WO1998039095A1 - Method for regenerating paraffin reforming or isomerization or dehydrogenation catalysts in a vibrating helical spire - Google Patents

Method for regenerating paraffin reforming or isomerization or dehydrogenation catalysts in a vibrating helical spire Download PDF

Info

Publication number
WO1998039095A1
WO1998039095A1 PCT/FR1998/000372 FR9800372W WO9839095A1 WO 1998039095 A1 WO1998039095 A1 WO 1998039095A1 FR 9800372 W FR9800372 W FR 9800372W WO 9839095 A1 WO9839095 A1 WO 9839095A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
catalyst
combustion
chlorination
vibrating
Prior art date
Application number
PCT/FR1998/000372
Other languages
French (fr)
Inventor
Olivier Clause
Original Assignee
Institut Français Du Petrole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Français Du Petrole filed Critical Institut Français Du Petrole
Priority to JP53821898A priority Critical patent/JP2002511791A/en
Priority to EP98910826A priority patent/EP0969923A1/en
Priority to BR9808164-0A priority patent/BR9808164A/en
Publication of WO1998039095A1 publication Critical patent/WO1998039095A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/16Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with particles being subjected to vibrations or pulsations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/40Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed subjected to vibrations or pulsations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2702Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1944Details relating to the geometry of the reactor round circular or disk-shaped spiral
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to the application to processes of catalytic reforming, isomerization of paraffins or dehydrogenation of paraffins with preferably continuous regeneration of the catalyst, of a process described in the prior art, consisting in raising the particles of catalysts in at least one vibrating helical turn, subjecting them over at least part of their path and preferably over most of their path to a temperature profile and putting them in contact with at least one fluid on at least one part of their journey.
  • catalytic reforming which is a process consisting in increasing the octane number of gasolines by promoting the reactions of dehydrogenation of naphthenes, isomerization of alkylnaphthenes and paraffins, and dehydrocyclization of paraffins.
  • the paraffin dehydrogenation process makes it possible to obtain olefins having the same number of carbon atoms as the starting paraffins. These olefins can be used later for the production of bases for super fuels (ethers, alkylates) or biodegradable detergents.
  • the paraffin reforming and dehydrogenation processes use solid catalysts based on precious metals such as platinum or rhenium or oxides such as molybdenum oxide or chromium oxide, supported on a refractory oxide such as alumina.
  • these catalysts deactivate due to the progressive deposition of polyaromatic hydrocarbons of complex structure bearing the usual name of coke.
  • the deposition of coke requires regeneration of the catalyst after an operating cycle ranging from a few days to more than a year. In units with continuous catalyst regeneration, it is not necessary to stop the units in order to regenerate the catalyst.
  • the catalyst is transported from one reactor to another by an adequate means, of a mechanical or pneumatic nature, then it is transported to a regeneration column operating the rejuvenation of the catalyst, finally the regenerated catalyst is transported to one or more reactors, preferably the regenerated catalyst is transported to the head of the first reactor.
  • the regenerator according to the invention can also be used off-site, for example the catalyst can be transported to a company specialized in the treatment of catalysts where it will be regenerated.
  • the regeneration of reforming catalysts, isomerization of paraffins or dehydrogenation of paraffins can comprise several stages, for example in the case of the reforming of a stage of combustion of coke intended to remove the hydrocarbon deposit by combustion managed in an oxidizing medium, a chlorination step (and in particular oxychlorination) intended to improve the dispersion of the metallic active phase (in the case of platinum-based catalysts) and optionally a calcination step intended to improve the fixation of the active phase, dry the catalyst and set its chlorine content to the value required for optimal catalytic performance.
  • a step of cooling the catalyst in air or under nitrogen as well as a step of stripping the hydrocarbons trapped in the porosity of the catalyst under a stream of inert or neutral gas, for example under nitrogen, can also follow the calcination step.
  • regenerator for example RegenC from IFP or CycleMax from UOP, successively passing through areas where the combustion stages, oxychlorination. calcination and cooling described above.
  • These transportations of catalysts operated, for example by gaseous lifts are liable to progressively deteriorate the catalyst, for example by generating fines and dust or by breaking up catalyst particles.
  • the implementation of the method according to the invention derived from a known method of the prior art, avoids the implementation of a method of transport of catalyst to the top of the regenerator and from the bottom of the regenerator.
  • the apparatus for implementing the process is in fact a regenerator supplied by the catalyst in its lower part, the regenerated catalyst leaving at the top of the regenerator. So at the same time as the catalyst is regenerated, it is simultaneously carried up to the top of the ⁇ ⁇ reaction reforming zone.
  • These reaction zones are generally placed side by side or superimposed, the charge and the catalyst generally circulating successively from top to bottom through each reaction zone. This same type of arrangement can also be used for the dehydrogenation or isomerization of paraffins.
  • This device is a vibrating spiral elevator that is to say a vibrating elevator comprising at least one turn and a helical ramp substantially tubular.
  • the device can be used in a catalytic reforming process in a circulating bed, or during the off-site regeneration of reforming catalyst.
  • the catalyst particles rising within the coil are subjected to a temperature profile over part of their path, as described in the French patent application filed under the number FR 94/3865. This temperature profile can be obtained by indirect contact with a heat transfer fluid bathing the steps of the coil, as described in French patent application FR 2 634 187.
  • the turns of the helical ramp are connected to each other by two helical bands, fixed to the ramp on two opposite sides thereof to form a helical channel, between the turns of the helical ramp, in which a heat transfer fluid can circulate.
  • the entire tube-coil device may be placed in an enclosure, where the products transported will be subjected to a heat treatment, for example a insulated enclosure in which circulates a heat transfer fluid bathing the steps of the coil.
  • the heat transfer fluid can pass through the coil itself. This gas can circulate cocurrently or countercurrently. Heating of the turn can also be obtained by the Joule effect, by directly heating the metallic mass of the tube as described in European patent application EP-A-0,612,561.
  • the present invention relates to a method of treating a catalyst selected from the group consisting of reforming catalysts, isomerization of paraffins and dehydrogenation of paraffins or a powdery adsorbent.
  • Said method consists in mounting the particles of catalyst or adsorbent in a vibrating helical elevator comprising at least one vibrating helical coil and in which are arranged at least one combustion zone and at least one chlorination zone.
  • the particles are also subjected to a temperature profile over at least part of their path, path during which they are brought into contact with at least one fluid.
  • the method according to the invention therefore relates to a treatment included in the group formed by regenerations, activations, reactivations of catalysts, and comprises at least one combustion step carried out in at least one combustion zone and at least one chlorination step. performed in at least one chlorination zone.
  • the catalyst By rising in the helical elevator, the catalyst successively passes through a coke combustion zone, where a flow of air or oxygen is introduced in a stepwise fashion at the level of several successive turns, so as to limit the concentration of oxygen and not to risk degrading the catalyst by local overheating, a chlorination zone where a chlorinating agent such as perchlorethylene is introduced with air and, possibly a calcination zone where the catalyst is swept by a stream of nitrogen or dry air containing less than 50 ppm water.
  • a chlorinating agent such as perchlorethylene
  • the combustion zone is preceded by a zone in which the catalyst is preheated so that its temperature reaches a level where the subsequent combustion of the coke takes place under optimal conditions.
  • the temperatures of the gases entering the combustion zone can be between 300 and 750 ° C. preferably between 450 and 550 ° C. It is also possible to extract part of the combustion gases by means of purges placed in one or more places of the elevator as it is, for example described in example 2.
  • the turn or turns if there are several, has at least 2 steps and is wound around a hollow shaft in which is arranged a system intended to produce vibrations, for example an unbalance motor as described in the request.
  • French patent FR 94/3865 The turns can be contiguous or non-contiguous.
  • the gases or fluids intended for the regeneration of reforming catalysts, of isomerization of paraffins or of dehydrogenation of paraffins can be introduced by one or more conduits so that said gases or fluids circulate in co-or counter-current in one or more not from the turn.
  • the pressure within the coil can be between 0, 1 and 20 bars, preferably between 1 and 7 bars.
  • gases or fluids can be introduced into the coil laterally, from above or from below the coil by passing through a fine-mesh grid or any suitable device intended to prevent the ingress of particles of catalyst in the inlet pipes. gases.
  • gas withdrawal line (s) The same applies to the gas withdrawal line (s).
  • Figure 1 illustrates Example 1 described below.
  • the helical elevator (12) is arranged on a vibrating table (1) and two unbalance motors (2) generate the vibrations necessary for the rise of the catalyst.
  • the entry of solid particles takes place via line (3) and the exit of particles through line (4).
  • the helical drum-lift assembly is contained in a thermally insulated enclosure secured to the vibrating table (5).
  • a gas is introduced at the top of the device through the pipe (6). Said gas bathes the first turns of the helical elevator: this gas is introduced at (7) laterally at the bottom of the helical elevator, and passes through this helical elevator co-current with the catalyst.
  • Air is introduced through six lines
  • the first air inlet pipe is positioned laterally at the level of the second turn of the helical elevator.
  • the catalyst then enters the chlorination zone (zone 15). gas is also introduced into this zone through line (9).
  • the pipes (8), (9) and (1 1) are supplied by pipes and a device located inside the central barrel.
  • the gas from the combustion and chlorination zones leaves the helical elevator through the line (10).
  • the catalyst then enters the calcination zone (zone 16), in this zone, the catalyst is swept against the current by dry air introduced through the conduit (1 1).
  • the calcination gas leaves the helical elevator through the pipe (10) together with the combustion and chlorination gases.
  • FIG. 2 shows an embodiment of the method according to the invention in which the combustion zone comprises a series of pipes for discharging the combustion gas.
  • FIG. 2 illustrates Example 2.
  • the helical elevator (10) is arranged on a vibrating table (1) and two unbalanced motors (2) generate the vibrations necessary for the rise of the catalyst.
  • the entry of solid particles takes place via line (3) and the exit of particles through line (4).
  • An air-containing gas is introduced cocurrently from the catalyst flow through line (3).
  • An air-containing gas is also introduced through 7 pipes (5) into the combustion zone.
  • the combustion gas is drawn off by means of 7 pipes (6). Passing through the combustion zone (12), the catalyst is therefore supplied with a combustion gas alternately co-current and counter-current.
  • the vibrating elevator is heated by the Joules effect as described in European patent application EP-A-0,612,561.
  • the catalyst is preheated in the coil of the zone (1 1) which is insulated.
  • the catalyst then enters the chlorination zone (zone 13) a gas circulating against the current with respect to the direction of circulation of the catalyst, is also introduced into this zone via the pipe (8).
  • the gases from the combustion and chlorination zones exit the helical elevator via the lines (6) and (7).
  • the catalyst then enters the calcination zone (zone 14). in this zone, the catalyst is swept against the current by dry air introduced through the conduit (9).
  • the supply of lines (5), (8) and (9) is provided by pipes and a device located inside the central barrel The calcining gas leaves the helical elevator by the pipe (7) together with the combustion and chlorination gases
  • FIG. 3 shows an embodiment of the method according to the invention in which the combustion and chlorination zones are combined
  • the helical vibrating elevator (9) is arranged on a vibrating table (1) and two unbalanced motors (2) generate the vibrations necessary for the rise of the catalyst. Solid particles enter via line (3) and particles exit via line (4)
  • the zone (10) is a zone in which the catalyst is preheated by means of a stream of nitrogen introduced at the bottom of the vibrating elevator.
  • the pipe (5) makes it possible to introduce the nitrogen into the pipe (3).
  • the catalyst passes through the zone (1 1) of the regenerator, which is both a combustion zone and a chlorination zone and in which a burning and a redispersion of the bimetallic phase of the catalyst are carried out simultaneously.
  • a gas containing hydrogen chloride is introduced into each of the turns making up the zone (1 1) by six pipes (6), the gas is then withdrawn from this zone by means of six pipes (7).
  • the catalyst then enters the calcination zone (12) in which it is swept by a stream of dry air introduced into this zone by the pipe (8) The calcination gas leaves the zone (12) by the pipes (7 ).
  • Example 1 The catalyst of Example 1 is regenerated in a regenerator in accordance with FIG. 1.
  • the catalyst is in the form of spherical beads with a diameter of 1.8 mm, it comprises a metallic phase of platinum dispersed on alumina, the platinum content being 0.30% by weight
  • the metal surface exposed before regeneration is 81%.
  • the specific surface of the catalyst is 200 m2 / g
  • the catalyst enters the regenerator at a temperature of 350 ° C at a flow rate of 500 kg / h. Its carbon content (coke) is 6.0% by weight.
  • the first steps of the helical elevator are bathed in a flow of nitrogen used for preheating (zone 13) of the catalyst.
  • This nitrogen flow is introduced in (7) at a flow rate of 500 Nm 3 / h, at a pressure of 5 bars, this gas is preheated to 480 ° C. by means of an oven external to the device.
  • the catalyst passes through the coke burning zone (14).
  • Each of the pipes (8) deliver a flow of 40 Nm3 / h of air preheated to 480 ° C.
  • the residence time of the catalyst in the combustion zone (zone 14) is 30 minutes, ie a tube length of 60 m.
  • the catalyst then enters the chlorination zone which is here an oxychlorination zone (zone 15), the line (9) allowing the introduction of an air flow containing perchlorethylene at a flow rate of 500 Nm3 / h.
  • the residence time of the catalyst in the oxychlorination zone is 30 minutes, ie a tube length of 60 m.
  • the catalyst then enters the calcination zone (zone 16).
  • the residence time of the catalyst in the calcination zone is 15 minutes, ie a tube length of 30 m.
  • the catalyst is swept against the current by a stream of dry air at 500 Nm3 / h introduced at the top of the regenerator through line (1 1).
  • the characteristics of the catalyst at the outlet of the regenerator are as follows: specific surface, 195 m2 / g; dispersion of the metallic phase, 95%; 0.1% carbon content.
  • the mechanical characteristics of the catalyst balls are unchanged.
  • the chlorine content is 1.2% by weight. The device described in Example 1 therefore allows complete regeneration of the reforming catalyst.
  • the catalyst of Example 2 is regenerated in a regenerator in accordance with FIG. 2.
  • the catalyst is in the form of spherical beads with a diameter of 1.6 mm, it comprises a metallic phase of platinum dispersed on alumina, the platinum content being 0.28% by weight.
  • the metal surface exposed before regeneration is 81%.
  • the specific surface of the catalyst is 220 m2 / g.
  • the catalyst enters the regenerator at a temperature of 350 ° C at a flow rate of 500 kg / h. Its carbon content (coke) is 6.0% by weight.
  • the catalyst passes through the coke burn zone.
  • An air flow of 50 NmVh is introduced through line (3), into the combustion zone, it circulates co-current with the catalyst flow.
  • This gas is introduced at room temperature. Air at room temperature is also introduced by means of the 7 pipes (5), the air flow rate of each of these pipes being 50 Nm3 / h. This gas then exits by means of the pipes (6) each drawing a flow rate of 50 Nm3 / h.
  • the average temperature in the catalytic bed in the coke combustion zone is adjusted in the window 480-550 ° C.
  • the coils in the combustion zone are not insulated.
  • the catalyst enters the elevator at a temperature of 150 ° C at a flow rate of 500 kg / h. Its carbon content (coke) is 6.0% by weight.
  • the residence time of the catalyst in the combustion zone (zone 12) is 30 minutes, ie a tube length of 60 m.
  • the catalyst then enters the oxychlorination zone (zone 13), the pipe (8) introducing a flow rate of 500 Nm3 / h of air containing a mixture of dichloroethane and water.
  • the residence time of the catalyst in the oxychlorination zone is 30 minutes, ie a tube length of 60 m.
  • the catalyst then enters the calcination zone (zone 14), the stream of dry air introduced into this zone against the current of the catalyst has a flow rate of 500 Nm 3 / h.
  • the residence time of the catalyst in the calcination zone is 15 minutes, ie a tube length of 30 m.
  • the characteristics of the catalyst at the outlet of the regenerator are as follows: specific surface, 220 m 2 / g: dispersion of the metallic phase. 95%; carbon content 0.05%.
  • Example 2 (attrition resistance. grain-to-grain crushing) are unchanged. Content chlorine is 1.0% by weight. The device described in Example 2 therefore allows complete regeneration of the reforming catalyst.
  • Example 3 The catalyst of Example 3 is regenerated in a regenerator according to FIG. 3 in which the combustion and the chlorination are carried out in the same zone.
  • the catalyst is in the form of extrudates with a diameter of 1.4 mm and a length of between 1 and 8 mm. It comprises a metallic phase of platinum and rhenium dispersed on alumina, the platinum content is 0.25% by weight and the rhenium content is 0.30% by weight.
  • the metal surface exposed before regeneration is 75%.
  • the specific surface of the catalyst is 230 m2 / g.
  • the catalyst enters the regenerator at a temperature of 140 ° C. at a flow rate of 300 kg / h. Its carbon content (coke) is 12.0% by weight.
  • the catalyst is preheated to the temperature of 515 ° C. in the first turns constituting the zone (10) by means of a flow of nitrogen having a flow rate of 20 Nm 3 / h, at a pressure of 6 bars.
  • the catalyst then passes through the zone (1 1) of the regenerator.
  • an air flow containing hydrogen chloride is introduced into each of the turns making up the combustion zone through six pipes (6) at a flow rate of 80 Nm3 / h.
  • Each of the air additions is introduced at a temperature of 400 ° C. and at a pressure of 5.9 bars.
  • the combustion air is heated and compressed by an oven and a compressor external to the device. Hydrogen chloride is obtained by temperature decomposition of dichloropropane between the oven and the regenerator.
  • the residence time of the catalyst in this zone (1 1) is 40 minutes.
  • This zone (1 1) is, in addition, heated to the temperature of 550 ° C. by the Joules effect as described in patent EP-A-0,612,561.
  • the catalyst then enters the calcination zone (12), in this zone, it is swept against the current by a stream of dry air introduced at the top of the regenerator by the line (8) at a flow rate of 50 Nm3 / h and at a temperature of 525 ° C.
  • the residence time of the catalyst in this zone is 15 minutes.
  • the characteristics of the catalyst leaving the regenerator are as follows: specific surface, 210 m2 / g; 95% bimetallic phase dispersion: carbon content less than 0.05.
  • the amount of small catalyst particles - called "fine" by those skilled in the art - produced during regeneration is less than 0.1% by weight. The regeneration of the reforming catalyst is therefore complete.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The invention concerns the application of a method for regenerating catalysts or adsorbents, consisting in causing the catalyst particles to rise in a vibrating helical elevator (12), said particles being subjected to a temperature profile and being contacted with one or several fluids over part of their travel in said spire, regenerating paraffin reforming, isomerization or dehydrogenation catalysts. The helical elevator can be maintained at the appropriate temperature by circulating gas at the required temperature outside and in contact with the helical elevator, The regenerator comprises at least a combustion zone (14) and at least an oxychlorination (15) or more generally a chlorination zone, which can be merged. A pre-heating zone (13), a hydrocarbon stripping zone, a calcining zone (16) and a cooling zone for the catalyst can also be included in the device.

Description

REGENERATION DE CATALYSEURS DE REFORMAGE OU DTSOMERISATION OU DE DESHYDROGENATION DES PARAFFINES DANS UNE SPIRE HELICOÏDALE VIBRANTEREGENERATION OF CATALYSTS FOR REFORMING OR DTSOMERIZATION OR DEHYDROGENATION OF PARAFFINS IN A VIBRANT HELICOID SPIRE
La présente invention concerne l'application aux procédés de réformage catalytique, d'isomérisation des paraffines ou de déshydrogénation des paraffines avec régénération de préférence en continu du catalyseur, d'un procédé décrit dans l'art antérieur, consistant à faire monter les particules de catalyseurs dans au moins une spire hélicoïdale vibrante, à les soumettre sur au moins une partie de leur trajet et de préférence sur la majeure partie de leur trajet à un profil de température et à les mettre au contact avec au moins un fluide sur au moins une partie de leur trajet.The present invention relates to the application to processes of catalytic reforming, isomerization of paraffins or dehydrogenation of paraffins with preferably continuous regeneration of the catalyst, of a process described in the prior art, consisting in raising the particles of catalysts in at least one vibrating helical turn, subjecting them over at least part of their path and preferably over most of their path to a temperature profile and putting them in contact with at least one fluid on at least one part of their journey.
Une application possible est le réformage catalytique qui est un procédé consistant à augmenter l'indice d'octane des essences en favorisant les réactions de déshydrogénation des naphtènes, d'isomérisation des alkylnaphtènes et des paraffines, et de déshydrocyclisation des paraffines. Le procédé de déshydrogénation des paraffines permet d'obtenir des oléfines comportant le même nombre d'atomes de carbone que les paraffines de départ. Ces oléfines pourront être utilisées ultérieurement pour la production de bases pour supercarburants (éthers, alkylats) ou de détergents biodégradables. Les procédés de réformage et de déshydrogénation des paraffines mettent en oeuvre des catalyseurs solides à base de métaux précieux tels le platine ou le rhénium ou des oxydes tels l'oxyde de molybdène ou l'oxyde de chrome, supportés sur un oxyde réfractaire tel l'alumine.One possible application is catalytic reforming which is a process consisting in increasing the octane number of gasolines by promoting the reactions of dehydrogenation of naphthenes, isomerization of alkylnaphthenes and paraffins, and dehydrocyclization of paraffins. The paraffin dehydrogenation process makes it possible to obtain olefins having the same number of carbon atoms as the starting paraffins. These olefins can be used later for the production of bases for super fuels (ethers, alkylates) or biodegradable detergents. The paraffin reforming and dehydrogenation processes use solid catalysts based on precious metals such as platinum or rhenium or oxides such as molybdenum oxide or chromium oxide, supported on a refractory oxide such as alumina.
Au cours du temps, ces catalyseurs se désactivent du fait du dépôt progressif d'hydrocarbures polyaromatiques de structure complexe portant le nom usuel de coke. Le dépôt de coke oblige à régénérer le catalyseur au terme d'un cycle de fonctionnement allant de quelques jours à plus d'un an. Dans les unités à régénération continue du catalyseur, il n'est pas nécessaire d'arrêter les unités pour procéder à la régénération du catalyseur. Le catalyseur est transporté d'un réacteur à l'autre par un moyen adéquat, de nature mécanique ou pneumatique, puis il est transporté vers une colonne de régénération opérant la rejuvenation du catalyseur, enfin le catalyseur régénéré est transporté vers un ou plusieurs réacteurs, de préférence le catalyseur régénéré est transporté en tête du premier réacteur. Le régénérateur suivant l'invention peut également être mis en oeuvre hors- site, par exemple le catalyseur peut être transporté vers une entreprise spécialisée dans le traitement des catalyseurs où il sera régénéré.Over time, these catalysts deactivate due to the progressive deposition of polyaromatic hydrocarbons of complex structure bearing the usual name of coke. The deposition of coke requires regeneration of the catalyst after an operating cycle ranging from a few days to more than a year. In units with continuous catalyst regeneration, it is not necessary to stop the units in order to regenerate the catalyst. The catalyst is transported from one reactor to another by an adequate means, of a mechanical or pneumatic nature, then it is transported to a regeneration column operating the rejuvenation of the catalyst, finally the regenerated catalyst is transported to one or more reactors, preferably the regenerated catalyst is transported to the head of the first reactor. The regenerator according to the invention can also be used off-site, for example the catalyst can be transported to a company specialized in the treatment of catalysts where it will be regenerated.
La régénération des catalyseurs de réformage, d'isomérisation des paraffines ou de déshydrogénation des paraffines peut comprendre plusieurs étapes, par exemple dans le cas du reformage d'une étape de combustion du coke destinée à éliminer le dépôt hydrocarboné par combustion ménagée en milieu oxydant, une étape de chloration (et notamment d'oxychloration) destinée à améliorer la dispersion de la phase active métallique (dans le cas de catalyseurs à base de platine) et éventuellement une étape de calcination destinée à améliorer la fixation de la phase active, sécher le catalyseur et fixer sa teneur en chlore à la valeur requise pour des performances catalytiques optimales. Une étape de refroidissement du catalyseur sous air ou sous azote ainsi qu'une étape de strippage des hydrocarbures piégés dans la porosité du catalyseur sous courant de gaz inerte ou neutre, par exemple sous azote, peuvent également suivre l'étape de calcination.The regeneration of reforming catalysts, isomerization of paraffins or dehydrogenation of paraffins can comprise several stages, for example in the case of the reforming of a stage of combustion of coke intended to remove the hydrocarbon deposit by combustion managed in an oxidizing medium, a chlorination step (and in particular oxychlorination) intended to improve the dispersion of the metallic active phase (in the case of platinum-based catalysts) and optionally a calcination step intended to improve the fixation of the active phase, dry the catalyst and set its chlorine content to the value required for optimal catalytic performance. A step of cooling the catalyst in air or under nitrogen as well as a step of stripping the hydrocarbons trapped in the porosity of the catalyst under a stream of inert or neutral gas, for example under nitrogen, can also follow the calcination step.
Toutes ces étapes sont mises en oeuvre successivement dans les procédés existants de régénération en continu de catalyseurs de reformage.All these steps are implemented successively in existing processes for the continuous regeneration of reforming catalysts.
Dans ces procédés, par exemple le procédé Octafining de l'Institut Français duIn these processes, for example the Octafining process of the Institut Français du
Pétrole ou le procédé CCR Platforming de UOP, le catalyseur s'écoule gravitairement de haut en bas d'une colonne appelée régénérateur, par exemple le RegenC de l'IFP ou le CycleMax d'UOP, en traversant successivement des zones où sont opérées les étapes de combustion, oxychloration. calcination et refroidissement sus-décrites. Ceci oblige à transporter le catalyseur du bas du dernier réacteur de reformage traversé par la charge vers le haut du régénérateur, puis à transporter le catalyseur du bas du régénérateur vers le haut du premier réacteur de réformage traversé par la charge ou du réducteur (zone de réduction du catalyseur à l'entrée du V réacteur de reformage). Ces transports de catalyseurs opérés, par exemple par des lifts gazeux, sont susceptibles de détériorer progressivement le catalyseur, par exemple en générant des fines et des poussières ou en brisant des particules de catalyseur.Oil or the CCR Platforming process from UOP, the catalyst flows by gravity from top to bottom of a column called regenerator, for example RegenC from IFP or CycleMax from UOP, successively passing through areas where the combustion stages, oxychlorination. calcination and cooling described above. This makes it necessary to transport the catalyst from the bottom of the last reforming reactor crossed by the charge to the top of the regenerator, then to transport the catalyst from the bottom of the regenerator to the top of the first reforming reactor crossed by the charge or the reducing agent (zone of reduction of the catalyst at the inlet of the V reforming reactor). These transportations of catalysts operated, for example by gaseous lifts, are liable to progressively deteriorate the catalyst, for example by generating fines and dust or by breaking up catalyst particles.
La mise en oeuvre du procédé selon l'invention dérivé d'un procédé connu de l'art antérieur, permet d'éviter la mise en oeuvre d'un procédé de transport de catalyseur vers le haut du régénérateur et à partir du bas du régénérateur. L'appareil de mise en oeuvre du procédé est en effet un régénérateur alimenté par le catalyseur dans sa partie basse, le catalyseur régénéré sortant en haut de régénérateur. Donc en même temps qu'on procède à la régénération du catalyseur, on procède simultanément à sa remontée en haut de la \èκ zone réactionnelle de réformage. Ces zones réactionnelles sont généralement disposées côte à côte ou superposées, la charge et le catalyseur circulant généralement successivement de haut en bas à travers chaque zone de réaction. Ce même type d'agencement peut être utilisé également pour la déshydrogénation ou l'isomérisation des paraffines. Cet appareil est un élévateur hélicoïdal vibrant c'est-à-dire un élévateur vibrant comportant au moins une spire et une rampe hélicoïdale de forme sensiblement tubulaire. L'appareil peut être mis en oeuvre dans un procédé de reformage catalytique en lit circulant, ou lors de la régénération hors site de catalyseur de réformage. Les particules de catalyseur s'élevant au sein de la spire sont soumises à un profil de température sur une partie de leur trajet, ainsi qu'il est décrit dans la demande de brevet français déposée sous le numéro FR 94/3865. Ce profil de température peut être obtenu par contact indirect avec un fluide caloporteur baignant les pas de la spire, ainsi qu'il est décrit dans la demande de brevet français FR 2 634 187. Dans cette demande de brevet, les spires de la rampe hélicoïdale sont reliées les unes aux autres par deux bandes hélicoïdales, fixées à la rampe sur deux côtés opposés de celle-ci pour former un canal hélicoïdal, entre les spires de la rampe hélicoïdale, dans lequel peut circuler un fluide caloporteur. Plus généralement, ainsi qu'il est décrit dans la demande de brevet français FR 94/3865, l'ensemble du dispositif tube-spire peut-être placé dans une enceinte, où les produits transportés seront soumis à un traitement thermique, par exemple une enceinte calorifugée dans laquelle circule un fluide caloporteur baignant les pas de la spire. Il découle de la même demande de brevet que le fluide caloporteur peut traverser la spire elle-même. Ce gaz peut circuler à co- courant ou à contre-courant. Le chauffage de la spire peut également être obtenu par effet Joule, en chauffant directement la masse métallique du tube ainsi qu'il est décrit dans la demande de brevet européen EP-A-0.612.561.The implementation of the method according to the invention derived from a known method of the prior art, avoids the implementation of a method of transport of catalyst to the top of the regenerator and from the bottom of the regenerator. The apparatus for implementing the process is in fact a regenerator supplied by the catalyst in its lower part, the regenerated catalyst leaving at the top of the regenerator. So at the same time as the catalyst is regenerated, it is simultaneously carried up to the top of the \ κ reaction reforming zone. These reaction zones are generally placed side by side or superimposed, the charge and the catalyst generally circulating successively from top to bottom through each reaction zone. This same type of arrangement can also be used for the dehydrogenation or isomerization of paraffins. This device is a vibrating spiral elevator that is to say a vibrating elevator comprising at least one turn and a helical ramp substantially tubular. The device can be used in a catalytic reforming process in a circulating bed, or during the off-site regeneration of reforming catalyst. The catalyst particles rising within the coil are subjected to a temperature profile over part of their path, as described in the French patent application filed under the number FR 94/3865. This temperature profile can be obtained by indirect contact with a heat transfer fluid bathing the steps of the coil, as described in French patent application FR 2 634 187. In this patent application, the turns of the helical ramp are connected to each other by two helical bands, fixed to the ramp on two opposite sides thereof to form a helical channel, between the turns of the helical ramp, in which a heat transfer fluid can circulate. More generally, as described in French patent application FR 94/3865, the entire tube-coil device may be placed in an enclosure, where the products transported will be subjected to a heat treatment, for example a insulated enclosure in which circulates a heat transfer fluid bathing the steps of the coil. It follows from the same patent application that the heat transfer fluid can pass through the coil itself. This gas can circulate cocurrently or countercurrently. Heating of the turn can also be obtained by the Joule effect, by directly heating the metallic mass of the tube as described in European patent application EP-A-0,612,561.
La présente invention concerne un procédé de traitement d'un catalyseur choisi dans le groupe formé par les catalyseurs de réformage, d'isomérisation de paraffines et de déshydrogénation de paraffines ou d'un adsorbant pulvérulent . Ledit procédé consiste à faire monter les particules de catalyseur ou d'adsorbant dans un élévateur hélicoïdal vibrant comportant au moins une spire hélicoïdale vibrante et dans lequel sont agencées au moins une zone de combustion et au moins une zone de chloration. Suivant ledit procédé, les particules sont en outre soumises à un profil de température sur une partie au moins de leur trajet, trajet au cours duquel elles sont mises en contact avec au moins un fluide. Le procédé selon l'invention concerne donc un traitement compris dans le groupe formé par les régénérations, les activations, les réactivations de catalyseurs, et comprend au moins une étape de combustion réalisée dans au moins une zone de combustion et au moins une étape de chloration réalisée dans au moins une zone de chloration.The present invention relates to a method of treating a catalyst selected from the group consisting of reforming catalysts, isomerization of paraffins and dehydrogenation of paraffins or a powdery adsorbent. Said method consists in mounting the particles of catalyst or adsorbent in a vibrating helical elevator comprising at least one vibrating helical coil and in which are arranged at least one combustion zone and at least one chlorination zone. According to said method, the particles are also subjected to a temperature profile over at least part of their path, path during which they are brought into contact with at least one fluid. The method according to the invention therefore relates to a treatment included in the group formed by regenerations, activations, reactivations of catalysts, and comprises at least one combustion step carried out in at least one combustion zone and at least one chlorination step. performed in at least one chlorination zone.
En s'élevant dans l'élévateur hélicoïdal, le catalyseur traverse successivement une zone de combustion du coke, où un débit d'air ou d'oxygène est introduit de façon étagée au niveau de plusieurs spires successives, de façon à limiter la concentration en oxygène et à ne pas risquer de dégrader le catalyseur par des surchauffes locales, une zone de chloration où un agent chlorant tel le perchloréthylène est introduit avec de l'air et, éventuellement une zone de calcination où le catalyseur est balayé par un courant d'azote ou d'air sec contenant moins de 50 ppm d'eau.By rising in the helical elevator, the catalyst successively passes through a coke combustion zone, where a flow of air or oxygen is introduced in a stepwise fashion at the level of several successive turns, so as to limit the concentration of oxygen and not to risk degrading the catalyst by local overheating, a chlorination zone where a chlorinating agent such as perchlorethylene is introduced with air and, possibly a calcination zone where the catalyst is swept by a stream of nitrogen or dry air containing less than 50 ppm water.
Il est possible de combiner en une seule zone les zones de combustion et de chloration, en introduisant l'agent chlorant en bas de zone de combustion.It is possible to combine the combustion and chlorination zones in a single zone, by introducing the chlorinating agent at the bottom of the combustion zone.
Avantageusement, la zone de combustion est précédée d'une zone dans laquelle le catalyseur est préchauffé de telle façon que sa température atteigne un niveau où la combustion ultérieure du coke s'effectue dans des conditions optimales.Advantageously, the combustion zone is preceded by a zone in which the catalyst is preheated so that its temperature reaches a level where the subsequent combustion of the coke takes place under optimal conditions.
II est possible également de moduler les injections d'air ou d'oxygène en zone de combustion du coke, en introduisant par exemple des quantités d'air croissantes de bas en haut de l'élévateur hélicoïdal. Les températures des gaz en entrée de zone de combustion peuvent être comprises entre 300 et 750°C. de façon préférentielle entre 450 et 550°C. Il est également possible de soutirer une partie des gaz de combustion au moyen de purges placées dans un ou plusieurs endroits de l'élévateur ainsi qu'il est, par exemple décrit dans l'exemple 2.It is also possible to modulate the injections of air or oxygen into the coke combustion zone, by introducing, for example, increasing amounts of air from the bottom to the top of the helical elevator. The temperatures of the gases entering the combustion zone can be between 300 and 750 ° C. preferably between 450 and 550 ° C. It is also possible to extract part of the combustion gases by means of purges placed in one or more places of the elevator as it is, for example described in example 2.
La spire ou les spires s'il y en a plusieurs, comporte 2 pas au moins et est enroulée autour d'un fût creux dans lequel est disposé un système destiné à produire les vibrations, par exemple un moteur à balourds comme décrit dans la demande de brevet français FR 94/3865. Les spires peuvent être jointives ou non jointives. Les gaz ou fluides destinés à la régénération des catalyseurs de réformage, d'isomérisation des paraffines ou de déshydrogénation des paraffines peuvent être introduits par une ou plusieurs conduites de façon que lesdits gaz ou fluides circulent à co- ou contre-courant dans un ou plusieurs pas de la spire. La pression au sein de la spire peut être comprise entre 0, 1 et 20 bars, de façon préférentielle entre 1 et 7 bars. Les gaz ou fluides peuvent être introduits dans la spire latéralement, par le dessus ou par le dessous de la spire en passant à travers une grille à mailles fines ou tout dispositif approprié destiné à empêcher la pénétration de particules de catalyseur dans les conduites d'arrivée des gaz. Il en va de même pour la ou les conduites de soutirage des gaz.The turn or turns if there are several, has at least 2 steps and is wound around a hollow shaft in which is arranged a system intended to produce vibrations, for example an unbalance motor as described in the request. French patent FR 94/3865. The turns can be contiguous or non-contiguous. The gases or fluids intended for the regeneration of reforming catalysts, of isomerization of paraffins or of dehydrogenation of paraffins can be introduced by one or more conduits so that said gases or fluids circulate in co-or counter-current in one or more not from the turn. The pressure within the coil can be between 0, 1 and 20 bars, preferably between 1 and 7 bars. The gases or fluids can be introduced into the coil laterally, from above or from below the coil by passing through a fine-mesh grid or any suitable device intended to prevent the ingress of particles of catalyst in the inlet pipes. gases. The same applies to the gas withdrawal line (s).
Les figures et les exemples décrits ci-après illustrent l'invention sans en limiter la portée.The figures and examples described below illustrate the invention without limiting its scope.
La figure 1 permet d'illustrer l'exemple 1 décrit ci-après. L'élévateur hélicoïdal (12) est disposé sur une table vibrante ( 1 ) et deux moteurs à balourds (2) génèrent les vibrations nécessaires à la montée du catalyseur.Figure 1 illustrates Example 1 described below. The helical elevator (12) is arranged on a vibrating table (1) and two unbalance motors (2) generate the vibrations necessary for the rise of the catalyst.
L'entrée des particules solides se fait par la conduite (3) et la sortie des particules par la conduite (4). L'ensemble fût-élévateur hélicoïdal est contenu dans une enceinte calorifugée solidaire de la table vibrante (5). Un gaz est introduit en haut du dispositif par la conduite (6). Ledit gaz baigne les premières spires de l'élévateur hélicoïdal : ce gaz est introduit en (7) latéralement en bas de l'élévateur hélicoïdal, et traverse cet élévateur hélicoïdal à co-courant avec le catalyseur. De l'air est introduit au moyen de six conduitesThe entry of solid particles takes place via line (3) and the exit of particles through line (4). The helical drum-lift assembly is contained in a thermally insulated enclosure secured to the vibrating table (5). A gas is introduced at the top of the device through the pipe (6). Said gas bathes the first turns of the helical elevator: this gas is introduced at (7) laterally at the bottom of the helical elevator, and passes through this helical elevator co-current with the catalyst. Air is introduced through six lines
(8) dans la zone de combustion ( 14). La première conduite d'arrivée d'air est positionnée latéralement au niveau de la seconde spire de l'élévateur hélicoïdal. Le catalyseur pénètre ensuite dans la zone de chloration (zone 15). dans cette zone est aussi introduit un gaz par la conduite (9). L'alimentation des conduites (8), (9) et ( 1 1 ) est assurée par des conduites et un dispositif situé à l'intérieur du fût central. Le gaz des zones de combustion et de chloration sort de l'élévateur hélicoïdal par la conduite ( 10). Le catalyseur pénètre ensuite dans la zone de calcination (zone 16), dans cette zone, le catalyseur est balayé à contre-courant par de l'air sec introduit par le conduit ( 1 1 ). Le gaz de calcination sort de l'élévateur hélicoïdal par la canalisation ( 10) conjointement aux gaz de combustion et de chloration.(8) in the combustion zone (14). The first air inlet pipe is positioned laterally at the level of the second turn of the helical elevator. The catalyst then enters the chlorination zone (zone 15). gas is also introduced into this zone through line (9). The pipes (8), (9) and (1 1) are supplied by pipes and a device located inside the central barrel. The gas from the combustion and chlorination zones leaves the helical elevator through the line (10). The catalyst then enters the calcination zone (zone 16), in this zone, the catalyst is swept against the current by dry air introduced through the conduit (1 1). The calcination gas leaves the helical elevator through the pipe (10) together with the combustion and chlorination gases.
La figure 2 présente une réalisation du procédé selon l'invention dans laquelle la zone de combustion comprend une série de conduites d'évacuation du gaz de combustion.FIG. 2 shows an embodiment of the method according to the invention in which the combustion zone comprises a series of pipes for discharging the combustion gas.
La figure 2 permet d'illustrer l'exemple 2. L'élévateur hélicoïdal (10) est disposé sur une table vibrante ( 1 ) et deux moteurs à balourds (2) génèrent les vibrations nécessaires à la montée du catalyseur. L'entrée des particules solides se fait par la conduite (3) et la sortie des particules par la conduite (4). Un gaz contenant de l'air est introduit à co-courant de l'écoulement de catalyseur par la conduite (3). Un gaz contenant de l'air est aussi introduit au moyen de 7 conduites (5) dans la zone de combustion. Le gaz de combustion est soutiré au moyen de 7 conduites (6). En traversant la zone de combustion ( 12), le catalyseur est donc alimenté par un gaz de combustion alternativement à co- courant et à contre-courant. L'élévateur vibrant est chauffé par effet Joules comme décrit dans la demande de brevet européenne EP-A- 0.612.561. Un préchauffage du catalyseur est assuré dans la spire de la zone ( 1 1 ) qui est calorifugée.Figure 2 illustrates Example 2. The helical elevator (10) is arranged on a vibrating table (1) and two unbalanced motors (2) generate the vibrations necessary for the rise of the catalyst. The entry of solid particles takes place via line (3) and the exit of particles through line (4). An air-containing gas is introduced cocurrently from the catalyst flow through line (3). An air-containing gas is also introduced through 7 pipes (5) into the combustion zone. The combustion gas is drawn off by means of 7 pipes (6). Passing through the combustion zone (12), the catalyst is therefore supplied with a combustion gas alternately co-current and counter-current. The vibrating elevator is heated by the Joules effect as described in European patent application EP-A-0,612,561. The catalyst is preheated in the coil of the zone (1 1) which is insulated.
Le catalyseur pénètre ensuite dans la zone de chloration (zone 13) un gaz circulant à contre-courant par rapport au sens de circulation du catalyseur, est aussi introduit dans cette zone par la conduite (8). Les gaz des zones de combustion et de chloration sortent de l'élévateur hélicoïdal par les conduites (6) et (7).The catalyst then enters the chlorination zone (zone 13) a gas circulating against the current with respect to the direction of circulation of the catalyst, is also introduced into this zone via the pipe (8). The gases from the combustion and chlorination zones exit the helical elevator via the lines (6) and (7).
Le catalyseur pénètre ensuite dans la zone de calcination (zone 14). dans cette zone, le catalyseur est balayé à contre-courant par de l'air sec introduit par le conduit (9). L'alimentation des conduites (5), (8) et (9) est assurée par des conduites et un dispositif situé à l'intérieur du fût central Le gaz de calcination sort de l'élévateur hélicoïdal par la canalisation (7) conjointement aux gaz de combustion et de chloiationThe catalyst then enters the calcination zone (zone 14). in this zone, the catalyst is swept against the current by dry air introduced through the conduit (9). The supply of lines (5), (8) and (9) is provided by pipes and a device located inside the central barrel The calcining gas leaves the helical elevator by the pipe (7) together with the combustion and chlorination gases
La figure 3 présente une léalisation du procédé selon l'invention dans laquelle les zones de combustion et de chloration sont confonduesFIG. 3 shows an embodiment of the method according to the invention in which the combustion and chlorination zones are combined
Selon cette réalisation, l'élévateur vibrant hélicoïdal (9) est disposé sur une table vibrante ( 1) et deux moteurs à balourds (2) génèrent les vibrations nécessaires à la montée du catalyseur. L'entrée des particules solides se fait par la conduite (3) et la sortie des particules par la conduite (4)According to this embodiment, the helical vibrating elevator (9) is arranged on a vibrating table (1) and two unbalanced motors (2) generate the vibrations necessary for the rise of the catalyst. Solid particles enter via line (3) and particles exit via line (4)
La zone ( 10) est une zone dans laquelle le catalyseur est préchauffé au moyen d'un courant d'azote introduit au bas de l'élévateur vibrant La conduite (5) permet d'introduire l'azote dans la conduite (3).The zone (10) is a zone in which the catalyst is preheated by means of a stream of nitrogen introduced at the bottom of the vibrating elevator. The pipe (5) makes it possible to introduce the nitrogen into the pipe (3).
Le catalyseur traverse la zone ( 1 1 ) du régénérateur, qui est à la fois une zone de combustion et une zone de chloration et dans laquelle sont opérés simultanément un brûlage et une redispersion de la phase bimétallique du catalyseur. Un gaz contenant du chlorure d'hydrogène est introduit dans chacune des spires composant la zone ( 1 1 ) par six conduites (6), le gaz est ensuite soutiré de cette zone au moyen de six conduites (7). Le catalyseur pénètre ensuite dans la zone de calcination ( 12) dans laquelle il est balayé par un courant d'air sec introduit dans cette zone par la conduite (8) Le gaz de calcination sort de la zone ( 12) par les conduites (7).The catalyst passes through the zone (1 1) of the regenerator, which is both a combustion zone and a chlorination zone and in which a burning and a redispersion of the bimetallic phase of the catalyst are carried out simultaneously. A gas containing hydrogen chloride is introduced into each of the turns making up the zone (1 1) by six pipes (6), the gas is then withdrawn from this zone by means of six pipes (7). The catalyst then enters the calcination zone (12) in which it is swept by a stream of dry air introduced into this zone by the pipe (8) The calcination gas leaves the zone (12) by the pipes (7 ).
Exemple 1 :Example 1:
Le catalyseur de l'exemple 1 est régénéré dans un régénérateur conforme à la figure 1.The catalyst of Example 1 is regenerated in a regenerator in accordance with FIG. 1.
Le catalyseur se présente sous forme de billes sphéπques de diamètre 1 ,8 mm, il comprend une phase métallique de platine dispersée sui alumine, la teneur en platine étant de 0,30% poids La surface métallique exposée avant régénération est 81 %. La surface spécifique du catalyseur est 200 m2/g Le catalyseur entre dans le régénérateur à une température de 350°C à un débit de 500 kg/h. Sa teneur en carbone (coke) est de 6,0% poids.The catalyst is in the form of spherical beads with a diameter of 1.8 mm, it comprises a metallic phase of platinum dispersed on alumina, the platinum content being 0.30% by weight The metal surface exposed before regeneration is 81%. The specific surface of the catalyst is 200 m2 / g The catalyst enters the regenerator at a temperature of 350 ° C at a flow rate of 500 kg / h. Its carbon content (coke) is 6.0% by weight.
Les premiers pas de l'élévateur hélicoïdal sont baignés par un flux d'azote servant au préchauffage (zone 13) du catalyseur. Ce flux d'azote est introduit en (7) au débit de 500 Nm3/h, à la pression de 5 bars, ce gaz est préchauffé à 480°C au moyen d'un four extérieur au dispositif.The first steps of the helical elevator are bathed in a flow of nitrogen used for preheating (zone 13) of the catalyst. This nitrogen flow is introduced in (7) at a flow rate of 500 Nm 3 / h, at a pressure of 5 bars, this gas is preheated to 480 ° C. by means of an oven external to the device.
Le catalyseur traverse la zone ( 14) de brûlage du coke. Chacune des conduites (8) délivrent un débit de 40 Nm3/h d'air préchauffé à 480°C.The catalyst passes through the coke burning zone (14). Each of the pipes (8) deliver a flow of 40 Nm3 / h of air preheated to 480 ° C.
Le temps de séjour du catalyseur dans la zone de combustion (zone 14) est de 30 minutes, soit une longueur de tube de 60 m. Le catalyseur pénètre ensuite dans la zone de chloration qui est ici une zone d'oxychloration (zone 15), la conduite (9) permettant l'introduction d'un flux d'air contenant du perchloréthylène au débit de 500 Nm3/h. Le temps de séjour du catalyseur dans la zone d'oxychloration est de 30 minutes, soit une longueur de tube de 60 m. Le catalyseur pénètre ensuite dans la zone de calcination (zone 16). Le temps de séjour du catalyseur dans la zone de calcination est de 15 minutes, soit une longueur de tube de 30 m. Le catalyseur est balayé à contre-courant par un courant d'air sec à 500 Nm3/h introduit en haut du régénérateur par la conduite (1 1).The residence time of the catalyst in the combustion zone (zone 14) is 30 minutes, ie a tube length of 60 m. The catalyst then enters the chlorination zone which is here an oxychlorination zone (zone 15), the line (9) allowing the introduction of an air flow containing perchlorethylene at a flow rate of 500 Nm3 / h. The residence time of the catalyst in the oxychlorination zone is 30 minutes, ie a tube length of 60 m. The catalyst then enters the calcination zone (zone 16). The residence time of the catalyst in the calcination zone is 15 minutes, ie a tube length of 30 m. The catalyst is swept against the current by a stream of dry air at 500 Nm3 / h introduced at the top of the regenerator through line (1 1).
Les caractéristiques du catalyseur en sortie de régénérateur sont les suivantes : surface spécifique, 195 m2/g; dispersion de la phase métallique, 95%; teneur en carbone 0,1%. Les caractéristiques mécaniques des billes de catalyseur (résistance à l'attrition, écrasement grain à grain) sont inchangées. La teneur en chlore est de 1,2% poids. Le dispositif décrit dans l'exemple 1 permet donc la régénération complète du catalyseur de réformage.The characteristics of the catalyst at the outlet of the regenerator are as follows: specific surface, 195 m2 / g; dispersion of the metallic phase, 95%; 0.1% carbon content. The mechanical characteristics of the catalyst balls (resistance to attrition, crushing grain to grain) are unchanged. The chlorine content is 1.2% by weight. The device described in Example 1 therefore allows complete regeneration of the reforming catalyst.
Exemple 2Example 2
Le catalyseur de l'exemple 2 est régénéré dans un régénérateur conforme à la figure 2. Le catalyseur se présente sous forme de billes sphériques de diamètre 1 ,6 mm, il comprend une phase métallique de platine dispersée sur alumine, la teneur en platine étant de 0,28% poids. La surface métallique exposée avant régénération est 81 %. La surface spécifique du catalyseur est 220 m2/g.The catalyst of Example 2 is regenerated in a regenerator in accordance with FIG. 2. The catalyst is in the form of spherical beads with a diameter of 1.6 mm, it comprises a metallic phase of platinum dispersed on alumina, the platinum content being 0.28% by weight. The metal surface exposed before regeneration is 81%. The specific surface of the catalyst is 220 m2 / g.
Le catalyseur entre dans le régénérateur à une température de 350°C à un débit de 500 kg/h. Sa teneur en carbone (coke) est de 6,0% poids.The catalyst enters the regenerator at a temperature of 350 ° C at a flow rate of 500 kg / h. Its carbon content (coke) is 6.0% by weight.
Le catalyseur traverse la zone de brûlage du coke. Un débit d'air de 50 NmVh est introduit par la conduite (3), dans la zone de combustion, il circule à co-courant de l'écoulement de catalyseur. Ce gaz est introduit à température ambiante. De l'air à température ambiante est aussi introduit au moyen des 7 conduites (5), le débit d'air de chacune de ces conduites étant de 50 Nm3/h. Ce gaz sort ensuite au moyen des conduites (6) soutirant chacune un débit de 50 Nm3/h.The catalyst passes through the coke burn zone. An air flow of 50 NmVh is introduced through line (3), into the combustion zone, it circulates co-current with the catalyst flow. This gas is introduced at room temperature. Air at room temperature is also introduced by means of the 7 pipes (5), the air flow rate of each of these pipes being 50 Nm3 / h. This gas then exits by means of the pipes (6) each drawing a flow rate of 50 Nm3 / h.
La température moyenne dans le lit catalytique en zone de combustion de coke est ajustée dans la fenêtre 480-550°C. Les spires en zone de combustion ne sont pas calorifugées. Le catalyseur entre dans l'élévateur à une température de 150°C à un débit de 500 kg/h. Sa teneur en carbone (coke) est de 6.0% poids.The average temperature in the catalytic bed in the coke combustion zone is adjusted in the window 480-550 ° C. The coils in the combustion zone are not insulated. The catalyst enters the elevator at a temperature of 150 ° C at a flow rate of 500 kg / h. Its carbon content (coke) is 6.0% by weight.
Le temps de séjour du catalyseur dans la zone de combustion (zone 12) est de 30 minutes, soit une longueur de tube de 60 m. Le catalyseur pénètre ensuite dans la zone d'oxychloration (zone 13), la conduite (8) introduisant un débit de 500 Nm3/h d'air contenant un mélange de dichloroéthane et d'eau. Le temps de séjour du catalyseur dans la zone d'oxychloration est de 30 minutes, soit une longueur de tube de 60 m. Le catalyseur pénètre ensuite dans la zone de calcination (zone 14), le courant d'air sec introduit dans cette zone à contre- courant du catalyseur a un débit de 500 Nm3/h . Le temps de séjour du catalyseur dans la zone de calcination est de 15 minutes, soit une longueur de tube de 30 m.The residence time of the catalyst in the combustion zone (zone 12) is 30 minutes, ie a tube length of 60 m. The catalyst then enters the oxychlorination zone (zone 13), the pipe (8) introducing a flow rate of 500 Nm3 / h of air containing a mixture of dichloroethane and water. The residence time of the catalyst in the oxychlorination zone is 30 minutes, ie a tube length of 60 m. The catalyst then enters the calcination zone (zone 14), the stream of dry air introduced into this zone against the current of the catalyst has a flow rate of 500 Nm 3 / h. The residence time of the catalyst in the calcination zone is 15 minutes, ie a tube length of 30 m.
Les caractéristiques du catalyseur en sortie de régénérateur sont les suivantes : surface spécifique, 220 m2/g : dispersion de la phase métallique. 95%; teneur en carbone 0,05%. Les caractéristiques mécaniques des billes de catalyseurThe characteristics of the catalyst at the outlet of the regenerator are as follows: specific surface, 220 m 2 / g: dispersion of the metallic phase. 95%; carbon content 0.05%. The mechanical characteristics of the catalyst balls
(résistance à l'attrition. écrasement grain à grain) sont inchangées. La teneur en chlore est de 1 ,0% poids. Le dispositif décrit dans l'exemple 2 permet donc la régénération complète du catalyseur de réformage.(attrition resistance. grain-to-grain crushing) are unchanged. Content chlorine is 1.0% by weight. The device described in Example 2 therefore allows complete regeneration of the reforming catalyst.
Exemple 3 :Example 3:
Le catalyseur de l'exemple 3 est régénéré dans un régénérateur conforme à la figure 3 dans lequel la combustion et la chloration sont effectuées dans la même zone.The catalyst of Example 3 is regenerated in a regenerator according to FIG. 3 in which the combustion and the chlorination are carried out in the same zone.
Le catalyseur se présente sous forme d'extrudés de diamètre 1 ,4 mm et de longueur comprise entre I et 8 mm. Il comprend une phase métallique de platine et de rhénium dispersée sur alumine, la teneur en platine est de 0,25% poids et la teneur en rhénium est de 0,30 % poids. La surface métallique exposée avant régénération est 75%. La surface spécifique du catalyseur est 230 m2/g. Le catalyseur entre dans le régénérateur à une température de 140°C à un débit de 300 kg/h. Sa teneur en carbone (coke) est de 12.0% poids.The catalyst is in the form of extrudates with a diameter of 1.4 mm and a length of between 1 and 8 mm. It comprises a metallic phase of platinum and rhenium dispersed on alumina, the platinum content is 0.25% by weight and the rhenium content is 0.30% by weight. The metal surface exposed before regeneration is 75%. The specific surface of the catalyst is 230 m2 / g. The catalyst enters the regenerator at a temperature of 140 ° C. at a flow rate of 300 kg / h. Its carbon content (coke) is 12.0% by weight.
Le catalyseur est préchauffé à la température de 515°C dans les premières spires constituant la zone ( 10) au moyen d'un flux d'azote de débit 20 Nm3/h, à la pression de 6 bars. Le catalyseur traverse ensuite la zone (1 1) du régénérateur. Dans cette zone, un flux d'air contenant du chlorure d'hydrogène est introduit dans chacune des spires composant la zone de combustion par six conduites (6) au débit de 80 Nm3/h. Chacun des appoints d'air est introduit à la température de 400°C et à la pression de 5,9 bars. Le chauffage et la compression de l'air de combustion étant assurés par un four et un compresseur extérieur au dispositif. Le chlorure d'hydrogène est obtenu par décomposition en température de dichloropropane entre le four et le régénérateur. Le temps de séjour du catalyseur dans cette zone ( 1 1 ) est de 40 minutes. Cette zone ( 1 1 ) est, en outre, chauffée à la température de 550°C par effet Joules comme décrit dans le brevet EP-A-0.612.561 .The catalyst is preheated to the temperature of 515 ° C. in the first turns constituting the zone (10) by means of a flow of nitrogen having a flow rate of 20 Nm 3 / h, at a pressure of 6 bars. The catalyst then passes through the zone (1 1) of the regenerator. In this zone, an air flow containing hydrogen chloride is introduced into each of the turns making up the combustion zone through six pipes (6) at a flow rate of 80 Nm3 / h. Each of the air additions is introduced at a temperature of 400 ° C. and at a pressure of 5.9 bars. The combustion air is heated and compressed by an oven and a compressor external to the device. Hydrogen chloride is obtained by temperature decomposition of dichloropropane between the oven and the regenerator. The residence time of the catalyst in this zone (1 1) is 40 minutes. This zone (1 1) is, in addition, heated to the temperature of 550 ° C. by the Joules effect as described in patent EP-A-0,612,561.
Le catalyseur pénètre ensuite dans la zone de calcination ( 12), dans cette zone, il est balayé à contre-courant par un courant d'air sec introduit en haut du régénérateur par la conduite (8) au débit de 50 Nm3/h et à la température de 525°C. Le temps de séjour du catalyseur dans cette zone est de 15 minutes. Les caractéristiques du catalyseur en sortie de régénérateur sont les suivantes : surface spécifique, 210 m2/g ; dispersion de la phase bimétallique 95%: teneur en carbone inférieure à 0,05. La quantité de petites particules de catalyseurs -appelées « fines » par l'homme du métier- produites lors de la régénération est inférieure à 0, 1 % en poids. La régénération du catalyseur de réformage est donc complète. The catalyst then enters the calcination zone (12), in this zone, it is swept against the current by a stream of dry air introduced at the top of the regenerator by the line (8) at a flow rate of 50 Nm3 / h and at a temperature of 525 ° C. The residence time of the catalyst in this zone is 15 minutes. The characteristics of the catalyst leaving the regenerator are as follows: specific surface, 210 m2 / g; 95% bimetallic phase dispersion: carbon content less than 0.05. The amount of small catalyst particles - called "fine" by those skilled in the art - produced during regeneration is less than 0.1% by weight. The regeneration of the reforming catalyst is therefore complete.

Claims

REVENDICATIONS
1 Procédé de traitement d'un catalyseur choisi dans le groupe lormé par les catalyseurs de léformage. d'isomérisation de pai affines et de déshydrogénation de pai affines ou d'un adsorbant pulvéï ulent. consistant à faire monter les particules de catalyseur ou d'adsoi bant dans un élévateur hélicoïdal vibrant comportant au moins une spire hélicoïdale vibrante et dans lequel sont agencées au moins deux zones, procédé dans lequel lesdites particules sont en outre soumises à un profil de température sur une partie au moins de leur trajet, trajet au cours duquel elles sont mises en contact avec au moins un fluide, procédé caractérisé en ce que en ce que ledit ti alternent est compris dans le groupe formé par les régénérations, les activations , les réactivations de catalyseui s. ledit traitement comprenant au moins une étape de combustion réalisée dans au moins une zone de combustion et au moins une étape de chloration réalisée dans au moins une zone de chloration.1 A method of treating a catalyst selected from the group LORME by léformage catalysts. isomerization of affine or dehydrogenation of affine or a pulverulent adsorbent. consisting in raising the particles of catalyst or adsorbent in a vibrating helical elevator comprising at least one vibrating helical coil and in which are arranged at least two zones, process in which said particles are further subjected to a temperature profile on at least part of their path, path during which they are brought into contact with at least one fluid, method characterized in that in that said alternating ti is included in the group formed by regenerations, activations, reactivations of catalysts. said treatment comprising at least one combustion step carried out in at least one combustion zone and at least one chlorination step carried out in at least one chlorination zone.
2. Procédé selon la revendication 1 caractérisé en ce que la régénération ou l'activation ou la réactivation de catalyseurs est effectuée en continu2. Method according to claim 1 characterized in that the regeneration or activation or reactivation of catalysts is carried out continuously
3 Procédé selon la revendication 1 ou 2 caractérisé en ce qu'au moins une zone de combustion et au moins une zone de chloration sont distinctes et superposées dans la spire hélicoïdale vibrante.3 Method according to claim 1 or 2 characterized in that at least one combustion zone and at least one chlorination zone are distinct and superimposed in the vibrating helical coil.
4 Procédé selon l'une des revendications précédentes caractérisé en ce qu'au moins une zone de combustion et au moins une zone de chloration sont confondues.4 Method according to one of the preceding claims characterized in that at least one combustion zone and at least one chlorination zone are combined.
5 Procédé selon l'une des revendications précédentes cai acténsé en ce qu'il comprend en outre au moins une étape de calcination léahsée dans au moins une zone de calcination5 Method according to one of the preceding claims cai acténsé in that it further comprises at least one calcination step lahahée in at least one calcination zone
6 Procédé selon la revendication 5 caractérisé en ce que le catalyseur subit successivement au moins une étape combustion en présence d'un gaz de combustion, puis au moins une étape de chloration en présence d'un gaz de chloration puis au moins une étape de calcination en présence d'un gaz de calcination 6 Method according to claim 5 characterized in that the catalyst successively undergoes at least one combustion step in the presence of a combustion gas, then at least one chlorination step in the presence of a chlorination gas then at least one calcination step in the presence of a calcining gas
7. Procédé selon l'une des revendications précédentes caractérisé en ce qu'il comprend en outre au moins une étape de strippage des hydrocarbures réalisée avant l'étape de combustion.7. Method according to one of the preceding claims characterized in that it further comprises at least one step of stripping the hydrocarbons carried out before the combustion step.
8. Procédé catalytique choisi dans le groupe formé par les réformage, les isomérisation de paraffines et les déshydrogénations de paraffines effectué dans plusieurs zones réactionnelles en série, superposées ou côte à côte, la charge et le catalyseur circulant successivement à travers chaque zone réactionnelle de haut en bas, le catalyseur soutiré en bas de la dernière zone réactionnelle traversée par la charge étant ensuite traité selon le procédé de la revendication 1 , puis étant soutiré du haut de ladite spire et envoyé dans la première réactionnelle traversée par ladite charge.8. Catalytic process chosen from the group formed by reforming, isomerization of paraffins and dehydrogenation of paraffins carried out in several reaction zones in series, superimposed or side by side, the charge and the catalyst flowing successively through each reaction zone from above below, the catalyst withdrawn at the bottom of the last reaction zone traversed by the charge then being treated according to the method of claim 1, then being withdrawn from the top of said turn and sent to the first reaction crossed by said charge.
9. Installation comprenant : • au moins un élévateur hélicoïdal vibrant, comportant au moins une spire, une rampe hélicoïdale de forme sensiblement circulaire, au moins une conduite d'introduction du catalyseur et au moins une conduite de sortie du catalyseur, cet élévateur hélicoïdal étant disposé sur une table vibrante, • au moins une zone de combustion dans laquelle est disposée au moins une spire de l'élévateur hélicoïdal vibrant comprenant au moins une conduite d'introduction des gaz et au moins une conduite de sortie des gaz,9. Installation comprising: • at least one vibrating helical elevator, comprising at least one turn, a helical ramp of substantially circular shape, at least one catalyst introduction pipe and at least one catalyst outlet pipe, this helical elevator being disposed on a vibrating table, • at least one combustion zone in which is arranged at least one turn of the vibrating helical elevator comprising at least one gas introduction pipe and at least one gas outlet pipe,
• au moins une zone de chloration dans laquelle est disposée au moins une spire de l'élévateur hélicoïdal vibrant comprenant au moins une conduite d'introduction des gaz et au moins une conduite de sortie des gaz.• at least one chlorination zone in which is disposed at least one turn of the vibrating helical elevator comprising at least one gas introduction pipe and at least one gas outlet pipe.
10. Installation selon la revendication 9 comprenant au moins une zone de calcination située au-dessus des zones de combustion et de chloration dans laquelle est disposée au moins une spire de l'élévateur hélicoïdal vibrant comprenant au moins une conduite d'introduction des gaz et au moins une conduite de sortie des gaz.10. Installation according to claim 9 comprising at least one calcination zone located above the combustion and chlorination zones in which is disposed at least one turn of the vibrating helical elevator comprising at least one gas introduction pipe and at least one gas outlet pipe.
1 1. Installation selon la revendication 9 ou 10 dans laquelle les zones de combustion et de chloration sont confondues. 1 1. Installation according to claim 9 or 10 wherein the combustion and chlorination zones are combined.
PCT/FR1998/000372 1997-03-04 1998-02-25 Method for regenerating paraffin reforming or isomerization or dehydrogenation catalysts in a vibrating helical spire WO1998039095A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP53821898A JP2002511791A (en) 1997-03-04 1998-02-25 Regeneration of reforming catalyst or paraffin isomerization catalyst or paraffin dehydrogenation catalyst in oscillating spiral coil
EP98910826A EP0969923A1 (en) 1997-03-04 1998-02-25 Method for regenerating paraffin reforming or isomerization or dehydrogenation catalysts in a vibrating helical spire
BR9808164-0A BR9808164A (en) 1997-03-04 1998-02-25 Regeneration of paraffin reform or isomerization or dehydrogenation catalysts in a vibrant helical loop

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9702658A FR2760386B1 (en) 1997-03-04 1997-03-04 REGENERATION OF CATALYSTS FOR REFORMING OR ISOMERIZATION OR DEHYDROGENATION OF PARAFFINS IN A VIBRANT HELICOIDAL SPIRE
FR97/02658 1997-03-04

Publications (1)

Publication Number Publication Date
WO1998039095A1 true WO1998039095A1 (en) 1998-09-11

Family

ID=9504468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/000372 WO1998039095A1 (en) 1997-03-04 1998-02-25 Method for regenerating paraffin reforming or isomerization or dehydrogenation catalysts in a vibrating helical spire

Country Status (7)

Country Link
EP (1) EP0969923A1 (en)
JP (1) JP2002511791A (en)
KR (1) KR20000075923A (en)
CN (1) CN1249700A (en)
BR (1) BR9808164A (en)
FR (1) FR2760386B1 (en)
WO (1) WO1998039095A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9656409B2 (en) 2011-10-25 2017-05-23 Rhodia Operations Method for preparing polyamide granules

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2780316B1 (en) * 1998-06-24 2000-07-28 Inst Francais Du Petrole REGENERATION OF CATALYSTS FOR REFORMING OR ISOMERIZATION OR DEHYDROGENATION OF PARAFFINS BY PASSING INTO THE DESCENT MODE ON A VIBRATING HELICOIDAL CONVEYOR
KR100416219B1 (en) * 2001-05-16 2004-02-05 안상재 recycled device of desiccant
FR2915908B1 (en) 2007-05-10 2010-09-03 Eurecat Sa PROCESS FOR SULFURING OR PRESULFURIZING SOLID PARTICLES OF A CATALYST OR ADSORBENT
KR101434454B1 (en) * 2013-06-05 2014-08-27 케이씨코트렐 주식회사 Roasting system using a continuous spiral elevator of used-catalyst for RHDS and VRDS desulfurization
KR20230037849A (en) 2021-09-10 2023-03-17 주식회사 엘지화학 Fluidized bed catalystic reaction system
KR20230037855A (en) 2021-09-10 2023-03-17 주식회사 엘지화학 Fluidized bed catalystic reaction system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2634187A1 (en) * 1988-07-12 1990-01-19 Gradient Rech Royallieu Vibrating conveyor
FR2701861A1 (en) * 1993-02-26 1994-09-02 Eurecat Europ Retrait Catalys Thermal treatment of solid particles of catalysts or adsorbents in the presence of fluid in a spiral helical coil.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2634187A1 (en) * 1988-07-12 1990-01-19 Gradient Rech Royallieu Vibrating conveyor
FR2701861A1 (en) * 1993-02-26 1994-09-02 Eurecat Europ Retrait Catalys Thermal treatment of solid particles of catalysts or adsorbents in the presence of fluid in a spiral helical coil.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9656409B2 (en) 2011-10-25 2017-05-23 Rhodia Operations Method for preparing polyamide granules

Also Published As

Publication number Publication date
KR20000075923A (en) 2000-12-26
FR2760386A1 (en) 1998-09-11
BR9808164A (en) 2000-05-16
JP2002511791A (en) 2002-04-16
CN1249700A (en) 2000-04-05
FR2760386B1 (en) 1999-04-16
EP0969923A1 (en) 2000-01-12

Similar Documents

Publication Publication Date Title
CA2116503C (en) Thermal treatment of catalyst/adsorbent solid particles in presence of a vibrating helicoidal coil
CA2007707C (en) Process for regenerating a catalyst used for the production of aromatic of reforming hydrocarbons
EP0872276B1 (en) Regeneration enclosure and process for the regeneration of a catalyst for aromatics production or reforming with improved oxychlorination ability
EP0873785B1 (en) Process and improved apparatus for regenerating a catalyst for aromatics production or reforming
FR2761907A1 (en) STAGE COMBUSTION METHOD AND DEVICE FOR THE REGENERATION OF A REFORMING OR AROMATIC CATALYST IN A MOBILE BED
JP3553934B2 (en) Improved method for regenerating deactivated catalyst
JPH0336575B2 (en)
WO1998039095A1 (en) Method for regenerating paraffin reforming or isomerization or dehydrogenation catalysts in a vibrating helical spire
EP1242568B1 (en) Method and installation for producing aromatic compounds in mobile bed comprising catalyst reduction
US5001095A (en) Method and apparatus for controlling moisture by flue gas segregation
EP2205699B1 (en) Method and housing for regenerating a reforming catalyst
FR2780316A1 (en) Regeneration of particulate catalysts used for reforming, paraffin isomerization and dehydrogenation
US4980325A (en) Method of controlling moisture in combustion section of moving bed regeneration process
EP2205698B1 (en) Method for regenerating a reforming catalyst
FR2780315A1 (en) TREATMENT OF OLEFIN METATHESIS CATALYSTS IN A VIBRATING HELICOIDAL CONVEYOR
FR2642330A1 (en) Process for regenerating a catalyst for reforming or producing aromatic hydrocarbons
FR2777806A1 (en) Process for the regeneration of a reforming catalyst
EP1252259B1 (en) Method and device for producing aromatic compounds comprising catalyst reduction
FR2835201A1 (en) Process for the continuous reduction and re-generation of a catalyst, used in reforming and dehydrogenation of paraffins and naphthenes in fluidized bed conditions, comprises reduction of catalyst by gas comprising by purified hydrogen
WO2015086573A1 (en) Method and device for regenerating a catalyst for reforming or producing aromatic hydrocarbons
JPS59228941A (en) Method of regenerating catalyst
BE512376A (en)
FR2761906A1 (en) Regeneration of catalysts by combustion in stages

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98803050.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN JP KR MX RU UA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998910826

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/008032

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1019997008004

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1998910826

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997008004

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998910826

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019997008004

Country of ref document: KR