can be used per se without further notice. However, transistor circuits are also possible, as shown in FIGS. 3 and 4. 3 and 4, Slp and Sin mean the output signals of the Hall probe 14,
  • ERS ⁇ T2BLAT ⁇ (RULE 26) S2p and S2n the output signals of the Hall probe 15 and S3p and S3n the output signals of the Hall probe 16.
  • the output signal A is obtained in the circuit of FIG. 3 with the output connections 17 and 18, while the evaluation signal B is obtained with the circuit of FIG. 4 with the output connections 19 and 20.
  • the Hall probes 14, 15, 16 are connected to the respective differential amplifiers of these circuits in such a way that only differential fields are used for the control, while a large superimposed magnetic bias only causes a common mode shift that is effective and is suppressed without any significant side effects.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

The invention relates to a method for detecting the direction of rotation of a wheel (8) by means of Hall probes (14 to 16) arranged in the peripheral direction of the wheel (8). A first, second and third hall probe (14 to 16) are positioned in succession so that the second Hall probe (15) lies between the first and third Hall probes (14, 16). The output signals (51, 52, 53) of the three Hall probes (14 to 16) are used to obtain two evaluation signals. Said evaluation signals are then compared to determine the direction of rotation of the wheel (8). The first evaluation signal is obtained by substracting the third output signal from the first output signal. The second output signal is obtained by adding the first and third output signals and substracting twice the value of the second output signal.

Description

Beschreibungdescription
Verfahren zur Erkennung der Drehrichtung eines Rades mittels Hall-SondenMethod for recognizing the direction of rotation of a wheel using Hall probes
Die vorliegende Erfindung betrifft ein Verfahren zum Erkennen der Drehrichtung eines Rades mittels Hall-Sonden, die in der Umfangsrichtung des Rades angeordnet sind, über zueinander phasenverschobene Auswertesignale .The present invention relates to a method for detecting the direction of rotation of a wheel by means of Hall probes, which are arranged in the circumferential direction of the wheel, by means of evaluation signals which are phase-shifted from one another.
In zahlreichen Fällen wird gewünscht, nicht nur die Position und Geschwindigkeit eines sich drehenden Rades, wie beispielsweise eines Zahnrades, sondern auch die Drehrichtung des Rades zu erfassen. Es wird also allgemein ein Sensor angestrebt, der in der Lage ist, die Position,In numerous cases, it is desired to record not only the position and speed of a rotating wheel, such as a gear wheel, but also the direction of rotation of the wheel. In general, a sensor is sought that is able to determine the position,
Geschwindigkeit und Drehrichtung eines Rades festzustellen.Determine the speed and direction of rotation of a wheel.
Zur Erfassung der Position und Geschwindigkeit eines Zahnrades gibt es bereits einen differentiellen dynamischen Hall-Sensor, der das Differenzfeld zwischen zwei räumlich versetzten Hall-Sonden mißt und dann besonders gute Ergebnisse liefert, wenn die Phasenlage zwischen den beiden, von den zwei Hall-Sonden erzeugten Signalen 180° beträgt. In diesem Fall befindet sich nämlich eine Hall-Sonde über einem Zahn des Zahnrades, während die andere Hall-Sonde über einer Lücke zwischen zwei Zähnen des Zahnrades liegt. Mit einem derartigen differentiellen dynamischen Hall-Sensor ist aber eine Erkennung der Drehrichtung des Zahnrades nicht möglich.There is already a differential dynamic Hall sensor for detecting the position and speed of a gearwheel, which measures the difference field between two spatially offset Hall probes and then delivers particularly good results if the phase position between the two produced by the two Hall probes Signals is 180 °. In this case, namely, a Hall probe is located over one tooth of the gearwheel, while the other Hall probe lies over a gap between two teeth of the gearwheel. With such a differential dynamic Hall sensor, however, a detection of the direction of rotation of the gear is not possible.
Zur zusätzlichen Erkennung der Drehrichtung eines Zahnrades ist nämlich noch eine weitere Phaseninformation erforderlich, die durch zwei um 90° zueinander versetzte Hall-Sensoren zur Verfügung gestellt werden kann, wie dies im folgenden unter Bezugnahme auf Fig. 5 und Fig. 6 erläutert wird.For additional detection of the direction of rotation of a gear wheel, additional phase information is required, which can be provided by two Hall sensors offset by 90 ° to one another, as will be explained below with reference to FIGS. 5 and 6.
Nach dem Sand der Technik werden beispielsweise zwei differentielle dynamische Hall-Sensoren 1, 2 mit jeweils zwei Hall-Sonden 3, 4 bzw. 5, 6 um einen viertel Zahnabstand versetzt zueinander bezüglich der Zähne 7 eines Zahnrades 8 angeordnet, wie dies in Fig. 5 gezeigt ist, so werden Ausgangssignale 9, 10 von den Hall-Sensoren 1 und 2 erhalten, die um eine viertel Periode zueinander verschoben sind: Wie in Fig. 6 dargestellt ist, kann dann die Abfallflanke des. Ausgangssignales 9 des Hall-Sensors 1 dazu verwendet werden, um das Ausgangssignal 10 des Hall-Sensors 2 abzutasten. Bei in der Fig. 6 für eine Drehrichtung des Zahnrades 8 von links nach rechts verlaufenden Signalen 9, 10 fällt dann dieAccording to the state of the art, two differential dynamic Hall sensors 1, 2, each with two Hall probes 3, 4 and 5, 6 arranged offset by a quarter tooth spacing with respect to the teeth 7 of a gear wheel 8, as shown in FIG. 5, output signals 9, 10 are obtained from the Hall sensors 1 and 2 which are shifted by a quarter period to one another: As shown in FIG. 6, the falling edge of the output signal 9 of the Hall sensor 1 can then be used to sample the output signal 10 of the Hall sensor 2. 6 for a direction of rotation of the gear 8 from left to right signals 9, 10 then falls
Abfallflanke des Ausgangssignals 9 immer mit einem positiven Wert des Ausgangssignals 10 des Hall-Sensors 2 zusammen, wie dies durch Pfeile 11 angedeutet ist.Falling edge of the output signal 9 always together with a positive value of the output signal 10 of the Hall sensor 2, as indicated by arrows 11.
Wird nun die Drehrichtung des Zahnrades 8 umgekehrt, so ändert sich auch die Phasenzuordnung: Dies kann so gedacht werden, daß die "Zeit" nunmehr rückwärts abläuft, so daß die Ausgangssignale 9, 10 in der Fig. 6 von rechts nach links entstehen. Wird nun wieder das Ausgangssignal 10 des Hall- Sensors 2 mit der Abfallflanke des Ausgangssignals 9 desIf the direction of rotation of the gear wheel 8 is reversed, the phase assignment also changes: This can be thought that the "time" now runs backwards, so that the output signals 9, 10 in FIG. 6 arise from right to left. Now, the output signal 10 of the Hall sensor 2 with the falling edge of the output signal 9 of the
Hall-Sensors 1 abgetastet, so wird ein Signal erhalten, das stets negativ ist, da die Abfallflanke immer mit einem negativen Wert des Ausgangssignals 10 zusammenfällt, wie dies durch Pfeile 12 in Fig. 6 angedeutet ist.Hall sensor 1 scanned, a signal is obtained which is always negative, since the falling edge always coincides with a negative value of the output signal 10, as indicated by arrows 12 in Fig. 6.
Aus dem Vorzeichen des durch Abtastung des Ausgangssignals 10 mit dem Ausgangssignal 9 erhaltenen Signals kann also auf die Drehrichtung des Zahnrades 8 geschlossen werden. Es ist auch zu ersehen, daß eine um 90° versetzte Anordnung der Hall- Sensoren 1, 2 optimal ist, da dann ein maximaler Störabstand erhalten wird.From the sign of the signal obtained by scanning the output signal 10 with the output signal 9, the direction of rotation of the gearwheel 8 can be concluded. It can also be seen that an arrangement of the Hall sensors 1, 2 offset by 90 ° is optimal since a maximum signal-to-noise ratio is then obtained.
Aus der DE 89 09 677 Ul ist eine Dreherkennungsvorrichtung bekannt, bei der aus mindestens drei Hall-Sonden mittels zumindest zwei Differenz-Hall-ICs jeweils digitaleFrom DE 89 09 677 U1 a rotation detection device is known in which at least three Hall probes are digitally generated using at least two differential Hall ICs
Signalfolgen abgeleitet werden. Zur genauen Drehzahlerkennung kann im Sinne einer höheren Auflösung die Frequenz des Ausgangssignales gegenüber der nur eines einzigen Differenz- Hall-IC's verdoppelt werden. Durch Phasenvergleich ist prinzipiell auch eine Drehrichtungserkennung möglich.Signal sequences are derived. For precise speed detection, the frequency of the Output signals compared to which only a single differential Hall IC are doubled. In principle, phase direction detection is also possible through phase comparison.
Aus der DE 41 04 902 AI sind ein Verfahren und eine Anordnung zur Erkennung einer Bewegungsrichtung, insbesondere einer. Drehrichtung bekannt. Hierzu werden zwei um 90° phasenverschobene Signale, die aus zwei in Bewegungsrichtung einer Signalquelle versetzt angeordneten Empfängern abgeleitet werden, gebildet, indem die Ausgangssignale addiert und subtrahiert werden. Aus dem Vorzeichen der 90° Phasenverschiebung zwischen Summen- und Differenzsignal kann eindeutig die Drehrichtung bestimmt werden. Dieses Verfahren ist jedoch sehr empfindlich auf magnetische Gleichfelder. So kommt es zu einem Offset des Summensignals gegenüber demDE 41 04 902 AI discloses a method and an arrangement for detecting a direction of movement, in particular one. Direction of rotation known. For this purpose, two signals which are phase-shifted by 90 ° and which are derived from two receivers offset in the direction of movement of a signal source are formed by adding and subtracting the output signals. The direction of rotation can be clearly determined from the sign of the 90 ° phase shift between the sum and difference signals. However, this method is very sensitive to DC magnetic fields. So there is an offset of the sum signal compared to
Differenzsignal, welcher doppelt so groß wie das magnetische Gleichfeld ist, wodurch eine zuverlässige Weiterverarbeitung dieser Signale große Schwierigkeiten bereitet.Differential signal, which is twice as large as the DC magnetic field, which makes reliable further processing of these signals very difficult.
Es ist die Aufgabe der vorliegenden Erfindung, ein Verfahren zur Richtungserkennung der Drehrichtung eines Rades mittels Hall-Sonden anzugeben, das eine zuverlässige Drehrichtungserkennung ermöglicht, ohne auf eine exakte Abstimmung zwischen Zahnabstand und Hall-Sondenabstand angewiesen zu sein. Insbesondere soll das Verfahren unempfindlich auf magnetische Gleichfelder sein.It is the object of the present invention to provide a method for detecting the direction of rotation of a wheel by means of Hall probes, which enables reliable detection of the direction of rotation without being dependent on an exact match between tooth spacing and Hall probe spacing. In particular, the method should be insensitive to constant magnetic fields.
Die Lösung dieser Aufgabe erfolgt durch ein Verfahren mit den Merkmalen des Patentanspruches 1. Bevorzugte Weiterbildungen sind Gegenstand der Unteransprüche.This object is achieved by a method having the features of claim 1. Preferred further developments are the subject of the subclaims.
Zur Durchführung des Verfahrens werden eine erste, eine zweite und eine dritte Hall-Sonde so angeordnet, daß die zweite Hall-Sonde zwischen der ersten und der dritten Hall- Sonde positioniert ist. Es werden zwei um 90 ° verschobene Auswertesignale aus den Ausgangssignalen der ersten bis dritten Hall-Sonde gewonnen, wobei sich bei einer Änderung der Drehrichtung bevorzugt ein Vorzeichenwechsel des zweiten Auswertesignals in bezug auf das erste Auswertesignal ergibt.To carry out the method, a first, a second and a third Hall probe are arranged so that the second Hall probe is positioned between the first and the third Hall probe. Two evaluation signals shifted by 90 ° are obtained from the output signals of the first to third Hall probes, with one change the direction of rotation preferably results in a change of sign of the second evaluation signal in relation to the first evaluation signal.
Vorteilhafterweise liegt die zweite Hall-Sonde genau in der Mitte zwischen der ersten und der dritten Hall-Sonde, da dann die Schwingungamplituden der Auswertesignale maximal sind.The second Hall probe is advantageously located exactly in the middle between the first and the third Hall probe, since the vibration amplitudes of the evaluation signals are then maximum.
Bei diesem Verfahren werden somit lediglich drei Hall-Sonden benötigt, die in einem Hall-Sensor untergebracht sein können. Mit diesem Sensor kann zuverlässig die Drehrichtung beispielsweise eines Zahnrades aus einem Vorzeichenwechsel des zweiten Auswertesignals ermittelt werden.This method therefore only requires three Hall probes, which can be accommodated in a Hall sensor. With this sensor, the direction of rotation, for example of a gearwheel, can be reliably determined from a change in the sign of the second evaluation signal.
Nachfolgend wird das Verfahren mit Hilfe der Zeichnungen näher erläutert. Es zeigen:The method is explained in more detail below with the aid of the drawings. Show it:
Fig. 1 eine schematische Darstellung eines nach dem Stand der Technik bereits bekannten Sensors;Figure 1 is a schematic representation of a sensor already known according to the prior art.
Fig. 2 Ausgangssignale der Hall-Sonden dieses bekannten Sensors;Fig. 2 output signals of the Hall probes of this known sensor;
Fig. 3 und 4 Schaltbilder der Auswerteelektronik zur Gewinnung der Auswertesignale nach dem hier beschriebenen Verfahren; Fig. 5 eine Anordnung mit zwei Hall-Sensorennach dem Stand der Technik, und3 and 4 are circuit diagrams of the evaluation electronics for obtaining the evaluation signals according to the method described here; Fig. 5 shows an arrangement with two Hall sensors according to the prior art, and
Fig. 6 Ausgangssignale der Hall-Sonden dieser bekannten Hall-Sensoren.Fig. 6 output signals of the Hall probes of these known Hall sensors.
Die Fig. 5 und 6 sind bereits eingangs erläutert worden.5 and 6 have already been explained at the beginning.
In den Fig. 1 bis 4 werden für entsprechende Bauteile die gleichen Bezugszeichen wie in den Fig. 5 und 6 verwendet.1 to 4, the same reference numerals as in FIGS. 5 and 6 are used for corresponding components.
Fig. 1 zeigt einen bekannten Hall-Sensor 13, der Hall-Sonden 14, 15 und 16 aufweist, die in der Drehrichtung des Zahnrades 8 angeordnet sind, wobei die Hall-Sonde 15 in der Mitte zwischen den Hall-Sonden 14 und 16 vorgesehen ist. Die Hall- Sonden 14 bis 16 liefern bei Drehung des Zahnrades 8 Ausgangssignale Sl bis S3 (vergleiche Fig. 2), welche annähernd sinusförmig sind und deshalb auch so im folgenden behandelt werden. Der Hall-Sensor 14 liefert also das1 shows a known Hall sensor 13 which has Hall probes 14, 15 and 16 which are arranged in the direction of rotation of the gear wheel 8, the Hall probe 15 in the middle is provided between the Hall probes 14 and 16. When the gearwheel 8 rotates, the Hall probes 14 to 16 deliver output signals S1 to S3 (see FIG. 2), which are approximately sinusoidal and are therefore also treated in the following. Hall sensor 14 thus delivers this
Ausgangssignal Sl, das bei Durchgang des Zahnes 7 vor dem Hall-Sensor 14 einen Maximalwert hat, während eine Lücke zwischen den Zähnen 7 einen Minimalwert für das Ausgangssignal Sl ergibt. Gleiches gilt für das Ausgangssignal S2 der Hall-Sonde 15 bzw. für das Ausgangssignal S3 der Hall-Sonde 16.Output signal Sl, which has a maximum value when the tooth 7 passes through the Hall sensor 14, while a gap between the teeth 7 results in a minimum value for the output signal Sl. The same applies to the output signal S2 of the Hall probe 15 or to the output signal S3 of the Hall probe 16.
Die Ausgangssignale Sl bis S3 können ohne weiteres mit Hilfe eines Komparators digitalisiert werden, so daß die Signale Sl bis S3 einen Verlauf entsprechend den Ausgangssignalen 9 und 10 in Fig. 6 annehmen. Im folgenden soll aber davon ausgegangen werden, daß die Signale analog weiterverarbeitet werden.The output signals S1 to S3 can be easily digitized with the aid of a comparator, so that the signals S1 to S3 assume a course corresponding to the output signals 9 and 10 in FIG. 6. In the following, however, it should be assumed that the signals are processed further in an analog manner.
Bei dem erfindungsgemäßen Verfahren wird ein erstesIn the method according to the invention, a first
Auswertesignal A aus der Subtraktion des Ausgangssignals S3 vom Ausgangssignal Sl gewonnen. Ebenso wird ein zweites Auswertesignal B aus der Addition des Ausgangssignals S3 zum Ausgangssignal Sl und der Subtraktion des doppelten Ausgangssignals S2 von dieser Summe erhalten. Mit anderen Worten, es gelten die folgenden Beziehungen für die Auswertesignale A und B:Evaluation signal A obtained from the subtraction of the output signal S3 from the output signal S1. Likewise, a second evaluation signal B is obtained from the addition of the output signal S3 to the output signal S1 and the subtraction of the double output signal S2 from this sum. In other words, the following relationships apply to evaluation signals A and B:
A = Sl - S3 B = Sl + S3 - 2 • S2 (1)A = Sl - S3 B = Sl + S3 - 2 • S2 (1)
Für die Signale Sl bis S3 wird nun der oben vorausgesetzte sinusförmige Verlauf angenommen, wobei das Signal S2 um die Phase p und das Signal S3 um die Phase 2p zu dem Signal Sl verschoben sind. Mit t = Zeit und w = Winkelgeschwindigkeit des Zahnrades 8 ergibt sich dann:The above-assumed sinusoidal curve is now assumed for the signals S1 to S3, the signal S2 being shifted by phase p and the signal S3 by phase 2p to the signal S1. With t = time and w = angular velocity of gear 8, the following then results:
51 = sin(w-t)51 = sin (w-t)
52 = sin(w-t + p) S3 = sin (w-t + 2-p ) ( 2 )52 = sin (wt + p) S3 = sin (wt + 2-p) (2)
Aus dem Gleichungssystem (2) werden nach einigen Umformungen mit Hilfe der Gleichungen (1) die folgenden Beziehungen abgeleitet :The following relationships are derived from the system of equations (2) after a few transformations using equations (1):
A = - 2 sin(p) • cos (w-t + p) (3) .A = - 2 sin (p) • cos (wt + p) (3).
B = 2 • (cos(p)-l) • sin(w-t+p) (4)B = 2 • (cos (p) -l) • sin (w-t + p) (4)
Aus den Gleichungen (3) und (4) ist zu ersehen, daß die beiden Auswertesignale A und B unabhängig von dem Wert der Phase p immer eine Phasenverschiebung von 90° zueinander aufweisen. Das heißt, unabhängig davon, ob der Hall-Sensor 13 genau zu dem Zahnrad 8 paßt, entsteht immer ein "Phasensystem" mit 90°, bei dem im Nulldurchgang der Schwingung des einen Auswertesignals die Schwingung des anderen Auswertesignals ihr Maximum annimmt. So ist beispielsweise bei einem ansteigenden Nulldurchgang des Auswertesignals A der Wert cos(w-t+p) = 0 gegeben, während im Auswertesignal B dann der Wert sin(w-t+p) = 1 vorliegt.It can be seen from equations (3) and (4) that the two evaluation signals A and B always have a phase shift of 90 ° to one another, regardless of the value of phase p. That is, regardless of whether the Hall sensor 13 exactly fits the gear 8, there is always a "phase system" with 90 °, in which the oscillation of the other evaluation signal assumes its maximum at the zero crossing of the oscillation of the one evaluation signal. For example, with an increasing zero crossing of the evaluation signal A, the value cos (w-t + p) = 0 is given, while the value sin (w-t + p) = 1 is then present in the evaluation signal B.
Dennoch ist eine möglichst genaue Abstimmung zwischen dem Abstand der Hall-Sonden des Hall-Sensors 13 und den Abständen der Zähne 7 des Zahnrades 8 von Vorteil, da dann die Schwingungsamplituden der Auswertesignale A und B ihr Maximum annehmen.Nevertheless, the most accurate possible coordination between the distance between the Hall probes of the Hall sensor 13 and the distances between the teeth 7 of the gear 8 is advantageous, since then the vibration amplitudes of the evaluation signals A and B assume their maximum.
Wird nun, wie oben erläutert, berücksichtigt, daß einer Umkehrung der Drehrichtung des Zahnrades 8 ein Vorzeichenwechsel der Zeit entspricht, so werden aus den Gleichungen (3) und (4) die folgenden Beziehungen erhalten:If, as explained above, it is taken into account that a reversal of the direction of rotation of the gear wheel 8 corresponds to a change in the sign of the time, the following relationships are obtained from equations (3) and (4):
A = - 2 sin(p) • cos(w-t-p) (5)A = - 2 sin (p) • cos (wtp) (5)
B = - 2 cos((p)-l) • sin(w-t-p) (6)B = - 2 cos ((p) -l) • sin (wtp) (6)
Die so entstehenden Signale sind also sehr ähnlich zu denThe signals generated in this way are therefore very similar to those
Signalen entsprechend den Gleichungen (3) und (4), wobei ein Unterschied lediglich in dem negativen Vorzeichen im Signal B vorliegt. Dies bedeutet aber, daß bei Abtastung im Nulldurchgang des Signals A das Vorzeichen des Signals B im Vergleich zu vorher bei einer Umkehr der Drehrichtung invertiert ist, so daß eine eindeutige Richtungserkennung aus dem Vorzeichen des Auswertesignals B in bezug auf das Auswertesignal A feststellbar ist. Schaltungstechnisch kann dies beispielsweise mit einem D-Flip-Flop realisiert werden, bei welchem nach einer Digitalisierung das Signal A am Takt- Eingang und das Signal B am D-Eingang anliegen.Signals corresponding to equations (3) and (4), with a difference only in the negative sign in signal B is present. However, this means that when the signal A is scanned at zero crossing, the sign of the signal B is inverted compared to before when the direction of rotation is reversed, so that a clear direction detection from the sign of the evaluation signal B in relation to the evaluation signal A can be determined. In terms of circuitry, this can be achieved, for example, with a D flip-flop in which, after digitization, the signal A is present at the clock input and the signal B is present at the D input.
Das Verfahren ist jedoch nicht eingeschränkt auf die Abtastung im Nulldurchgang des Signals A. Die Abtastung kann auch bei anderen Werten des Signals A erfolgen. Ebenso kann alternativ zur Richtungserkennung anhand des Vorzeichens des Signals B, die Richtungserkennung durch Auswertung der Tendenz des zweiten Auswertesignals B beim Abtastwert erfolgen. Insbesondere bei sinusförmigen Auswertesignalen stellt aber die Abtastung im Nulldurchgang des Signals A in Verbindung mit der Richtungserkennung anhand des Vorzeichens des Signals B ein besonders bevorzugtes Verfahren dar.However, the method is not limited to the sampling at the zero crossing of the signal A. The sampling can also take place at other values of the signal A. Likewise, as an alternative to the direction detection on the basis of the sign of the signal B, the direction detection can take place by evaluating the tendency of the second evaluation signal B for the sample value. In particular in the case of sinusoidal evaluation signals, however, sampling at the zero crossing of signal A in conjunction with direction detection using the sign of signal B represents a particularly preferred method.
Weiterhin kann eines der Auswertesignale (A,B) zur Erzeugung von Schaltflanken herangezogen und das jeweils andere Auswertesignal (A,B) mit diesen Schaltflanken abgetastet werden, wobei aus der Relation zwischen den Abtastwerten der Flanken die Drehrichtung ermittelt wird.Furthermore, one of the evaluation signals (A, B) can be used to generate switching edges and the respective other evaluation signal (A, B) can be sampled with these switching edges, the direction of rotation being determined from the relationship between the samples of the edges.
Das Verfahren ermöglicht also mit lediglich drei Hall-Sonden auf einem Hall-Sensor eine zuverlässige Erkennung der Umkehr der Drehrichtung eines Zahnrades.The method therefore enables reliable detection of the reversal of the direction of rotation of a gearwheel with only three Hall probes on one Hall sensor.
Für die Erzeugung der Auswertesignale A und B können an sich ohne weiteres Operationsverstärker-Schaltungen eingesetzt werden. Es sind aber auch Transistorschaltungen möglich, wie diese in den Fig. 3 und 4 gezeigt sind. In diesen Fig. 3 und 4 bedeutet Slp und Sin die Ausgangssignale der Hall-Sonde 14,For the generation of evaluation signals A and B, operational amplifier circuits can be used per se without further notice. However, transistor circuits are also possible, as shown in FIGS. 3 and 4. 3 and 4, Slp and Sin mean the output signals of the Hall probe 14,
ERSÄT2BLATΪ (REGEL 26) S2p und S2n die Ausgangssignale der Hall-Sonde 15 und S3p und S3n die Ausgangssignale der Hall-Sonde 16.ERSÄT2BLATΪ (RULE 26) S2p and S2n the output signals of the Hall probe 15 and S3p and S3n the output signals of the Hall probe 16.
In der Schaltung von Fig. 3 mit den Ausgangsanschlüssen 17 und 18 wird das Ausgangssignal A erhalten, während mit der Schaltung von Fig. 4 mit den Ausgangsanschlüssen 19 und 20 das Auswertesignal B gewonnen wird.The output signal A is obtained in the circuit of FIG. 3 with the output connections 17 and 18, while the evaluation signal B is obtained with the circuit of FIG. 4 with the output connections 19 and 20.
In den Schaltungen der Fig. 3 und 4 sind die Hall-Sonden 14,15, 16 mit den jeweiligen Differenzverstärkern dieser Schaltungen so verschaltet, daß zur Ansteuerung nur Differenzfelder herangezogen werden, während eine große überlagerte magnetische Vorspannung nur eine Gleichtaktverschiebung bewirkt, die wirksam und ohne nennenswerte Nebeneffekte unterdrückt wird.In the circuits of FIGS. 3 and 4, the Hall probes 14, 15, 16 are connected to the respective differential amplifiers of these circuits in such a way that only differential fields are used for the control, while a large superimposed magnetic bias only causes a common mode shift that is effective and is suppressed without any significant side effects.
Schaltungen, die zu den in den Fig. 3 und 4 gezeigten Schaltungen ähnlich sind, wurden bereits beschrieben. Selbstverständlich können aber auch andere Schaltungen zur Gewinnung der Auswertesignale A und B herangezogen werden, wozu bereits oben auf die entsprechenden Operationsverstärker-Schaltungen hingewiesen wurde.Circuits similar to the circuits shown in Figures 3 and 4 have already been described. Of course, other circuits can also be used to obtain the evaluation signals A and B, for which purpose the corresponding operational amplifier circuits have already been referred to above.
ERSATZB TT(REGEL 26) REPLACEMENT TT (RULE 26)

Claims

Patentansprüche claims
1. Verfahren zum Erkennen der Drehrichtung eines Rades (8) mittels Hall-Sonden (14, 15 ,16), die in der Umfangsrichtung1. Method for detecting the direction of rotation of a wheel (8) by means of Hall probes (14, 15, 16) in the circumferential direction
- 5 des Rades (8) angeordnet sind, über zueinander phasenverschobene Auswertesignale, d a d u r c h g e k e n n z e i c h n e t ,- 5 of the wheel (8) are arranged, by means of evaluation signals which are phase-shifted from one another, that is to say, by means of evaluation signals,
- daß eine erste, zweite und dritte Hall-Sonde (14,15,16) nacheinander angeordnet werden, wobei die zweite Hall-Sonde- That a first, second and third Hall probe (14,15,16) are arranged one after the other, the second Hall probe
10 (15) zwischen der ersten und der dritten Hall-Sonde (14, 16) angeordnet wird, und jeweils ein Ausgangssignal (51,52,53) der ersten bis dritten Hall-Sonden (14,15,16) gewonnen wird,10 (15) is arranged between the first and third Hall probes (14, 16), and an output signal (51, 52, 53) of the first to third Hall probes (14, 15, 16) is obtained in each case,
- daß zwei Auswertesignale (A, B) aus den Ausgangssignalen- That two evaluation signals (A, B) from the output signals
15 (51,52,53) der drei Hall-Sonden (14,15,16) gewonnen werden, wobei zur Gewinnung des ersten Auswertesignals (A) das Ausgangssignal (S3) der dritten Hall-Sonde (16) vom Ausgangssignal (Sl) der ersten Hall-Sonde (14) subtrahiert wird, und wobei zur Gewinnung des zweiten Auswertesignals15 (51, 52, 53) of the three Hall probes (14, 15, 16) are obtained, the output signal (S3) of the third Hall probe (16) from the output signal (S1) being used to obtain the first evaluation signal (A) the first Hall probe (14) is subtracted, and thereby to obtain the second evaluation signal
20 (B) das Ausgangssignal (Sl) der ersten Hall-Sonde (14) zum Ausgangssignal (S3) der dritten Hall-Sonde (16) addiert und von der so erhaltenen Summe das doppelte Ausgangssignal (S2) der zweiten Hall-Sonde (15) subtrahiert wird,20 (B) the output signal (S1) of the first Hall probe (14) is added to the output signal (S3) of the third Hall probe (16) and of the sum obtained in this way the double output signal (S2) of the second Hall probe (15 ) is subtracted,
- daß eines der beiden Auswertesignale (A, B) bei 25 vorbestimmten Abtastwerten abgetastet wird und- That one of the two evaluation signals (A, B) is sampled at 25 predetermined samples and
- daß die Tendenz oder das Vorzeichen des jeweils anderen Auswertesignals (A, B) überprüft wird, wobei jeder Tendenz bzw. jedem Vorzeichen in Bezug auf das beim Abtastwert abgetastete Auswertesignal jeweils eine Drehrichtung fest- That the tendency or the sign of the respective other evaluation signal (A, B) is checked, each tendency or sign in relation to the evaluation signal sampled at the sample value each determining a direction of rotation
30 zugeordnet ist.30 is assigned.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Ausgangssignale (51,52,53) und die Auswertesignale (A, B) sinusförmig sind.2. The method of claim 1, d a d u r c h g e k e n n z e i c h n e t that the output signals (51,52,53) and the evaluation signals (A, B) are sinusoidal.
3535
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , - daß das eine der Auswertesignale (A, B) im Nulldurchgang abgetastet wird, und3. The method according to claim 1 or 2, characterized in - That one of the evaluation signals (A, B) is sampled at the zero crossing, and
- daß das Vorzeichen des anderen Auswertesignals (A,B) überprüft wird, wobei jedem Vorzeichen in Bezug auf das beim Abtastwert abgetastete Auswertesignal jeweils eine Drehrichtung fest zugeordnet ist.- That the sign of the other evaluation signal (A, B) is checked, with each sign being assigned a direction of rotation with respect to the evaluation signal sampled at the sample value.
ERSΛTZBLÄΓΓ (REGEL26) ERSΛTZBLÄΓΓ (RULE 26)
PCT/DE1998/001140 1997-04-24 1998-04-23 Method for detecting the direction of rotation of a wheel by means of hall probes WO1998048284A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98931990A EP0977997A2 (en) 1997-04-24 1998-04-23 Method for detecting the direction of rotation of a wheel by means of hall probes
JP54474098A JP2001521630A (en) 1997-04-24 1998-04-23 Discrimination method of wheel rotation direction using Hall sensor element
CA002287182A CA2287182A1 (en) 1997-04-24 1998-04-23 Method for identifying the direction of rotation of a wheel by means o f hall probes
US09/426,422 US6242905B1 (en) 1998-04-23 1999-10-25 Method for identifying the direction of rotation of a wheel using hall probes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19717364A DE19717364C1 (en) 1997-04-24 1997-04-24 Method for identifying direction of rotation of wheel using Hall effect probes
DE19717364.0 1997-04-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/426,422 Continuation US6242905B1 (en) 1998-04-23 1999-10-25 Method for identifying the direction of rotation of a wheel using hall probes

Publications (2)

Publication Number Publication Date
WO1998048284A2 true WO1998048284A2 (en) 1998-10-29
WO1998048284A3 WO1998048284A3 (en) 1999-01-28

Family

ID=7827645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/001140 WO1998048284A2 (en) 1997-04-24 1998-04-23 Method for detecting the direction of rotation of a wheel by means of hall probes

Country Status (7)

Country Link
EP (1) EP0977997A2 (en)
JP (1) JP2001521630A (en)
KR (1) KR20010020194A (en)
CN (1) CN1260879A (en)
CA (1) CA2287182A1 (en)
DE (1) DE19717364C1 (en)
WO (1) WO1998048284A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501604A (en) * 1999-06-04 2003-01-14 エス.エヌ.エール.ルールマン Bearing with information sensing device
US6573710B1 (en) 1999-04-14 2003-06-03 The Torrington Company Position and/or displacement sensor including a plurality of aligned sensor elements

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1019828C2 (en) * 2002-01-24 2003-07-25 Skf Ab Rotational speed sensor.
JP4302558B2 (en) * 2004-03-17 2009-07-29 三菱電機株式会社 Rotation state detection device and rotation state detection method
DE102004017191B4 (en) * 2004-04-07 2007-07-12 Infineon Technologies Ag Device and method for determining a direction of an object
US7365530B2 (en) 2004-04-08 2008-04-29 Allegro Microsystems, Inc. Method and apparatus for vibration detection
DE102004025776B3 (en) 2004-05-26 2005-07-21 Infineon Technologies Ag Detecting faults in determining angular speed and/or rotation direction of rotor involves determining phase difference between first angular speed signal and first rotation direction signal to detect faults
CN1330964C (en) * 2006-05-23 2007-08-08 北京航空航天大学 Apparatus for detecting rotation speed and direction of rotor of magnetic levitation reacted flywheel
DE102007022942A1 (en) * 2007-05-16 2008-11-20 Pepperl + Fuchs Gmbh An incremental pathfinder and method for determining a displacement of a first object relative to a second object
WO2009016593A2 (en) * 2007-08-02 2009-02-05 Nxp B.V. Sensor for detecting a moving direction
US8400096B2 (en) 2008-06-20 2013-03-19 Harmonic Drive Systems Inc. Magnetic encoder and actuator
DE102009026531A1 (en) * 2009-05-28 2010-12-02 Robert Bosch Gmbh Method for detecting a rotation of a rotatable part
US9329057B2 (en) 2012-05-31 2016-05-03 Allegro Microsystems, Llc Gear tooth sensor with peak and threshold detectors
CN103487598A (en) * 2013-10-15 2014-01-01 湖南湘依铁路机车电器股份有限公司 Multi-channel locomotive speed measurement hall revolution speed transducer and installation method thereof
CN105737731A (en) * 2016-03-03 2016-07-06 安徽理工大学 Handheld angular displacement probe
CN106771324B (en) * 2017-01-19 2023-08-11 中国第一汽车股份有限公司 Anti-interference Hall type rotating speed sensor magnetic field detection structure and signal processing method
JP6973421B2 (en) * 2019-01-14 2021-11-24 株式会社デンソー Rotation detector
US11125590B2 (en) 2019-05-07 2021-09-21 Allegro Microsystems, Llc System and method for vibration detection with direction change response immunity using a magnetic field sensor
US11029176B2 (en) 2019-05-07 2021-06-08 Allegro Microsystems, Llc System and method for vibration detection with no loss of position information using a magnetic field sensor
DE102020101522A1 (en) 2020-01-23 2021-07-29 Bayerische Motoren Werke Aktiengesellschaft Device and means of locomotion for detecting a speed of rotation of a wheel of the means of locomotion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4104902A1 (en) * 1991-02-18 1992-08-20 Swf Auto Electric Gmbh METHOD AND ARRANGEMENT FOR DETECTING A DIRECTION OF MOVEMENT, IN PARTICULAR A DIRECTION OF DIRECTION
US5241267A (en) * 1989-08-11 1993-08-31 Siemens Aktiengesellschaft Rotation detector using differential hall sensor circuitry
US5489844A (en) * 1993-05-17 1996-02-06 General Electric Company Noise-cancelling quadrature magnetic position, speed and direction sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160011A (en) * 1985-01-09 1986-07-19 Fanuc Ltd Encoder
DE8909677U1 (en) * 1989-08-11 1990-06-13 Siemens AG, 1000 Berlin und 8000 München Rotation detection device
JP2611082B2 (en) * 1992-04-08 1997-05-21 矢崎総業株式会社 Rotation detection device
JPH06273437A (en) * 1993-03-22 1994-09-30 Yazaki Corp Rotation detection apparatus
FR2724723B1 (en) * 1994-09-16 1998-09-11 Moving Magnet Tech INCREMENTAL SPEED AND / OR POSITION SENSOR.
JP3423789B2 (en) * 1994-10-07 2003-07-07 本田技研工業株式会社 Rotation direction detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241267A (en) * 1989-08-11 1993-08-31 Siemens Aktiengesellschaft Rotation detector using differential hall sensor circuitry
DE4104902A1 (en) * 1991-02-18 1992-08-20 Swf Auto Electric Gmbh METHOD AND ARRANGEMENT FOR DETECTING A DIRECTION OF MOVEMENT, IN PARTICULAR A DIRECTION OF DIRECTION
US5489844A (en) * 1993-05-17 1996-02-06 General Electric Company Noise-cancelling quadrature magnetic position, speed and direction sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 364 (P-524), 5. Dezember 1986 & JP 61 160011 A (FANUC LTD), 19. Juli 1986 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573710B1 (en) 1999-04-14 2003-06-03 The Torrington Company Position and/or displacement sensor including a plurality of aligned sensor elements
JP2003501604A (en) * 1999-06-04 2003-01-14 エス.エヌ.エール.ルールマン Bearing with information sensing device
JP4776840B2 (en) * 1999-06-04 2011-09-21 エヌテエヌ−エス.エヌ.エール.ルルモン Bearing with information sensing device

Also Published As

Publication number Publication date
JP2001521630A (en) 2001-11-06
DE19717364C1 (en) 1998-08-27
EP0977997A2 (en) 2000-02-09
CN1260879A (en) 2000-07-19
WO1998048284A3 (en) 1999-01-28
KR20010020194A (en) 2001-03-15
CA2287182A1 (en) 1998-10-29

Similar Documents

Publication Publication Date Title
WO1998048284A2 (en) Method for detecting the direction of rotation of a wheel by means of hall probes
EP0363512B1 (en) Non-contacting arrangement for the speed detection of a toothed wheel
DE19818799C2 (en) Method and device for measuring angles
EP1315954B1 (en) Method for determining an angle differential from phase signals
EP2767804B1 (en) Circuit and measuring system
DE19613884B4 (en) Method for transmitting information and device suitable therefor
EP1337861A1 (en) Method and device for processing analogue output signals from capacitive sensors
DE19851942B4 (en) Speed, direction and acceleration sensor for a rotating shaft
DE102007002705B4 (en) Device and method for detecting a direction reversal of a relative movement
EP1499901A2 (en) Method and device for the detection of local displacements and rotations
EP1030181A2 (en) Angular speed sensor
DE102017107228A1 (en) Sensor devices, systems and methods
DE2643286C2 (en) Device for detecting the position of a rotating shaft
DE3642771C2 (en)
DE3620884A1 (en) Device for detecting the rotational speed and sense of rotation of a rotating part
EP1511973B1 (en) Method and device for detection of the movement of an element
DE102018219581A1 (en) DETERMINATION OF A RELATIVE DIRECTION
DE2732024A1 (en) ANGLE POSITION SENSOR WITH DIGITAL OUTPUT
DE19701319C2 (en) Position measuring device
DE19859828A1 (en) Sensor device for recording a physical measured variable
DE19640760C2 (en) Circuit arrangement for an inductive sensor with two separately arranged sensors
WO2016112903A1 (en) Method and measurement signal processing unit for generating a multi-channel measurement signal for a rotational speed measurement and sensor unit
DE3907760C2 (en)
DE10306127B4 (en) Method and circuit arrangement for determining the direction of a magnetic field
DE4209212A1 (en) Incremental distance or angle transducer - specifies ratio of division of distances between Hall sensors and magnetic teeth esp. of gear wheel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98804477.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998931990

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2287182

Country of ref document: CA

Ref document number: 2287182

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997009771

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1998 544740

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09426422

Country of ref document: US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWP Wipo information: published in national office

Ref document number: 1998931990

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997009771

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998931990

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019997009771

Country of ref document: KR