WO1998045496A1 - Production method of sheet material of active metal having high melting point - Google Patents

Production method of sheet material of active metal having high melting point Download PDF

Info

Publication number
WO1998045496A1
WO1998045496A1 PCT/JP1998/001544 JP9801544W WO9845496A1 WO 1998045496 A1 WO1998045496 A1 WO 1998045496A1 JP 9801544 W JP9801544 W JP 9801544W WO 9845496 A1 WO9845496 A1 WO 9845496A1
Authority
WO
WIPO (PCT)
Prior art keywords
active metal
ppm
point active
melting point
niobium
Prior art date
Application number
PCT/JP1998/001544
Other languages
French (fr)
Japanese (ja)
Inventor
Syozo Kambara
Original Assignee
Japan Energy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corporation filed Critical Japan Energy Corporation
Publication of WO1998045496A1 publication Critical patent/WO1998045496A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals

Definitions

  • the present invention relates to a method for producing a high-purity plate made of a high-melting-point active metal material such as niobium, rhenium, tantalum, hafnium, zirconium, and titanium, and a plate of a high-purity high-melting-point active metal obtained therefrom.
  • a high-melting-point active metal material such as niobium, rhenium, tantalum, hafnium, zirconium, and titanium
  • a method of first forging a niobium ingot warm and then rolling or drawing is used.
  • Warm forging is performed because high melting point active metals generally have high work deformation resistance, and work hardening tends to cause cracking and chipping.
  • work hardening causes cracks at the edges at the edges and cracks and distortion of the microphone opening on the surface, so it is necessary to remove the distortion by heat treatment again and forge again. I have.
  • the high melting point active metal easily reacts with gas impurities such as oxygen in the atmosphere and dissimilar metals present in the process, and the microphone opening due to the inclusion of such impurities and foreign substances.
  • defects such as cracks occurred.
  • niobium plate materials manufactured through the above complicated processes are relatively low in purity because they are forcibly rolled in an atmosphere where impurities and the like are mixed in, and the atmosphere is low. It had not yet realized the original physical properties of niobium. Such a problem also occurs when not only niobium but also other high melting point active metals are manufactured using the above-mentioned warm forging.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and an object thereof is to produce a high melting point active metal plate at a low cost and a high yield.
  • a second object of the present invention is to produce a plate material having physical properties unique to a high melting point active metal such as niobium, that is, a plate material of a high melting point active metal such as niobium of extremely high purity. Disclosure of the invention
  • a method for producing a plate material of a high melting point active metal wherein the total content of oxygen, nitrogen and carbon as impurities is not more than 60 ppm by weight (hereinafter referred to as ppm).
  • the Vickers hardness Hv is Hv ⁇ 50
  • the relative residual resistance RRR is RRR ⁇ 200
  • a high purity high melting point active metal billet (a rectangular ingot) is produced.
  • a method for producing a plate of a high melting point active metal there is provided a method for producing a plate of a high melting point active metal.
  • the total content of oxygen, nitrogen and carbon as impurities as starting materials is less than 60 ppm by weight (hereinafter referred to as ppm)
  • the Pickers hardness HV is HV ⁇ 50
  • the relative residual resistance is
  • the high melting point active metal is characterized in that the ingot is cold-pressed and rolled into a sheet material by using a high-purity high melting point active metal ingot having an RRR of 200 or more.
  • a method for manufacturing a plate material is provided.
  • the inventor made high-purity niobium in the form of a billet, and then directly rolled the billet to obtain an edge. We succeeded in producing a high-purity niobium sheet with almost no cracks or cracks in the microphone opening on the surface.
  • the present inventor has also found that, by cold-pressing and rolling a high-purity niobium ingot, almost no cracks at the end portions and cracks in the microphone opening on the surface are obtained.
  • a high-purity niobium sheet could be produced. The reason is considered as follows according to the knowledge of the present inventors. When an oxidation test is conducted by exposing high-purity niobium to an oxidizing atmosphere at a temperature of 800 ° C and in the air, the oxidation rate decreases over time, as shown in Fig. 1.
  • the generated oxide layer reached a maximum of 1 O jum, and internal oxidation was present along the grain boundary at the crystal grain boundary. It has been confirmed by the inventor's experiments that the thickness of the oxide layer of the present invention can reach 40 m.
  • the above-mentioned condition of 800 ° C. in the air is a condition currently used for hot forging of general niobium materials.
  • the results of this oxidation experiment indicate that the oxidation mechanism of high-purity niobium is surface diffusion-controlled. Therefore, in order to suppress such an oxidation reaction, it is necessary to process niobium at a low temperature. No.
  • low-temperature processing has the problem of cracks and cracks caused by impurities and foreign substances as described above. This is thought to be because if Nb contains impurities, the interatomic force for metal-to-atom bonding is partially different, and the bonding is likely to be broken by rolling or the like.
  • a high-purity niobium having a total content of oxygen, nitrogen and carbon as impurities of 60 ppm, a Vickers hardness HV of HV ⁇ 50, and a relative residual resistance RRR of RRR ⁇ 200 is used as a starting material.
  • the above object can be achieved by rolling niobium at a low temperature and using high-purity niobium billet. Further, in the second aspect of the present invention, the above object can be achieved by pressing and rolling niobium at a low temperature by using a high-purity niobium ingot.
  • Relative Residual Resistance generally means the physical property of a substance at room temperature divided by the electrical resistance ratio at 4.2 K. .
  • the superconducting state (electrical resistance is zero) at 9.2 K
  • the relative residual resistance of niobium is the electric resistance ratio (electrical resistance) at 10 K just above the superconducting transition. And the value obtained using.
  • the relative residual resistance of tantalum is based on the electric resistance ratio (electric resistance) at 5 K. Value obtained by
  • high melting point active metal processed into the sheet material by the method of the present invention examples include niobium, rhenium, tantalum, hafnium, zirconium, and titanium.
  • the present invention is not limited thereto, and alloys or intermetallic compounds containing these elements as main components may be used. That is, in this specification, the term “high melting point active metal” is a concept including not only a high melting point gold active metal composed of a single element but also a high melting point alloy and a high melting point intermetallic compound.
  • the starting material of the high melting point active metal used in the present invention has a total content of oxygen, nitrogen and carbon as impurities of 60 ppm or less, a Vickers hardness HV of HV ⁇ 50, and a relative residual resistance RRR of RRR ⁇ 200.
  • the purity of the pellets of the high melting point active metal is preferably such that the total content of oxygen and nitrogen as impurities is 45 ppm or less, and the content of oxygen, nitrogen and carbon as impurities is 0 ⁇ 20. More preferably, ppm, N ⁇ 15 ppm and C ⁇ 15 ppm.
  • the billet or ingot as a starting material has a content of oxygen and nitrogen as impurities.
  • O ⁇ 10 ppm, N ⁇ 10 ppm, C ⁇ 10 ppm, Vickers hardness HV is Hv ⁇ 45
  • relative residual resistance RRR is RRR ⁇ 1 000 .
  • the above-mentioned high purity high melting point active metal pellets can be produced by any method.
  • the method of producing a high melting point active metal described in Japanese Patent Application Laid-Open No. Hei 8-165528 / corresponding to US Pat. No. 5,722,034 by the present inventors is effective.
  • This method uses a high melting point active metal for purification, such as niobium, rhenium, tantalum, hafnium, zirconium, titanium, etc., and a transition metal element consisting of vanadium, chromium, manganese, iron, cobalt, nickel, or a rare earth element.
  • niobium in the form of a billet using the method described in JP-A-8-165585, molten niobium melted by an electron beam drip melting (EB-VDM) method is received.
  • EB-VDM electron beam drip melting
  • such a billet is preferably formed in a block shape having a relatively small thickness, for example, is preferably formed to have a thickness of 200 mm or less. This makes it possible to directly roll the billet without using a pressing step such as a cold press before the rolling step, and it is possible to produce an extremely thin niobium sheet or sheet even with a small number of rollings. .
  • the high-purity high-melting-point active metal billet obtained as described above is processed into a sheet by directly rolling. be able to.
  • the method for producing a high-melting-point active metal plate according to the second aspect of the present invention the ingot of the high-purity high-melting-point active metal as the starting material as described above is cold-pressed and rolled. Can be processed into a plate material. That is, there is no need to use warm forging, hot pressing or cold pressing.
  • a heat treatment step may be added as a post-rolling step. This heat treatment step can reduce distortion and recover hardness.
  • the heat treatment is preferably carried out at a temperature of 700 to 800 ° 0, 10 ° C. under a reduced pressure of about 6 mbar for about 1 to 2 hours.
  • the thickness t is 10 / im ⁇ t ⁇ 5000 xm
  • the total content of oxygen, nitrogen and carbon as impurities is 60 ppm or less
  • the Vickers hardness HV HV ⁇ 50
  • the relative residual resistance RRR is RRR ⁇ 200. It is preferable that the total content of oxygen and nitrogen as impurities is 45 ppm or less, and particularly, the content of oxygen, nitrogen and carbon as impurities is O ⁇ 20 ppm N ⁇ 10 ppm and C ⁇ 10 ppm It is preferably ppm.
  • the niobium plate material of the present invention is a high-purity niobium sheet material, it is extremely useful for processing superconducting members, corrosion-resistant members, heat-resistant members, and the like.
  • Fig. 1 is a graph showing the results of an oxidation test of a high-purity niob in the same atmosphere as conventional warm forging of niobium.
  • Example 1 is a diagrammatic representation of the manufacturing method of the present invention.
  • a high-purity niob pellet is prepared using the method described in JP-A-8-165528.
  • Nb metal powder (# 325) with a purity of approximately 2 N (99%) to 3N (99.9%) on the outside and a homogeneous mixed powder of electrolytic iron powder, and the inside with the same Nb metal powder
  • the molded article having a concentric double cylindrical structure consisting of was subjected to CIP treatment.
  • the obtained compact was filled into a mild steel pressurized steel, and subjected to HIP treatment under the conditions of a temperature of 135 ° C., a pressure of 14 OMPa, and 180 seconds. After this, the mild steel capsule It was cut into a cylindrical body with a diameter of 40 mm and a length of 220 mm by lathing, and used as a primary electrode for EB melting.
  • the primary electrode was subjected to 10 times of multiple melting by the EB vertical drip melting (EB-VDM) method.
  • EB-VDM EB vertical drip melting
  • a type III for receiving the lysate a type III having an inner size of 80 mm ⁇ 30 Omm ⁇ 600 mm was used.
  • the dissolution conditions are as follows. Beam shape: Competitive half moon type, Beam scanning: Fixed type, Electrode rotation speed: 58. 3 rpm, Gun power (31.5 kW or 42.5 kW). After the dissolution was performed 10 times, 80 mm ⁇ 30 Omm 60 Omm biobibilets were taken out of the type I.
  • the niobium pellets thus obtained had an impurity content of O-10.0 ppm, N ⁇ 1 Oppm, and C ⁇ 1 Oppm as determined by elemental analysis.
  • the relative residual resistance (RRR) was measured using a measurement circuit consisting of a constant-voltage / constant-current supply device, a micrometer, an ammeter, a standard resistor, a current polarity reversal switch, and four terminals. I went like that. A disc-shaped sample of about 5 mm was cut out from the center of the billet, and this was cut out into a square prism sample of about 5 mm x 3 mm x 21 mm using a precision cutter.
  • the four terminals of this sample were contacted in a pressurized manner with the four terminals, and from a constant-voltage / constant-current supply device in a constant-current mode of 100 mA, 550 mA, and 700 mA at a predetermined time, The temperature, current and voltage were measured, the constant current was switched immediately, and the temperature, current and voltage were measured 30 seconds later. The distance between the current and voltage at the four terminals was 4 mm apart so that the electric field gradient was constant.
  • the measurement temperature range was from room temperature to about 10K.
  • the applied load was set to 10 kg, and the applied time was set to 15 seconds for all the samples.
  • the measurement points were three points, and the arithmetic mean value of these three points was defined as Vickers hardness HV. [Rolling of high-purity niobium pellets]
  • the resulting high-purity niobium billet is roughly rolled to a thickness of 3 mm on a two-stage roll having a diameter of 40 Omm to obtain a niobium sheet having a thickness of 3 mm x a width of 350 mm x a length of 1370 mm.
  • a niobium sheet having a thickness of 3 mm x a width of 350 mm x a length of 1370 mm.
  • Each end of the niobium sheet in the width direction was cut off by 20 mm to form a sheet having a thickness of 3 mm x 3 mm x 31 O mm and a length of 13 70 mm.
  • the impurity content of the obtained niobium sheet was determined by elemental analysis to be 10 ppm for oxygen (O), 10 ppm for nitrogen (N), and 10 ppm for carbon (C).
  • the separated niobium sheet having a thickness of 3 mm, a width of 20 mm and a length of 370 mm was precision-rolled to a thickness of 20 jum by a two-stage roll having a diameter of 200 mm. No cracks were observed at the end of the rolled sheet. Although vertical stripes were observed on the sheet surface, no defects such as microcracks were observed at all.
  • Example 2 the sheet obtained in Example 1 is further subjected to a heat treatment to produce a sheet having a higher RRR value.
  • Example 1 the rough rolled niobium sheet (thickness 3 mm x width 31 Omm x length 1370 mm) obtained by separating both sides by 2 Omm was cut at 750 ° C and 7X1. After 1 hour heat treatment at a reduced pressure of 0- 6 mbar, the 4 Danze Njimiru mill and precision rolled to a thickness of 0. 1 mm. Defects such as cracks at both ends of the obtained sheet and cracks in the microphone opening on the surface were hardly observed.
  • a columnar high-purity niobium ingot having a diameter of 100 mm and a length of 350 mm was prepared.
  • This ingot was prepared in advance by using the method described in Japanese Patent Application Laid-Open No. 8-165585 / 28 by the present inventor.
  • the measurement of the relative residual resistance value (R R R) was performed using the same apparatus and method as in Example 1.
  • the high-purity niobium ingot was formed into a 30 mm ⁇ 320 mm ⁇ 290 mm plate at room temperature by a cold press.
  • the surface and edges of the formed plate were observed, but there were no cracks or chips at the edges, and no microcracks were observed at the surface.
  • the surface of this plate had a silver-white color, which was a metallic niobium color. From the comparison with the hue of the plate material of the comparative example described later and the measurement result of the impurity content described later, almost no oxide layer was formed on the surface of this plate material. Probably not.
  • this plate material was roughly rolled to a thickness of 3 mm with a two-stage roll having a diameter of 40 Omm to obtain a niobium sheet having a thickness of 3 mm, a width of 350 mm and a length of 2,600 mm.
  • a niobium sheet in the width direction was cut off by 2 O mm to form a sheet having a thickness of 3 ⁇ 31 O mm x a length of 260 mm.
  • the impurity content of the obtained niobium sheet was determined by elemental analysis to be oxygen (O) ⁇ 10 ppm, nitrogen (N) ⁇ 1 Oppm, and carbon (C) ⁇ 1 Oppm.
  • the load for hardness measurement was 100 g.
  • the separated niobium sheet having a thickness of 3 mm, a width of 2 O mm and a length of 260 O mm was precision-rolled to a thickness of 20 / m by a two-stage roll having a diameter of 200 mm. No cracks were observed at the end of the rolled sheet. Although vertical stripes were observed on the sheet surface, no defects such as microcracks were observed at all.
  • the sheet obtained in Example 3 is further subjected to a heat treatment to produce a sheet having a higher RRR value.
  • the rough rolling niobite (thickness 3 mm x width 310 mm x length 2600 mm) remaining by cutting away both sides by 2 O mm was removed at 7500C and 7X.
  • the impurity content of the sheet after the heat treatment was less than 10 ppm in all of oxygen, nitrogen and carbon as measured by elemental analysis.
  • a cylindrical high-purity niobium ingot having a diameter of 100 mm and a length of 200 mm was prepared.
  • This ingot was produced by the method of Japanese Patent Application Laid-Open No. Hei 8-165585 by the present inventor.
  • the high-purity niobium ingot was heated to 750 ° C. in a furnace in an air atmosphere, and immediately after being taken out, it was formed into a block shape of 350010.51 ⁇ by warm forging. Many cracks were generated at the end of the obtained block, and the presence of many cracks in the microphone opening was observed on the surface.
  • the surface of the block exhibited a pale yellow-green characteristic of niobium oxide.
  • the oxide layer on the surface of this block was polished, visually removed by about 0.3 mm, and rolled to a thickness of 4 mm. Microscopic observation of the rolled niobium sheet material revealed cracks in the microphone opening along the grain boundaries. Further examination of this part by EPMA confirmed the presence of ferrous non-metallic inclusions. This inclusion was found to have been incorporated during the forging process.
  • the impurity content of the niobium sheet obtained by rolling was oxygen (O) 50 ppm, nitrogen (N) 15 ppm, and carbon (C) ⁇ 10 ppm as determined by elemental analysis.
  • a high-purity niobium ingot was used.
  • O oxygen
  • N nitrogen
  • C carbon
  • the color of the forging obtained from niobium ingot of normal purity is dark yellow-green. Therefore, when performing post-processing such as rolling, it is necessary to remove a surface phase with a thickness of several mm in order to remove defects such as microcracks.
  • the present invention has been specifically described by taking the case where the high melting point active metal is niobium as an example.
  • the present invention is not limited thereto, and the high melting point of rhenium, tantalum, hafnium, zirconium, titanium, etc. It is needless to say that the present invention can be applied to the production of high-purity sheet materials such as active metals, alloys containing these elements as main components, and intermetallic compounds.
  • the present invention employs a low-temperature process and uses high-purity billets or ingots as a starting material, so that the surface oxide layer of the plate material is drastically reduced. However, contamination of impurities and foreign substances was prevented.
  • the resulting plate material can maintain the same high purity as the billet, so that the material properties such as superconductivity, corrosion resistance, and high temperature heat resistance, and the processability such as compound phase synthesis and clad material production are improved. It can be carried on a plate as it is. Industrial applicability
  • high-purity billets can be produced without using a process such as hot forging or cold pressing that may introduce impurities. Since it can be directly rolled and processed into a sheet material, an extremely high-purity sheet material can be obtained. Further, the method for producing a high-purity high-melting-point active metal according to the second aspect of the present invention does not require hot forging. Since the high-purity sheet material obtained by those methods of the present invention does not have any defects such as cracks at the edges and cracks on the microphone opening on the surface, these defect processing steps conventionally required are omitted. It becomes unnecessary. Therefore, by using the method of the present invention, it is possible to produce a high-purity plate material with high yield and low processing cost.
  • the heat treatment step can be performed at any stage, so that the degree of freedom of process selection is increased, the process is assembled according to the purpose, and the product specification is adjusted. This gives you more time to choose your manufacturing method.
  • the value as a material excellent in plastic workability can be said to be very large.
  • the physical property values of the niobium plate obtained by the production method of the present invention are very close to the high-purity billet as the starting material, the original material characteristics of niobium can be embodied in the plate material. Therefore, the niobium plate material of the present invention is extremely useful for processing superconducting members, corrosion-resistant members, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

A billet of high purity niobium having a total content of oxygen, nitrogen and carbon of not greater than 60 ppm as impurities, a Vicker's hardness Hv of 50 or more and a relative residual resistance value RRP of 200 or more, and the billet is rolled to a sheet without hot forging. The resultant sheet has a high purity substantially equal to that of the billet and is therefore suitable for producing a super-conducting member, heat-resistant member, and so forth. A sheet of a high melting active metal having a high purity can be produced at a low cost with a high yield. It is possible to divide the rolling into a rough rolling and a precision rolling and to carry out heat-treatment between them. The sheet material may be produced by cold-pressing and rolling an ingot in place of the billet without hot-forging.

Description

明 細 書 高融点活性金属の板材の製造方法 技術分野  Description Manufacturing method of high melting point active metal sheet
本発明は、 ニオブ、 レニウム、 タンタル、 ハフニウム、 ジルコニウム、 チタンなどの高融点活性金属材料からなる高純度の板材を製造する方法 及びそれよリ得られる高純度の高融点活性金属の板材に関する。 背景技術  The present invention relates to a method for producing a high-purity plate made of a high-melting-point active metal material such as niobium, rhenium, tantalum, hafnium, zirconium, and titanium, and a plate of a high-purity high-melting-point active metal obtained therefrom. Background art
従来、 高融点活性金属、 例えば、 ニオブを板材または線材に加工する 場合には、 最初に、 ニオブのインゴッ トを温間鍛造し、 次いで、 圧延ま たは線引きする方法が用いられている。 温間鍛造を行うのは、 高融点活 性金属は一般に加工変形抵抗が高く、 加工硬化によリ割れや欠け等が発 生し易いからである。 しかしながら、 温間鍛造を行っても、 加工硬化に よリ端部割れや表面部のマイク口クラックや歪みが発生するため、 再び 熱処理して歪を除去し、 再度鍛造することが必要とされている。  Conventionally, when processing a high melting point active metal, for example, niobium into a sheet or wire, a method of first forging a niobium ingot warm and then rolling or drawing is used. Warm forging is performed because high melting point active metals generally have high work deformation resistance, and work hardening tends to cause cracking and chipping. However, even if warm forging is performed, work hardening causes cracks at the edges at the edges and cracks and distortion of the microphone opening on the surface, so it is necessary to remove the distortion by heat treatment again and forge again. I have.
さらに、 温間鍛造における処理温度が高くなると、 高融点活性金属は 雰囲気中の酸素等のガス不純物や工程中に存在する異種金属等と反応し 易くなリ、 かかる不純物や異物の巻き込みによるマイク口クラックなど の欠陥が発生するという問題があった。 かかる不純物等の混入によリ発 生したマイクロクラック、 さらには前述の再度の熱処理及び鍛造により 除去できなかった欠陥部分は、 次の圧延等の工程以前に除去する必要が あり、 このため、 金属表面層を数 m mの厚さで削除する作業が必要であ つた。 さらに、前記のように歪を熱処理によリ除去する必要があるため、 熱処理の回数や熱処理をどの工程で行うかなどの工程設計の問題があり これらの問題を使用材料及び経験則から判断しなければならないという 煩雑さがあった。 このため、 加工コス トの増加及び大幅な加工歩留りの 低下を余儀なくされていた。 さらに、 金属表面のクラックや不純物など の存在により、 材料内部、 特に、 結晶粒界の強度が低下するという問題 も生じていた。 Furthermore, when the processing temperature in the warm forging is increased, the high melting point active metal easily reacts with gas impurities such as oxygen in the atmosphere and dissimilar metals present in the process, and the microphone opening due to the inclusion of such impurities and foreign substances. There was a problem that defects such as cracks occurred. The microcracks generated by the incorporation of such impurities and the like, and the defective portions that could not be removed by the above-mentioned heat treatment and forging again need to be removed before the next rolling and other steps. It was necessary to remove the surface layer with a thickness of several mm. Further, since it is necessary to remove the strain by heat treatment as described above, there is a problem in the process design such as the number of heat treatments and in which step the heat treatment is performed. There was the complication that these problems had to be judged from the materials used and the rules of thumb. For this reason, the processing cost had to be increased and the processing yield had to be significantly reduced. In addition, the presence of cracks and impurities on the metal surface has also caused a problem that the strength of the inside of the material, particularly the grain boundaries, is reduced.
一方、 上記のような煩雑な工程を経て製造されたニオブ板材は、 不純 物等が混入しゃすい雰囲気下でかなリ強制的に圧延等の加工が施されて いるため、 純度が比較的低く、 ニオブの持つ本来の物性を具現化するに は至っていなかった。 かかる問題は、 ニオブのみならず、 他の高融点活 性金属を上記温間鍛造を用いて製造した場合にも生じる。  On the other hand, niobium plate materials manufactured through the above complicated processes are relatively low in purity because they are forcibly rolled in an atmosphere where impurities and the like are mixed in, and the atmosphere is low. It had not yet realized the original physical properties of niobium. Such a problem also occurs when not only niobium but also other high melting point active metals are manufactured using the above-mentioned warm forging.
本発明は、前記従来技術の問題を解決するためになされたものであり、 その目的は、 高融点活性金属の板材を低コス 卜で且つ高い歩留りで製造 る とにめる。  The present invention has been made to solve the above-mentioned problems of the prior art, and an object thereof is to produce a high melting point active metal plate at a low cost and a high yield.
本発明の第 2の目的は、 ニオブ等の高融点活性金属に固有の物性を備 えた板材、 即ち、 極めて高純度のニオブ等の高融点活性金属の板材を製 造することにある。 発明の開示  A second object of the present invention is to produce a plate material having physical properties unique to a high melting point active metal such as niobium, that is, a plate material of a high melting point active metal such as niobium of extremely high purity. Disclosure of the invention
本発明の第 1 の態様に従えば、 高融点活性金属の板材を製造する方法 において、 不純物と しての酸素、 窒素及び炭素の合計含有量が 6 0重量 p p m (以下、 p p mと記す) 以下であり、 ビッカース硬度 H vが H v ≤ 5 0であり、 相対残留抵抗値 R R Rが R R R≥ 2 0 0である高純度の 高融点活性金属のビレツ ト (直方体形状のインゴッ 卜) を作製し、 上記 ビレッ トを、 直接、 圧延することによって板材に加工することを特徴と する上記高融点活性金属の板材の製造方法が提供される。  According to a first aspect of the present invention, there is provided a method for producing a plate material of a high melting point active metal, wherein the total content of oxygen, nitrogen and carbon as impurities is not more than 60 ppm by weight (hereinafter referred to as ppm). The Vickers hardness Hv is Hv ≤ 50, and the relative residual resistance RRR is RRR ≥ 200, and a high purity high melting point active metal billet (a rectangular ingot) is produced. A method for producing a plate material of the high melting point active metal, wherein the billet is processed into a plate material by directly rolling.
本発明の第 2の態様に従えば、 高融点活性金属の板材を製造する方法 において、 出発材料として、 不純物としての酸素、 窒素及び炭素の合計 含有量が 6 0重量 p p m (以下、 p p mと記す) 以下であり、 ピッカー ス硬度 H Vが H V≤ 5 0であり、 相対残留抵抗値 R R Rが R R R≥ 2 0 0である高純度の高融点活性金属のインゴッ 卜を用い、 上記インゴッ トを、 冷間プレスし、 圧延することによって板材に加工することを特徴 とする上記高融点活性金属の板材の製造方法が提供される。 According to a second aspect of the present invention, there is provided a method for producing a plate of a high melting point active metal. , The total content of oxygen, nitrogen and carbon as impurities as starting materials is less than 60 ppm by weight (hereinafter referred to as ppm), the Pickers hardness HV is HV≤50, and the relative residual resistance is The high melting point active metal is characterized in that the ingot is cold-pressed and rolled into a sheet material by using a high-purity high melting point active metal ingot having an RRR of 200 or more. A method for manufacturing a plate material is provided.
ニオブ等の高融点活性金属のインゴッ トを板材に加工するために温間 鍛造が用いられるのが業界の常である。 これは、 前記従来技術の欄で説 明したとおり、 高融点活性金属の加工変形抵抗が大きいからである。 そ れにもかかわらず、 本発明者は、 本発明の第 1 の態様に従い、 高純度の ニオブをビレッ トの形態で作製し、 このビレッ トを、 直接、 圧延するこ とによって、 端部の割れや表面のマイク口クラックが殆どない高純度の ニオブシートを製造することに成功した。 本発明者は、 また、 本発明の 第 2態様に従い、 高純度のニオブのインゴッ トを冷間プレスし、 圧延す ることによつても、 端部の割れや表面のマイク口クラックが殆どなく且 つ高純度のニオブシートを製造することができた。 この理由は、 本発明 者の知見によると、次のように考えられる。高純度ニオブを温度 8 0 0 °C、 大気中という酸化雰囲気に暴露して酸化試験を行うと、 図 1 に示すよう に、 時間の経過とともに酸化率が減少する。 さらに、 E P M A観察 (S E M像、 ライン分析) の結果、 発生した酸化層は最大 1 O ju mに及んで おり、 また、 その結晶粒界部では粒界に沿って内部酸化が存在し、 そこ での酸化層の厚みは 4 0 mにも達することが本発明者の実験で確認さ れた。 ここで、 上記の 8 0 0 °C、 大気中という条件は現在ニオブの一般 材の熱間鍛造で使用されている条件である。 この酸化実験の結果からす れば、 高純度ニオブの酸化機構は表面拡散律速であることがわかる。 従 つて、 かかる酸化反応を抑制するためには低温でニオブを加工すればよ い。 It is common in the industry that warm forging is used to process ingots of high melting point active metals such as niobium into sheet materials. This is because the high-melting-point active metal has high working deformation resistance as described in the section of the related art. Nevertheless, according to the first aspect of the present invention, the inventor made high-purity niobium in the form of a billet, and then directly rolled the billet to obtain an edge. We succeeded in producing a high-purity niobium sheet with almost no cracks or cracks in the microphone opening on the surface. According to the second aspect of the present invention, the present inventor has also found that, by cold-pressing and rolling a high-purity niobium ingot, almost no cracks at the end portions and cracks in the microphone opening on the surface are obtained. In addition, a high-purity niobium sheet could be produced. The reason is considered as follows according to the knowledge of the present inventors. When an oxidation test is conducted by exposing high-purity niobium to an oxidizing atmosphere at a temperature of 800 ° C and in the air, the oxidation rate decreases over time, as shown in Fig. 1. Furthermore, as a result of EPMA observation (SEM image, line analysis), the generated oxide layer reached a maximum of 1 O jum, and internal oxidation was present along the grain boundary at the crystal grain boundary. It has been confirmed by the inventor's experiments that the thickness of the oxide layer of the present invention can reach 40 m. Here, the above-mentioned condition of 800 ° C. in the air is a condition currently used for hot forging of general niobium materials. The results of this oxidation experiment indicate that the oxidation mechanism of high-purity niobium is surface diffusion-controlled. Therefore, in order to suppress such an oxidation reaction, it is necessary to process niobium at a low temperature. No.
ところが、 低温加工では前記のように不純物や異物が原因で発生す る割れやクラック発生の問題がある。 これは、 N b中に不純物が含まれ ていると、 原子同士を金属結合する原子間力が部分的に異なり、 圧延等 により結合が切れ易くなるためであると考えられる。 一方、 本発明では 出発材料として、 不純物としての酸素、 窒素及び炭素の合計含有量が 6 0 p p mであり、 ビッカース硬度 H Vが H V≤ 50 , 相対残留抵抗値 R R Rが R R R≥ 200という高純度のニオブ原料を用いている。 このた め、 N b同士の原子間力はどこでも一定であり、 ニオブビレッ トが圧延 等の加工がなされても N b間の金属結合が切れることはなし、。それゆえ、 本発明の第 1 の態様では低温でのニオブの圧延加工を、 高純度のニオブ ビレツ トを用いることにより上記目的を達成することができた。 また、 本発明の第 2の態様では低温でのニオブのプレス及び圧延加工を、 高純 度のニオブインゴッ トを用いることによリ上記目的を達成することがで きた。  However, low-temperature processing has the problem of cracks and cracks caused by impurities and foreign substances as described above. This is thought to be because if Nb contains impurities, the interatomic force for metal-to-atom bonding is partially different, and the bonding is likely to be broken by rolling or the like. On the other hand, in the present invention, as a starting material, a high-purity niobium having a total content of oxygen, nitrogen and carbon as impurities of 60 ppm, a Vickers hardness HV of HV≤50, and a relative residual resistance RRR of RRR≥200 is used. Raw materials are used. For this reason, the atomic force between Nb is constant everywhere, and even if the niobium billet is processed by rolling or the like, the metal bond between Nb is not broken. Therefore, in the first embodiment of the present invention, the above object can be achieved by rolling niobium at a low temperature and using high-purity niobium billet. Further, in the second aspect of the present invention, the above object can be achieved by pressing and rolling niobium at a low temperature by using a high-purity niobium ingot.
用語 「相対残留抵抗値 (Relative Residual Resisti ity) 」 とは、 一般に、 物質の室温における電気抵抗比 (電気抵抗) を、 4. 2 Kにお ける電気抵抗比で割り返した物性値を意味する。 但し、 ニオブの場合、 9. 2 Kで超電導状態 (電気抵抗がゼロ) になるため、 本明細書では、 ニオブの相対残留抵抗値は超電導遷移直上の 1 0 Kにおける電気抵抗比 (電気抵抗) を用いて得られる値とする。 また、 タンタルは 4. 8 - 4. 9 Kで超電導状態 (電気抵抗がゼロ) になるため、 本明細書では、 タン タルの相対残留抵抗値は 5 Kにおける電気抵抗比 (電気抵抗) を用いて 得られる値とする。  The term “Relative Residual Resistance” generally means the physical property of a substance at room temperature divided by the electrical resistance ratio at 4.2 K. . However, in the case of niobium, the superconducting state (electrical resistance is zero) at 9.2 K, so in this specification, the relative residual resistance of niobium is the electric resistance ratio (electrical resistance) at 10 K just above the superconducting transition. And the value obtained using. In addition, since tantalum enters a superconducting state (electric resistance is zero) at 4.8 to 4.9 K, in this specification, the relative residual resistance of tantalum is based on the electric resistance ratio (electric resistance) at 5 K. Value obtained by
本発明の方法によリ板材に加工される高融点活性金属は、 例えば、 二 ォブ、 レニウム、 タンタル、 ハフニウム、 ジルコニウム、 チタン等が挙 げられるが、 これらに限定されず、 それらの元素を主成分とする合金や 金属間化合物でもよい。 すなわち、 本明細書において、 高融点活性金属 とは、 単一元素からなる高融点の金活性属のみならず、 高融点の合金及 び高融点の金属間化合物をも含む概念である。 Examples of the high melting point active metal processed into the sheet material by the method of the present invention include niobium, rhenium, tantalum, hafnium, zirconium, and titanium. However, the present invention is not limited thereto, and alloys or intermetallic compounds containing these elements as main components may be used. That is, in this specification, the term “high melting point active metal” is a concept including not only a high melting point gold active metal composed of a single element but also a high melting point alloy and a high melting point intermetallic compound.
本発明で用いる高融点活性金属の出発材料は、 不純物としての酸素、 窒素及び炭素の合計含有量が 6 0 p p m以下であり、 ビッカース硬度 H Vが H V ≤ 50、 相対残留抵抗値 R R Rが R R R≥200の高融点活性 金属のビレッ トを用いる。 これより純度、 ビッカース硬度、 及び相対残 留抵抗値が低下すると、 圧延した板材に端部割れや表面のマイク口クラ ックが発生するため、 本発明の優れた効果が期待できない。  The starting material of the high melting point active metal used in the present invention has a total content of oxygen, nitrogen and carbon as impurities of 60 ppm or less, a Vickers hardness HV of HV ≤ 50, and a relative residual resistance RRR of RRR ≥ 200. Use a high melting point active metal billet. If the purity, Vickers hardness, and relative residual resistance value are reduced, the rolled sheet material will have cracks at the end and cracks at the surface of the microphone, so that the excellent effects of the present invention cannot be expected.
高融点活性金属のビレツ 卜の純度は、 不純物としての酸素及び窒素の 合計含有量が 45 p p m以下であることが好ましく、 さらに、 不純物と しての酸素、 窒素及び炭素の含有量が 0≤ 20 p p m、 N≤ 1 5 p p m 及び C≤ 1 5 p p mであることが一層好ましい。 特に、 本発明に従う圧 延工程による板材の製造方法によリクラック等が全くなく且つ高純度の 板材を得るために、 出発材料であるビレッ ト又はインゴッ トは、 不純物 としての酸素及び窒素の含有量が O≤ 1 0 p p m、 N≤ 1 0 p p m, C ≤ 1 0 p p mであり、 ビッカース硬度 H Vが H v≤4 5であり、 相対残 留抵抗値 R R Rが R R R≥ 1 000であることが最も好ましい。  The purity of the pellets of the high melting point active metal is preferably such that the total content of oxygen and nitrogen as impurities is 45 ppm or less, and the content of oxygen, nitrogen and carbon as impurities is 0≤20. More preferably, ppm, N≤15 ppm and C≤15 ppm. In particular, in order to obtain a high-purity plate material free of cracks and the like by the method of manufacturing a plate material by the rolling process according to the present invention, the billet or ingot as a starting material has a content of oxygen and nitrogen as impurities. Most preferably, O≤10 ppm, N≤10 ppm, C ≤10 ppm, Vickers hardness HV is Hv≤45, and relative residual resistance RRR is RRR≥1 000 .
上記のような高純度の高融点活性金属のビレツ トは任意の方法により 製造し得る。 例えば、 本発明者による米国特許第 5, 7 22 , 03 4号 に対応する特開平 8— 1 6 5 5 2 8号に記載の高融点活性金属の製造方 法が有効である。 この方法は、 ニオブ、 レニウム、 タンタル、 ハフニゥ ム、 ジルコニウム、 チタン等の精製用高融点活性金属と、 バナジウム、 クロム、 マンガン、 鉄、 コバルト、 ニッケルからなる遷移金属元素また は希土類元素からなる群から選択した添加元素の粉末をプレス成形し、 高温高圧下で焼結した後、 電子ビーム溶解することによって、 不純物成 分を添加元素の低次化合物または不定比化合物として揮発させ、 それに よって高融点活性金属を精製させている。 この方法は、 揮発精製により 高純度の高融点活性金属を低コス卜で製造できる点で有利である。 米国 特許第 5, 7 2 2, 0 3 4号及び対応する特開平 8— 1 6 5 5 2 8号の 開示を援用して本文の記載の一部とする。 The above-mentioned high purity high melting point active metal pellets can be produced by any method. For example, the method of producing a high melting point active metal described in Japanese Patent Application Laid-Open No. Hei 8-165528 / corresponding to US Pat. No. 5,722,034 by the present inventors is effective. This method uses a high melting point active metal for purification, such as niobium, rhenium, tantalum, hafnium, zirconium, titanium, etc., and a transition metal element consisting of vanadium, chromium, manganese, iron, cobalt, nickel, or a rare earth element. Press molding the powder of the selected additive element, After sintering under high temperature and high pressure, the impurity components are volatilized as low-order or non-stoichiometric compounds of the added elements by electron beam melting, thereby purifying the high-melting-point active metal. This method is advantageous in that a high-purity high-melting-point active metal can be produced at low cost by volatilization and purification. The disclosure of U.S. Patent No. 5,722,034 and the corresponding Japanese Patent Application Laid-Open No. 8-165528 is hereby incorporated by reference.
特開平 8— 1 6 5 5 2 8号に記載の方法を用いてニオブをビレツ 卜の 形態で形成するためには、 電子ビームドリップ溶解 (E B— V D M ) 法 で溶融された溶融ニオブを受容するための錶型の形状を、 所望のビレツ ト形状にしておけばよい。  In order to form niobium in the form of a billet using the method described in JP-A-8-165585, molten niobium melted by an electron beam drip melting (EB-VDM) method is received. The shape of the triangle should be a desired billet shape.
本発明の製造方法において、 かかるビレッ トは、 比較的厚みの薄いブ ロック状となるように形成することが好ましく、 例えば、 2 0 0 m m以 下の厚みを有するように形成するのが好ましい。 これにより、 圧延工程 の前に、 冷間プレス等のプレス工程を用いることなく ビレツ 卜の直接圧 延が一層容易となリ、 少ない圧延回数でも極めて薄いニオブ板材または シート材を製造することができる。  In the manufacturing method of the present invention, such a billet is preferably formed in a block shape having a relatively small thickness, for example, is preferably formed to have a thickness of 200 mm or less. This makes it possible to directly roll the billet without using a pressing step such as a cold press before the rolling step, and it is possible to produce an extremely thin niobium sheet or sheet even with a small number of rollings. .
本発明の第 1 の態様に従う高融点活性金属の板材の製造方法によれば, 上記のようにして得られる高純度の高融点活性金属のビレツ 卜を、直接、 圧延することにより板材に加工することができる。 本発明の第 2の態様 に従う高融点活性金属の板材の製造方法によれば、 上記のような出発材 料である高純度の高融点活性金属のインゴッ トを、 冷間プレスし、 圧延 することによリ板材に加工することができる。 すなわち、 温間鍛造、 熱 間プレスあるいは冷間プレスを用いる必要はない。圧延の後工程として、 熱処理工程を加えてもよい。 この熱処理工程によリ歪みを低下し硬度を 回復させることができる。 熱処理の条件は、 温度7 0 0〜 8 0 0 °0、 1 0 " 6 m b a r程度の減圧下にて、 約 1 〜 2時間行うのが望ましい。 本発明の第 3の態様に従えば、 厚さ tが 1 0 /i m≤ t ≤ 5000 x m であり、 不純物としての酸素、 窒素及び炭素の合計含有量が 6 0 p p m 以下であり、 ビッカース硬度 H Vが H V≤ 50であり、 相対残留抵抗値 R R Rが R R R≥ 200であることを特徴とするニオブ板材が提供され る。 不純物としての酸素及び窒素の合計含有量が 4 5 p p m以下である ことが好ましく、 特に、 不純物としての酸素、 窒素及び炭素の含有量が O≤ 2 0 p p m N≤ 1 0 p p m、 C≤ 1 0 p p mであることが好まし い。 According to the method for producing a high-melting-point active metal sheet according to the first aspect of the present invention, the high-purity high-melting-point active metal billet obtained as described above is processed into a sheet by directly rolling. be able to. According to the method for producing a high-melting-point active metal plate according to the second aspect of the present invention, the ingot of the high-purity high-melting-point active metal as the starting material as described above is cold-pressed and rolled. Can be processed into a plate material. That is, there is no need to use warm forging, hot pressing or cold pressing. A heat treatment step may be added as a post-rolling step. This heat treatment step can reduce distortion and recover hardness. The heat treatment is preferably carried out at a temperature of 700 to 800 ° 0, 10 ° C. under a reduced pressure of about 6 mbar for about 1 to 2 hours. According to a third aspect of the present invention, the thickness t is 10 / im≤t≤5000 xm, the total content of oxygen, nitrogen and carbon as impurities is 60 ppm or less, and the Vickers hardness HV HV≤50, and the relative residual resistance RRR is RRR≥200. It is preferable that the total content of oxygen and nitrogen as impurities is 45 ppm or less, and particularly, the content of oxygen, nitrogen and carbon as impurities is O≤20 ppm N≤10 ppm and C≤10 ppm It is preferably ppm.
本発明のニオブ板材は、 高純度ニオブのシート材であるので、 超電導 用部材、 耐食用部材、 耐熱性部材等の加工に極めて有用である。 図面の簡単な説明  Since the niobium plate material of the present invention is a high-purity niobium sheet material, it is extremely useful for processing superconducting members, corrosion-resistant members, heat-resistant members, and the like. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 従来のニオブ材の温間鍛造と同じ雰囲気で行った高純度ニォ ブの酸化試験の結果を示すグラフである。 発明を実施するための最良の形態  Fig. 1 is a graph showing the results of an oxidation test of a high-purity niob in the same atmosphere as conventional warm forging of niobium. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の製造方法の実施の形態及び実施例を具体的に説明する。 実施例 1  Hereinafter, embodiments and examples of the manufacturing method of the present invention will be specifically described. Example 1
〔高純度ニオブビレツ 卜の作製〕  [Preparation of high-purity niobium pellets]
最初に、 特開平 8— 1 6 5 5 2 8号に記載の方法を用いて高純度ニォ ブビレツ 卜を作製する。  First, a high-purity niob pellet is prepared using the method described in JP-A-8-165528.
出発原料として、 外側が純度約 2 N ( 99 %) 〜 3 N ( 99. 9 %) の N b金属粉 (# 3 2 5 ) と電解鉄粉均一混合粉末から、 内側が同 N b 金属粉からなる同心状の二重円筒構造の成形体を、 C I P処理した。 得 られたコンパク 卜を軟鋼力プセルに充填し、 温度 1 3 5 0°C、 圧力 1 4 O M P a、 1 80秒の条件で H I P処理した。 この後、 軟鋼カプセルを 旋盤加工により直径 40 mm、 長さ 2 20 mmの円柱体に削り出し、 E B溶解用の一次電極とした。 As starting materials, Nb metal powder (# 325) with a purity of approximately 2 N (99%) to 3N (99.9%) on the outside and a homogeneous mixed powder of electrolytic iron powder, and the inside with the same Nb metal powder The molded article having a concentric double cylindrical structure consisting of was subjected to CIP treatment. The obtained compact was filled into a mild steel pressurized steel, and subjected to HIP treatment under the conditions of a temperature of 135 ° C., a pressure of 14 OMPa, and 180 seconds. After this, the mild steel capsule It was cut into a cylindrical body with a diameter of 40 mm and a length of 220 mm by lathing, and used as a primary electrode for EB melting.
上記一次電極を、 E B垂直ドリップ溶解 (E B— V DM) 法にて 1 0 回の多次溶解を実施した。 溶解物を受容する錶型として、 内寸が 80m m X 30 O mm x 6 00 m mの錶型を用いた。 溶解条件は次の.通リであ る。 ビーム形状 :対抗式半月型、 ビーム走査 : 固定式、 電極回転速度 : 5 8. 3 r p m、 ガン出力 (3 1 . 5 k Wまたは 4 2. 5 k W) 。 1 0 回の溶解を行った後、 錶型から 8 0 mm X 30 O mm 60 O mmの二 ォブビレツ トを取り出した。  The primary electrode was subjected to 10 times of multiple melting by the EB vertical drip melting (EB-VDM) method. As a type III for receiving the lysate, a type III having an inner size of 80 mm × 30 Omm × 600 mm was used. The dissolution conditions are as follows. Beam shape: Competitive half moon type, Beam scanning: Fixed type, Electrode rotation speed: 58. 3 rpm, Gun power (31.5 kW or 42.5 kW). After the dissolution was performed 10 times, 80 mm × 30 Omm 60 Omm biobibilets were taken out of the type I.
こうして得られたニオブビレツ トは、 元素分析で測定して不純物含有 量が Oく 1 O p p m、 N < 1 O p p m、 C < 1 O p p mであった。 また、 相対残留抵抗値は R R R≥ 1 000であり、 ビッカース硬度 H V = 3 5 であった。 なお、 相対残留抵抗値 (R R R) の測定は、 定電圧定電流供 給装置、 マイクロメータ、 電流計、 標準抵抗、 電流極性反転用 トツダル スィツチ及び 4端子から構成された測定回路を用いて以下のようにして 行った。 ビレッ トの中心部から約 5 mmの円板状試料を切り出し、 さら にこれを精密切断器を用いて寸法約 5 m m X 3 m m X 2 1 m mの四角柱 の試料に切り出した。 この試料に、 4つの端子を加圧式によリオ一ミツ クコンタク 卜させ、定電圧定電流供給装置から 1 00 mA、 5 5 0 mA、 7 00 m Aの定電流モードにて所定の時間に、 温度、 電流及び電圧を測 定し、 直ちに、 定電流をスイッチングし、 3 0秒後に温度、 電流及び電 圧を測定した。 4端子の電流電圧間の距離は電界勾配が一定となるよう に 4mm離した。 測定温度範囲は室温〜約 1 0 Kの範囲とした。 また、 ビッカース硬度 H Vの測定は、 付加荷重を 1 0 K gとし、 荷重付加時間 は全ての試料について 1 5秒とした。 測定点は 3点とし、 この 3点の算 術平均値をビッカース硬度 H Vとした。 〔高純度ニオブビレツ 卜の圧延〕 The niobium pellets thus obtained had an impurity content of O-10.0 ppm, N <1 Oppm, and C <1 Oppm as determined by elemental analysis. The relative residual resistance was RRR ≥ 1 000 and Vickers hardness HV = 35. The relative residual resistance (RRR) was measured using a measurement circuit consisting of a constant-voltage / constant-current supply device, a micrometer, an ammeter, a standard resistor, a current polarity reversal switch, and four terminals. I went like that. A disc-shaped sample of about 5 mm was cut out from the center of the billet, and this was cut out into a square prism sample of about 5 mm x 3 mm x 21 mm using a precision cutter. The four terminals of this sample were contacted in a pressurized manner with the four terminals, and from a constant-voltage / constant-current supply device in a constant-current mode of 100 mA, 550 mA, and 700 mA at a predetermined time, The temperature, current and voltage were measured, the constant current was switched immediately, and the temperature, current and voltage were measured 30 seconds later. The distance between the current and voltage at the four terminals was 4 mm apart so that the electric field gradient was constant. The measurement temperature range was from room temperature to about 10K. In the measurement of Vickers hardness HV, the applied load was set to 10 kg, and the applied time was set to 15 seconds for all the samples. The measurement points were three points, and the arithmetic mean value of these three points was defined as Vickers hardness HV. [Rolling of high-purity niobium pellets]
得られた高純度ニオブビレツ トを、 直径 40 O mmの 2段ロールにて 厚さ 3 mmまで粗圧延し、 厚さ 3 mm x幅 3 50 mm x長さ 1 3 7 0 m mのニオブシートを得た。 このニオブシー卜の幅方向端部を各々 20 m m切り離し、 厚さ 3 mm xili畐 3 1 O mm X長さ 1 3 70 mmの.シートと した。  The resulting high-purity niobium billet is roughly rolled to a thickness of 3 mm on a two-stage roll having a diameter of 40 Omm to obtain a niobium sheet having a thickness of 3 mm x a width of 350 mm x a length of 1370 mm. Was. Each end of the niobium sheet in the width direction was cut off by 20 mm to form a sheet having a thickness of 3 mm x 3 mm x 31 O mm and a length of 13 70 mm.
得られたニオブシー卜の不純物含有量は、 元素分析により測定して酸 素 (O ) く 1 0 p p m、 窒素 ( N ) < 1 0 p p m、 炭素 ( C ) < 1 O p p mであり、 ビッカース硬度及び相対残留抵抗値は、 前記の方法により 測定して、 それぞれ、 H v = 3 7、 R R R値 = 500〜1 00 0であつ た。 ただし、 硬度測定の荷重は 1 00 gとした。  The impurity content of the obtained niobium sheet was determined by elemental analysis to be 10 ppm for oxygen (O), 10 ppm for nitrogen (N), and 10 ppm for carbon (C). The relative residual resistance values were measured by the above-mentioned method, and were respectively Hv = 37 and RRR values = 500 to 100000. However, the load for hardness measurement was 100 g.
上記切り離した厚さ 3 mm x幅 2 0 mm x長さ 1 3 7 0 mmのニオブ シートを、 直径 200 mmの 2段ロールにて 20 jum厚さまで精密圧延 した。 圧延したシートの端部に割れは全く観察されなかった。 シート表 面には、 縦縞は観察されるものの、 マイクロクラック等の欠陥は全く観 察されなかった。  The separated niobium sheet having a thickness of 3 mm, a width of 20 mm and a length of 370 mm was precision-rolled to a thickness of 20 jum by a two-stage roll having a diameter of 200 mm. No cracks were observed at the end of the rolled sheet. Although vertical stripes were observed on the sheet surface, no defects such as microcracks were observed at all.
上記圧延加工によリシ一卜の厚さを薄くする途中、 厚さ 0. 5 mmの 段階で引っぱり試験を行ったが、 殆ど延びを示さず、 破断した。 ピツカ ーズ硬度 H Vは約 1 6 0であった。 この破断面は塑性加工による破断面 の特徴を示していたが、 引き続く圧延加工でのシー卜の破断が全く起ら なかった。 このことから、 このニオブシートは、 圧延において、 各々の 原子が原子間力により結合されており、 弾性領域を超えていても、 原子 間力が切られることなく全体的に流動していることを示唆している。 こ れは、 いわゆる超塑性加工のような" 超塑性流動" とも言うべき機構の 存在を推論させる。  A pulling test was performed at the stage of 0.5 mm thickness while the thickness of the re- sistant was being reduced by the above-mentioned rolling, but it showed little elongation and was broken. The pitch hardness HV was about 160. This fractured surface showed the characteristics of the fractured surface due to plastic working, but no sheet fracture occurred in the subsequent rolling. From this, this niobium sheet shows that in rolling, each atom is bonded by an atomic force, and even if it exceeds the elastic region, the atomic force is totally flown without being cut off. Suggests. This infers the existence of a mechanism that can be called "superplastic flow" such as so-called superplastic working.
実施例 2 この実施例では、実施例 1 で得られたシー卜にさらに熱処理を施して、 R R R値の一層高いシートを製造する。 Example 2 In this example, the sheet obtained in Example 1 is further subjected to a heat treatment to produce a sheet having a higher RRR value.
実施例 1 において、 両側を 2 O mm切り離すことによって残った粗圧 延ニオブシート (厚さ 3 mm x幅 3 1 O mm x長さ 1 3 7 0 mm) を、 7 50°C、 7 X 1 0— 6m b a rの減圧下で 1時間熱処理した後、 4段ゼ ンジミール圧延機により、 厚さ 0. 1 mmまで精密圧延した。 得られた、 シー卜の両端の端部の割れ及び表面のマイク口クラック等の欠陥は殆ど 観察されなかった。 In Example 1, the rough rolled niobium sheet (thickness 3 mm x width 31 Omm x length 1370 mm) obtained by separating both sides by 2 Omm was cut at 750 ° C and 7X1. after 1 hour heat treatment at a reduced pressure of 0- 6 mbar, the 4 Danze Njimiru mill and precision rolled to a thickness of 0. 1 mm. Defects such as cracks at both ends of the obtained sheet and cracks in the microphone opening on the surface were hardly observed.
上記熱処理後のシート (精密圧延前) の不純物含有量は、 元素分析に よリ測定して酸素、 窒素、 炭素のいずれもが 1 0 p p m未満であった。 ビッカース硬度及び相対残留抵抗値は、 前記の方法により測定して、 そ れぞれ、 H v = 36、 R R R= 300 ~ 1 000であった。  The impurity content of the sheet after the heat treatment (before precision rolling) was less than 10 ppm for all of oxygen, nitrogen and carbon as measured by elemental analysis. Vickers hardness and relative residual resistance were Hv = 36 and RRR = 300 to 1,000, respectively, as measured by the methods described above.
実施例 3 Example 3
出発材料として、 直径 1 0 0 mm X長さ 3 50 mmの円柱状の高純度 ニオブインゴッ トを用意した。 このニオブインゴッ トは、 不純物含有量 が O< 1 0 p p m、 N < 1 0 p p m、 C< 1 0 p p mであり、 H v = 3 5、 R R R≥ 1 0 0 0であった。 このインゴッ トは、 本発明者による特 開平 8— 1 6 5 5 2 8号の方法を用いて予め作製した。 なお、 相対残留 抵抗値 (R R R) の測定は、 実施例 1 と同様の装置及び方法を用いて行 つた。  As a starting material, a columnar high-purity niobium ingot having a diameter of 100 mm and a length of 350 mm was prepared. This niobium ingot had an impurity content of O <10 ppm, N <10 ppm, C <10 ppm, Hv = 35, and RRR ≧ 100. This ingot was prepared in advance by using the method described in Japanese Patent Application Laid-Open No. 8-165585 / 28 by the present inventor. The measurement of the relative residual resistance value (R R R) was performed using the same apparatus and method as in Example 1.
上記高純度ニオブインゴッ トを、 冷間プレスで室温にて、 30mm x 3 20 mm X 2 90 mmの板状に成形した。 成形された板材の表面及び 端部を観察したが、 端部に割れや欠けは全くなく、 表面部にマイクロク ラックは全く観察されなかった。 この板材の表面は金属ニオブ色を示す 銀白色を呈していた。 後述する比較例の板材の色相との比較及び後述す る不純物含有量の測定結果よりこの板材の表面には酸化層が殆ど形成さ れていないものと考えられる。 The high-purity niobium ingot was formed into a 30 mm × 320 mm × 290 mm plate at room temperature by a cold press. The surface and edges of the formed plate were observed, but there were no cracks or chips at the edges, and no microcracks were observed at the surface. The surface of this plate had a silver-white color, which was a metallic niobium color. From the comparison with the hue of the plate material of the comparative example described later and the measurement result of the impurity content described later, almost no oxide layer was formed on the surface of this plate material. Probably not.
次いで、 この板材を直径 40 Ommの 2段ロールにて厚さ 3 mmまで 粗圧延し、 厚さ 3 mm x幅 3 5 0 mm x長さ 26 00 mmのニオブシー トを得た。 このニオブシートの幅方向端部を各々 2 O mm切リ離し、 厚 さ 3 ητΐΓτι Χφϊ3 1 O mm x長さ 2 6 00 mmのシー卜とした。  Next, this plate material was roughly rolled to a thickness of 3 mm with a two-stage roll having a diameter of 40 Omm to obtain a niobium sheet having a thickness of 3 mm, a width of 350 mm and a length of 2,600 mm. Each end of the niobium sheet in the width direction was cut off by 2 O mm to form a sheet having a thickness of 3ητΐΓτιιφϊ31 O mm x a length of 260 mm.
得られたニオブシー卜の不純物含有量は、 元素分析により測定して酸 素 (O) < 1 0 p p m、 窒素 (N) < 1 O p p m、 炭素 (C) < 1 O p p mであり、 ビッカース硬度及び相対残留抵抗値は、 前記の方法により 測定して、 それぞれ、 H V = 1 0 5、 R R 値= 6 8であった。 ただし、 硬度測定の荷重は 1 00 gとした。  The impurity content of the obtained niobium sheet was determined by elemental analysis to be oxygen (O) <10 ppm, nitrogen (N) <1 Oppm, and carbon (C) <1 Oppm. The relative residual resistance was measured by the above-mentioned method, and was HV = 1105 and RR = 68, respectively. However, the load for hardness measurement was 100 g.
上記切り離した厚さ 3 mm x幅 2 O mm x長さ 2 6 0 O mmのニオブ シートを、 直径 2 00 mmの 2段ロールにて 20 / m厚さまで精密圧延 した。 圧延したシートの端部に割れは全く観察されなかった。 シート表 面には、 縦縞は観察されるものの、 マイクロクラック等の欠陥は全く観 察されなかった。  The separated niobium sheet having a thickness of 3 mm, a width of 2 O mm and a length of 260 O mm was precision-rolled to a thickness of 20 / m by a two-stage roll having a diameter of 200 mm. No cracks were observed at the end of the rolled sheet. Although vertical stripes were observed on the sheet surface, no defects such as microcracks were observed at all.
上記圧延加工によリシ一卜の厚さを薄くする途中、 厚さ 0. 5 mmの 段階で引っぱり試験を行ったが、 殆ど延びを示さず、 破断した。 ピツカ ーズ硬度 H vは約 1 8 0であった。 この破断面は塑性加工による破断面 の特徴を示していたが、 引き続く圧延加工でのシー卜の破断が全く起ら なかった。 このことから、 このニオブシートは、 実施例 1 のニオブシー 卜と同様に圧延において、各々の原子が原子間力によリ結合されており、 弾性領域を超えていても、 原子間力が切られることなく全体的に流動し ていることを示唆している。  A pulling test was performed at the stage of 0.5 mm thickness while the thickness of the re- sistant was being reduced by the above-mentioned rolling, but it showed little elongation and was broken. The pitch hardness Hv was about 180. This fractured surface showed the characteristics of the fractured surface due to plastic working, but no sheet fracture occurred in the subsequent rolling. From this fact, in this niobium sheet, as in the case of the niobium sheet of Example 1, in rolling, the atoms are recombined by an atomic force, and the atomic force is cut off even if it exceeds the elastic region. This suggests that there is no overall flow.
実施例 4  Example 4
この実施例では、実施例 3で得られたシートにさらに熱処理を施して、 R R R値の一層高いシートを製造する。 実施例 3において、 両側を 2 O mm切リ離すことによって残った粗圧 延ニォブジー卜 (厚さ 3 mm x幅 3 1 0 mm x長さ 26 00 mm) を、 7 5 0°C、 7 X 1 0— 6m b a rの減圧下で 1 時間熱処理した後、 4段ゼ ンジミール圧延機により、 厚さ 0. 1 mmまで精密圧延した。 得られた、 シー卜の両端の端部の割れ及び表面のマイク口クラック等の欠陥は殆ど 観察されなかった。 In this example, the sheet obtained in Example 3 is further subjected to a heat treatment to produce a sheet having a higher RRR value. In Example 3, the rough rolling niobite (thickness 3 mm x width 310 mm x length 2600 mm) remaining by cutting away both sides by 2 O mm was removed at 7500C and 7X. after heat treatment for 1 hour under a reduced pressure of 1 0- 6 mbar, the 4 Danze Njimiru mill and precision rolled to a thickness of 0. 1 mm. Defects such as cracks at both ends of the obtained sheet and cracks in the microphone opening on the surface were hardly observed.
上記熱処理後のシート (精密圧延前) の不純物含有量は、 元素分析に より測定して酸素、 窒素、 炭素のいずれもが 1 0 p p m未満であった。 ビッカース硬度及び相対残留抵抗値は、 前記の方法により測定して、 そ れぞれ、 H v = 3 8、 R R R = 200 ~ 50 0であった。 比較例 1  The impurity content of the sheet after the heat treatment (before precision rolling) was less than 10 ppm in all of oxygen, nitrogen and carbon as measured by elemental analysis. The Vickers hardness and the relative residual resistance were Hv = 38 and RRR = 200 to 500, respectively, as measured by the methods described above. Comparative Example 1
出発材料として、 直径 1 00 mm X長さ 2 00 mmの円柱状の高純度 ニオブインゴッ トを用意した。 このニオブインゴッ トは、 不純物含有量 が Oく 1 0 p p m、 N < 1 0 p p m、 Cく 1 0 p p mであり、 H v = 3 5、 R R R≥ 1 000の高純度ニオブインゴッ トであった。 このインゴ ッ 卜は、 本発明者による特開平 8— 1 6 5 5 2 8号の方法で作製した。 上記高純度ニオブインゴッ 卜を、 大気雰囲気の炉内で 7 50°Cに加熱 し、 取り出した直後、 温間鍛造にて 3 0 5 0 1 0 5 1^の プロック状に成形した。 得られたプロックの端部には多数の割れが発生 しており、 しかも表面部分にも多数のマイク口クラックの存在が観察さ れた。 ブロック表面部はニオブ酸化物特有の薄黄緑色を呈していた。  As a starting material, a cylindrical high-purity niobium ingot having a diameter of 100 mm and a length of 200 mm was prepared. This niobium ingot was a high-purity niobium ingot having an impurity content of O <10 ppm, N <10 ppm, C <10 ppm, Hv = 35, and RRR≥1,000. This ingot was produced by the method of Japanese Patent Application Laid-Open No. Hei 8-165585 by the present inventor. The high-purity niobium ingot was heated to 750 ° C. in a furnace in an air atmosphere, and immediately after being taken out, it was formed into a block shape of 350010.51 ^ by warm forging. Many cracks were generated at the end of the obtained block, and the presence of many cracks in the microphone opening was observed on the surface. The surface of the block exhibited a pale yellow-green characteristic of niobium oxide.
このブロックの表面部の酸化層を研磨して、 目視にて約 0. 3 mm除 去し、 4mmの厚さに圧延した。 圧延されたニオブ板材を顕微鏡にて観 察したところ、 結晶粒界に沿ったようなマイク口割れが発生していた。 この部分をさらに E PM Aで調査すると、 鉄系非金属介在物の存在が認 められ、 この介在物は鍛造工程において混入したことが判明した。 The oxide layer on the surface of this block was polished, visually removed by about 0.3 mm, and rolled to a thickness of 4 mm. Microscopic observation of the rolled niobium sheet material revealed cracks in the microphone opening along the grain boundaries. Further examination of this part by EPMA confirmed the presence of ferrous non-metallic inclusions. This inclusion was found to have been incorporated during the forging process.
圧延で得られたニオブ板材の不純物含有量は、 元素分析により測定し て酸素 (O ) 5 0 p p m、 窒素 (N ) 1 5 p p m、 炭素 (C ) < 1 0 p 才であった。 ビッカース硬度及び相対残留抵抗値は、 前記の方法によ リ測定して、 それぞれ、 H V = 1 0 4、 R R 3値= 4 8であった。  The impurity content of the niobium sheet obtained by rolling was oxygen (O) 50 ppm, nitrogen (N) 15 ppm, and carbon (C) <10 ppm as determined by elemental analysis. The Vickers hardness and the relative residual resistance were HV = 104 and RR3 = 48, respectively, as measured by the methods described above.
この比較例では、 高純度ニオブインゴッ トを用いたが、 通常の純度の ニオブインゴッ 卜、 例えば、 不純物含有量が酸素 (O ) ≤5 0〜 6 0 p p m、 窒素 (N ) =約 2 0 p p m、 炭素 (C ) =約 2 0 p p mであり、 H V = 6 0〜 8 0のニオブインゴッ トを、 同条件で温間鍛造すると、 端 部の割れの数および長さ並びに表面部のマイク口クラックの数は、 上記 高純度ニオブの場合に比べて圧倒的に多く且つ長いことがわかった。 ま た、 通常の純度のニオブインゴッ 卜から得られた鍛造物の色は濃黄緑色 を呈している。 従って、 圧延などの後加工を施す場合、 これらマイクロ クラックなどの欠陥を除去するため、 数 m m厚さの表面相を除去するこ とが必要である。  In this comparative example, a high-purity niobium ingot was used. However, a niobium ingot having a normal purity, for example, an impurity content of oxygen (O) ≤ 50 to 60 ppm, nitrogen (N) = about 20 ppm, (C) = approximately 20 ppm. When niobium ingots with HV = 60-80 are warm forged under the same conditions, the number and length of cracks at the end and the number of cracks at the microphone opening on the surface are It was found that the amount was much larger and longer than that of the high-purity niobium. Also, the color of the forging obtained from niobium ingot of normal purity is dark yellow-green. Therefore, when performing post-processing such as rolling, it is necessary to remove a surface phase with a thickness of several mm in order to remove defects such as microcracks.
上記実施例において、 高融点活性金属がニオブの場合を例に挙げて本 発明を具体的に説明してきたが、本発明はそれに限定されず、 レニウム、 タンタル、 ハフニウム、 ジルコニウム、 チタン等の高融点活性金属、 そ れらの元素を主成分とする合金や金属間化合物等の高純度板材の製造に も適用することができるとはいうまでもない。  In the above embodiment, the present invention has been specifically described by taking the case where the high melting point active metal is niobium as an example. However, the present invention is not limited thereto, and the high melting point of rhenium, tantalum, hafnium, zirconium, titanium, etc. It is needless to say that the present invention can be applied to the production of high-purity sheet materials such as active metals, alloys containing these elements as main components, and intermetallic compounds.
以上、 本発明を実施例により詳細に説明してきたが、 本発明は低温プ 口セスを採用するとともに高純度のビレツ ト又はインゴッ トを出発材料 として用いたために、 板材の表面酸化物層を激減し、 不純物や異物の混 入を防止することができた。 しかも、 得られる板材はビレツ 卜と同様の 高純度を維持することができるため、 超電導特性、 耐食性、 高温耐熱性 など素材の機能性や、 化合物相合成、 クラッ ド材製造などの加工性を、 そのまま板材に担持させることができる。 産業上の利用可能性 Although the present invention has been described in detail with reference to examples, the present invention employs a low-temperature process and uses high-purity billets or ingots as a starting material, so that the surface oxide layer of the plate material is drastically reduced. However, contamination of impurities and foreign substances was prevented. In addition, the resulting plate material can maintain the same high purity as the billet, so that the material properties such as superconductivity, corrosion resistance, and high temperature heat resistance, and the processability such as compound phase synthesis and clad material production are improved. It can be carried on a plate as it is. Industrial applicability
本発明の第 1 の態様に従う高純度の高融点活性金属の板材の製造方法 では、 熱間鍛造や冷間プレス等の不純物が混入する可能性がある工程を 介することなく、 高純度ビレツ トを、 直接、 圧延して板材に加工するこ とができるため、 極めて高純度の板材を得ることができる。 また、 本発 明の第 2の態様に従う高純度の高融点活性金属の製造方法でも熱間鍛造 が不要となる。 そして、 本発明のそれらの方法により得られた高純度板 材には、 端部の割れ及び表面のマイク口クラック等の欠陥が全く発生し ないため、 従来必要であったそれらの欠陥処理工程が不要となる。 それ ゆえ、 本発明の方法を用いることにより、 高い歩留り、 低い加工コス ト で高純度の板材の製造が可能となる。  In the method for producing a high-purity high-melting-point active metal sheet according to the first embodiment of the present invention, high-purity billets can be produced without using a process such as hot forging or cold pressing that may introduce impurities. Since it can be directly rolled and processed into a sheet material, an extremely high-purity sheet material can be obtained. Further, the method for producing a high-purity high-melting-point active metal according to the second aspect of the present invention does not require hot forging. Since the high-purity sheet material obtained by those methods of the present invention does not have any defects such as cracks at the edges and cracks on the microphone opening on the surface, these defect processing steps conventionally required are omitted. It becomes unnecessary. Therefore, by using the method of the present invention, it is possible to produce a high-purity plate material with high yield and low processing cost.
更に、 本発明の高融点活性金属の製造方法では、 熱処理工程をどのェ 程でも可能としたことで、 プロセスの選択の自由度が大きくなリ、 目的 に合わせたプロセスの組み立て、 製品仕様に合わせた製造方法の選択の 余裕が持てるようになる。 特に超電導線材のように、 極細線化が必要と される場合、 展延性などの機械加工が必要な場合でも塑性加工性に優れ た素材として存在価値は非常に大きいものと言える。  Furthermore, in the method for producing a high-melting-point active metal of the present invention, the heat treatment step can be performed at any stage, so that the degree of freedom of process selection is increased, the process is assembled according to the purpose, and the product specification is adjusted. This gives you more time to choose your manufacturing method. In particular, when superfine wires are required, as in the case of superconducting wires, and even when machinability such as ductility is required, the value as a material excellent in plastic workability can be said to be very large.
本発明の製造方法で得られたニオブ板の物性値は出発材料である高純度 ビレツ 卜に極めて近いため、 ニオブ本来の素材特性を板材に具現化する ことができる。 それゆえ本発明のニオブ板材は、 超電導用部材、 耐食用 部材等の加工に極めて有用となる。  Since the physical property values of the niobium plate obtained by the production method of the present invention are very close to the high-purity billet as the starting material, the original material characteristics of niobium can be embodied in the plate material. Therefore, the niobium plate material of the present invention is extremely useful for processing superconducting members, corrosion-resistant members, and the like.

Claims

請 求 の 範 囲  The scope of the claims
1 - 高融点活性金属の板材を製造する方法において、 1-In a method of manufacturing a plate material of a high melting point active metal,
不純物としての酸素、 窒素及び炭素の合計含有量が 60 p p m以下で あり、 ピッカース硬度 H Vが H V≤ 50であり、 相対残留抵抗値 R R R が R R R≥ 200である高純度の髙融点活性金属のビレツ トを作製し、 上記ビレッ トを、 直接、 圧延することによって板材に加工することを 特徴とする上記高融点活性金属の板材の製造方法。  High purity pure melting point active metal with a total content of oxygen, nitrogen and carbon as impurities of 60 ppm or less, a Pickers hardness HV of HV ≤ 50, and a relative residual resistance RRR of RRR ≥ 200 A method for producing a plate material of the high melting point active metal, wherein the billet is processed into a plate material by directly rolling the billet.
2. 上記不純物としての酸素及び窒素の合計含有量が、 45 p p m以下 であることを特徴とする請求項 1 に記載の高融点活性金属の板材の製造 方法。 2. The method according to claim 1, wherein the total content of oxygen and nitrogen as impurities is 45 ppm or less.
3. 上記不純物としての酸素、 窒素及び炭素の含有量が、 O≤ 2 0 p p m、 N≤ 1 5 p p m及び C≤ 1 5 p p mであることを特徴とする請求項 1 に記載の高融点活性金属の板材の製造方法。 3. The high melting point active metal according to claim 1, wherein the content of oxygen, nitrogen and carbon as the impurities is O≤20 ppm, N≤15 ppm and C≤15 ppm. Method of manufacturing plate material.
4. 上記ビレッ トが、 不純物としての酸素、 窒素及び炭素の含有量が O ≤ 1 0 p p m、 N≤ 1 0 p p m C≤ 1 0 p p mであり、 ビッカース硬 度 H vが H v≤ 4 5であり、 相対残留抵抗値 R R Rが R R R≥ 1 000 である高純度の高融点活性金属のビレツ トであることを特徴とする請求 項 1 に記載の高融点活性金属の板材の製造方法。 4. The above billet contains oxygen, nitrogen and carbon as impurities with O ≤ 10 ppm, N ≤ 10 ppm C ≤ 10 ppm, and Vickers hardness Hv of Hv ≤ 45. The method for producing a plate material of a high melting point active metal according to claim 1, characterized in that the plate is a high purity high melting point active metal billet having a relative residual resistance RRR of RRR ≥ 1 000.
5. 上記圧延の後工程として熱処理工程を含むことを特徴とする請求項 1 に記載の高融点活性金属の板材の製造方法。 5. The method for producing a high melting point active metal sheet according to claim 1, further comprising a heat treatment step as a post-step of the rolling.
6. 上記ビレッ トが、 200 mm以下の厚さを有することを特徴とする 請求項 1 に記載の高融点活性金属の板材の製造方法。 6. The method according to claim 1, wherein the billet has a thickness of 200 mm or less.
7. 上記高融点活性金属が、 ニオブ、 レニウム、 タンタル、 ハフニウム、 ジルコニウム、 チタンからなる群から選ばれた一種の金属であることを 特徴とする請求項 1 〜 5のいずれか一項に記載の高融点活性金属の板材 の製造方法。 7. The high melting point active metal is a kind of metal selected from the group consisting of niobium, rhenium, tantalum, hafnium, zirconium, and titanium. The method according to any one of claims 1 to 5, wherein A method for producing high melting point active metal plates.
8. 上記高融点活性金属が、 ニオブであることを特徴とする請求項 7に 記載の高融点活性金属の板材の製造方法。 8. The method according to claim 7, wherein the high melting point active metal is niobium.
9. 請求項 1 に記載の方法によリ製造された高純度の高融点活性金属の 根材。 9. A root material of a high-purity high-melting-point active metal produced by the method according to claim 1.
1 0. 高融点活性金属の板材を製造する方法において、 10. In the method for producing a plate material of a high melting point active metal,
出発材料として、 不純物としての酸素、 窒素及び炭素の合計含有量が As a starting material, the total content of oxygen, nitrogen and carbon as impurities
6 0 p p m以下であり、 ビッカース硬度 H Vが H V≤ 5 0であり、 相対 残留抵抗値 R R Rが R R R≥ 2 00である高純度の高融点活性金属のィ ンゴッ 卜を用い、 Using an ingot of a high-purity high-melting-point active metal having a Vickers hardness H V of H V ≤ 50 and a relative residual resistance R R R ≥ 200 of 60 ppm or less,
上記インゴッ トを、 冷間プレスし、 圧延することによって板材に加工 することを特徴とする上記高融点活性金属の板材の製造方法。  The method for producing a plate material of the high melting point active metal, wherein the ingot is processed into a plate material by cold pressing and rolling.
1 1 . 上記不純物としての酸素及び窒素の合計含有量が、 45 p p m以 下であることを特徴とする請求項 1 0に記載の高融点活性金属の板材の 製造方法。 11. The method according to claim 10, wherein the total content of oxygen and nitrogen as the impurities is 45 ppm or less.
1 2. 不純物としての酸素、 窒素及び炭素の含有量が、 0≤20 p p m、 N≤ 1 5 p p m及び C≤ 1 5 p p mであることを特徴とする請求項 1 0 に記載の高融点活性金属の板材の製造方法。 12. The high melting point active metal according to claim 10, wherein the contents of oxygen, nitrogen and carbon as impurities are 0≤20 ppm, N≤15 ppm and C≤15 ppm. Method of manufacturing plate material.
1 3. 上記出発材料として、 不純物としての酸素、 窒素及び炭素の含有 量が O≤ 1 0 p p m、 N≤ 1 0 p p m , C≤ 1 0 p p mであり、 ピツカ ース硬度 H Vが H V≤ 4 5であり、 相対残留抵抗値 R R Rが R R R≥ 1 000である高純度の高融点活性金属のインゴッ トを用いることを特徴 とする請求項 1 0に記載の高融点活性金属の板材の製造方法。 1 3. As the above starting materials, the contents of oxygen, nitrogen and carbon as impurities are O≤10 ppm, N≤10 ppm, C≤10 ppm, and the hardness of HV is HV≤45 10. The method for producing a high-melting-point active metal plate material according to claim 10, wherein an ingot of a high-purity high-melting-point active metal having a relative residual resistance value RRR of RRR≥1000 is used.
1 4. 上記圧延の前工程、 後工程または前後の工程で、 熱処理すること 含むことを特徴とする請求項 1 0に記載の高融点活性金属の板材の製造 方法。 10. The method for producing a high-melting-point active metal sheet according to claim 10, wherein heat treatment is performed in a step before, after, or before or after the rolling.
1 5. 上記高融点活性金属が、 ニオブ、 レニウム、 タンタル、 ハフニゥ ム、 ジルコニウム、 チタンからなる群から選ばれた一種の金属であるこ とを特徴とする請求項 1 0 ~ 1 4のいずれか一項に記載の高融点活性金 属の板材の製造方法。 15. The high melting point active metal is a kind of metal selected from the group consisting of niobium, rhenium, tantalum, hafnium, zirconium, and titanium. The method for producing a plate material of a high-melting-point active metal according to the above item.
1 6. 上記高融点活性金属が、 ニオブであることを特徴とする請求項 1 5に記載の高融点活性金属の板材の製造方法。 16. The method for producing a high melting point active metal plate according to claim 15, wherein the high melting point active metal is niobium.
1 7. 請求項 1 0に記載の方法により製造された高純度の高融点活性金 属の板材。 17. A high-purity high-melting-point active metal plate produced by the method according to claim 10.
1 8. 厚さ tが 1 0 m≤ t ≤ 5 000〃 mであり、 不純物としての酸 素、 窒素及び炭素の合計含有量が 60 p p m以下であり、 ビッカース硬 度 H vが H v≤50であり、 相対残留抵抗値 R R Rが R R R≥200で あることを特徴とするニオブ板材。 1 8. The thickness t is 10 m ≤ t ≤ 5 000〃 m and the acid as impurity A niobium sheet material characterized by having a total content of element, nitrogen and carbon of 60 ppm or less, a Vickers hardness Hv of Hv≤50, and a relative residual resistance RRR of RRR≥200.
1 9. 上記不純物としての酸素及び窒素の合計含有量が、 45 P P m以 下であることを特徴とする請求項 1 8に記載のニオブ板材。 1 9. niobium plate material of claim 1 8 in which the total content of oxygen and nitrogen as the impurity, characterized in that it is a below 45 PP m.
20. 上記不純物としての酸素、 窒素及び炭素の含有量が、 O≤20 p p m、 N≤ 1 0 p p m. C≤ 1 0 p p mであることを特徴とする請求項 1 8または 1 9に記載のニオブ板材。 20. The method according to claim 18 or 19, wherein the content of oxygen, nitrogen and carbon as the impurities is O≤20 ppm, N≤10 ppm, C≤10 ppm. Niobium board.
補正書の請求の範囲 Claims of amendment
[1998年 8月 31日 (31. 08. 98 ) 国際事務局受理:出願当初の請求の範囲 1, 7, 10及び 15は補正された;出願当初の請求の範囲 2— 4及び 1 1一 13は取り下げら れた;他の請求の範囲は変更なし。 ( 3頁) ] [August 31, 1998 (31.08.98) Accepted by the International Bureau: Claims 1, 7, 10 and 15 at the time of filing were amended; Claims 2-4 and 1 11 at the time of filing 13 has been withdrawn; other claims remain unchanged. (Page 3)]
1 . (補正後) 高融点活性金属の板材を製造する方法において、 不純物としての酸素、 窒素及び炭素の含有量が 0≤ 1 0 p p m、 N≤ 1 O p p m、 C≤ 1 O p p mであり、 ビッカース硬度 H vが H v ^4 5で あり、 相対残留抵抗値 R R Rが R R R≥ 1 000である高純度の高融点 活性金属のビレッ トを作製し、 1. (After amendment) In the method of manufacturing high melting point active metal sheet material, the content of oxygen, nitrogen and carbon as impurities is 0≤10 ppm, N≤1 Oppm, C≤1 Oppm, A Vickers hardness Hv is Hv ^ 45 and a high purity high melting point active metal billet having a relative residual resistance RRR of RRR ≥ 1 000 is prepared.
上記ビレツ 卜を、 直接、 圧延することによって板材に加工することを 特徴とする上記高融点活性金属の板材の製造方法。  The method for producing a plate material of the high melting point active metal, wherein the billet is processed into a plate material by directly rolling.
2. (削除) 2. (Delete)
3. (削除) 3. (Delete)
4. (削除) 4. (Delete)
5. 上記圧延の後工程として熱処理工程を含むことを特徴とする請求項 1 に記載の高融点活性金属の板材の製造方法。 5. The method for producing a high melting point active metal sheet according to claim 1, further comprising a heat treatment step as a post-step of the rolling.
6. 上記ビレツ 卜が、 2 0 0 mm以下の厚さを有することを特徴とする 請求項 1 に記載の高融点活性金属の板材の製造方法。 6. The method according to claim 1, wherein the billet has a thickness of 200 mm or less.
7. (補正後) 上記高融点活性金属が、 ニオブ、 レニウム、 タンタル、 ハフニウム、 ジルコニウム、 チタンからなる群から選ばれた一種の金属 であることを特徴とする請求項 1 、 5及び 6のいずれか一項に記載の高 融点活性金属の板材の製造方法。 補正された用紙 (条約第 19条) 7. (After amendment) The high melting point active metal is one kind of metal selected from the group consisting of niobium, rhenium, tantalum, hafnium, zirconium, and titanium. The method for producing a plate of a high-melting-point active metal according to claim 1. Amended paper (Article 19 of the Convention)
8. 上記高融点活性金属が、 ニオブであることを特徴とする請求項 7に 記載の高融点活性金属の板材の製造方法。 8. The method according to claim 7, wherein the high melting point active metal is niobium.
9. 請求項 1 に記載の方法により製造された高純度の高融点活性金属の 板材。 9. A high-purity, high-melting-point active metal plate produced by the method according to claim 1.
1 0. (補正後) 高融点活性金属の板材を製造する方法において、 出発材料として、 不純物としての酸素、 窒素及び炭素の含有量が 0≤1 0. (After correction) In the method of manufacturing a high melting point active metal plate, the content of oxygen, nitrogen and carbon as impurities as starting materials is 0≤
1 0 p p m、 N≤ 1 0 p p m C ^ I O p p mであり、 ビッカース硬度 H Vが H V≤ 4 5であり、 相対残留抵抗値 R R Rが R R R≥ 1 0 0 0で ある高純度の高融点活性金属のィ ンゴッ 卜を用い、 10 ppm, N≤10 ppm C ^ IO ppm, Vickers hardness HV is HV≤45, and relative residual resistance RRR is RRR≥100. Using ingots,
上記ィ ンゴッ 卜を、 冷間プレスし、 圧延することによって板材に加工 することを特徴とする上記高融点活性金属の板材の製造方法。  The above-mentioned ingot is cold-pressed and rolled to be processed into a plate material.
1 1 . (削除) 1 1. (Deleted)
1 2. (削除) 1 2. (Delete)
1 3. (削除) 1 3. (Delete)
1 4. 上記圧延の前工程、 後工程または前後の工程で、 熱処理すること 含むことを特徴とする請求項 1 0に記載の高融点活性金属の板材の製造 方法。 10. The method for producing a high-melting-point active metal sheet according to claim 10, wherein heat treatment is performed in a step before, after, or before or after the rolling.
1 5. (補正後) 上記高融点活性金属が、 ニオブ、 レニウム、 タンタル、 補正された用紙 (条約第 19条) ハフニウム、 ジルコニウム、 チタンからなる群から選ばれた一種の金属 であることを特徴とする請求項 1 0または 1 4に記載の高融点活性金属 の板材の製造方法。 1 5. (After amendment) Niobium, rhenium, tantalum, amended paper (Article 19 of the Convention) The method for producing a high melting point active metal sheet according to claim 10 or 14, wherein the metal is a kind of metal selected from the group consisting of hafnium, zirconium, and titanium.
1 6. 上記高融点活性金属が、 ニオブであることを特徴とする請求項 1 5に記載の高融点活性金属の板材の製造方法。 16. The method for producing a high melting point active metal plate according to claim 15, wherein the high melting point active metal is niobium.
1 7. 請求項 1 0に記載の方法により製造された高純度の高融点活性金 属の板材。 17. A high-purity high-melting-point active metal plate produced by the method according to claim 10.
1 8. 厚さ tが 1 O Atm ^ t S O O O yumであり、 不純物としての酸 素、 窒素及び炭素の合計含有量が 6 O p p m以下であり、 ビッカース硬 度 H vが H v≤ 5 0であり、 相対残留抵抗値 R R Rが R R R≥ 2 0 0で あることを特徴とするニオブ板材。 1 8. The thickness t is 1 O Atm ^ t SOOO yum, the total content of oxygen, nitrogen and carbon as impurities is 6 O ppm or less, and the Vickers hardness Hv is Hv ≤ 50. A niobium sheet material characterized by having a relative residual resistance RRR of RRR ≥ 200.
1 9. 上記不純物としての酸素及び窒素の合計含有量が、 4 5 p p m以 下であることを特徴とする請求項 1 8に記載のニオブ板材。 19. The niobium plate according to claim 18, wherein the total content of oxygen and nitrogen as impurities is 45 ppm or less.
2 0. 上記不純物としての酸素、 窒素及び炭素の含有量が、 0≤ 2 0 p p m、 N≤ 1 O p p m, C≤ 1 O p p mであることを特徴とする請求項 1 8または 1 9に記載のニオブ板材。 20. The method according to claim 18 or 19, wherein the content of oxygen, nitrogen, and carbon as the impurities is 0≤20 ppm, N≤1 Oppm, C≤1 Oppm. Niobium plate material.
補正された用紙 (条約第 19条) Amended paper (Article 19 of the Convention)
PCT/JP1998/001544 1997-04-04 1998-04-03 Production method of sheet material of active metal having high melting point WO1998045496A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/102489 1997-04-04
JP10248897 1997-04-04
JP10248997 1997-04-04
JP9/102488 1997-04-04

Publications (1)

Publication Number Publication Date
WO1998045496A1 true WO1998045496A1 (en) 1998-10-15

Family

ID=26443216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001544 WO1998045496A1 (en) 1997-04-04 1998-04-03 Production method of sheet material of active metal having high melting point

Country Status (1)

Country Link
WO (1) WO1998045496A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097700A (en) * 2003-09-26 2005-04-14 Toshiba Corp Titanium alloy, titanium alloy member, and method of producing titanium alloy
CN100395076C (en) * 2005-09-30 2008-06-18 北京工业大学 Method for preparing YBaCu3O7-delta strip on cold-rolled polycrystalline silver-base band
CN110907243A (en) * 2019-11-30 2020-03-24 西安诺博尔稀贵金属材料股份有限公司 Hafnium corrosion plate type monitoring sample and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263626A (en) * 1985-09-13 1987-03-20 Mitsui Eng & Shipbuild Co Ltd Production of low oxygen ti alloy
JPH03247745A (en) * 1990-02-23 1991-11-05 Nippon Steel Corp Manufacture of pure niobium-rolled sheet for superconducting material
JPH0499832A (en) * 1990-08-17 1992-03-31 Nippon Steel Corp Manufacture of refractory active metal alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263626A (en) * 1985-09-13 1987-03-20 Mitsui Eng & Shipbuild Co Ltd Production of low oxygen ti alloy
JPH03247745A (en) * 1990-02-23 1991-11-05 Nippon Steel Corp Manufacture of pure niobium-rolled sheet for superconducting material
JPH0499832A (en) * 1990-08-17 1992-03-31 Nippon Steel Corp Manufacture of refractory active metal alloy

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOSCH R A: "PRODUCTION OF HIGH RRR NIOBIUM DISCS FOR SURA/SEBAF", PROCEEDINGS OF THE CONFERENCE ON ELECTRON BEAM MELTING ANDREFINING, XX, XX, 1 January 1990 (1990-01-01), XX, pages 189 - 207, XP002911994 *
BUCKMAN R W: "RECOVERY AND RECRYSTALLIZATION OF HIGH PURITY NIOBIUM", KLAUS SCHULZE SYMPOSIUM ON PROCESSING AND APPLICATIONS OF HIGHPURITY REFRACTORY METALS AND ALLOYS, XX, XX, 1 January 1994 (1994-01-01), XX, pages 97 - 107, XP002911995 *
HOERMANN M: "MECHANICAL PROPERTIES OF NB 100 AT CRYOGENIC", HIGH TEMPERATURE MATERIALS AND PROCESSES., FREUND PUBLISHING HOUSE, LTD., GB, vol. 11, no. 01-04, 1 January 1993 (1993-01-01), GB, pages 139 - 158, XP002911996, ISSN: 0370-5331 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097700A (en) * 2003-09-26 2005-04-14 Toshiba Corp Titanium alloy, titanium alloy member, and method of producing titanium alloy
JP4607440B2 (en) * 2003-09-26 2011-01-05 株式会社東芝 Titanium alloy wire or rod, titanium alloy member, and method for manufacturing titanium alloy wire or rod
CN100395076C (en) * 2005-09-30 2008-06-18 北京工业大学 Method for preparing YBaCu3O7-delta strip on cold-rolled polycrystalline silver-base band
CN110907243A (en) * 2019-11-30 2020-03-24 西安诺博尔稀贵金属材料股份有限公司 Hafnium corrosion plate type monitoring sample and preparation method thereof
CN110907243B (en) * 2019-11-30 2022-05-27 西安诺博尔稀贵金属材料股份有限公司 Hafnium corrosion plate type monitoring sample and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0435655B1 (en) Silver-metal oxide composite material and process for producing the same
EP1785502A1 (en) Direct rolling of cast gamma titanium aluminide alloys
US10923248B2 (en) Method for producing a metal film
US10676808B2 (en) Method for producing a metal film
EP3330013A1 (en) Titanium material for hot rolling
CN113165032B (en) Titanium alloy sheet, method for producing titanium alloy sheet, copper foil production drum, and method for producing copper foil production drum
JP2022532738A (en) Nickel-based alloy for powder and manufacturing method of powder
US7704448B2 (en) High temperature-resistant niobium wire
CN112916870B (en) Preparation method of medium-high entropy alloy material
JP2806228B2 (en) Method for lowering magnetic permeability of hard-to-work Co alloy
EP1652945B1 (en) Fine grain recrystallised niobium or tantalum sheet containing silicon produced by melting followed by thermo-mechanical processing
JP4718664B2 (en) Manufacturing method of sputtering target
US3974001A (en) Paramagnetic alloy
JP2952924B2 (en) TiAl-based heat-resistant alloy and method for producing the same
WO1998045496A1 (en) Production method of sheet material of active metal having high melting point
US4370299A (en) Molybdenum-based alloy
JPH06264233A (en) Sputtering target for producing tft
JP2000328242A (en) Ti-al alloy sputtering target and its production
JP2728305B2 (en) Hot working method of intermetallic compound TiA ▲ -based alloy
JP3626507B2 (en) High strength and high ductility TiAl intermetallic compound
JP2936899B2 (en) Titanium alloy with excellent corrosion resistance and workability to non-oxidizing acids
JPH05214493A (en) Fe-cr-al alloy for strain gage and its manufacture as well as sensor device
JPH06256918A (en) Production of molybdenum or molybdenum alloy sheet
JPH06220596A (en) Production of molybdenum or molybdenum alloy sheet
JPH0236669B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000572584

Format of ref document f/p: F