JPS61160011A - Encoder - Google Patents

Encoder

Info

Publication number
JPS61160011A
JPS61160011A JP89985A JP89985A JPS61160011A JP S61160011 A JPS61160011 A JP S61160011A JP 89985 A JP89985 A JP 89985A JP 89985 A JP89985 A JP 89985A JP S61160011 A JPS61160011 A JP S61160011A
Authority
JP
Japan
Prior art keywords
signal
phase
signals
phase difference
adder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP89985A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uchida
裕之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP89985A priority Critical patent/JPS61160011A/en
Publication of JPS61160011A publication Critical patent/JPS61160011A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain accurate and highly resolvable rotating position by simple and easy assembly and adjustment, by generating the secondary signals with an accurate phasediflerence of 90 deg. in a phase adjusting unit and conducting an accurate 90 deg. phase division by the succeeding phase division. CONSTITUTION:Signal SA1=A-phase signal-reversed A-phase signal, signal SB1=B-phase signal-reversed B-phase signal are fed out from adders 81, 82 of a signal detecting unit 8 respectively and from an adder 31 of a signal adjusting circuit 3, a signal AB1=SA1+SB1, and from an adder 32, a signal AB2=SA1-SB1 is obtained. Signal SA1 and SB1 are of the same maximum amplitude,and even if they are of the wave form with the same frequency, but not of the phase difference of 90 deg., signal AB1 and AB2 of the circuit 31 intersect through a right angle with the phase difference of 90 deg.. Consequently, by using signal AB1 and AB2 intersecting correctly through a right angle, a phase dividing signal is available in a phase dividing circuit 4 and using this signal, a rotating signal generating circuit 6 can feed out accurate rotating direction detection signal and rotating position pulse signal.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明はロータリーエンコーダに関するものであり、特
に組立および調整を容易にし且つ高精度の角度信号が得
られるようにしたインクリメント形ロータリーエンコー
〆に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a rotary encoder, and more particularly to an incremental type rotary encoder that is easy to assemble and adjust and is capable of obtaining highly accurate angle signals.

口、従来の技術 例えば、光学式インクリメント形ロータリーエンコーダ
は、第2図に示すように、回転軸に固定され周縁に沿り
て一定の間隔で設けられたスリットを有する回転符号板
と(図示せず)、該回転符号板のスリットの一方からビ
ーム光を射出するLII) 7と、回転符号板のスリッ
トを挾んでLID7と対向して設けられた受光部(LR
D ) 8’を有している。受光部8′は、回転符号板
の回転位置を検出し、且つ回転方向が検出し得るように
一定の位相関係、例えば理想的忙は90・の位相差をも
った2つの信号、いわゆる人相およびB相信号を発生さ
せるように2つの受光素子、例えば7オトダイオード(
FD)が固定スリ、ト板を介して回転符号板のスリット
を透過した光を受光するように配置されている。人相お
よびB相信号としては、第3図囚および(D)に図示の
如き波形となる。すなわちそれぞれオフセット電圧V。
2. Description of the Related Art For example, an optical incremental rotary encoder, as shown in FIG. Z), LII) 7 which emits a beam from one of the slits of the rotary code plate, and a light receiving part (LR
D) It has 8'. The light receiving unit 8' detects the rotational position of the rotary code plate, and generates two signals having a certain phase relationship, for example, an ideal phase difference of 90 degrees, so that the rotation direction can be detected. and two light-receiving elements, for example, 7 otodiodes (
FD) is arranged so as to receive the light transmitted through the slit of the rotary code plate via the fixed slit and the top plate. The human phase and B phase signals have waveforms as shown in FIGS. That is, each offset voltage V.

ffだけ重畳された正弦波状の周期的変化波形であシ、
正回転の場合、図示の如く人相信号(第3図(A) )
がB相信号(第3図(ロ))よシタ00位相が進んでい
る。信号処理の便宜上、人相、B相信号はそれぞれ反転
A相およびB相信号が求められ(第3図(B)および(
ト))、さらに直流分を含まない人相信号SAI = 
SA −SA (第3図(C) ) オ!びB相信号8
B1=SR−8B (第3図(F))が求められる。交
流A相信号SAIと交流B相信号SBIとは上記同様9
0″の位相差がある。
It is a sinusoidal periodic changing waveform superimposed by ff,
In the case of forward rotation, the physiognomic signal (Fig. 3 (A)) as shown in the figure
The phase 00 phase is ahead of the B phase signal (Fig. 3 (b)). For convenience of signal processing, inverted A-phase and B-phase signals are obtained for the human phase and B-phase signals, respectively (Fig. 3 (B) and (
g)), and the physiognomic signal SAI which does not include the DC component =
SA -SA (Figure 3 (C)) Oh! and B phase signal 8
B1=SR-8B (Fig. 3(F)) is obtained. The AC A phase signal SAI and the AC B phase signal SBI are the same as above 9
There is a phase difference of 0''.

これら人相信号SAIとB相信号SBIとは、90゜の
位相差をさらに、例えば22,5°の位相差を有する4
種の信号に分割する位相差分割回路(又は内挿回路)4
に″印加される。位相差分割回路4は実際に検出された
信号の分解能以上の角度信号を得るのに有用なものであ
る。例えば、回転符号板に鉱例えば2500個のスリッ
トが設けられておシ、回転符号板が1回転することによ
って実際に検出し得る信号は2500サイクルであシそ
の分解能は172,500であるが、上述のように4分
割位相信号を用いることによシ事実上1/10,000
の分解能の信号が得られることとなる。
The human phase signal SAI and the B-phase signal SBI have a phase difference of 90 degrees and a phase difference of, for example, 22.5 degrees.
Phase difference splitting circuit (or interpolation circuit) 4 that splits into different signals
The phase difference dividing circuit 4 is useful for obtaining an angular signal with a resolution higher than that of the actually detected signal. However, the signal that can actually be detected by one rotation of the rotary code plate is 2,500 cycles, and its resolution is 172,500 cycles, but by using the 4-division phase signal as described above, 1/10,000
This results in a signal with a resolution of .

位相差分割回路4は上述のようKよシ高分解能が得られ
ることに寄与する一方、回転符号板に少ないスリットを
設けても数多くのスリ、トを正確に設けたものと同等の
精度の信号が得られることに寄与する。特に磁気式1ン
コーダでは磁石の大きさ、磁束識別上の最小間隔等によ
シ光学式1ンコーダ程の分解能を有する検出信号が得に
くい。
While the phase difference dividing circuit 4 contributes to obtaining a higher resolution than K as described above, even if the rotational code plate has fewer slits, it can produce signals with the same accuracy as a signal with a large number of slits and grooves. This contributes to the acquisition of In particular, with a magnetic type encoder, it is difficult to obtain a detection signal having a resolution comparable to that of an optical encoder due to the size of the magnet, the minimum interval for magnetic flux discrimination, etc.

そこで磁気式1ンコーダではかかる位相分割による信号
を用いて検出信号以上の分解能を有する信号を発生させ
ることが必要となりている。
Therefore, in the magnetic encoder, it is necessary to generate a signal having a resolution higher than that of the detection signal by using the signal obtained by such phase division.

このようにして得られた位相分割信号は回転信号発生回
路5に印加され、ノ母ルス整形され、A相信号がB相信
号よシ立相が進んでいる場合は、正回転として、位相分
割信号に応じたインクリメンタルなノ9ルス信号を、逆
の場合はデクリメンタルなノ臂ルス信号をライントライ
バ(LD)6に出力°シ、ライントライバ6は回転位置
信号を必要とする装置、例えばNC側に増幅した信号を
出力する。
The phase-divided signal obtained in this way is applied to the rotation signal generation circuit 5, and is subjected to pulse shaping. If the A-phase signal is ahead of the B-phase signal, the phase-divided signal is regarded as normal rotation and the phase-divided signal is The line driver (LD) 6 outputs an incremental pulse signal according to the signal, and in the opposite case, a decremental pulse signal to the line driver (LD) 6. The line driver 6 is a device that requires a rotational position signal. , for example, outputs the amplified signal to the NC side.

ハ6発明が解決しようとする問題点 上述の説明において、位相分割回路9で複数の信号を作
シ出すに当っては、人相信号とB相信号とが正確に90
’の位相差があるものと想定している。
C6 Problems to be Solved by the Invention In the above explanation, when the phase dividing circuit 9 generates a plurality of signals, the human phase signal and the B phase signal must be
It is assumed that there is a phase difference of '.

しかしながら、かかる位相差はLIm)の指向性の調整
、回転符号板、固定スリット板、フォトダイオード等の
位置合せを充分に行なわないと、第4図に図示の如く、
信号SAIとSBIとは90”の位相差にはならない。
However, if the directivity of the LIm (LIm) is not properly adjusted and the rotary code plate, fixed slit plate, photodiode, etc.
Signals SAI and SBI do not have a phase difference of 90''.

従ってかかる不正確な位相差の信号に基づいて二次的に
発生させた信号を用いて算出した信号は誤差を含むこと
になる。ところが、正確な位相差を得るKはエンコーダ
の組立調整に相当時間と労力がかかるという問題がある
Therefore, a signal calculated using a signal generated secondarily based on a signal with such an inaccurate phase difference will contain an error. However, the problem with K, which allows accurate phase differences to be obtained, is that it takes considerable time and effort to assemble and adjust the encoder.

また上述のよ5に一旦正確に組立調整を行なったとして
も、−の経年変化による特性劣化、温度に依存する特性
変化によ)所定の位相差が得られなくなシ誤検出が生ず
るという問題がある。この場合、厄介な再組立調整が生
ずるという問題がある。
In addition, even if the assembly and adjustment are performed accurately as described in 5 above, there is a problem in that a predetermined phase difference cannot be obtained (due to deterioration of characteristics due to aging and changes in characteristics depending on temperature), resulting in false detection. There is. In this case, there is a problem in that troublesome reassembly adjustments occur.

上述の問題は光学式インクリメンタル形ロータリーエ/
コーダに限らず、例えば磁気式エンコーダの場合でも同
様である。すなわち、永久磁石の取付調整、磁束の変化
等、上記同様の問題を生じている。
The above problem can be solved by optical incremental type rotary
The same applies not only to coders but also to magnetic encoders, for example. That is, problems similar to those described above arise, such as adjustment of the permanent magnet attachment and changes in magnetic flux.

二0問題を解決するための手段 本発明は上述の問題を解決し、簡単かつ容易な組立調整
でしかも正確な回転位置信号を提供しようとするもので
あシ、本発明によれば、例えば第1図に図示の如く、回
転部の回転に応じた周期的な波形を有し、且つ回転部の
回転方向が識別し得るよ5に相互に所定の位相差を有す
る第1および第2の信号を発生する回転信号検出部2と
、第1および第2の信号のベクトル和とベクトル差とが
直交するようにベクトル和としての第3の信号およびベ
クトル差としての第4の信号を算出する信号調整部3と
、第3および第4の信号の位相差を任意に分割して所定
の位相差を有する複数の信号を発生させる位相分割部4
と、該位相分割部からの複数の信号に基づいて回転部の
回転方向および回転位置に相当する信号を発生する回転
信号発生部5とを具備するエンコーダが提供される。
20 Means for Solving the Problems The present invention aims to solve the above-mentioned problems and provide accurate rotational position signals with simple and easy assembly and adjustment. As shown in FIG. 1, first and second signals have a periodic waveform according to the rotation of the rotating part and have a predetermined phase difference from each other so that the rotation direction of the rotating part can be identified. and a signal that calculates a third signal as a vector sum and a fourth signal as a vector difference so that the vector sum and vector difference of the first and second signals are orthogonal. an adjustment section 3; and a phase division section 4 that arbitrarily divides the phase difference between the third and fourth signals to generate a plurality of signals having predetermined phase differences.
and a rotation signal generating section 5 that generates signals corresponding to the rotational direction and rotational position of the rotating section based on the plurality of signals from the phase dividing section.

ホ1作用 信号調整部3で正確に90″の位相差を有する二次的な
信号である第3および第4の信号を発生させ、後段の位
相分割部4では正確な9011位相を分割していく。
E 1 action signal adjustment section 3 generates third and fourth signals, which are secondary signals having an accurate 90'' phase difference, and a subsequent phase division section 4 divides the accurate 9011 phase. go.

へ、実施例 本発明の実施例について添付図面を参照して下記に述べ
る。
Embodiments Examples of the present invention will be described below with reference to the accompanying drawings.

第1図に図示のエンコーダは、インクリメンタル形機構
部lと、回転部の回転に応じた周期的な波形を有し、且
つ回転部の回転方向が識別し得るように相互に所定の位
相差を有する第1および第2の信号を発生する回転信号
検出部2と、第1および第2の信号のベクトル和とベク
トル差とが直交するようにベクトル和としての第3の信
号およびベクトル差としての第4の信号を算出する信号
調整回路3と、第3および第4の信号の位相差を任意に
分割して所定の位相差を有する複数の信号を発生させる
位相分割回路4と、該位相分割回路からの複数の信号に
基づいて回転部の回転方向および回転位置に相当する信
号を発生する回転信号発生回路5と、ライントライバ6
とから成る。
The encoder shown in FIG. 1 has an incremental mechanism part l and a periodic waveform according to the rotation of the rotating part, and has a predetermined phase difference between them so that the direction of rotation of the rotating part can be identified. a rotational signal detection unit 2 that generates first and second signals having a rotation signal, and a third signal as a vector sum and a third signal as a vector difference so that the vector sum and vector difference of the first and second signals are orthogonal. a signal adjustment circuit 3 that calculates a fourth signal; a phase division circuit 4 that arbitrarily divides the phase difference between the third and fourth signals to generate a plurality of signals having a predetermined phase difference; A rotation signal generation circuit 5 that generates signals corresponding to the rotational direction and rotational position of the rotating part based on a plurality of signals from the circuit, and a line driver 6
It consists of

第1図に図示のエンコーダのよシ具体的な実施例として
光学式インクリメント形エンコー〆について第5図にそ
の構成を示す。
As a more specific embodiment of the encoder shown in FIG. 1, the construction of an optical incremental encoder is shown in FIG.

第5図に図示のエンコーダは、第2図に関連づけて前述
した回転軸、回転符号板および固定スリ、ト板(いずれ
も図示せず)、発光ダイオード(IJD)7、該1から
の射出光で回転符号板および固定スリット板のスリット
を通した光を受は位相の異なる2つの信号、A相信号お
よびB相信号を発生させる2個のフォトダイオードを含
む信号検出部8を有している。当該エンコーダはさらに
1信号調整回路3、位相分割回路4、回転信号発生回路
5およびライントライバ6を有している。
The encoder shown in FIG. 5 includes the rotating shaft, the rotating code plate, the fixed slit, the top plate (none of which are shown), the light emitting diode (IJD) 7, and the light emitted from said 1, as described above in connection with FIG. It has a signal detection unit 8 that includes two photodiodes that receive light that has passed through the slits of the rotating code plate and the fixed slit plate and generate two signals with different phases, an A-phase signal and a B-phase signal. . The encoder further includes a 1-signal adjustment circuit 3, a phase division circuit 4, a rotation signal generation circuit 5, and a line driver 6.

信号検出部8かも出力される人相信号SA、反転A相信
号SA、交流A相信号SAI、B相信号SB。
The signal detector 8 also outputs a human phase signal SA, an inverted A-phase signal SA, an AC A-phase signal SAI, and a B-phase signal SB.

反転B相信号SR,交流B相信号8B1はそれぞれ第3
図(4)〜(ト)に図示のものと同様である。
The inverted B-phase signal SR and the AC B-phase signal 8B1 are the third
This is similar to that shown in FIGS. (4) to (g).

信号検出部8の一部、信号調整回路3および位相分割回
路4のよシ詳細な回路を第6図に示す。
A detailed circuit diagram of a part of the signal detection section 8, the signal adjustment circuit 3, and the phase division circuit 4 is shown in FIG.

信号検出部8のうち、81および82は共に、非反転入
力端子にA相信号SA、B相信号SB、反転入力端子に
反転人相信号臥、反転B相信号面が印加された加算器(
ADR)、換言すれば減算器を示す。従って加算器81
からは、5A1=SA−8A、加算器82からはSBI
 = SB −SBが出力される。
In the signal detection section 8, both 81 and 82 are adders (to which the A-phase signal SA and the B-phase signal SB are applied to the non-inverting input terminals, and the inverted human face signal 臥 and the inverted B-phase signal plane are applied to the inverting input terminals).
ADR), in other words indicates a subtracter. Therefore adder 81
From, 5A1=SA-8A, from adder 82, SBI
= SB - SB is output.

信号調整回路3は、上記SAIおよびSBIを加算する
加算器31と、sAlを非反転入力端子K、8B1を反
転入力端子に接続した加算器32、換言すれば減算器か
ら成る。従って加算器31からは第3の信号ABI 、
 ABI = SAY + SBI 、加算器32から
は第4の信号AB2 、 AB2 = SAI −SB
Iが得られる。
The signal adjustment circuit 3 consists of an adder 31 that adds the above-mentioned SAI and SBI, and an adder 32 in which sAl is connected to the non-inverting input terminal K and 8B1 is connected to the inverting input terminal, in other words, a subtracter. Therefore, from the adder 31, the third signal ABI,
ABI = SAY + SBI, fourth signal AB2 from adder 32, AB2 = SAI - SB
I is obtained.

ここで第7図にベクトル表示するように、信号SAIと
SBIとが最大振幅がほぼ同じで且つ同じ周期の周期波
形であるが、位相差φが90°ではない場合を考える。
Here, consider a case where the signals SAI and SBI have approximately the same maximum amplitude and have periodic waveforms with the same period, as shown by vectors in FIG. 7, but the phase difference φ is not 90°.

しかしながら上記条件の下で、SAIとSBIとの位相
差φがどのような値であっても、理論的に、信号調整回
路3からの信号ABIとAB2とは常に直交することに
留意されたい。すなわち、回転軸が正回転する場合は第
7図に図示の如く信号AB2が信号AB1よ)90°位
相が進み、逆回転の場合は信号AB1が信号AB2よシ
タ06位相が進むこととなる。位相差φにより信号AB
IとAB2の振幅は異なるが、位相差は常に90″であ
る。
However, it should be noted that under the above conditions, theoretically, the signals ABI and AB2 from the signal conditioning circuit 3 are always orthogonal, regardless of the value of the phase difference φ between SAI and SBI. That is, when the rotary shaft rotates in the forward direction, the signal AB2 leads the signal AB1 in phase by 90 degrees as shown in FIG. 7, and in the case of reverse rotation, the signal AB1 leads the signal AB2 in phase by 06 degrees. Signal AB due to phase difference φ
Although the amplitudes of I and AB2 are different, the phase difference is always 90''.

従って正確に直交する上記信号ABIおよびAB2を用
いれば位相分割回路4において正確な位相分割信号を得
ることができ、かかる位相分割信号を用いれば回転信号
発生回路5において常に正確な回転方向の検出とそれに
応じた回転位置ノルス信号、すなわちインクリメンタル
信号又はデクリメンタル信号を出力することが可能とな
る。これらインクリメンタル信号又はデクリメンタル信
号がライントライバ6を介して出力される。
Therefore, by using the accurately orthogonal signals ABI and AB2, an accurate phase division signal can be obtained in the phase division circuit 4, and by using such a phase division signal, the rotation direction can always be detected accurately in the rotation signal generation circuit 5. It becomes possible to output a rotational position Norse signal, that is, an incremental signal or a decremental signal, in accordance with the rotational position. These incremental signals or decremental signals are outputted via the line driver 6.

このことは換言すれば、人相信号とB相信号との位相差
があったとしても、振幅が同じであれば、正確な回転位
置パルスが得られることとなシ、従来のように組立およ
び調整にさ程の正確さが必要とされないことを意味する
。従って自動組立が可能となシ生産性が大幅に向上する
In other words, even if there is a phase difference between the human phase signal and the B phase signal, as long as the amplitudes are the same, an accurate rotational position pulse can be obtained. This means that the adjustment does not require great precision. Therefore, automatic assembly is possible and productivity is greatly improved.

上述の例においては、人相とB相との信号の振幅と周期
とが等しいことを前提としている。周期は回転符号板の
スリットの設定によりほぼ決定され一般に経年変化、温
度変化の影響を受けないものであり、はぼ一定と考える
ことができる。しかしながら、振幅はLII)の指向性
、フォトダイオードの取付立置、2個のフォトダイオー
ドの特性の差異によシ必ずしも一致せず、しかも温度、
経年変化の影響を受ける可能性がある。
In the above example, it is assumed that the human phase and B phase signals have the same amplitude and period. The period is almost determined by the settings of the slits in the rotary code plate, and is generally not affected by changes over time or temperature, and can be considered to be approximately constant. However, the amplitude does not necessarily match depending on the directivity of LII), the mounting position of the photodiode, and the difference in the characteristics of the two photodiodes, and furthermore, the amplitude
It may be affected by changes over time.

このため第6図に図示の加算器31は、第8図に図示の
如く、反転増幅器層、可変人力抵抗器R1,R2を含む
ものとし、抵抗器R1,R2の出力部VHIにおいて信
号SAIの振幅と信号SRIの振幅とが同じになるよう
に調整し得るようにしておく。加算器32は、第8図に
おいてSAIが増幅器の反転入力端子に接続され、SB
Iが非反転入力端子に接続されたものに等価なものとな
り、加算器31と同様に振幅の調整を行うことができる
For this purpose, the adder 31 shown in FIG. 6 includes an inverting amplifier layer and variable human resistors R1 and R2 as shown in FIG. 8, and the amplitude of the signal SAI is The amplitude of the signal SRI and the amplitude of the signal SRI can be adjusted so that they become the same. In the adder 32, in FIG. 8, SAI is connected to the inverting input terminal of the amplifier, and SB
This is equivalent to I being connected to a non-inverting input terminal, and the amplitude can be adjusted in the same way as the adder 31.

これによプ、最初の組立時に従来のように厄介な組立調
整が必要とされずに、加算器31.32の可変抵抗器R
1,R2の調整のみで充分精度の高い位相差信号SAI
 、 SBIが得られる。またこれによシ、温度変化、
経年変化によって振幅に差が生じたとしても、従来のよ
うに再組立調整をすることなく、可変抵抗器R1,R2
の抵抗値の調整のみで容易に良質の信号SAI 、 S
B1が得られる。
As a result, the variable resistor R of the adder 31, 32 can be adjusted without the need for complicated assembly adjustment as in the conventional case during the initial assembly.
1. Phase difference signal SAI with high accuracy only by adjusting R2
, SBI is obtained. In addition, temperature changes,
Even if there is a difference in amplitude due to aging, the variable resistors R1 and R2 can be adjusted without reassembly and adjustment as in the past.
You can easily obtain high-quality signals by simply adjusting the resistance values of SAI and S.
B1 is obtained.

位相分割回路4はかかる良質の信号SAIおよび8B1
を組合せて所望の位相分割信号CI+02+・・・Cn
を発生させるため、複数の加算器41.42゜43、・
・・を有している。加算器41.42 、・・・の各個
は第8図に図示のものと同様である。
The phase dividing circuit 4 receives such high quality signals SAI and 8B1.
A desired phase division signal CI+02+...Cn is obtained by combining
A plurality of adders 41,42°43, .
··have. Each of the adders 41, 42, . . . is similar to that shown in FIG.

例えば加算器41の出力として45°位相の信号C1を
発生させる場合を考えると、減衰率kt=1とし直交す
る信号ABIとAB2のベクトル和をとると、但し、信
号ABIとAB2とは振幅が等しく軸とすれば、振幅が
一丁AMで信号ABIとAB2の相互に4560位相差
のある信号が得られる。従って、第8図に図示の加算器
の回路を例にとると、可変抵抗器R1,R2の抵抗値を
同じ値にすれば良い。
For example, considering the case where a signal C1 with a 45° phase is generated as the output of the adder 41, if the attenuation rate kt = 1 and the vector sum of the orthogonal signals ABI and AB2 is calculated, however, the amplitudes of the signals ABI and AB2 are If the axes are equal, a signal with an amplitude of 1 AM and a phase difference of 4560 between the signals ABI and AB2 can be obtained. Therefore, taking the adder circuit shown in FIG. 8 as an example, the resistance values of the variable resistors R1 and R2 may be set to the same value.

さらに1信号C1の振幅をA、と等しくするには、入力
信号の振幅をそれぞれ1/v/Tするように抵抗器81
.R2の値を設定すれば良い。
Furthermore, in order to make the amplitude of one signal C1 equal to A, the resistor 81 is set so that the amplitude of each input signal is 1/v/T.
.. It is sufficient to set the value of R2.

また、加算器42から位相22.5°の信号C3をうよ
うに抵抗器R1,R2を設定すれば良く、加算器43か
ら位相67.5@の信号C3を得るには加うようにすれ
ば良い。
Also, the resistors R1 and R2 should be set so as to receive the signal C3 with a phase of 22.5° from the adder 42, and the resistors R1 and R2 should be set to receive the signal C3 with a phase of 67.5° from the adder 43. Good.

第6図の位相分割回路4で、一般Kn分割の位相信号を
得る場合次のように規定される演算を行えばよい。
When obtaining a general Kn-divided phase signal using the phase division circuit 4 of FIG. 6, the following calculation may be performed.

= ABI’ + k4AB2 又は、 = JAJ31 + Al32’ 本発明は以上に述べたものの外積々の変形形態を採るこ
とができる。例えば第9図に示すように、回転信号検出
部8”において、A相信号SAおよびB相信号SRをそ
れぞれ直流分減算器83゜84を介して、第3図(4)
およびΦ)に図示のオ7セ、ト電圧V。ffを除去して
交流分のA相信号SA’。
= ABI' + k4AB2 or = JAJ31 + Al32' The present invention can take many variations of the above-described embodiments. For example, as shown in FIG. 9, in the rotation signal detection section 8'', the A-phase signal SA and the B-phase signal SR are transmitted through DC component subtracters 83 and 84, respectively, as shown in FIG. 3(4).
and Φ), the voltage V shown in the figure. ff is removed to obtain the AC component A-phase signal SA'.

B相信号SB’を取シ出す。しかる後、信号SA’は増
幅器33を介して加算器36.37に印加し、信号SB
’は増幅器34を介して加算器36に、一方反転増幅器
35を介して加算器37に印加される。信号調整回路3
′は前述のものと同様の動作を行う。従って、900位
相差の信号ABI 、 AB2が得られる。次に位相分
割回路4′は加算器401゜402.403.・・・が
直列的に設けられ、第1段の加算器401で45°位相
差の信号C1を発生させ、この信号C1と信号ABIと
の組合せによフ加算器402で22.5°位相差の信号
C3を発生させ、信号C1と信号AB2との組合せによ
シ加算器403で67.5・位相差の信号C3を発生さ
せる。以下同様である。
Take out the B-phase signal SB'. Thereafter, the signal SA' is applied to the adder 36, 37 via the amplifier 33, and the signal SB
' is applied to an adder 36 via an amplifier 34 and to an adder 37 via an inverting amplifier 35. Signal adjustment circuit 3
' performs the same operation as described above. Therefore, signals ABI and AB2 with a phase difference of 900 are obtained. Next, the phase division circuit 4' includes adders 401, 402, 403, . . A signal C3 having a phase difference is generated, and the adder 403 generates a signal C3 having a phase difference of 67.5× by combining the signal C1 and the signal AB2. The same applies below.

本発明は上述の光学式エンコーダに限らず、磁気式エン
コーダにも適用し得る。すなわち、第1図に図示の機構
部1および信号検出部2が磁気的なものKなるだけで、
他の信号処理系は上述と同様であるからである。
The present invention is applicable not only to the above-mentioned optical encoder but also to a magnetic encoder. That is, the mechanism section 1 and signal detection section 2 shown in FIG. 1 are only magnetic.
This is because the other signal processing systems are the same as those described above.

ト1発明の効果 以上に述べたように本発明によれば組立調整が簡単かつ
容易で、正確、高分解能の回転位置信号を提供するエン
コーダが得られる。
1. Effects of the Invention As described above, the present invention provides an encoder that is simple and easy to assemble and adjust, and provides accurate, high-resolution rotational position signals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としてのエンコーダの構成図
、 第2図は従来のエンコーダの一例を示す構成図、第3図
はエンコーダの検出信号の波形図、第4図は第2図のエ
ンコーダのA相およびB相信号のベクトル図、 第5図は第1図について光学式エンコーダの具体的な構
成図、 第6図は第5図の一部の具体的回路図、第7図は第5図
および第6図に図示のエンコーダによシ得られる信号の
ベクトル図、 第8図は第6図の加算器の詳細回路図、第9図は第6図
に図示の回路の他の詳細回路図、である。 (符号の説明) 1・・・機構部、2・・・回転信号検出部、3・・・信
号調整回路、4・・・位相分割回路、5・・・位置信号
検出回路、6・・・ライントライバ、7・・・LED、
8・・・受光部。
Fig. 1 is a block diagram of an encoder as an embodiment of the present invention, Fig. 2 is a block diagram showing an example of a conventional encoder, Fig. 3 is a waveform diagram of a detection signal of the encoder, and Fig. 4 is a block diagram of a conventional encoder. A vector diagram of the A-phase and B-phase signals of the encoder, FIG. 5 is a specific configuration diagram of the optical encoder of FIG. 1, FIG. 6 is a specific circuit diagram of a part of FIG. 5, and FIG. is a vector diagram of the signal obtained by the encoder shown in FIGS. 5 and 6, FIG. 8 is a detailed circuit diagram of the adder shown in FIG. 6, and FIG. This is a detailed circuit diagram of (Explanation of symbols) 1... Mechanism section, 2... Rotation signal detection section, 3... Signal adjustment circuit, 4... Phase division circuit, 5... Position signal detection circuit, 6... Line driver, 7...LED,
8... Light receiving section.

Claims (1)

【特許請求の範囲】 1、回転部の回転に応じた周期的な波形を有し、且つ回
転部の回転方向が識別し得るように相互に所定の位相差
を有する第1および第2の信号を発生する回転信号検出
手段と、 第1および第2の信号のベクトル和とベクトル差とが直
交するようにベクトル和としての第3の信号およびベク
トル差としての第4の信号を算出する信号調整手段と、 第3および第4の信号の位相差を任意に分割して所定の
位相差を有する複数の信号を発生させる位相分割手段と
、 該位相分割手段からの複数の信号に基づいて回転部の回
転方向および回転位置に相当する信号を発生する回転信
号発生手段とを 具備するエンコーダ。 2、前記信号調整手段は第1および第2の信号の振幅を
調節し得る増幅回路を有する特許請求の範囲第1項に記
載のエンコーダ。 3、前記位相分割手段が並列に設けられた複数の加算回
路を有し、各個の加算回路には第3および第4の信号が
印加され所望の位相差の信号が得られるように第3およ
び第4の信号の少くとも一方の振幅が調整されている、
特許請求の範囲第1項又は第2項に記載のエンコーダ。 4、前記位相分割手段が第3および第4の信号の位相差
を順次所望の位相差の信号に分割していくように直列に
設けられた複数の加算回路を有し、初段の加算回路には
第3および第4の信号が印加され、後段の加算回路には
前段までの加算回路の出力が適宜の組合せをもって印加
され、前記複数の加算回路の入力信号の少くとも1つの
振幅が所望の位相差の信号が得られるように調整されて
いる、特許請求の範囲第1項又は第2項に記載のエンコ
ーダ。 5、前記複数の加算回路の振幅調整は変更し得るように
なっている特許請求の範囲第4項に記載のエンコーダ。
[Claims] 1. First and second signals having a periodic waveform according to the rotation of the rotating part and having a predetermined phase difference from each other so that the rotation direction of the rotating part can be identified. rotation signal detection means for generating a rotation signal; and signal adjustment for calculating a third signal as a vector sum and a fourth signal as a vector difference so that the vector sum and vector difference of the first and second signals are orthogonal. a phase dividing means for arbitrarily dividing the phase difference between the third and fourth signals to generate a plurality of signals having a predetermined phase difference; and a rotating unit based on the plurality of signals from the phase dividing means. An encoder comprising rotation signal generating means for generating a signal corresponding to the rotation direction and rotation position of the encoder. 2. The encoder according to claim 1, wherein the signal adjustment means includes an amplifier circuit capable of adjusting the amplitudes of the first and second signals. 3. The phase dividing means has a plurality of adder circuits provided in parallel, and the third and fourth signals are applied to each adder circuit so that signals with a desired phase difference are obtained. the amplitude of at least one of the fourth signals is adjusted;
An encoder according to claim 1 or 2. 4. The phase dividing means has a plurality of adder circuits arranged in series so as to sequentially divide the phase difference between the third and fourth signals into signals with a desired phase difference, and the first adder circuit is applied with the third and fourth signals, and the outputs of the adder circuits up to the previous stage are applied in an appropriate combination to the adder circuit in the subsequent stage, and the amplitude of at least one of the input signals of the plurality of adder circuits is adjusted to a desired level. The encoder according to claim 1 or 2, which is adjusted so as to obtain a phase difference signal. 5. The encoder according to claim 4, wherein amplitude adjustment of the plurality of adder circuits can be changed.
JP89985A 1985-01-09 1985-01-09 Encoder Pending JPS61160011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP89985A JPS61160011A (en) 1985-01-09 1985-01-09 Encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP89985A JPS61160011A (en) 1985-01-09 1985-01-09 Encoder

Publications (1)

Publication Number Publication Date
JPS61160011A true JPS61160011A (en) 1986-07-19

Family

ID=11486529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP89985A Pending JPS61160011A (en) 1985-01-09 1985-01-09 Encoder

Country Status (1)

Country Link
JP (1) JPS61160011A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150623A (en) * 1986-12-16 1988-06-23 Sony Magnescale Inc Phase adjusting circuit for magnetic head device
WO1998048284A3 (en) * 1997-04-24 1999-01-28 Siemens Ag Method for detecting the direction of rotation of a wheel by means of hall probes
US6242905B1 (en) 1998-04-23 2001-06-05 Siemens Aktiengesellschaft Method for identifying the direction of rotation of a wheel using hall probes
JP2017161553A (en) * 2017-06-22 2017-09-14 株式会社リコー Rotation angle detector, motor system, image processing device, and rotation angle detection method
CN107796419A (en) * 2016-08-31 2018-03-13 青岛农业大学 Low-cost and high-precision digital composite shaft angle detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150623A (en) * 1986-12-16 1988-06-23 Sony Magnescale Inc Phase adjusting circuit for magnetic head device
WO1998048284A3 (en) * 1997-04-24 1999-01-28 Siemens Ag Method for detecting the direction of rotation of a wheel by means of hall probes
US6242905B1 (en) 1998-04-23 2001-06-05 Siemens Aktiengesellschaft Method for identifying the direction of rotation of a wheel using hall probes
CN107796419A (en) * 2016-08-31 2018-03-13 青岛农业大学 Low-cost and high-precision digital composite shaft angle detector
JP2017161553A (en) * 2017-06-22 2017-09-14 株式会社リコー Rotation angle detector, motor system, image processing device, and rotation angle detection method

Similar Documents

Publication Publication Date Title
KR100882400B1 (en) Phase correction circuit of encoder signal
US6232595B1 (en) Position detecting apparatus
US7184914B2 (en) Sensor signal processor
KR940008195B1 (en) Optical encoder
US5920494A (en) Method and device for varying interpolation factors
JPH10339650A (en) Device and method for automatically correcting scanning signal including error of increment position measuring device
JP2001074504A (en) Interpolation circuit, encoder including the same and interolation method used therefor
GB2217051A (en) A servo system for a motor
JPS61160011A (en) Encoder
JP2003065803A (en) Photoelectric encoder
JPS61160012A (en) Encoder
JP3860324B2 (en) Motor speed control device
JP3365913B2 (en) Position detection device
JPH0658769A (en) Signal processing method and displacement detector using method thereof
JPH04232814A (en) High-resolution absolute value encoder
JPH067060B2 (en) Position detector with phase difference correction
JPH04355325A (en) Displacement signal output device
JP2742829B2 (en) Origin circuit
EP0394942A2 (en) A signal insertion processor and an encoder using the processor
JP2008261786A (en) Absolute angle detector
JPH01248063A (en) Speed signal detecting circuit of encoder
JPH0661861A (en) Encoder signal processing multiplier
JPH0342325Y2 (en)
JPS63250522A (en) Optical rotary encoder
JPH04329309A (en) Generating method for absolute signal