WO1998033897A1 - Procede de controle de la synthese de transcription de l'arn et dispositif a cet effet - Google Patents

Procede de controle de la synthese de transcription de l'arn et dispositif a cet effet Download PDF

Info

Publication number
WO1998033897A1
WO1998033897A1 PCT/JP1998/000444 JP9800444W WO9833897A1 WO 1998033897 A1 WO1998033897 A1 WO 1998033897A1 JP 9800444 W JP9800444 W JP 9800444W WO 9833897 A1 WO9833897 A1 WO 9833897A1
Authority
WO
WIPO (PCT)
Prior art keywords
rna
probe
transcription
fluorescence
reaction
Prior art date
Application number
PCT/JP1998/000444
Other languages
English (en)
French (fr)
Inventor
Yukari Iida
Hiroyuki Koshimoto
Satoshi Kondo
Akihiko Tsuji
Original Assignee
Laboratory Of Molecular Biophotonics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratory Of Molecular Biophotonics filed Critical Laboratory Of Molecular Biophotonics
Priority to US09/269,519 priority Critical patent/US6180347B1/en
Priority to JP53272898A priority patent/JP3337226B2/ja
Priority to EP98901107A priority patent/EP0965635A1/en
Publication of WO1998033897A1 publication Critical patent/WO1998033897A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer

Definitions

  • the present invention relates to a method and apparatus for monitoring RNA transcription synthesis.
  • Proteins are synthesized on liposomes based on the base sequence of RNA obtained by copying the base sequence of DNA.
  • the transcription reaction is the first step to protein synthesis, and refers to the process of copying the base sequence of DNA present in the nucleus of a cell to synthesize RNA. Specifically, it is a reaction that transforms DNA into type II and synthesizes complementary RNA (adenine is peracil and guanine is cytosine) in the 5 'to 3' direction.
  • RNA polymerase which is responsible for RNA synthesis, binds to a specific base sequence on DNA, called a promoter, and then binds to a nucleotide triphosphate (NTP ) To synthesize RNA. After polymerization of several nucleotides from the transcription start site, a stable polymerization reaction continues, and the RNA strand is further extended.
  • NTP nucleotide triphosphate
  • In vitro transcription is a method for easily synthesizing RNA in vitro using the mechanism of intracellular transcription.
  • the in vitro transcription reaction using T7, T3, and SP6 polymerases involves introducing a type II DNA fragment downstream of each promoter and transcripting using an RNA polymerase that specifically recognizes each promoter. This is a method of performing a reaction and synthesizing the target RNA strand.
  • the in vitro transcription reaction can synthesize long-chain MA and RNA with a cap structure or intron introduced, which are difficult with an automatic synthesizer. These RNAs can be used for in vitro translation of MA-type MA and hybridized RNA. It is widely used as a probe for the experiment. RNA with a cap structure or RNA with an intron has been used to analyze the ends of transcripts and intervening sequences (Current
  • in vitro transcribed RNA synthesis reaction is used in many research fields, but generally, in order for the in vitro transcription reaction to proceed normally, the promoter should be placed at an appropriate position on the DNA used as type ⁇ . Various conditions, such as integration and the proper combination of promoter and RNA polymerase, must be met exactly. In addition, in order to efficiently perform the transcription reaction in the prepared sample, it is necessary to set detailed conditions, such as the quantitative ratio of type II DNA and RNA polymerase, to optimal values. Whether or not the sample prepared for performing the in vitro transcription reaction satisfies the conditions can be determined by actually performing the reaction and analyzing the results to confirm whether the desired reactant has been generated. You can know for the first time.
  • whether or not the reaction is progressing can be determined by collecting the reaction solution at regular intervals, extracting RNA, and measuring the absorption value at 260 nm to increase the amount of synthetic RNA in the reaction solution. It is usual to make sure that Furthermore, in order to confirm that the synthesized RNA is full-length, it is usual to extract the RNA and then confirm it by the electrophoresis method. These methods require an extraction operation of the synthesized RNA, and this procedure is usually extremely complicated and time-consuming. Therefore, in order to determine the conditions for efficiently and normally proceeding the in vitro transcription reaction, the above procedure must be repeated, and a great deal of time and effort is required.
  • a method for detecting nucleic acid such as single-stranded DNA hybridization with the nucleic acid is performed.
  • a method using two types of fluorescent labeling probes is known. This involves adding two types of probes, each labeled with a different type of fluorescent dye, to a solution containing nucleic acids. When two types of probes hybridize adjacent to each other on the same nucleic acid, the distance between the fluorescent dyes becomes shorter, and resonance energy transfer occurs between the fluorescent dyes, resulting in a change in the fluorescent spectrum. (Cardullo, RA et al. (1988) Proc. Natl. Acad. Sci. USA. 85 8790-8794, USP 4996143).
  • RNA having a length of several tens of bases or more has a specific three-dimensional structure (secondary structure) in an aqueous solution, and as a result, most sites in RNA do not hybridize with other nucleic acids. (Chiang, M.-Y Chan, H. et al., J. Biol. Chem. 266, 18162-18172, (1991)). No method has been established to reliably determine the site where the probe hybridizes on RNA.
  • the probe picks up a candidate for a site to which the probe can hybridize, prepares a probe having the nucleotide sequence, and determines whether each probe is hybridized with RNA.
  • RNA has been confirmed experimentally. These operations are very complicated and time consuming. Repeating these procedures does not guarantee that a site that hybridizes to the RNA will be found. Due to these factors, no case has been reported in which RNA having a length of 100 bases or more was detected by this method. Disclosure of the invention
  • the present invention solves the above problems, and provides a method for monitoring an RNA transcription / synthesis reaction on-time without the need for an RNA extraction operation or an electrophoresis operation. In other words, monitoring the start, progress, and end of the RNA transcription synthesis reaction, It is intended to provide a method for quantifying the amount of total RNA synthesized by the above reaction and monitoring the synthesis of full-length RNA. Further, the present invention provides a method for measuring the reaction rate of the transcription reaction (the rotation speed of the transcription) and for optimizing the reaction conditions.
  • Another object of the present invention is to provide a monitor using the method.
  • FIG. 1A is a diagram showing a profile used in the monitoring method of the present invention.
  • FIG. 1B is a diagram schematically showing a change in fluorescence spectrum observed by the monitoring method of the present invention.
  • FIG. 2 is a diagram showing an outline of a method for monitoring an RNA transcription synthesis reaction of the present invention.
  • FIG. 3A is a diagram showing an embodiment in which a plurality of sets of probes are used in the monitor method of the present invention, wherein a probe having a base sequence complementary to the vicinity of the 3 ′ end of the synthesized RNA;
  • This is a diagram schematically showing how a probe having a nucleotide sequence complementary to the intermediate portion of the RNA or a probe having a nucleotide sequence complementary to the vicinity of the 5 'end of the synthesized RNA respectively hybridizes to RNA. .
  • FIG. 3B is a diagram schematically showing a fluorescence spectrum obtained by hybridization of each probe.
  • FIG. 4 is a diagram schematically showing a monitor device according to the present invention.
  • FIG. 5 is a diagram showing the configuration of an in vitro transcription RNA synthesis reaction monitoring device.
  • FIG. 6 is a diagram showing the configuration of a measurement unit when two wavelengths are monitored with one set of fluorescently labeled probes.
  • Figure 7 is a diagram showing the configuration of a measurement unit when monitoring three wavelengths with two sets of fluorescently labeled probes.
  • FIG. 8 is a diagram showing the configuration of an in vitro transcription RNA synthesis reaction monitor using a 96-well plate.
  • FIG. 9 is a diagram showing that the fluorescence spectrum changes with the lapse of time of the in vitro transcription reaction by the monitoring method according to the present invention.
  • FIG.10A is a diagram showing that the time course of the in vitro transcription reaction can be measured as the time course of the fluorescence spectrum by the monitoring method according to the present invention, and the synthetic RNA was extracted and determined from the OD260 value.
  • FIG. 4 is a diagram showing a change over time in the amount of transcribed RNA synthesis.
  • FIG. 10B is a diagram showing that the time-dependent change of the in vitro transcription reaction can be measured as the time-dependent change of the fluorescence spectrum by the monitoring method according to the present invention, and the fluorescence intensity ratio at two wavelengths on the fluorescence spectrum.
  • Figure 11 Fluorescence intensity ratio (la / Id) at two wavelengths of the fluorescent spectrum when three sets of probes with different sites on the RNA to be hybridized were used for monitoring the RNA transcription synthesis reaction. ) Shows the change over time. Monitoring of the RNA transcription synthesis reaction by this method indicates that the probe used does not depend on the hybridization site on the RNA.
  • FIG. 12A Figure showing the time-dependent changes in the fluorescence spectrum of full-length XELF 1-Hybrid DNA, which was converted to type II, and the XELF-3F probe hybridizing near the 3 'end was added to the transcription reaction solution. It is.
  • the vertical axis I / Id is the fluorescence intensity normalized by the fluorescence intensity (Id) at 515 nm. The same applies to the vertical axes of FIGS. 12B, 13A, 13B, 15A, 15B, 18A, 18B, and 18C.
  • Fig.12B XELF 1-Hyper DNA with the 3 'end deleted was transformed into type III, and the XELF-3F probe hybridizing near the 3' end was added to the transcription reaction solution, and the time course of the fluorescence spectrum was measured. It is a figure showing a result.
  • Figure 13 A XELF 1-full-length DNA was transformed into type III DNA, and the XELF-1F probe hybridizing near the 5 'end was added to the transcription reaction solution, and the change in the fluorescence spectrum with time was observed. It is a figure showing the result of measurement.
  • Fig. 1 3B XELF 1-Hyper DNA with the 3 'end deleted is transformed into a ⁇ form, and the XELF-1F probe that hybridizes near the 5' end is added to the transcription reaction solution to change the fluorescence spectrum over time. It is a figure showing the result of measurement.
  • FIG. 14 is a diagram showing a calibration curve created in Example 4.
  • FIG. 15A is a diagram showing the time-dependent change of the fluorescence spectrum obtained when the full-length ⁇ -type DNA obtained in Example 5 is used.
  • FIG. 15B is a diagram showing the time-dependent change of the fluorescent spectrum obtained in Example 5 when the deleted type I DNA was used.
  • FIG. 16 is a diagram showing confirmation in Example 6 that the amount of RNA biosynthesis decreases as the amount of polymerase added decreases.
  • Fig. 17 RNA transcription synthesis with XELF-1F donor probe and XELF-1F AXEP probe hybridizing near the 5 'end added at 200, 400, and 800-fold molar ratio to type I DNA It is a figure which shows a time-dependent change of a reaction.
  • Fig. 18 A XELF 1—Hybrid RNA and XE LF-1F or XELF-4F probe
  • FIG. 3 is a view showing the result of a fluorescence spectrum when the mixture is mixed at 1: 1 and hybridized.
  • FIG. 18 is a diagram showing the results of measuring the change over time of the fluorescent spectrum by adding the XELF-1F probe to the 18B transcription reaction solution.
  • FIG. 18 is a diagram showing the results of measuring the change over time of the fluorescent spectrum with the addition of the XELF-4F probe to the 18 C transcription reaction solution.
  • the present invention provides a set of two types of oligonucleotide probes having a base sequence that hybridizes continuously to a part of the base sequence of transcribed RNA in an RNA transcription / synthesis reaction system. Labeled with an energy donor fluorescent molecule The start, end and full length of the RNA transcription / synthesis reaction are determined by measuring the fluorescence of the probe consisting of a donor probe and an energy probe labeled with an energy probe. It provides a method for monitoring the synthesis of RNA.
  • the present invention relates to two types of oligonucleotide probes having a nucleotide sequence that continuously hybridizes to a part of the nucleotide sequence of transcribed and synthesized RNA in an RNA transcription / synthesis reaction system, comprising:
  • the RNA transcription synthesis is performed by measuring the fluorescence of the probe consisting of a donor probe lapelized with a fluorescent molecule and an energy probe labeled with an energy sensor. It is intended to provide a method for quantifying the RNA transcription by a reaction.
  • the present invention also provides a set of two types of oligonucleotide probes having a base sequence that continuously hybridizes to a part of the base sequence of transcribed and synthesized RNA in an RNA transcription / synthesis reaction system.
  • a set of two types of oligonucleotide probes having a base sequence that continuously hybridizes to a part of the base sequence of transcribed and synthesized RNA in an RNA transcription / synthesis reaction system.
  • the present invention relates to a device for monitoring an in vitro transcribed RNA synthesis reaction, which comprises a synthesis reaction device for performing an RNA transcription reaction, sample introduction means for introducing a sample solution from the reaction device, and a concentration of the sample solution. It is intended to provide an apparatus characterized by comprising: a solvent mixing apparatus (measurement sample preparation apparatus) to be adjusted; and a fluorescence measurement apparatus.
  • the present invention provides a method for monitoring the initiation and progress of an RNA transcription reaction, the synthesis of full-length RNA, the quantification of the amount of total RNA synthesized by the above reaction, and the synthesis of full-length RNA.
  • a method of monitoring the reaction rate of the transcription reaction (the speed of rotation of transcription), a method of optimizing the reaction conditions, and This is a device that monitors the RNA synthesized in the transcription reaction using the method and its monitoring method, and quickly determines the optimal conditions for the reaction.
  • FIGS. 1A, 1B and 2 An overview of the method according to the invention is illustrated in FIGS. 1A, 1B and 2. That is, a probe having a nucleotide sequence complementary to at least a part of the nucleotide sequence of the RNA synthesized by the transcription reaction is added to the reaction solution to hybridize with the RNA in the course of the synthesis, and the hybrid compound is synthesized. This is made possible by measuring the fluorescent spectrum of the light.
  • the probes used in the method according to the present invention use two types of fluorescently labeled probes as one set. One probe is labeled with an energy-transfer donor dye and the other probe is labeled with an energy-transfer fluorescent dye, each of which is capable of successively hybridizing to a specific portion of the RNA.
  • RNA synthesis is initiated by RNA polymerase under conditions in which the probe is added to a reaction system for synthesizing RNA by a transcription reaction, and the probe can be hybridized with the probe.
  • the probe will hybridize.
  • the fluorescence intensity of the donor decreases and the fluorescence intensity of the maximum increases.
  • any part of the synthesized RNA can be selected as the site where the probe hybridizes to the RNA.
  • FIG. 2 since a large amount of the probe is contained in the synthesis reaction solution, a site having a base sequence complementary to the probe is synthesized during synthesis of each RNA molecule. The probe hybridizes immediately. Therefore, using the method schematically shown in Figure 2, even if a probe corresponding to a site where hybridization does not occur when the probe is added after the RNA has formed a specific three-dimensional structure, the probe can be used as an RNA Can be hybridized.
  • the probe according to the present invention has been described as having a continuously hybridizing base sequence, the present invention is not limited to this. Effective when two types of probes according to the present invention have a base sequence so that they hybridize adjacent to each other to a part of RNA, and when the fluorescent spectrum upon hybridization is significantly changed. It can be used for If the two types of probes used in the present invention are too far apart and hybridized, the probability of the occurrence of the above-mentioned fluorescence energy transfer is reduced, and substantially no change is observed in the fluorescence spectrum. More specifically, a pair of two types of probes described above are added to an in vitro transcribed RNA synthesis reaction solution.
  • the transcription reaction occurs, the synthesis of RNA is started, and a portion capable of hybridizing with the probe is generated, the set of probes hybridizes continuously at adjacent positions. Upon hybridization, energy transfer occurs between the dyes, and the fluorescence spectrum changes.
  • the fluorescence observed from the sample is a mixture of the fluorescence from the probe hybridized to the RNA and the fluorescence from the probe that is free in the reaction solution.
  • the larger the ratio of the probe hybridized to the RNA the larger the change in the fluorescence spectrum. That is, as the amount of synthesized RNA increases, the spectrum change increases.
  • the ratio (la / Id) of the fluorescence intensity (Id) at the fluorescence wavelength of the donor and the fluorescence intensity (la) at the fluorescence wavelength of Axep is given, the amount of RNA synthesized As increases, the la / Id value increases.
  • the start of the transcription reaction can be monitored by measuring the change in the fluorescence spectrum.
  • the rate of increase of the la / Id value indicates the rate of rotation of the transcription reaction. That is, it is possible to know (1) whether or not a transcription reaction occurs, and (2) the speed of rotation of the reaction (the degree of appropriateness of the reaction conditions) in the prepared sample and the use conditions.
  • RNA of length may be synthesized. In the conventional method, whether or not full-length RNA has been synthesized requires the separation of the product by electrophoresis and confirmation of the length. 3. If the present invention is used with a probe that hybridizes near the end, it is possible to confirm on-time whether or not it is full-length RNA.
  • a combination of two or more fluorescent dyes simultaneously (Fig. 3B).
  • a probe that hybridizes near the 5 'end is labeled with a specific type of donor / exceptor-fluorescent dye
  • a probe that hybridizes near the 3' end is labeled with another type of donor / exceptive dye. Label.
  • the amount of the probe added to the reaction solution can be arbitrarily set. That is, it is possible to add 10 times or 100 times the amount of type I DNA (molar ratio).
  • the fluorescent spectrum changes when the amount of synthesized RNA is up to 10-fold the amount of type I DNA.
  • the fluorescence spectrum does not change when more RNA is synthesized (hybridization does not occur in newly synthesized RNA because all probes hybridize to synthesized RNA and no free probe is present in the reaction mixture). If there is a soybean probe Absent) . Therefore, when a small excess of probe is added to type I DNA to cause a reaction, the initial stage of the transcription reaction can be accurately monitored.
  • This method is suitable for using a probe that hybridizes near the end to determine the presence or absence and speed of the transcription reaction.
  • the fluorescence spectrum changes within a range where the synthesized RNA is up to a 100-fold amount of the type I DNA. For example, if the synthesis reaction is practically completed when RNA is synthesized in an amount of 100,000 times or less the amount of type I DNA, the fluorescence spectrum does not change with time at that point. Therefore, it is suitable for monitoring the end of the synthesis reaction.
  • the nucleotide sequence of the probe according to the present invention is not particularly limited as long as it has a nucleotide sequence substantially complementary to any part of the synthesized RNA. That is, it is not necessary to confirm in advance by an experiment whether or not the probe and the synthesized RNA hybridize.
  • a base sequence that hybridizes with the synthesized RNA may be experimentally searched for, and a probe having that base sequence may be used.
  • the length of the base as long as the probe satisfies the requirement of substantially specifically hybridizing to the RNA. This length is usually 15 bases or more.
  • the type of the fluorescent dye of the probe according to the present invention that is, the type of the combination of the donor fluorescent dye and the exo-fluorescent dye is not particularly limited, but the critical transfer distance of energy transfer (energy transfer efficiency is 50%). Group with large distance Combination is preferred because the change in the fluorescence spectrum associated with energy transfer is large.
  • a combination in which a fluorescein-based dye is used as a donor and a mono-damine-based dye is used as an excipient can be suitably used.
  • energy donor monofluorescent molecules include BODIPY-based (4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene Molecular Probes), fluorescein-based, and mono-damine-based fluorescent dyes. They can be suitably used, and in the present invention, BODIPY and fluorescein are particularly preferred. Indocyanine-based and rhodamine-based dyes can be suitably used as the fluorescent molecule. In particular, in the present invention, Cy5, Cy3, Cy3.5 (Amersham LIFE SCIENCE, FluoroLink, Cat. No. PA25001, PA23001, PA23501) and rhodamine are preferred.
  • the binding group that binds the fluorescent dye to the probe is not particularly limited.
  • the two types of fluorescent dyes are suitable linkers so that the desired fluorescent energy transfer occurs, and the probe is sufficient. It is possible to bind via those that maintain water solubility.
  • a tetramethylene chain-decamethylene chain can be used.
  • the probe is described using DNA as an oligonucleotide, but is not particularly limited to DNA.
  • Various nucleotide derivatives can also be used, as long as they can specifically hybridize to a specific base sequence on RNA.
  • Specific examples include RNA, phosphorothioate-type oligonucleotide (S-oligo), methylphosphonate-type oligonucleotide (M-oligo), phosphoramidate-type oligonucleotide (A-oligo), and peptide nucleic acid.
  • the method for preparing the oligonucleotide sequence portion of the detection probe according to the present invention described above is not particularly limited.
  • Known nucleic acid synthesis methods can be preferably used.
  • automatic synthesis methods based on various solid-phase synthesis methods are preferable.
  • Wells, synthesis methods such as triester are preferably used (Edited by F. Eckstein, Modern machine -aided methods of o 1 i godeoxyr lbonuc 1 eot 1 des synthesis, Oligonucleotide and Analogues, I PL Press, 1991) 0
  • a method for introducing a preferable linker portion for binding a fluorescent dye into a probe can be achieved by using various polypeptide modifying reagents.
  • various polypeptide modifying reagents in particular, 5, a 6- (trifluoroacetylamino) hexyl-1- (2-cyanoethyl) -1- (N, N-diisopropyl) -1-phosphoramidite, which is a terminal amination reagent, Can be used simultaneously during chemical synthesis. This makes it possible to introduce a hexylamino group (after removing the trifluoroacetyl group) at any position of the oligonucleotide chain.
  • the fluorescence measuring means there is no particular limitation on the fluorescence measuring means that can be used in the present invention. It can be used favorably if it is an ordinary fluorescence measuring device, which generates excitation light for exciting the energy donor fluorescent dye, and can measure the fluorescence of the energy donor and the fluorescent dye.
  • an optimum processing method can be applied depending on the type of the dye used, and is not particularly limited.
  • the fluorescence spectrum of the energy donor dye is chosen so that it does not substantially overlap the observed fluorescence wavelength of the energy
  • the time change of the fluorescence intensity at the observed fluorescence wavelength of the dye can be used as it is. In other words, the effect of the time change of the fluorescence from the energy donor dye at the observed fluorescence wavelength of Axep is negligible.
  • FIG. 4 shows one embodiment of a device for monitoring in vitro transcription RNA synthesis using the method according to the present invention.
  • the sample introducing means 3 is a means for introducing a part of the reaction solution from the in vitro transcription RNA synthesis reaction device 2 of various types and sizes into the measurement solution preparation device 5 through an appropriate sampling line 10.
  • the sample introduction means 3 can control the timing of sampling and the amount of the solution by the control device 7.
  • the control device 7 adds an appropriate amount of solvent from the solvent device 11 to the measurement solution preparation device 5 through the solvent mixing line 12.
  • the diluted sample from the measurement solution preparation device 5 is introduced into the fluorescence measurement device 6.
  • a probe preparation device for introducing a probe kit may be added to the measurement solution preparation device 5.
  • the probe kit of the required type and concentration set by the control device 7 is mixed from the probe preparation device through the probe mixing line, and the measurement solution preparation device
  • the measurement solution preparation device 5 may use the control device 7 to set conditions for hybridizing the synthetic RNA and the probe in the sample solution. Specifically, the required volume of mixing cell, concentration and time. Further, if necessary, there may be a device for stirring the mixed solution of the sample and the probe, the time and the stirring speed of which are set by the control device 7.
  • the probe preparation device selects a probe type suitable for the purpose of monitoring, dilutes the probe solution to an appropriate concentration, prepares a probe solution, and introduces the probe solution into the measurement solution preparation device 5. At this time, it can be introduced by pressure or Perisu pump. After hybridization with the measurement solution preparation device 5, It is introduced into the fluorescence measuring device 6.
  • the fluorescence measurement device 6 measures the fluorescence spectrum in accordance with the fluorescence measurement conditions such as the excitation light conditions set by the control device 7 and sends the obtained data to the overnight processing device 8.
  • the measurement data consists of a spectrum of the fluorescence spectrum when excited by a specific excitation wavelength and its time change.
  • the means for taking in the data processing device 8 in the data processing device 8 can be stored in a storage device in the data processing device 8. Based on the data taken into the data processor 8, the start of transcription and the confirmation of the synthesis of full-length RNA in an in vitro transcribed RNA synthesis reaction are performed, or a program for calculating a change in the concentration of transcribed RNA is performed.
  • the means for calculating the change in the concentration of transcribed RNA is based on the calibration of the fluorescence intensity at a specific wavelength of each energy receptor probe previously stored in the storage device and the concentration (or the number of molecules) of the hybridized RNA. It is also possible to calculate based on the line.
  • the means described above can be automatically performed according to a program stored in a storage device (not shown) provided by the data processing device 8 in advance. Such a program can be input to the storage device by the input / output device 9, but it can also be read by selecting a program stored in advance from the input / output device 9.
  • the sampling line is opened by inputting from a pre-programmed time or an input device, a part of the solution during the reaction is introduced into the monitor system, and then the probe solution prepared in advance by the control device is used. Is selected, introduced into the probe mixing device, and the mixed sample solution and the probe are held under the hybridizing condition (the hybridizing condition is read from a storage device in the control device from a parameter stored in advance. After the hybridization is completed, the energy donor fluorescent dye excitation wavelength is sent to a fluorescence spectrum measuring device at a predetermined time for fluorescence spectrum measurement, and set according to the protocol.
  • the fluorescence intensity of each fluorescent wave length of Akusepu evening fluorescent dye is measured, and stores the measured data in a storage device in the control device
  • the stored measurement data is read by a data processing device to determine whether each probe has hybridized and to output the result. After the measurement, the sample solution is drained to drain 14.
  • FIG. 5 shows one embodiment of a more detailed in-vitro transcription RNA synthesis reaction monitor device.
  • the apparatus includes a reaction unit, a measurement sample preparation unit, a measurement unit, a control unit, a calculation unit, and a monitor.
  • the reaction unit is a unit for performing an RNA transcription / synthesis reaction, and comprises a reaction cuvette and a temperature controller for keeping the reaction solution in the reaction cuvette at a constant temperature.
  • gun-shaped DNA, probe, RNA polymerase, nucleotide triphosphate (ATP, GTP, CTP, UTP) and reaction buffer are added.
  • the reaction is stopped by adding RNA polymerase or type II DNA to these reaction solutions (time 20).
  • the reaction solution in the reaction cuvette is kept at a constant temperature (for example, 37 ° C) by a temperature controller. Warmer bath, hot plate, etc. can be used as the temperature controller.
  • aliquots of the reaction solution are collected at preset intervals and transferred to the measurement cuvette of the measurement sample preparation unit.
  • a fixed amount of buffer solution is dispensed in advance to the measurement cuvette.
  • the sampled sample may be transferred to a dilution cuvette, diluted with a certain amount of diluent from a diluent reservoir, and then transferred to a measurement cuvette. Sampling can be done manually or it can be automated.
  • the unit for preparing a sample for measurement is a large number of cells for measurement arranged in a circle. Each measurement cell is located at one of the “sample input positions”, one “measurement position”, or a number of “standby positions”. The sampled sample is injected into the measurement cuvette located at the “sample input position”.
  • the cuvette moves to “measurement position”.
  • the cuvette moved to the “measurement position” is moved to the measurement unit located below the measurement sample preparation unit.
  • the measurement unit performs a fluorescence measurement. After the measurement, measure the cuvette Return to the original position of the sample preparation unit. This completes one cycle.
  • the sample sampled from the reaction solution is again injected into the measurement cuvette at the “sample input position”, the next cycle is started.
  • the arrangement of the cells for measurement in the measurement sample preparation unit is not limited to a circular shape.
  • the measurement unit measures the fluorescence of the sample in the cuvette. As shown in Figs.
  • a light source for excitation light such as a lamp
  • a filter or a spectrometer that separates the light from the light source into wavelengths
  • a measurement cell and the fluorescence emitted from the sample in the measurement cell
  • the measurement cell moves from the measurement sample preparation unit to the position of the measurement cell in the measurement unit. Fluorescence emitted from the sample is detected simultaneously in two or three directions. In each direction, the fluorescence intensity is measured through filters with different wavelength characteristics.
  • Fil 1 and Fil 2 correspond to the wavelength ranges that selectively transmit the fluorescent light of Dona and the fluorescent light of Axep, respectively.
  • FIG. 8 shows an embodiment of a microplate reader-type in vitro transcription MA synthesis monitor using the method according to the present invention.
  • the incubation table holds a 96-well plate and has an incubation function. Temperature control can be controlled by a controller. You. After the plate and the incubation table are fixed, the plate is automatically slid under the control of the controller and moved to the measurement position.
  • excitation and fluorescence filters for detection
  • a device for automatically setting the filter on the optical axis can also be built in. is there.
  • the filters are automatically set to a holder on the optical axis.
  • the fiber-optic variable unit moves the excitation light and the fluorescence (detection light) fiber to the designated positions in the 96 holes. At this time, the position where the fiber moves is controlled by the controller. Normally, when the start position and end position are input by the controller, the fiber moves over 96 holes and the sample can be analyzed continuously.
  • the fluorescence passes through the fiber again and enters the fluorescence filter unit, where only the specific wavelength of the fluorescence (filter set) is emitted. Wavelength).
  • the selected light enters the detection unit, and the fluorescence intensity of Donna and Axep is measured.
  • the series of steps up to this point are performed at each time entered by the controller.
  • the obtained fluorescence intensity is converted into a fluorescence intensity ratio by a data processing device, and if plotted against time, the transcription reaction can be automatically monitored.
  • XELF1—HDNA was used as type II DNA in the transcription reaction, and the synthesis reaction of XELF1—HRNA was monitored.
  • Type III DNA, XELF1-hi used in this example was prepared as follows.
  • the control DNApTRI-Xefl in the in vitro transcription reaction kit (AmMon, MEGAscript T3 kit) was treated with the restriction enzyme EcoRI to obtain about 1.8 kb of XELF1 DNA.
  • This DNA fragment was cloned into pBluescript 11 (manufactured by STRATAGENE, obtained from T0Y0B0) to obtain pBlue'XELF1-Hino MA (about 4.76 kb).
  • pBlue'XELFl-his DNA was treated with the restriction enzyme Smal to obtain linear DNA.
  • the NTP and lOxTranscription bufferscriptionT3 RNA polymerase used in the in vitro transcription reaction used reagents from Ambion's MEGAscript T3 kit.
  • Probe with a base sequence complementary to the base sequence near the 5 'end of RNA XELF-1F Donor probe, 5, -B0DIPY493 / 503-AGCCTTTTCCC ATCTC-3' is XELF 1-Hino base It is complementary to the base sequence of SEQ ID NO (GeneBank Accession No. M25504), 184-199, and has B0DIPY493 / 503 dye bound at 5, terminal A.
  • XE LF-1 Faxcept probe 5, -AGGCATACTTG (Cy5) AAGG-3 'is complementary to the base sequence of XELF 1-hi, 200-214, and uses the Cy5 dye At the position (between G and A).
  • F-2F Donor probe 5 '-B0DIPY493 / 503-TCTTGATGTATGT GC-3' is complementary to the base sequence of XELF 1-HI, 566-580, and has a BODIPY493 / 503 dye of 5, It is linked at the terminal T.
  • XE LF—2 Faxcept probe, 5, 1 GGTTGTAACCA (Cy5) AT CT—3, is complementary to the base sequence of XE LF 1—H, 581—595 and is complementary to the Cy5 dye as described above. It is connected at the position (between A and A).
  • Probe having a nucleotide sequence complementary to the nucleotide sequence near the 3, terminal end of RNA: XELF—3F donor probe, 5'-B0DIPY493 / 503-TTAAACT CTGA TGGC C-3 'is XEL F1-Hino It is complementary to the nucleotide sequence of SEQ ID NOs: 1504-1519, and has the B0DIPY493 / 503 dye linked at the 5, terminal T.
  • ACTA-3 is complementary to the nucleotide sequence of XELF1-H, SEQ ID NO: 1520-1534, and has a Cy5 dye bound at the above position (between T and A).
  • Probes that are unlikely to hybridize to RNA XELF— 4F donor probe, 5′— B0DIPY493 / 503— AGTACCAGTGATCAT— 3 ′ is complementary to the base sequence of XELF 1—hi, 346—360 And B0DIPY493 / 503 dye linked at A at the 5 'end.
  • C-F0S donor probe / C-F0S receptor probe C-F0S donor probe, 5, —B0DIPY493 / 503—TCTAGTTGGTCTGTC—3, complementary to c-fosRNA nucleotide sequence number, 662-676 And BODIPY493 / 503 dye linked with A at the 5 'end.
  • C-F0S receptor probe 5'-GCAGACTTCTC (Cy5) ATCT-3 'is complementary to c-fos base sequence number 677-691, and the Cy5 dye is located at the above positions (C and A Between).
  • XELF-5F probe XELF-5F AXEP probe, 5'-ACCCAGGCATACTTG (Cy5) — 3 'is complementary to the nucleotide sequence of XELF 1—RNA, 204—218 And a Cy5 dye linked at the 3′-end G.
  • an automatic synthesizer is available from Perkin in Elmer's Mo del 394 or Perseptive's Expedite Model 18 Using 909, it was carried out according to the cyanoethylamidite method.
  • the obtained crude product was analyzed by DEAE-HPLC, and the main component was separated. The retention time was 20-30 minutes. Further, the aliquot was desalted and freeze-dried.
  • Solvent B 1. OM H COONH 4 20 CH 3 CN
  • Oligonucleotides dryness obtained above was dissolved in 0. 5M NaHC0 3 / NaH C0 3 buffer (pH 9.0) 200 ⁇ 1.
  • the dye was dissolved in 100 ⁇ 1 (1 tube) of sterile water, the two were mixed, and the reaction was performed overnight in the dark.
  • the reaction solution was subjected to gel filtration to remove unreacted dye.
  • RP—HP LC B gradient 15 to 65% (20 minutes) was analyzed, and the peak components around 20 to 25 minutes were collected. It was confirmed by a spectrophotometer that there was absorption at 260 nm and that there was absorption of a fluorescent dye.
  • RP-HPLC reverse phase C18
  • Solvent A 0.05 M TEAA 5% CH 3 CN
  • Solvent B 0.05M TEAA 40% CH 3 CN
  • the obtained solution was mixed with a solution obtained by dissolving the dried oligonucleotide in 300% of 0.5% NaHC03 / NaHC03 buffer (PH9.0), and reacted under light shielding.
  • the reaction solution was subjected to gel filtration to remove unreacted dye.
  • reaction conditions of the in vitro transcription reaction monitored in the present invention are not particularly limited, and can be changed according to the in vitro transcription reaction to be used. Fluorescence spectrum measurement
  • Hitachi F4500 type spectrofluorometer was used. Excitation at 480nm, from 500nm Fluorescence spectrum measurement was performed in the range of 750 nm, and the ratio of the fluorescence intensity of Axcept to Donna was determined, and the ratio was defined as the relative fluorescence intensity (la / Id).
  • RNA transcription synthesis reaction was performed by adding one set of two fluorescent labeling probes to 150 jul of a transcription reaction solution having the following composition.
  • the probe is a set of two types of probes (XELF-1F donor-probes) having a nucleotide sequence complementary to the vicinity of the 5,5 end of RNA.
  • the water was reduced to 150 ⁇ 1 with treated water.
  • the reaction solution was collected at regular intervals of 51, and 145 ul of 1XSSC containing 20 mM EDTA was added, and then the fluorescence spectrum was measured.
  • fluorescence based on the donor probe Bodipy493 / 503 was observed at around 520 nm, and fluorescence based on the Cy5 probe at around 670 nm was observed.
  • Fluorescence based on Bodipy493 / 503 decreased and fluorescence based on Cy5 increased over the course of the reaction time (Figure 9).
  • FIG. 10B plots the ratio (la / Id) of the fluorescence intensity (Id) at 520 nm to the fluorescence intensity (la) at 670 nm against the reaction time.
  • the amount of synthetic RNA at this time was determined by the following procedure. From the reaction solution, 5 ⁇ 1 of the reaction solution was sampled at regular time intervals, and the 14 ⁇ 1 reaction stop solution (151 1 of 5M NH 4 ⁇ Ac and 10 OmM EDTA and 130 1 of getyl biloca carbonate (DEPEC)) (A mixture of treated water) was added to stop the reaction. After that, phenol ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ extraction and ⁇ ⁇ extraction were performed, and RNA was recovered by isopropyl alcohol precipitation. The recovered RNA precipitate is
  • RNA After dissolving in DEPE C-treated water, the amount of RNA was determined by the absorbance at 260 nm.
  • Fig. 1 OA plots the amount of RNA against the reaction time.
  • FIG. 10A shows that the change in the fluorescence spectrum and the change in the amount of synthesized RNA show a good correlation.
  • the monitoring of the RNA transcription synthesis reaction by this method does not depend on the hybridization site on the RNA of the probe used.
  • Example 1 the probe was complementary to the RNA near the 5 'end (184-214).
  • An oligonucleotide (XE LF-1 F probe) having a unique base sequence was used.
  • XELF-2F probe having a nucleotide sequence complementary to the region (566-595)
  • XELF-3F probe having a nucleotide sequence complementary to the 3, terminal end (1504-1534) of RNA, was prepared.
  • Figure 11 plots the fluorescence intensity ratio (la / Id) at the two wavelengths of the fluorescence spectrum against the reaction time for each sample.
  • the time-dependent changes in the fluorescence spectra of the three samples show similar characteristics, and monitoring of the RNA transcription / synthesis reaction by this method does not depend on the hybridization site on the RNA of the probe used. Is shown.
  • XELF 1 The transcription reaction of type III DNA with the 3 ′ end deleted and the type III DNA of the full length was monitored by probes with complementary nucleotide sequences near the 3 ′ end and 5 ′ end, respectively. The time course of the fluorescence spectrum was observed.
  • T3 RNA polymerase 7 zl To the above reaction mixture, add 3.5 ⁇ g of XELF 1-hypotype III DNA with a 1020 base deletion at the 3 ′ end or full-length XELF 1-hypotype II DNA, and add the entire volume with DEPEC treated water. The temperature was adjusted to 70 1 and reacted at 37 ° C.
  • Figures 12A and B show two types of XELF 1-human full-length XELF 1-
  • the figure shows the results obtained by adding the XELF-3F donor probe and the XELF-3F probe probe that hybridize to the vicinity of the 3 ′ end with each DNA in the form of ⁇ , and measuring the change over time in the fluorescence spectrum.
  • FIGS. 13A and 13B show the results of measurement of the change over time in the fluorescence spectrum using the XELF-IF donor probe and the XELF-1F except probe hybridizing near the 5 ′ end. The time course of the fluorescence spectrum was observed for both deletion type and full length type II.
  • RNA of the full length (about 1.9 kb) was synthesized, and in the case of the deleted type III DNA, about 1 kb of the deleted RNA was synthesized.
  • RNA was calculated from the absorbance values of 260 bands by extracting RNA from the transcription solution collected at regular intervals in the same manner as in Example 1. Also, in the quantification based on the absorbance of 260 ⁇ , the value including the unreacted ribonucleotide ⁇ ⁇ DNA present in the reaction solution is quantified. To compensate for this effect, the absorbance at 260 nm of the sample solution before MA biosynthesis was quantified by performing a similar extraction procedure. A calibration curve was prepared using the result obtained by subtracting the value from each quantitative value.
  • the calibration curve obtained by the above method is shown in FIG. This calibration curve is for the case where a 1000-fold amount of probe is added in molar ratio to type I DNA.
  • the fluorescence intensity ratio (la / Id) is determined from the change in the fluorescence spectrum, and the RNA synthesis concentration is calculated from the above-mentioned calibration curve.
  • the amount of biosynthesized RNA can be known in real time while monitoring the fluorescence spectrum. (Example 5)
  • One set is for monitoring the initiation of the transcription reaction with a probe that hybridizes near the 5 'end, and the other set is a probe that hybridizes near the 3' end and is full-length ( This is to monitor whether or not the RNA of length is biosynthesized.
  • two types of probes that hybridize to the 5 'end are combined with B0DIPY493 / 503 and XRITC, and two types of probes that hybridize to the 3' end are combined with BODIPY493 / 503 and Cy5. Labeled with.
  • XELF-3F Donor probe (5, 1 B0DIPY493 / 503—TTAACTCTGATGGCC)
  • XELF—3F AXEP Yuichi probe (5'-ACCAGTCTTTT (Cy5) ACTA)
  • Cy5 ACTA One type of transcription reaction solution to which full-length ⁇ type DNA or ⁇ type DNA lacking the 3 'end has been added is shown below. Was prepared.
  • the volume was adjusted to 50 zl with DEPEC-treated water. When full-length type II DNA is added
  • Figure 15A shows the time course of the fluorescence spectrum when using full-length type I DNA
  • Figure 15B shows the time course of the fluorescence spectrum when using the deleted type II MA. You. In the fluorescence spectrum of FIG. 15A, an increase in XRITC fluorescence near 610 nm and an increase in Cy5 fluorescence near 670 nm were simultaneously observed.
  • the fluorescence intensity ratio (la / Id) determined from the fluorescence spectrum was converted to the MA concentration using the above calibration curve, and plotted against the reaction time.
  • FIG. 16 shows that the amount of RNA biosynthesis decreased as the amount of polymerase decreased. Therefore, to determine whether the transcription reaction speed is fast or slow, monitor the initial stage of the reaction at short intervals. And then determine the slope of the change over time.
  • the XELF-1F DNA probe and the X-probe probe having a nucleotide sequence complementary to the vicinity of the 5 ′ end of the RNA described above were used at a 200-fold molar ratio with respect to XEL Fl-MA which is a type I (template) DNA. After adding 400 times and 800 times, the following transcription reaction solution was prepared, and the change over time of the fluorescent spectrum was measured.
  • Type I DNA Probe (1: 200)
  • Type I DNA Probe (1: 400)
  • Type DM DM Probe (1: 800)
  • the ratio of type I DNA to probe was set to 1: 200 in order to monitor the initial stage of the reaction, and in order to monitor until the end of the transcription reaction, type II MA was used. This indicates that the ratio of the probe to the probe should be set to 1: 400 or 1: 800.
  • RNA to which the probe used in the present invention hybridizes is arbitrary.
  • XE LF 1 The secondary structure of aRNA was predicted by a simulation of the entire combi- nation (DNASIS DNA—a sequence input analysis system manufactured by Hitachi Soft Engineering). In general, select a site that has a loop structure (nucleotide sequence number 184-214), which is expected to be easy for the probe to hybridize, and a site (base sequence number 346-375), which has a stem structure that is expected to be difficult for the probe to hybridize. Then, a set of two types of fluorescently labeled probes having a base sequence complementary to the base sequence at that site was prepared.
  • DNASIS DNA a sequence input analysis system manufactured by Hitachi Soft Engineering
  • XELF-1F donor probe has a nucleotide sequence complementary to that of 184-199.
  • XE LF-1 Fax probe has a nucleotide sequence complementary to that of 200-214.
  • XE LF-4 F donor probe has a nucleotide sequence complementary to that of 346-360.
  • XE LF—4 F ⁇ ⁇ 36 ⁇ 36 36 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the monitoring method for in vivo transcription of RNA in the present invention was performed.
  • the time course of the vector was monitored.
  • T3 RNA polymerase results are shown in FIGS. 18B and C. As is evident from FIGS. 18B and C, when the XEL F-4F probe was used, the same time course of the fluorescence spectrum as when the XEL F_1 F probe was used was observed. These results indicate that even if a probe has a nucleotide sequence that does not hybridize to RNA having a specific secondary structure, RNA that is synthesized when added to the transcription synthesis reaction solution in advance Indicates that hybridization occurs.
  • the probe used for monitoring the RNA transcription / synthesis reaction based on the present invention only needs to have a base sequence complementary to a part of the RNA, and selection of which site on the RNA to hybridize is arbitrary. It can be seen that it is.
  • the probe used in the present invention is not limited to a probe that hybridizes continuously, and that probes that hybridize adjacent to each other can also be used.
  • the single-stranded portion between the probes is 4 bases ⁇
  • the reaction solution was allowed to react at 37 ° C., and the reaction solution was collected at regular intervals of 5 ⁇ , and diluted with 145 il of IxSSC containing 20 m EDTA, and then the fluorescence spectrum was measured.
  • the probe according to the present invention is not limited to a probe that hybridizes continuously, and a probe in which two kinds of probes hybridize adjacent to a part of RNA can also be used.
  • Sequence length 16 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: DNA sequence
  • Sequence length 15 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: DNA sequence TCTTGATGTA TGTGC 15 SEQ ID NO: 4
  • Sequence length 15 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: DNA sequence
  • Sequence type Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: DNA sequence
  • Sequence type Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: DNA sequence
  • Sequence length 15 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: DNA sequence

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

明細書
R N A転写合成モニター方法及びその装置 技術分野
本発明は、 R N A転写合成モニター方法及びその装置に関する。 背景技術
タンパク質は DNAの塩基配列を写しとつた RNAの塩基配列をもとに、 リポソ一 ム上で合成される。 転写反応はタンパク質合成に至る最初の段階であり、 細胞の 核内に存在する DNAの塩基配列を写し取って RNAを合成する過程をいう。 具体的 には、 DNA を錡型にして相補的な RNA (アデニンはゥラシルに、 グァニンはシ トシン) を 5'から 3'の方向に合成する反応である。
RNA合成を担う RNAポリメラーゼは、 プロモ一夕一とよばれる DNA上の特定の 塩基配列に結合した後、 錶型 DNA上の転写開始部位から DNAの塩基と相補的なヌ クレオチド三リン酸 (NTP) を取り込んで RNA を合成する。 転写開始部位から数 ヌクレオチド重合した後は、 安定な重合反応が続き、 RNA鎖はさらに伸長されて
DNAの対合から離れる。 この一連の重合反応は DNA上の特定の終結配列が現れる まで続く。
インビト口転写反応は、 細胞内の転写のメ力二ズムを利用して試験管内で簡単に RNA を合成する方法であり MA ポリメラ一ゼとその補助因子、 基質 NTP 及び鎵型
DNAを必要とする。
近年では転写補助因子を必要としない T7、 T3、 SP6ポリメラーゼを利用したィ ンビトロ転写反応も多く利用されている。 T7、 T3、 SP6 ポリメラ一ゼを用いた インビトロ転写反応は、 各プロモ一夕一の下流に鎵型となる DNA断片を導入し、 各プロモーターを特異的に認識する RNAポリメラ一ゼを用いて転写反応を行い、 目的の RNA鎖を合成する方法である。 インビト口転写反応は、 自動合成機では困難な長鎖 MAをはじめキヤップ構造 やイントロンを導入した RNAを合成することも可能であり、 これらの RNAは、 ィ ンビトロ翻訳の銪型 MA、 ハイブリダィゼーシヨン用のプローブとして広く利用 されている。 キヤップ構造が付加された RNAやイントロンが導入された RNAは、 転写産物の末端や介在配列を解析するために用いられている (Current
Protocols in Molecular Biology、 Green Publ ishing Associates, Inc. and John Wiley & Sons, Inc . 1996) 。
このようにインビトロ転写 R N A合成反応は多くの研究分野で利用されている が、 一般に、 インビトロ転写反応を正常に進行させるためには、 錶型として使用 する D N A上においてプロモー夕一が適切な位置に組み込まれていること、 プロ モー夕一と R N Aポリメラ一ゼの組み合わせが適切であることなど、 いろいろな 条件が正確に満たされる必要がある。 また、 調製した試料において、 転写反応を 効率よく行うためには、 錶型 D N Aと R N Aポリメラ一ゼの量比など細かい条件 を最適値に設定する必要もある。 インビトロ転写反応を行うために調製した試料 が、 条件を満たしているか否かは、 反応を実際に行い、 その結果を解析して目的 とする反応物が生成されているか否かを確認することによりはじめて知ることが できる。 実際、 反応が進行しているか否かは、 反応溶液を一定時間毎に採取し、 R N Aを抽出後、 2 6 0 n mでの吸収値を測定することで、 反応液中の合成 R N A量が増加していることを確認することが通常である。 さらに、 合成された R N Aが完全長のものであることを確認するためには、 R N Aを抽出した後に電気泳 動法により確認することが通常である。 これらの方法は、 合成された R N Aの抽 出操作が必要であり、 この処理手順は通常極めて繁雑であり、 時間も要するもの である。 従って、 インビトロ転写反応を効率よく正常に進行させるための条件を 決定するためには、 上記の手順を繰り返しおこなわなければならず、 多大の時間 と労力を必要とするものである。
一方、 一本鎖 D N Aなど核酸の検出方法として、 当該核酸とハイプリダイズす る 2種類の蛍光標識プロ一プを用いる方法が知られている。 これは、 それぞれ異 なる種類の蛍光色素で標識された 2種類のプローブを核酸を含む溶液に加える。 2種類のプローブが同一の核酸に互いに隣接してハイブリダィズすると、 蛍光色 素間の距離が短くなるため蛍光色素間に共鳴エネルギー移動が生じ、 その結果、 蛍光スペク トルが変化することを利用したものである (Cardullo, R.A. et al. ( 1988) Proc. Natl. Acad. Sci. USA. 85 8790-8794、 USP 4996143) 。 この方法 を一本鎖 R N Aの検出に適用するときには、 R N A上でプロ一ブがノ、ィブリダイ ズ可能な部位 (塩基配列) を実験によりあらかじめ検索する必要がある。 一般に、 数十塩基以上の長さをもつ R N Aは水溶液中で特定の立体構造 (2次構造) をと つており、 その結果、 R N A中のほとんどの部位は他の核酸とハイブリダィゼ一 シヨンをおこさない(Chiang,M. - Yつ Chan,H.et al. ,J. Biol. Chem.266, 18162- 18172, ( 1991 )) 。 R N A上でプローブがハイブリダィズする部位を確実に求め る手法は確立されておらず、 一般には、 当該 R N Aの 2次構造をコンビュ一夕— シミュレ一シヨンし ( Michael Zuker and Patrick Stiegler, Nucleic Acid Reserch , 9, 133-148, 1981) 、 その予測された構造においてプロ一ブがハイブ リダイズ可能な部位の候補をピックアツプし、 その塩基配列をもつプローブを作 製し、 各プローブと R N Aとのハイブリダィズの有無を実験的に確認している。 これらの操作は非常に繁雑で、 かつ多大な時間を要する。 また、 これらの操作を 繰り返し行っても、 当該 R N Aにハイブリダィズする部位が見い出されることが 保証されているわけではない。 これらの要因により、 100 塩基以上の長さをも つ R N Aが当該方法により検出された例は報告されていない。 発明の開示
本発明は、 上記の問題点を改善し、 R N Aの抽出操作や電気泳動操作を必要と せずにオンタイムで、 R N A転写合成反応をモニターする方法を提供するもので ある。 すなわち、 R N A転写合成反応の開始、 進行、 終了のモニタ一と、 さらに 上記反応により合成される全 RNA量の定量、 完全長 RNAの合成をモニターす る方法を提供するものである。 さらに、 上記転写反応の反応速度 (転写の回転の 速さ) を測定すること、 上記反応条件の最適化を可能とする方法を提供するもの である。
さらに、 その方法を使用したモニタ一装置を提供するものである。 図面の簡単な説明
図 1 A 本発明のモニター方法で使用するプロ一プを示す図である。
図 1 B 本発明のモニター方法で観測される蛍光スぺクトル変化を模式的に示す 図である。
図 2 本発明の RN A転写合成反応のモニタ一方法の概略を示す図である。
図 3 A 本発明のモニタ一方法で複数組のプローブを使用する態様を示す図であ り、 合成される RN Aの 3' 末端近辺と相補的な塩基配列をもつプローブ、 合成 される RN Aの中間部分と相補的な塩基配列をもつプローブ、 または合成される RNAの 5' 末端近辺と相補的な塩基配列をもつプローブがそれぞれ RN A上に ハイブリダイズする様子を模式的に示す図である。
図 3 B それぞれのプロ一ブがハイブリダィズすることにより得られる蛍光スぺ クトルを模式的に示す図である。
図 4 本発明に係るモニタ一装置の概略を示す図である。
図 5 インビトロ転写 RNA合成反応モニター装置の構成を示す図である。
図 6 1組の蛍光標識プローブで、 2 波長モニタリングする場合の測定ュニット の構成を示す図である。
図 7 2組の蛍光標識プローブで、 3波長モニタリングする場合の測定ユニッ ト の構成を示す図である。
図 8 96穴プレートを用いたインビトロ転写 RNA合成反応モニタ一装置の構 成を示す図である。 図 9 本発明に係るモニター方法により、 インビトロ転写反応の経時変化にとも ない、 蛍光スペクトルが変化することを示す図である。
図 10 A 本発明に係るモニター方法により、 インビトロ転写反応の経時変化を 蛍光スぺク トルの経時変化として測定可能であることを示す図であり、 合成 RN Aを抽出して OD260値より求めた転写 RNAの合成量の経時変化を示す図であ る。
図 10B 本発明に係るモニター方法により、 インビトロ転写反応の経時変化を 蛍光スぺクトルの経時変化として測定可能であることを示す図であり、 蛍光スぺ クトル上の 2つの波長での蛍光強度比 ( I a/I d、 Id : 515nmの蛍光強度、 la: 670nmの蛍光強度) の経時変化を示す図である。 図 11、 図 14、 図 17の 縦軸も同様。
図 11 ハイプリダイズする RN A上の部位が異なる 3組のプロ一ブを RNA転 写合成反応のモニタリングにそれぞれ用いたときの蛍光スぺクトルの 2つの波長 での蛍光強度比 (l a/I d) の経時変化を示したものである。 本方法による R NA転写合成反応のモニタリングは、 使用するプローブの RNA上でのハイプリ ダイズ部位には依存しないことを示す。
図 12A 完全長の XELF 1—ひの DNAを鍊型にして、 3'末端近辺にハイブリダィ ズする XELF— 3F プローブを転写反応液に添加して、 蛍光スペクトルの経時変化 を測定した結果を示す図である。 縦軸 I/Idは 515nmの蛍光強度 (Id) で規格化 された蛍光強度である。 図 12B、 図 13A、 図 13B、 図 15A, 図 15B, 図 18A, 図 18B, 図 18 Cの縦軸も同様。
図 12B 3'末端が欠失した XELF 1—ひの DNAを錡型にして、 3'末端近辺にハイ ブリダィズする XELF— 3F プローブを転写反応液に添加して蛍光スペクトルの経 時変化を測定した結果を示す図である。
図 13 A 完全長の XELF 1—ひの DNAを錡型にして、 5'末端近辺にハイブリダイ ズする XELF— 1F プロ一プを転写反応液に添加して蛍光スペクトルの経時変化を 測定した結果を示す図である。
図 1 3 B 3'末端が欠失した XELF 1—ひの DNA を錶型にして、 5'末端近辺にハイ プリダイズする XELF— 1F プローブを転写反応液に添加して蛍光スペクトルの経 時変化を測定した結果を示す図である。
図 14 実施例 4で作成した検量線を示す図である。
図 1 5A 実施例 5において得られた、 完全な長さの鎵型 DNA を用いた場合の蛍 光スぺクトルの経時変化を示す図である。
図 1 5B 実施例 5において得られた、 欠失した錡型 DNA を用いた場合の蛍光ス ぺクトルの経時変化を示す図である。
図 1 6 実施例 6において、 ポリメラ一ゼ添加量の減少に伴い RNA生合成量は減 少していることの確認を示す図である。
図 1 7 5'末端近辺にハイブリダィズする XELF- 1F ドナ一プローブ、 XELF-1F ァ クセプ夕一プローブを錡型 DNAに対し、 モル比で 200、 400、 800倍添加した条 件で RN A転写合成反応の経時変化を示す図である。
図 1 8 A XELF 1—ひ RNAと XE LF-1Fプローブまたは XELF-4Fプロ一ブを
1 : 1で混合してハイブリダィズさせた場合の蛍光スペクトルの結果を示す図で ある。
図 1 8B 転写反応液に XELF- 1F プローブを添加して蛍光スぺクトルの経時変化 を測定した結果を示す図である。
図 1 8 C 転写反応液に XELF- 4F プローブを添加して蛍光スぺクトルの経時変化 を測定した結果を示す図である。 発明を実施するための最良の形態
すなわち、 本発明は、 RNA転写合成反応系中の、 転写合成された RNAの塩 基配列の一部に連続してハイプリダイズする塩基配列を有する 2種類 1組のォリ ゴヌクレオチドプローブであって、 エネルギードナー蛍光分子でラベル化された ドナープローブと、 エネルギーァクセプ夕一蛍光分子でラベル化されたァクセプ 夕一プロ—ブとからなる前記プロ—ブの蛍光を測定することにより、 前記 R N A 転写合成反応の開始、 終了及び完全長の RN Aの合成をモニターする方法を提供 するものである。
また本発明は、 RNA転写合成反応系中の、 転写合成された RNAの塩基配列 の一部に連続してハイプリダイズする塩基配列を有する 2種類 1組のオリゴヌク レオチドプローブであって、 エネルギードナ一蛍光分子でラペル化されたドナ一 プローブと、 エネルギーァクセプ夕一蛍光分子でラベル化されたァクセプ夕一プ ローブとからなる前記プロ一プの蛍光を測定することにより、 前記 R N A転写合 成反応による前記 RN A転写を定量する方法を提供するものである。
また、 本発明は、 RNA転写合成反応系中の、 転写合成された RNAの塩基配 列の一部に連続してハイプリダイズする塩基配列を有する 2種類 1組のォリゴヌ クレオチドプロ一プであって、 エネルギードナー蛍光分子でラベル化されたドナ —プローブと、 エネルギーァクセプ夕一蛍光分子でラベル化されたァクセプ夕ー プローブとからなる、 少なくとも 2組以上の前記プローブの蛍光を測定すること により、 前記 RNA転写合成反応における転写の開始と完全長 RNAを同時にモ 二夕一する方法を提供するものである。
さらに、 本発明は、 インビトロ転写 RNA合成反応のモニタ一装置であって、 RN A転写反応を行う合成反応装置と、 反応装置からサンプル溶液を導入するサ ンプル導入手段と、 前記サンプル溶液の濃度を調節する溶媒混合装置 (測定試料 調製装置) と、 蛍光測定装置と、 を備えることを特徴とする装置を提供するもの である。
より詳しくは、 本発明は、 RNA転写反応の開始、 進行、 完全長の RNAの合 成をモニタ一する方法、 さらに上記反応により合成される全 RN A量の定量、 完 全長 RN Aの合成をモニターする方法、 さらに、 上記転写反応の反応速度 (転写 の回転の速さ) を測定する方法、 上記反応条件の最適化を可能とする方法、 およ びそのモニタ一方法を使用して転写反応で合成される RNAをモニタ一し、 かつ 反応のための最適条件を迅速に決定する装置である。
本発明に係る方法の概要は、 図 1A, Bおよび図 2に説明されている。 すなわ ち、 転写反応で合成される RNAの塩基配列のうち少なくとも一部の塩基配列に 相補的な塩基配列を有するプローブを反応溶液に添加して合成途上の R N Aとハ ィプリダイズさせ、 そのハイブリッド体の蛍光スぺクトルを測定することにより 可能とするものである。 ここで本発明に関わる方法に用いるプローブは、 2種類 の蛍光標識プローブを 1組として使用するものである。 一方のプローブはェネル ギー移動ドナ一蛍光色素でラベル化し、 他方のプローブはエネルギー移動ァクセ プ夕一蛍光色素でラベル化したものであり、 それぞれが前記 RNAの特定の部分 に連続してハイブリダィズ可能な塩基配列を有する (図 1A) 。 前記プローブ ( 2種類 1組みのプローブ) が前記 RN Aとハイプリダイズして特定の空間配置 をとると、 前記ドナ一色素とァクセプ夕一色素の空間距離が約 80オングストロ —ム以内になるこの条件で、 ドナー色素が光励起されると、 ァクセプ夕一色素へ のエネルギー移動がある確率でおこり、 その結果としてァクセプ夕一色素からの 蛍光が観測される(図 1 B) (Cardullo, R.A. et al.(1988), Proc. Natl. Acad. Sci., USA, 85, 8790-8794) o 前記エネルギー移動は、 ドナーとァクセプ夕一と の距離依存的におこる相互作用であり、 距離が 80オングストロ一ム以上離れる と、 実質的に生じないことが知られている。 従って、 前記 RNAにハイブリダィ ズしない状態においては、 前記のァクセプ夕一色素からの蛍光は見られない。 すなわち、 前記プローブがハイブリダィズしていないときには、 ドナーの蛍光 (蛍光強度 Id とする) が強くァクセプ夕一の蛍光 (蛍光強度 la とする) は弱 い。 前記プローブがハイブリダィズしたときには、 ドナーの蛍光は弱くなりァク セプ夕一の蛍光が強くなる。 したがって、 ドナーの蛍光強度 (Id) とァクセプ 夕 一の蛍光強度 (la) の比率をとることにより、 前記プローブがハイブリダ ィズ する前記 RN Aの部分配列の存在の判別およびその存在量の定量をするこ とが可能である。
図 2に模式的に示されるように、 転写反応により R N Aを合成する反応系中に 前記プローブを添加された条件下で、 R N Aポリメラ一ゼにより R N A合成が閧 始され、 前記プローブとハイブリダィズ可能な部分配列が生成されると、 前記プ ローブがハイブリダィズすることとなる。 この結果、 上で説明したように、 ドナ 一の蛍光強度が減少し、 ァクセプ夕一の蛍光強度が増加することとなる。
ここで使用するプローブにおいては、 プローブを R N Aにハイブリダイズさせ る部位は、 合成される R N Aの任意の一部を選択することが可能である。 すなわ ち、 図 2においては、 合成反応液中に多量のプローブが含まれているために、 個々の R N A分子の合成の途上において、 プローブと相補的な塩基配列をもつ部 位が合成されるとすみやかにプローブがハイブリダィズする。 したがって、 図 2 に模式的に示された方法を使用すると、 R N Aが特定の立体構造を形成した後に プローブを加えたときにはハイプリダイズがおこらない部位に対応するプローブ を使用しても、 プローブを R N Aにハイブリダィズさせることが可能である。 また、 ァクセプ夕一の蛍光波長においてドナ一の蛍光がほとんど観測されない 条件を満足するドナ一色素とァクセプ夕一色素の組み合わせを選択することも可 能であり、 この条件においては、 ァクセプ夕一色素からの蛍光強度を観測するこ とにより、 前記 R N Aの合成された部分配列の存在を判別し、 定量することが可 能となる。
なお、 本発明に係るプローブは、 連続してハイブリダィズする塩基配列を有す るものとして説明されているが、 これに限定されるものではない。 本発明に係る 2種類のプローブが互いに R N Aの一部に隣接してハイブリダイズするように塩 基配列を有する場合において、 ハイブリダィズした際の蛍光スぺクトルが有意の 変化が生じる場合には、 有効に使用可能である。 本発明に使用する 2種類のプロ —プがあまりに離れてハイプリダイズする場合には、 前記蛍光エネルギー移動が 起こる確率が小さくなり実質的に蛍光スぺクトルに変化が観測されなくなる。 より具体的に説明すると、 インビトロ転写 RNA合成反応液中に、 前記説明し た 2種類 1組のプローブを加える。 前記転写反応が起こり、 RNAの合成が開始 され、 前記プローブとハイブリダィズ可能な部分が生成すると、 前記一組みのプ ローブが隣接した位置に連続してハイプリダイズする。 ハイプリダイズすると、 前記色素間でエネルギー移動がおこり、 蛍光スペクトルが変化する。 試料から観 測される蛍光は、 R N Aにハイプリダイズしたプロ一ブからの蛍光と反応液中に フリーの状態で存在しているプロ—ブからの蛍光の混合物である。 全プローブ中 で、 RN Aとハイブリダィズしたプローブの比率が大きくなるほど、 蛍光スぺク トルの変化量は大きくなる。 すなわち、 合成される RNA量が増加するにしたが つて、 スペクトル変化は大きくなる。 ここで、 蛍光スペクトルにおいて、 例えば ドナーの蛍光波長における蛍光強度 (I d) とァクセプ夕一の蛍光波長における 蛍光強度 (la) の比 (la/Id) をとることとすると、 合成される RNA量が 増加するにつれて、 la/Id値は増加していく。
いま、 合成される RN Aの 5, 末端近辺の塩基配列にハイブリダィズする塩基 配列を有するプローブを使用するとする (図 3 Aの (1) で示される部分) 。 こ のときには、 蛍光スぺクトル変化を測定することにより転写反応の開始をモニタ —することができることとなる。 比 (la/Id) を時間に対してプロットしたと き、 la/Id値の増大の速さは転写反応の回転の速さをあらわす。 すなわち、 調製した試料および使用条件において、 (1) 転写反応がおこるか否か、 (2) 反応の回転の速さ (反応条件の適切さの度合い) を知ることができる。
また、 合成される R N Aの中間部分の配列とハイプリダイズするプロ一ブを使 用したときには (図 3Aの (2) で示される部分) 、 RNA合成反応の伸長をモ 二夕一することができることとなる。 さらに、 合成 RNAの 3, 末端近辺の配列 にハイブリダィズするプローブを使用したときには (図 3Aの (3) で示される 部分) 、 完全長の RNAの合成をモニターすることが可能である。 転写反応は、 開始されたとしても、 不完全な铸型 D N Aの混在など種々の原因により不完全な 長さの R N Aが合成されることがある。 従来法では、 完全長の R N Aが合成され ているか否かは、 生成物を電気泳動で分離し、 長さの確認を行う必要がある。 3, 末端近辺にハイブリダィズするプローブを用いて本発明を使用すれば、 完全 長の R N Aであるか否かをオンタイムで確認することが可能である。
転写反応により R N A合成を行うために調製した試料において、 最適な反応条 件を得るためには、 例えば、 次のような使用方法が可能である。 まず、 5 ' 末端 近辺にハイブリダイズするプローブを使用し、 転写反応がおこるか否かを確認す る。 さらに、 転写反応の速度をモニターし、 反応速度が最も高くなる条件に設定 する。 次に、 3, 末端近辺にハイブリダィズするプローブを使用し、 設定した条 件において完全長の: R N Aが合成されることを確認する。
エネルギー移動をおこすドナ一/ァクセプ夕—の蛍光色素の組み合わせは多種 類存在するが、 本発明に係る方法は色素の組み合わせには依存しないため、 どの ような色素の組み合わせを用いても使用可能である。 したがって、 2組以上の蛍 光色素の組み合わせを同時に使用することも可能である(図 3B )。 たとえば、 5 ' 末端近辺にハイブリダィズするプロ一ブをある特定種類のドナ一/ァクセプ 夕—蛍光色素で標識し、 3 ' 末端近辺にハイプリダイズするプローブを他の種類 のドナー/ァクセプ夕一色素で標識する。 これらを同時に反応液中に添加するこ とにより、 転写反応の開始の有無と完全長の R N Aの合成の確認を同時に行うこ とも可能である。
本方法では、 反応液中に加えるプローブの量は、 任意に設定することが可能で ある。 すなわち、 錡型 D N A量に対して、 1 0倍量加えることも、 1 0 0 0倍量 加えることも可能である (モル比) 。 1 0倍量加えたときには、 合成される R N A量が錡型 D N Aの 1 0倍量までの範囲において、 蛍光スぺクトルが変化する。 R N Aがそれ以上合成されても、 蛍光スペクトルは変化しない (プローブがすべ て合成された R N Aにハイプリダイズし、 反応液中にフリーのプローブが存在し ないために、 新しく合成された R N Aにはハイプリダイズするプローブが存在し ない) 。 したがって、 錶型 D N Aに対して、 小過剰にプロ一ブを添加して反応を おこさせたときには、 転写反応の初期段階を精度よくモニタ—することができる。 これは、 5, 末端近辺にハイブリダィズするプローブを使用し、 転写反応の有無 や速度を知ることに適している。 一方、 1 0 0 0倍量加えたときには、 合成され る R N Aが錡型 D N Aの 1 0 0 0倍量までの範囲内において、 蛍光スぺク トルが 変化する。 例えば、 合成反応が銪型 D N A量の 1 0 0 0倍量以下の R N Aを合成 したところで事実上終了したのであれば、 蛍光スぺクトルの経時変化はその時点 でおこらなくなる。 したがって、 合成反応の終了をモニタ一することに適してい る。 他方、 このように、 錡型 D N Aに対して大過剰にプローブを添加して反応を おこさせたときには、 反応の初期段階 (R N A合成量が少量のとき) に、 蛍光ス ベクトル変化が小さく、 精度よく測定することはむずかしい。 すなわち、 転写反 応がおこるか否かなど反応の初期段階をモニタ一するときには、 錶型 D N Aに対 して小過剰にプローブを加え、 反応の終了の有無など後期段階をモニタ一するこ とを目的とするときには、 銪型 D N Aに対して大過剰にプローブを加えればよい。 (プローブの構造)
本発明に関わるプロ一ブの塩基配列は、 合成される R N Aの任意の一部の部位 と実質的に相補的な塩基配列をもつものであれば、 特に制限はない。 すなわち、 当該プローブと合成された当該 R N Aがハイブリダィズするか否かをあらかじめ 実験により確認しておく必要はない。 もちろん、 合成された R N Aとハイブリダ ィズする塩基配列を実験的に検索し、 その塩基配列をもつプローブを使用しても よい。 また、 塩基の長さについても、 当該プローブが当該 R N Aに実質的に特異 的にハイブリダィズする要件を満たしていれば特に制限はない。 この長さは通常 1 5塩基以上である。
本発明に係わるプロ一プの蛍光色素の種類、 すなわち、 ドナー蛍光色素および ァクセプ夕ー蛍光色素の組み合わせの種類としては特に限定されないが、 ェネル ギー移動の臨界移動距離 (エネルギー移動効率が 5 0 %となる距離) が大きい組 み合わせが、 エネルギー移動にともなう蛍光スぺク トルの変化が大きいため好ま しい。 たとえば、 フルォロセイン系の色素をドナーとし、 口一ダミン系の色素を ァクセプ夕一とする組み合わせが好適に使用可能である。 例えばエネルギードナ 一蛍光分子としては、 B O D I P Y系 (4,4- difluoro-4-bora- 3a,4a- diaza- s - indacene モレキュラープロ一ブス社) 、 フルォレセイン系、 口一ダミン系の蛍 光色素が好適に使用可能であり、 特に本発明においては B O D I P Y、 フルォレ セインが好ましい。 エネルギーァクセプ夕一蛍光分子としては、 インドシァニン 系、 ローダミン系色素が好適に使用可能であり、 特に本発明においては C y 5, C y 3 , C y 3 . 5 (Amersham LIFE SCIENCE 、 FluoroLink, Cat.No.PA25001, PA23001, PA23501 )及びローダミンが好ましい。
さらに、 本発明においては、 上記蛍光色素をプローブと結合する結合基につい ては特に限定されないが、 上記 2種類の蛍光色素が望ましい蛍光エネルギー移動 がおこるように適当なリンカーであって、 プローブが充分水溶性を維持する種類 のものを介して結合することが可能である。 たとえば、 テトラメチレン鎖一デカ メチレン鎖が使用可能である。
さらに、 本発明においては、 プロ一ブとしてオリゴヌクレオチドとして D N A を用いて説明されているが、 特に D N Aに制限されない。 種々のヌクレオチド誘 導体も使用可能であり、 R N A上の特定の塩基配列部に実質的に特異的にハイブ リダィズ可能であればよい。 具体的には、 R N A、 ホスホロチォエート型オリゴ ヌクレオチド (S—オリゴ) 、 メチルホスホネート型オリゴヌクレオチド (M— オリゴ) 、 ホスホロアミデート型オリゴヌクレオチド (A—オリゴ) 、 ペプチド 核酸が挙げられる。
(プローブの合成方法)
上記説明した本発明に係る検出用プローブのオリゴヌクレオチド配列部を調製 する方法においては特に制限はない。 公知の核酸合成方法が好ましく使用可能で ある。 特に種々の固相合成方法に基づく自動合成方法が好ましく、 例えばアミダ イ ト、 トリエステル等の合成法が好ましく用いられる (Edited by F. Eckstein, Modern machine-aided methods of o 1 i godeoxyr lbonuc 1 eot 1 des synthesis, Oligonucleotide and Analogues, I PL Press , 1991) 0
さらに、 プローブ中に蛍光色素を結合するための好ましいリンカ一部を導入す る方法は種々のポリべプチド修飾用試薬を用いることで可能である。 本発明にお いては、 特に 5, 末端アミノ化用試薬である 6— (トリフルォロアセチルアミ ノ) へキシル一 ( 2—シァノエチル) 一 (N , N—ジイソプロピル) 一ホスホロ アミダイ トを、 上記化学合成時に同時に使用できる。 これによりオリゴヌクレオ チド鎖の任意の位置にへキシルァミノ基 (トリフルォロアセチル基を除いた後) を導入可能となる。 また、 リンカ一部の位置およびリンカ一部の長さの選択によ り、 2種類の蛍光色素が好ましい相対的空間配置をとりうるプローブを調製する ために、 その空間配置を推定するための種々の分子モデルや、 分子モデルコンビ ユー夕プログラム等が使用可能である。 リンカ一部と必要な蛍光色素の結合方法、 または該リンカ一部をオリゴヌクレオチドプローブの適当な位置の塩基に結合す る方法については、 特に制限はなく、 化学合成方法により、 または酵素による方 法等が使用可能である。
(蛍光測定装置)
本発明で使用され得る蛍光測定手段については特に制限はない。 通常の蛍光測 定装置であり、 エネルギードナー蛍光色素を励起する励起光が発生し、 また、 ェ ネルギ一ドナー、 およびァクセプ夕ー蛍光色素の蛍光が測定可能であれば好まし く使用できる。
(データ処理)
蛍光測定手段で得られたデータの処理については、 使用される色素の種類によ り最適の処理方法が応用可能であり、 特に制限されない。
エネルギードナー色素の蛍光スペクトルが、 エネルギーァクセプ夕一色素の観 測蛍光波長とほとんど重ならないように選択された場合には、 エネルギーァクセ プ夕一色素の観測蛍光波長での蛍光強度の時間変化をそのまま使用することが可 能となる。 すなわち、 ァクセプ夕一の観測蛍光波長におけるエネルギードナー色 素からの蛍光の時間変化による影響は無視できる程度となる。
(インビト口転写 R N A合成モニタ一装置)
図 4には、 本発明に係わる方法を使用したインビトロ転写 R N A合成モニター 装置の 1態様を示す。 サンプル導入手段 3は、 種々の型、 サイズのインビトロ転 写 R N A合成反応装置 2から適当なサンプリングライン 1 0により前記反応溶液 の一部を測定溶液調製装置 5に導入する手段である。 この際、 サンプル導入手段 3は制御装置 7により、 サンプリングの時期、 溶液量を制御され得る。 また制御 装置 7により、 溶媒装置 1 1から適当な量の溶媒が溶媒混合ライン 1 2を通じて 測定溶液調製装置 5に加えられる。 測定溶液調製装置 5の希釈されたサンプルは、 蛍光測定装置 6へ導入される。
また、 合成された R N Aとハイプリダイズすることがあらかじめ実験的に確認 されているプローブを使用する場合には、 以下の形態の合成モニター装置も可能 である。 測定溶液調製装置 5にプロ一ブキットを導入するプローブ調製装置を付 け加えてもよい。
すなわち、 制御装置 7により設定された必要な種類および濃度のプローブキット がプロ一ブ調製装置よりプローブ混合ラィンを通じて混合して測定溶液調製装置
5へ導入してもよい。 前記測定溶液調製装置 5は、 制御装置 7により、 前記サン プル溶液中の合成 R N Aとプローブのハイブリダィズ条件を設定してもよい。 具 体的には、 必要な容積の混合セル、 濃度および時間である。 さらに必要ならば、 制御装置 7により時間および撹はん速度を設定されたサンプルとプロ一ブの混合 溶液を撹はんする装置があってもよい。 プローブ調製装置は、 モニター目的に適 したプローブの種類を選択し、 適当な濃度に希釈してプローブ溶液を調製して、 前記測定溶液調製装置 5に導入するものである。 この際、 圧力またはペリス夕ポ ンプ等により導入可能である。 測定溶液調製装置 5でハイブリダイズさせた後、 蛍光測定装置 6へ導入される。 ここで蛍光測定装置 6は、 制御装置 7により設定 された励起光条件等の蛍光測定の条件に従い、 蛍光スペクトル測定し、 得られた データをデ一夕処理装置 8へ送る。 測定データは、 特定の励起波長により励起さ れた場合の蛍光スぺクトルおよびその時間変化のデ一夕からなるものである。 デ 一夕のデ一夕処理装置 8への取込み手段はデータ処理装置 8内の記憶装置へ記憶 することも可能である。 データ処理装置 8へ取り込まれたデータに基づき、 イン ビト口転写 R N A合成反応における転写の開始と完全長 R N Aの合成の確認、 又 は転写 R N Aの濃度変化を算出するプログラムにより行われる。 転写 R N Aの濃 度変化を算出する手段は、 あらかじめ前記記憶装置に記憶した各エネルギーァク セプ夕一プローブの特定波長での蛍光強度とハイブリダイズした R N Aの濃度 (または分子の数) との検量線に基づき算出することも可能である。 なお、 上記 説明した手段は、 デ一夕処理装置 8により設けられた記憶装置 (図示せず) にあ らかじめ記憶されているプログラムに従って、 自動的に行うことも可能である。 係るプログラムは入出力装置 9により前記記憶装置に入力することも可能である が、 あらかじめ記憶されたプログラムを、 入出力装置 9から選択することにより 読み込ませることも可能である。 すなわち、 あらかじめプログラムされた時間、 または入力装置から入力することにより、 サンプリングラインを開き、 反応中の 溶液の一部がモニター系に導入され、 ついで、 前記制御装置によりあらかじめ用 意されているプローブ溶液を選択し、 プローブ混合装置に導入され、 混合された サンプル溶液とプローブがハイプリダイズ条件に保持され (ハイプリダイズ条件 は、 あらかじめ記憶されているパラメ一夕を、 前記制御装置内の記憶装置から読 取り前記制御装置により設定される) 、 ついで、 ハイブリダィズ終了後、 所定の 時間に蛍光スペクトル測定のために、 蛍光スペクトル測定装置に送られ、 プロ一 プに応じて設定されたエネルギードナー蛍光色素励起波長により照射し、 かつプ ローブに応じて設定されたエネルギーァクセプ夕ー蛍光色素のそれぞれの蛍光波 長での蛍光強度を測定し、 測定データを前記制御装置内の記憶装置に記憶させる 前記記憶された測定データは、 データ処理装置により読みだされ各プローブのハ イブリダィズの有無を判別し、 結果を出力する。 測定後、 サンプル溶液はドレイ ン 1 4へ排出される。
より詳しいインビト口転写 R N A合成反応モニタ一装置の 1形態を図 5に示す。 図 5に示されるように、 装置は、 反応ュニッ ト、 測定試料調製ュニット、 測定ュ ニッ ト、 コントロールユニット、 演算ユニッ トおよびモニタ一より構成される。 反応ユニッ トは、 R N A転写合成反応を行うユニットであり、 反応用キュベット と反応キュべット中の反応液を一定温度に保つ温度制御装置とから成る。 反応キ ュベッ トには、 銃型 D N A、 プローブ、 R N Aポリメラーゼ、 ヌクレオチド 3り ん酸 (A T P、 G T P、 C T P、 U T P ) 、 反応緩衝液が加えられる。 これらの 反応液に R N Aポリメラーゼまたは錶型 D N Aを添加することで反応をス夕一ト させる (時間二 0とする) 。 反応キュベット中の反応液は、 温度制御装置により 一定温度 (例えば 37°C) に保たれる。 温度制御装置としては、 ウォー夕—バス、 ホッ トプレートなどが使用可能である。 反応スタート後、 あらかじめ設定された 時間毎に、 反応液の一部を採取し、 測定試料調製ユニットの測定用キュベットへ 移す。 測定用キュベットにはあらかじめ一定量の緩衝液が分注されている。 また は、 サンプリングした試料を希釈用キュベットに移し、 これに希釈液のリザーバ —から一定量の希釈液を加えて希釈した後に、 測定用キュべットに移してもよい。 サンプリングは手動で行うことも可能であるし、 自動化してもよい。 測定試料調 製用ュニッ トは、 測定用セルが円形状に多数並んだものである。 個々の測定用セ ルは、 1箇所の 「サンプル入力ポジション」 、 1箇所の 「測定ポジション」 、 多 数の 「待機ポジション」 のいずれかに位置している。 サンプリングされた試料は 「サンプル入力ポジション」 に位置する測定用キュべッ卜に注入される。
その後、 キュベットは 「測定ポジシヨン」 へ移動する。 「測定ポジシヨン」 に移 動したキュべットは、 測定試料調製ュニットの下部に位置する測定ュニッ卜へ移 動する。 測定ュニットでは蛍光測定が行われる。 測定終了後、 キュべットは測定 試料調製ユニットの元の位置に戻る。 これで 1サイクルが完了する。 次に、 再び 反応液からサンプリングされた試料が 「サンプル入力ポジション」 の位置の測定 用キュベットに注入されると、 次のサイクルが開始される。 測定試料調製ュニッ 卜の測定用セルの並びかたは円形状に限定されるものではない。 測定ュニッ卜で はキュベット中の試料の蛍光測定が行われる。 図 6および図 7に示されるように、 励起光用の光源 (ランプなど) 、 光源からの光を波長分別するフィル夕一または 分光器、 測定用セル、 測定用セル中の試料から発せられる蛍光を波長分別するフ ィルターおよび光検出器 (フォトマルなど) から成る。 測定用セルは前記測定試 料調製ュニッ卜から測定ュニッ卜の測定用セルの位置に移動してくる。 試料から 発せられる蛍光は、 2方向または 3方向で同時に検出する。 それぞれの方向では、 波長特性がそれぞれ異なるフィルターを通して蛍光強度の測定を行う。 2方向で 測定するとき (図 6 ) には、 フィル夕一 1はドナ一の蛍光、 フィル夕一 2はァク セプ夕一の蛍光をそれぞれ選択的に透過させる波長域に対応するものである。 2 組以上の蛍光標識プローブを使用して転写反応の開始と完全長 R N Aの合成を同 時モニタリングするときは、 試料からの蛍光を 3方向で同時に検出する。 このと き (図 7 ) には、 フィルタ一 1はドナ一の蛍光、 フィル夕一 2は 2種類のァクセ プ夕一のうち 1種類のァクセプ夕一の蛍光、 フィル夕一 3は他の種類のァクセプ 夕一の蛍光をそれぞれ選択的に透過させる波長域に対応するものである。 光検出 器で測定された蛍光強度 (E M 1、 E M 2、 E M 2 ) は、 それぞれ演算ユニット に送られ、 蛍光強度比 (E M 2 /E M 1、 E M 3 /E M 1 ) が計算される。 これ らの結果はモニタ一に送られてモニター上に表示される。 上記のすべてのプロセ スはコントロールュニヅ卜で制御される。
さらに、 別の態様として、 図 8 に、 本発明に係わる方法を使用したマイクロプ レートリーダ—型インビトロ転写 MA合成モニタ一装置の一態様をしめす。
インキュベーション台は、 96 穴プレートを固定するものであり、 かつインキ ュベーシヨン機能を有しており、 温度調節はコントローラ一によって制御され得 る。 プレート及びインキュベーション台は、 プレート固定後、 コントローラ一の 制御によって自動でスライ ドし、 測定位置に移動される。
励起および蛍光フィル夕一ュニット内には数種類の励起および蛍光 (検出用) フィル夕一を内蔵することが可能であり、 フィル夕一を光軸上に自動セッ 卜する ための装置も内蔵可能である。 コントローラ一を介して励起及び蛍光フィル夕一 が選択されると、 フィル夕一は光軸上のホルダ一に自動セッ トされる。 このとき、 複数の励起、 検出波長に対応できるようにフィル夕一ホルダ一は多連用のものを 用いることも可能である。 これらのホルダ一は、 コント口一ラーの制御によって 光軸上をスライ ド可変することが可能である。
ファイバ一可変ユニッ トは、 コント口一ラーから測定開始の信号が入ると、 励 起光及び蛍光 (検出光) ファイバーを 96 穴内の指定された位置に移動させる。 このとき、 ファイバ一が移動する位置はコント口一ラーによって制御される。 通 常は、 開始位置と終了位置をコントローラーで入力すると、 ファイバ一が 96 穴 上を移動して、 連続的に試料を分析することが可能である。
上記過程を経て、 励起光がプレート上の 1つの試料 (穴) を照射すると、 蛍光 は再びファイバ一内を通って蛍光用フィルターュニット内に入り、 特定の波長の みの蛍光 (フィルターセッ トした波長) が取り出される。
その後、 選別された光は、 検出ユニット内に入り、 ドナ一とァクセプ夕一の蛍 光強度を測定する。 ここまでの一連の過程はコントローラーで入力した時間毎に 行う。 得られた蛍光強度はデータ処理装置にて蛍光強度比に変換され、 時間に対 してプロットすれば、 転写反応を自動でモニタリングすることが可能である。 以下本発明の実施例を説明する。
(実施例)
本実施例においては転写反応の錶型 D N Aとしてはすべて X E L F 1 —ひ D N Aを使用し、 X E L F 1 —ひ R N Aの合成反応をモニタリングした。
試薬は全て Ambion社製、 MEGAsc ot T3キットを使用した。 錄型 DNA及び試薬
本実施例で使用した錶型 DNA、 XELF 1—ひは以下の様に調製した。
インビト口転写反応用キット (AmMon社、 MEGAscript T3 kit) 内のコント口 ール DNApTRI-Xeflを制限酵素 EcoR Iで処理し、 約 1.8kbの XELF 1一ひ DNAを取 り出した。 この DNA断片を pBluescript 11 ( STRATAGENE社製、 T0Y0B0社より入 手)にクローニングし、 pBlue'XELFl—ひの MAを得た (約 4.76kb) 。 インビト 口転写反応には、 pBlue'XELFl—ひの DNAを制限酵素 Smal で処理して直鎖状の DNA としたものを使用した。 また、 インビトロ転写反応に使用した NTP、 lOxTranscription bufferヽ T3 RNAポリメラーゼは、 Ambion社、 MEGAscript T3 kitの試薬を使用した。
プローブ合成
(a)RNAの 5' 末端近辺の塩基配列と相補的な塩基配列をもつプローブ: X E L F— 1 Fドナ一プローブ、 5, - B0DIPY493/503 - AGCCTTTTCCC ATCTC— 3' は、 XELF 1—ひの塩基配列番号(GeneBank Accession No. M25504), 184-199の塩基配列と相補的であり、 かつ B0DIPY493/503色素を 5, 末端の Aで結合したものである。
XE L F— 1 Fァクセプ夕一プローブ、 5, -AGGCATACTTG (Cy5) AAGG- 3 ' は、 XELF 1—ひの塩基配列番号、 200— 214の塩基配列と相 補的であり、 かつ Cy5色素を上記の位置 (Gと Aの間) で結合したものである。
(b)RNAの中間部分の塩基配列と相補的な塩基配列をもつプローブ: XEL
F— 2 Fドナ一プローブ、 5' - B0DIPY493/503 - TCTTGATGTATGT GC- 3' は XELF 1—ひの塩基配列番号、 566— 580 の塩基配列と相補的で あり、 かつ BODIPY493/503色素を 5, 末端の Tで結合したものである。
XE L F— 2 Fァクセプ夕一プローブ、 5, 一 GGTTGTAACCA (Cy5) AT CT— 3, は XE L F 1—ひの塩基配列番号、 581— 595 の塩基配列と相補 的でありかつ Cy5色素を上記の位置 (Aと Aの間) で結合したものである。 (c) RNAの 3, 末端近辺の塩基配列と相補的な塩基配列をもつプローブ: X E L F— 3 Fドナープローブ、 5 ' -B0DIPY493/503 - TTAAACT CTGA TGGC C- 3 ' は XEL F 1—ひの塩基配列番号、 1504—1519 の塩基配列と 相補的であり、 かつ B0DIPY493/503色素を 5, 末端の Tで結合したものである。 XE L F— 3 Fァクセプ夕ープローブ、 5, -ACCAGTCTTTT (Cy5)
ACTA— 3 ' は XE L F 1—ひの塩基配列番号、 1520— 1534 の塩基配列と相 補的であり、 かつ Cy5色素を上記の位置 (Tと Aの間) で結合したものである。
(d) RNA とハイブリダィズしにくいと予想されるプローブ: XELF— 4F ドナー プローブ、 5'— B0DIPY493/503— AGTACCAGTGATCAT— 3'は XELF 1—ひの塩基配列番 号、 346— 360の塩基配列と相補的であり、 かつ B0DIPY493/503色素を 5'末端の A で結合したものである。
XELF-4F ァクセプ夕一プローブ、 5,— ACAGTCAGCCT (Cy5) GAGA— 3,は XELF 1
—ひの塩基配列番号、 361— 375 の塩基配列と相補的であり、 かつ Cy5 色素を上 記の位置 (Tと Gの間) で結合したものである。
(e) C- F0S ドナープローブ/ C-F0Sァクセプタープロ一ブ: C-F0S ドナープ ローブ、 5,— B0DIPY493/503— TCTAGTTGGTCTGTC— 3,は c-fosR N Aの塩基配列番 号、 662-676 と相補的であり、 かつ BODIPY493/503色素を 5'末端の Aで結合し たものである。
C- F0Sァクセプ夕ープロ一ブ、 5'— GCAGACTTCTC (Cy5) ATCT— 3'は c-fosの塩 基配列番号、 677-691 と相補的であり、 かつ Cy5 色素を上記の位置 (Cと Aの 間) で結合したものである。
(f)XELF-5F プロ一ブ: XELF- 5F ァクセプ夕一プローブ、 5' - ACCCAGGCATACTTG (Cy5) —3'は XELF 1—ひ RNAの塩基配列番号、 204— 218 の塩基配列と相補的で あり、 かつ Cy5色素を 3'末端の Gで結合したものである。
上記プローブの合成には自動合成機は、 P e rk i n E lme r社の Mo d e l 394、 または P e r s e p t i v e社の E x p e d i t e Mo d e 18 909を使用して、 ?シァノエチルアミダイ ト法に従い行った。 得られた粗生成 物を DEAE— HPLCで分析し、 主成分を分取した。 保持時間は 20〜30分 であった。 さらに、 分取液を脱塩の後、 凍結乾燥した。
DEAE— HPLC (陰イオン交換) 条件:
溶媒 A : 0. 2 M HCOONH4 20 %CH3CN
溶媒 B : 1. OM H COONH4 20 CH3 CN
カラム : TSK— ge 1DEAE— 2WS 4. 6 x 250 mm (東ソ一 (株) 社製)
流量: 0. 8 m m 1 n
温度: 40 °C
Bグラジェント 35%- 85% (2 Omi n)
Cy 5色素蛍光ラベル化反応
プローブの 5, 末端修飾用、 またはプローブの中間の位置での使用として、 そ れぞれ、 6— (トリフルォロアセチルァミノ) へキシル— (2—シァノエチル) 一 (N, N—ジイソプロビル) —ホスホロアミダイ ト (TFAcへキサノールァ ミンリンカ一、 パ一キンエルマ一ジャパン社製, Cat No.400808) 、 および Uni -L ink Am inoMod i f i e r (CL0NTECH Laboratories, Inc 製、 Code NO.CL5190- 1,以下同じ) を上記自動合成機と共に使用した。
上で得られた乾固したオリゴヌクレオチドを 0. 5M NaHC03/NaH C03緩衝液 (pH9.0) 200〃1に溶解し、 。 色素を 100〃1 (1チュー ブ) の滅菌水に溶解し両者を混合し、 遮光して一晩反応した。 反応液をゲル濾過 し、 未反応の色素を除去した。 RP— HP L C (Bグラジェント 15〜 65 % (20分) ) で分析し、 20〜25分付近のピークの成分を分取した。 分光光度 計で 260 nmに吸収があること及び蛍光色素の吸収があることを確認した。 RP-HPLC (逆相 C 18)条件:
溶媒 A : 0. 05M TEAA 5% CH3CN 溶媒 B : 0. 05M TEAA 40% CH3CN
カラム : CAPCELL PAKC 18 6 x 250 mm (資生堂 (株) 社製) 流量: 1. Oml/min
温度: 40 °C
BOD I PY493/503色素蛍光ラベル化反応
プローブの 5' 末端修飾用、 またはプローブの中間の位置での使用として、 そ れそれ、 6— (トリフルォロアセチルァミノ) へキシル— (2—シァノエチル) - (N, N—ジイソプロピル) 一ホスホロアミダイ ト (TFAcへキサノ一ルァ ミンリン力一) 、 および Un i— L ink Ami n oMo d i f i e rを上記 自動合成機と共に使用した。 NHS S 2. 5mgを 30〃1、 EDAC5mgを 50〃 1の滅菌水に溶解した。 これに、 BOD I PYプロピオン酸 lmgを 50 1DMFに溶解したものを混合し、 室温で 30分反応させた。 得られた溶液を 、 乾固したオリゴヌクレオチドを 0. 5Μ NaHC03/NaHC03緩衝液 (PH9.0) 300〃 1に溶解したものと混合し、 遮光してー晚反応した。 反応液 を ゲル濾過し、 未反応の色素を除去した。
RP-HPL C (FITC、 Bグラジェント 30〜 80% (20分) ) で分析 し、 25〜35分付近のピークを分取した。 分光光度計で 26 Onmに吸収があ ること及び蛍光色素の吸収があることを確認した。 これらは凍結乾燥して保存し た。 転写反応
本発明においてモニターするインビト口転写反応の反応条件については特に制 限はなく、 使用するインビトロ転写反応に応じて変更可能である。 蛍光スぺクトル測定
日立製、 F4500形分光蛍光光度計を使用した。 480nmで励起し、 500nmから 750nm の範囲で蛍光スぺクトル測定を行い、 ドナ一に対するァクセプ夕一の蛍光 強度の比を求め、 相対蛍光強度 (la/Id) とした。
(実施例 1 )
蛍光スぺクトル変化と合成 RNA量との相関
本発明の方法において、 インビト口転写 RN A合成反応により RN Aが合成さ れるにともない蛍光スぺクトルの変化が変化していくことを確認するために以下 の実験を行った。 以下の組成の転写反応液 150 jul に 2種類 1組の蛍光標識プ ローブを加えて RN A転写合成反応を行った。 プロ一ブは、 RNAの 5, 末端近 辺と相補的な塩基配列をもつ 2種類 1組のプロ一ブ (XELF— 1 Fドナ—プロ
—ブ /XE L F— 1 Fァクセプ夕一プローブ) を使用した。 錶型 DN Aを加える ことにより反応をスタートさせた。 反応は 37°Cで行った。
<転写反応液組成 >
ATP、 GTP、 CTP、 UTP 各 75mM
XELF 1—ひ DNA 6pmol
10 Transcription buffer 15 / 1
XELF-1F (ドナ一プローブ) 2578pmol
XELF-1F (ァクセプ夕一プロ一プ) 2577pmol
T3 RNAポリメラ一ゼ 15 / 1
ジェチルビ口カーボネ一ト (DEPEC) 処理水で 150〃 1にした。 一定時間毎に 5 1ずつ反応液を分取し、 20mM EDTA を含む 1XSSC を 145 ul 添加した後、 蛍光スぺクトル測定を行った。 蛍光スぺクトルは、 520 nm付近 にドナ一プローブの Bodipy493/503 に基づく蛍光が観測され、 670 nm付近 にァクセプ夕ープローブの Cy 5に基づく蛍光が観察された。 反応時間の経過に 従って Bodipy493/503 に基づく蛍光が減少し、 C y 5に基づく蛍光は増大した (図 9) 。 コントロ—ル実験として、 XELF— 1 Fドナ一プローブ ZXE L F - 1 Fァクセプ夕—プローブの代わりに XELF 1—ひ RNAと相補的な塩基配 列をもたない 2種類 1組のプローブ (C-F0S ドナ一プローブ/ C-F0Sァクセプ 夕一プローブ) を使用したときには、 蛍光スペクトルに変化は観察されなかった。 すなわち、 観察される蛍光スペクトル変化は、 転写反応液に添加されているプロ
—ブが合成 RN Aの特定の部位に特異的にハイプリダイズ
することにより生じたものである。 520 nmの蛍光強度 (Id) と 670 nm の蛍光強度 (l a) の比 (l a/Id) を反応時間に対してプロットしたものが 図 10 Bである。
また、 このときの合成 RNA量を以下の手順により求めた。 前記反応液中から 一定時間毎に 5〃 1 ずつ反応液を分取し、 145〃1 の反応停止液 (15 1 の 5M NH4〇Acおよび 10 OmM E D T Aと 130 1 のジェチルビロカ一 ボネート (DEPEC)処理水の混合液) を添加して、 反応を停止させた。 その 後、 フエノール 'クロ口ホルム抽出およびクロ口ホルム抽出を行い、 イソプロピ ルアルコール沈殿にて RNAを回収した。 回収した RNA沈殿物は、 20〃1 の
DEPE C処理水に溶解した後、 260 nmの吸光度により RN A量を求めた。 RN A量を反応時間に対してプロットしたものが図 1 OAである。
図 10Aと図 10Bの比較から、 蛍光スペクトル変化と RNA合成量の変化はよ い相関を示していることがわかる。
(実施例 2)
ハイプリダイズする RN A上の部位が異なる 3組のプローブによる転写反応のモ 二夕リング
本方法による RN A転写合成反応のモニタリングは、 使用するプロ一ブの RN A上でのハイブリダィゼ一シヨン部位には依存しない。
実施例 1では、 プローブとして、 RNAの 5, 末端近辺 (184-214) と相補的 な塩基配列をもつオリゴヌクレオチド (XE L F— 1 Fプロ一ブ) を使用した。 R N A上の他の部位と相補的な塩基配列をもつオリゴヌクレオチドをプローブと して使用したときにも、 同様に: RNA転写合成反応のモニタリングが可能である ことを確認するために、 RNAの中間領域 (566-595) と相補的な塩基配列をも つ XE LF— 2 Fプローブ、 RNAの 3, 末端近辺 (1504-1534) と相補的な塩 基配列をもつ XELF— 3 Fプロ一ブ、 を作製した。
?ー1 プロ一ブ、 XELF— 2Fプローブ、 ?ー3?プローブの 3組のプローブをそれぞれ転写反応液に添加した 3組の試料を調製し、 RN A転 写合成反応を行った。
ぐ転写反応液の組成 >
試料 1 : XE L F— 1 Fプローブ
ATP、 GTP、 CTP、 UTP 各 75mM
XELFl-α DNA 0.8pmol
10 x Transcription buffer 5〃1
XELF -IF ドナ一プローブ 430pmol
XELF— IFァクセプ夕一プローブ 430pmol
T3 RNAポリメラーゼ 5 1
DEPEC処理水で 50/ 1にした。
試料 2 : XE L F- 2 Fプロ一プ
ATP、 GTP、 CTP、 UTP 各 75mM
XELF 1- a DNA 0.8pmol
10 x Transcription buffer 5 1
XELF-2F ドナープローブ 430pmol
XELF— 2Fァクセプ夕一プローブ 430pmol
T3 Aポリメラ一ゼ 5 1
DEPEC処理水で 50 / 1にした。 試料 3 : XE LF— 3 Fプローブ
ATP、 GTP、 CTP、 UTP 各 75mM
XELFl-α DNA 0.8pmol
10 x Transcription buffer 5 zl
XELF-3F ドナープローブ 430pmol
XELF _ 3Fァクセプ夕一プロ一ブ 430pmol
T3 Aポリメラーゼ
DEPEC処理水で 50 zlにした。 図 11 は、 それぞれの試料について、 蛍光スペクトルの 2つの波長での蛍光強 度比 (l a/I d) を反応時間に対してプロッ トしたものである。 3つの試料の 蛍光スぺクトルの経時変化は同様の特性を示しており、 本方法による RNA転写 合成反応のモニタリングは、 使用するプローブの RN A上でのハイブリダイゼー シヨン部位に依存しないことを示している。
(実施例 3)
インビトロ転写反応の完全長 RNA生合成のモニタリング
XELF 1—ひの 3'末端が欠失した鎵型 DNAと完全長の錡型 DNAによる転写反応を 3'末端近辺と 5'末端近辺に相補的な塩基配列をもつプローブでそれぞれモニタリ ングして、 蛍光スペクトルの経時変化を観察した。
<転写反応液の組成〉
ATP、 GTP、 CTP、 UTP 各 75mM
10 x Transcription buffer Ίμ.\
XELF-3F ドナープローブ 608pmol
XELF-3Fァクセプ夕ープローブ 608pmol
T3 RNAポリメラ一ゼ 7 zl 上記反応液に 3 '末端が 1020塩基欠失した XELF 1—ひの踌型 DNA、 あるいは完 全長の XELF 1—ひの錶型 DNAをそれぞれ 3.5〃g添加した後、 DEPEC処理水で全 量を 70 1にし、 3 7 °Cで反応させた。
図 12A、 Bは 3'末端が欠失した XELF 1—ひと完全長の XELF 1—ひ の 2種類の
DNAをそれぞれ錶型にして、 3'末端近辺にハイブリダイズする XELF - 3F ドナ一プ ローブ、 XELF- 3F ァクセプ夕ープローブを添加して蛍光スペクトルの経時変化を 測定した結果である。
欠失した D N Aを錡型として 3'末端近辺にハイブリダィズする XELF- 3F ドナ一 プローブ、 XELF- 3F ァクセプ夕ープローブで蛍光スペクトルの経時変化を測定し た場合、 蛍光スペクトルの変化が観察されない (図 12 B ) のに対し、 完全長の D N Aを錶型とした場合には蛍光スぺクトルの経時変化が観察された(図 1 2 A )。 一方、 図 13A、 Bは 5'末端近辺にハイブリダィズする XELF— IF ドナープロ一 ブ、 XELF-1F ァクセプ夕一プローブを使用して蛍光スペクトルの経時変化を測定 した結果である。 欠失、 完全長いずれの錄型でも蛍光スペクトルの経時変化が観 察された。
生合成された RNAの長さを確認するためにそれぞれ反応後の転写反応液 20 / 1 に 2U/〃1の DNase Iを 1〃1添加し、 37°Cで 30min反応させた。 その後、 フエノ —ル ' クロ口ホルム抽出及びクロ口ホルム抽出を行い、 イソプロピルアルコール 沈殿にて生合成された RNAを回収した。 回収した RNA沈殿物は、 20 / 1の DEPEC 処理水に溶解し、 ァガロースゲル電気泳動にて RNAのサイズを確認した。 完全長 の鎵型を用いた場合には完全な長さ (約 1.9kb) の R N Aが合成され、 欠失した 錶型 D N Aの場合では約 l kb欠失した R N Aが合成されていた。
以上の結果より、 完全長 (目的の長さを有する) RNA の生合成をモニタリング するためには、 生合成される RNAの 3'末端近辺に相補的なプローブを転写反応液 に添加し、 蛍光スぺクトルの経時変化を観察すればよい。 (実施例 4 )
インビトロ転写モニタリングによる MA生合成の定量
蛍光スペクトルから求めたドナーの蛍光強度 (Id) に対するァクセプ夕一の蛍 光強度 (la) の比 (la/Id) に対し、 生合成された RNA濃度をプロットした検量 線を作成することにより、 RNA量 (濃度) を知ることが可能である。
(検量線の作成)
下記の転写反応液に XELF 1—ひの錶型 DNA2.5 /g、 XELF-1 Fプローブを錶型 DNA に対しモル比で 1000 倍量添加し、 DEPEC 処理水で全量を 50/z lにした後 37°Cで反応させた。 この転写反応液より一定時間毎に蛍光スペクトル測定と RNA 抽出のためにそれぞれ 2.5 1ずつ反応液を採取した。
<転写反応液の組成〉
ATP、 GTP、 CTP、 UTP 各 75mM
XELF 1—ひ DNA 0.8pmol
10 x Transcription buffe 5 / 1
XELF - IF ドナープローブ 820pmol
XELF— IFァクセプ夕一プロ一ブ 820pmol
T3 RNAポリメラーゼ 5 1
DEPEC処理水で 50 / 1にした。 蛍光スぺクトル測定は、 147.5 / 1の 20mM EDTAを含む l x SSCで希釈した後、 蛍光スぺクトル測定を行った。 生合成された RNA量は一定時間毎に分取した転写 溶液から実施例 1 と同様な方法で RNA抽出を行い、 260匪の吸光度値より算出し た。 また、 吸光度 260歷による定量では、 反応液中に存在する未反応のリボヌク レオチドゃ錶型 DNA を含めた値が定量されてしまう。 この影響を補正する為、 MA生合成前の試料溶液の 260nmの吸光度を同様な抽出操作を行って定量し、 こ の値を各定量値から差し引いた結果を用いて検量線を作成した。
上記方法によって得られた検量線を図 14に示す。 この検量線は錡型 DNAに対 しモル比で 1000 倍量のプローブを添加した場合である。 実際の定量は、 蛍光ス ぺクトルの変化から蛍光強度比 (la/Id) を求め、 前述した検量線から RNA 生合 成濃度を算出するものである。
プロ一ブの添加量に応じた検量線をあらかじめ作成しておくことで蛍光スぺク トルのモニタリングを行いながらリアルタイムで生合成された RNA量を知ること ができる。 (実施例 5 )
インビト口転写反応の開始及び完全長 RNAの同時モニタリング
2 組以上の蛍光標識プローブを同時に使用すると、 インビトロ転写反応の開始 と完全な長さ (目的の長さ) の RNAが合成されている様子を同時に確認すること が可能である。
1組は 5'末端近辺にハイプリダイズするプローブで転写反応の開始をモニタリン グするためのものであり、 他の 1組は 3'末端近辺にハイブリダイズするプロ一ブ で、 完全長 (目的の長さ) の RNAが生合成されているかどうかをモニタリングす るためのものである。 本実施例では 5'末端にハイブリダイズする 2種類 1組のプ 口一ブを B0DIPY493/503、 XRITC の組み合わせで、 3'末端にハイブリダィズする 2種類 1組のプローブを BODIPY493/503、 Cy5の組み合わせで標識した。
<モニタリングに使用したプローブ >
5'末端にハイブリダイズするプローブ
XELF - 1F ドナ一プローブ (5,— BODIPY493/503— GCCTTTTCCCATCTC)
XELF- 1Fァクセプ夕一プローブ (5,一 AGGCATACTTG(XRITC)AAGG)
3'末端にハイブリダイズするプロ一ブ
XELF - 3F ドナ一プロ一ブ (5,一 B0DIPY493/503— TTAAACTCTGATGGCC) XELF— 3Fァクセプ夕一プローブ (5'- ACCAGTCTTTT(Cy5)ACTA) 完全長の錡型 DNA、 または 3'末端を欠失させた錶型 DNAを添加した 1種類の転 写反応液を以下のように調製した。
<転写反応液組成 >
3'末端を欠失した錡型 DNAを添加した場合
ATP、 GTP、 CTP、 UTP 各 75mM
XELF1—ひ DNA (欠失) lpmol
10 x Transcription buffer 5 /1
XELF -IF ドナープローブ 820pmol
XELF -IFァクセプ夕ープローブ 820pmol
XELF-3F ドナ一プローブ 820pmol
XELF— 3Fァクセプ夕一プロ一ブ 820pmol
T3 RNAポリメラ一ゼ 5 1
DEPEC処理水で 50 zlにした。 完全長の錡型 DNAを添加した場合
ATP、 GTP CTP、 UTP 各 75mM
XELF 1 -a DNA (完全長) 0.8pmol
10 x Transcription buffer 5 l
XELF -IF ドナープローブ 820pmol
XELF -IFァクセプ夕一プローブ 820pmol
XELF-3F ドナ一プローブ 820pmol
XELF-3Fァクセプ夕一プローブ 820pmol
T3 RNAポリメラーゼ
DEPEC処理水で 50 / 1にした。 図 15Aは、 完全な長さの錶型 DNAを用いた場合の蛍光スぺクトルの経時変化で あり、 図 15Bは欠失した錡型 MAを用いた場合の蛍光スぺクトルの経時変化であ る。 図 15Aの蛍光スぺクトルは、 610nm付近に XRITCの蛍光の増加と 670nm付近 に Cy 5の蛍光の増加が同時に観察された。
一方図 15Bの蛍光スぺクトルは XRITCの蛍光の増加は観察されるが、 Cy5によ る蛍光スぺクトルの変化は観察されなかった。
以上の結果から、 適切な蛍光色素の組み合わせを有する 2組以上のプローブを 使用することによって、 転写反応の開始と完全長の RNAの合成を同時にモニタリ ングすることが可能である。
(実施例 6 )
転写反応速度のモニタリング
以下に T3ポリメラーゼの添加量の異なる 2組の転写反応液を調製した。
<転写反応液組成 >
ATP、 GTP、 CTP、 UTP 各 75mM
XELF1 - a DNA 0.8pmol
10 x Transcription buffe S j l
XELF - 1F ドナープローブ 820pmol
XELF— IFァクセプ夕一プローブ 820pmol 上記反応液に T3 RNAポリメラ一ゼを 5〃1 (図 1 6 : normal ) 添加した転写反 応液と 2.5〃1 (図 1 6 : 1/2) 添加した転写反応液 50 1を調製した。
蛍光スぺクトルより求めた蛍光強度比 (la/Id) を前記検量線を用いて MA 濃度 に変換し、 反応時間に対してプロットした。
図 16は、 ポリメラ一ゼ量が減少すると RNA生合成量も減少していた。 従って、 転写反応速度が速いか遅いかを判断するには、 反応の初期を短い間隔でモニタリ ングし、 その経時変化の傾きを求めればよい
(実施例 7)
プロ一ブの添加量変化による効果
上記 RN Aの 5'末端近辺と相補的な塩基配列をもつプローブ XELF- 1F ドナ一 プ ローブ及びァクセプ夕ープローブを鍊型 (テンプレート) DNAである XEL Fl- MAに対し、 モル比で 200倍、 400倍、 800倍添加し、 以下の転写反応 液を 調製し、 蛍光スぺクトルの経時変化を測定した。
<転写反応液組成 >
錶型 DNA:プローブ (1: 200)
ATP、 GTP、 CTP、 UTP 各 75mM
XELF 1—ひ DNA 0.8pmol
10 Transcription buffer 5 1
XELF -IF ドナープローブ 160pmol
XELF— IFァクセプ夕ープロ一ブ 160pmol
T3 MAポリメラ一ゼ 5 zl
錶型 DNA: プローブ (1: 400)
ATP、 GTP、 CTP、 UTP 各 75mM
XELF 1—ひ DNA 0.8pmol
10 x Transcription buffer 5 1
XELF -IF ドナ一プローブ 320pmol
XELF -IFァクセプ夕ープローブ 320pmol
T3 RNAポリメラ一ゼ 5 l
錡型 DM:プローブ (1: 800)
ATP、 GTP、 CTP、 UTP 各 75mM
XELF 1—ひ DNA 0.8pmol 10 x Transcription buffe 5jul
XELF-1F ドナープローブ 640pmol
XELF一 IFァクセプ夕ープロ一ブ 640pmol
T3 Aポリメラーゼ この結果からドナーの蛍光波長における蛍光強度 (Id) とァクセプ夕一の蛍光 波長における蛍光強度 (la) の比を転写反応時間に対してプロッ トした (図 17) 。 銪型 DNAに対し小過剰にプローブを添加した場合 (1: 200) 、 反応の初期 段階 での la/Id値の変化量は大きいが、 約 1. 6時間後以降は変化しない。 こ れに対 して錡型 DNAに対しプロ一ブを 400倍添加した場合は約 4時間後まで蛍 光スぺ クトルは変化した。 この結果は、 RNA合成は、 鍊型の 200倍以上おこ ることを示している。 また、 800 倍添加した場合においても約 4時間後まで蛍光 スぺクトルは変化した。 この結果は RNAの合成量が錡型 DNAに対し 200倍か ら 400倍の間であることを示す。
また、 鍩型 DNAに対し小過剰にプローブを添加した場合には、 蛍光スペクトル 変化が反応初期において大きく、 精度よく転写反応がモニタリングできる。 一方、 錡型 DNAに対し大過剰にプローブを添加した場合 (1 : 800) 、 la/Id値の変化量 が小さいため、 転写反応の初期段階を蛍光スぺクトルで精度よくモニタリングす ることはできないが合成反応の終了点をモニタ一することが可能となる。 従って、 本実施例の転写反応は、 反応の初期段階をモニタリングするためには、 錶型 DNA とプローブの比を 1:200に設定し、 転写反応の終了までモニタリングするために は、 錡型 MAとプローブの比を 1:400或いは 1: 800に設定すればよいことが示 される。 (実施例 8)
本発明に使用するプローブがハイブリダィズする当該 RN A上の部位は任意であ ることを示す実施例
XE LF 1—aRNAの 2次構造をコンビュ一夕一シミュレーションによって 予測した (日立ソフトエンジニアリング製 DNASIS DNA—シーケンス入力解析シ ステム) 。 一般にプローブがハイブリダィズしやすいと予想されるループ構造を とる部位 (塩基配列番号 184-214) 、 およびプローブがハイブリダィズしにくい と予想されるステム構造をとる部位 (塩基配列番号 346-375) をそれぞれ選択し、 その部位の塩基配列と相補的な塩基配列をもつ 2種類 1組の蛍光標識プローブを 作製した。
XELF— 1 Fドナ一プローブ: 184-199 の部位と相補的な塩基配列をもつ。 XE LF— 1 Fァクセプ夕一プロ一ブ: 200-214 の部位と相補的な塩基配列 をもつ。
XE LF-4 Fドナ一プローブ: 346-360の部位と相補的な塩基配列をもつ。 XE LF— 4 Fァクセプ夕一プロ一ブ: 36卜 375 の部位と相補的な塩基配列を もつ。
XE L F- 1 Fドナープローブと XE L F— 1 Fァクセプ夕一プローブを 1対 1 に混合した溶液、 および XELF— 4Fドナープローブと XELF— 4 Fァクセ プ夕一プローブを 1対 1に混合した溶液をそれぞれ調製し、 蛍光スぺクトルを測 定した。 次に、 これらの溶液に XE LF 1—ひ RNAをプローブに対して 1対 1 の比率でそれぞれ添加して室温で 30分反応させた後に蛍光スぺクトルの変化を 測定した。 結果を図 18Aに示す。 XELF— 1 Fプローブに XELF 1—ひ R
N Aを加えたときには Cy 5の蛍光量が大きく増大した蛍光スぺクトルが得られ たが、 XELF— 4 Fプローブに XELF 1—ひ R N Aを加えたときには蛍光ス ぺクトル変化は小さかった。 蛍光スぺクトルの変化はプローブが RNAにハイプ リダイズして蛍光色素間に共鳴エネルギー移動がおこつたことを示している。 す なわち、 図 18Aの結果は、 XELF 1—ひ RNAの 2次構造から予想されたと おり、 XELF— 1 Fプロ一ブは XELF 1—ひ R N Aによくハイブリダィズす るが、 XELF— 4 Fプローブは XELF 1—ひ R N Aにあまりハイブリダィズ しないことを示している。
次に、 これらのプローブを用いて本発明のィンビト口転写 RN A合成反応モニ 夕リング法を行った。 XELF— 1 Fドナ一プローブと XELF— 1 Fァクセプ 夕一プローブを含む転写反応液と、 XELF— 4 Fドナ一プローブと XELF— 4 Fァクセプ夕ープローブを含む転写反応液をそれぞれ調製し、 蛍光スぺクトル の経時変化をモニターした。
<反応転写液の組成 >
XELF- 1 Fドナープローブと XE L F— 1 Fァクセプ夕ープローブ XELF 1—ひ DNA 0.8pmol
10 Transcription buffer 5 /1
XELF -IFドナ一プローブ 640pmol
XELF— IFァクセプ夕ープローブ 640pmol
T3 MAポリメラーゼ 5 1
XE L F-4Fドナープローブと XE L F— 4Fァクセプ夕ープロ一ブ
XELF 1—ひ DNA 0.8pmol
10 X Transcript ion bufier
XELF-4F ドナ一プローブ 640pmol
XELF— 4Fァクセプ夕ープロ一ブ 640pmol
T3 RNAポリメラ一ゼ 結果を図 18Bおよび Cに示す。 図 18Bおよび Cから明らかなように、 XEL F— 4 Fプローブを使用したときにも、 XE L F_ 1 Fプローブを使用したとき と同様の蛍光スペクトルの経時変化が観察された。 これらの結果は、 特有の 2次 構造をとっている R N Aにハイブリダィズしない塩基配列をもつプロ一ブであつ ても、 転写合成反応液にあらかじめ加えておいたときには合成されてくる RNA にハイブリダィズすることを示している。
すなわち、 本発明にもとづく R N A転写合成反応のモニタリングを行うときに 使用するプローブは当該 R N Aの一部と相補的な塩基配列をもっていればよく、 R N A上のどの部位にハイブリダイズさせるかの選択は任意であることがわかる。
(実施例 9 )
隣接プローブによるインビトロ転写 R N A合成のモニタリング
前記実施例 1から 8で使用したプローブは、 合成された R N Aとハイブリダィ ズすると、 2種類のプローブは連続してハイプリダイズする。
本発明で使用するプローブが、 連続してハイブリダィズするプローブに限定さ れず、 互いに隣接してハイブリダィズするようなプロ一ブでも使用可能であるこ とを以下の実験で確認した。
<使用したプローブと塩基配列 >
連続してハイブリダイズするプロ一ブ
XELF-1F ドナープローブ 5,- BODIPY493/503- AGCCTTTTCCCATCTC - 3,
XELF-1Fァクセプ夕ープローブ 5'- AGGCATACTTG(Cy5 )AAGG-3,
隣接してハイブリダィズするプロ一ブ
XELF-1F ドナ一プローブ 5'- B0D IPY493/503- AGCCTTTTCCCATCTC - 3'
XELF-5Fァクセプ夕ープローブ 5'- ACCCAGGCATACTTG (Cy5) - 3'
R N Aとのハイブリッ ド体において、 プローブ間の一本鎖の部分は 4塩基となる <
<反応転写液の組成〉
連続プロ一ブを使用した場合
ATP、 GTP、 CTP、 UTP 各 75mM
XELFl - α DNA 6 pmol
10 Transcription buffer 10/z l
XELF - 1F ドナ一プローブ 432pmol XELF一 5Fァクセプ夕ープロ一ブ 432pmol
T3 RNAポリメラ一ゼ 10〃 1
DEPEC処理水で 100 / 1にした。
隣接プローブを使用した場合
ATP、 GTP、 CTP、 UTP 各 75mM
XELF 1—ひ DNA 6pmol
10 x Transcript ion buffer 10 z l
XELF - IF ドナープローブ 432pmol
XELF一 IFァクセプ夕ープロ一ブ 432pmol
T3 MAポリメラーゼ 10 1
DEPEC処理水で 100 / 1にした。
上記反応液を 37°Cで反応させ、 一定時間毎に 5〃1ずつ反応液を採取し、 145 i l の 20m EDTAを含む IxSSCで希釈した後、 蛍光スぺクトル測定を行った。
その結果、 連続してハイブリダィズするプローブと同様、 隣接してハイブリダィ ズするプローブを用いても反応時間の経過に従って、 B0DIPY493/503 に基づく蛍 光が減少し、 Cy5に基づく蛍光が増加した。
520nmの蛍光強度(Id)と 670nmの蛍光強度(la) の比( la/Id)を時間に対してプ ロットした結果を、 連続プローブと隣接プローブで比較したところ、 蛍光強度比 の経時変化は一致した。
従って、 本発明に係わるプロ一ブは連続してハイブリダィズするプローブに限 定されず、 2種類のプローブが R N Aの一部に隣接してハイプリダイズするプロ ーブでも使用可能である。 配列表
配列番号: 1 配列の長さ : 16 配列の型:核酸 鎖の数: 1本鎖 トポロジー:直鎖状 配列の種類: DNA 配列
AGCCTTTTCC CATCTC 16 配列番号: 2 配列の長さ : 15 配列の型:核酸 鎖の数: 1本鎖 トポロジー:直鎖状 配列の種類: DNA 配列
AGGCATACTT GAAGG 15 配列番号: 3 配列の長さ : 15 配列の型:核酸 鎖の数: 1本鎖 トポロジー:直鎖状 配列の種類: DNA 配列 TCTTGATGTA TGTGC 15 配列番号: 4
配列の長さ: 15 配列の型:核酸 鎖の数: 1本鎖 トポロジー:直鎖状 配列の種類: DNA 配列
GGTTGTAACC AATCT 15 配列番号: 5 配列の長さ : 16 配列の型:核酸 鎖の数: 1本鎖 トポロジー:直鎖状 配列の種類: DNA 配列
TTAAACTCTG ATGGCC 16 配列番号: 6 配列の長さ : 15 配列の型:核酸 鎖の数: 1本鎖 トポロジー:直鎖状 配列の種類: DNA 配列
ACCAGTCTTT TACTA 15 配列番号: 7 配列の長さ: 15 配列の型:核酸 鎖の数: 1本鎖 トポロジー:直鎖状 配列の種類: D N A 配列
AGTACCAGTG ATCAT 15 配列番号: 8 配列の長さ : 15 配列の型:核酸 鎖の数: 1本鎖 トポロジー:直鎖状 配列の種類: D N A 配列
ACAGTCAGCC TGAGA 15 配列番号: 9 配列の長さ : 15 配列の型:核酸 鎖の数: 1本鎖 トポロジー:直鎖状 配列の種類: DNA 配列
TCTAGTTGGT CTGTC 15 配列番号: 10 配列の長さ : 15 配列の型:核酸 鎖の数: 1本鎖 トポロジー:直鎖状 配列の種類: DN A 配列
GCAGACTTCT CATCT 15 配列番号: 11 配列の長さ : 15 配列の型:核酸 鎖の数: 1本鎖 トポロジー:直鎖状 配列の種類: DNA 配列
ACCCAGGCAT ACTTG 15

Claims

請求の範囲
1. RNA転写合成反応系中の、 転写合成された RNAの塩基配列の一部に ハイプリダイズする塩基配列を有する 2種類 1組のォリゴヌクレオチドプローブ であって、 エネルギードナー蛍光分子でラベル化されたドナ一プローブと、 エネ ルギ一ァクセプ夕ー蛍光分子でラベル化されたァクセプ夕一プローブとからなる 前記ォリゴヌクレオチドプローブの蛍光を測定することにより、 前記 R N A転写 合成反応の開始、 終了及び完全長の RN Aの合成をモニターする方法。
2. RN A転写合成反応系中の、 転写合成された RN Aの塩基配列の一部にハ ィプリダイズする塩基配列を有する 2種類 1組のォリゴヌクレオチドプローブで あって、 エネルギードナー蛍光分子でラベル化されたドナープローブと、 ェネル ギ一ァクセプ夕一蛍光分子でラベル化されたァクセプ夕ープローブとからなる前 記ォリゴヌクレオチドプローブの蛍光を測定することにより、 前記 R N A転写合 成反応による転写合成された RN Aを定量する方法。
3. RN A転写合成反応系中の、 転写合成された RNAの塩基配列の一部に ハイプリダイズする塩基配列を有する 2種類 1組のォリゴヌクレオチドプロ一ブ であって、 エネルギードナー蛍光分子でラベル化されたドナープローブと、 エネ ルギーァクセプ夕一蛍光分子でラベル化されたァクセプ夕一プローブとからなる、 少なくとも 2組以上の前記オリゴヌクレオチドプローブの蛍光を測定することに より、 前記 RNA転写合成反応における転写の開始と完全長 RNAを同時にモニ 夕一する方法。
4. インビトロ転写 RNA合成反応のモニター装置であって、 RNA転写反 応を行う合成反応装置と、 反応装置からサンプル溶液を導入するサンプル導入手 段と、 前記サンプル溶液の濃度を調節する溶媒混合装置 (測定試料調製装置) と、 蛍光測定装置と、 を備えることを特徴とする装置。
PCT/JP1998/000444 1997-02-03 1998-02-03 Procede de controle de la synthese de transcription de l'arn et dispositif a cet effet WO1998033897A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/269,519 US6180347B1 (en) 1997-02-03 1998-02-03 Method for monitoring transcriptional synthesis of RNA
JP53272898A JP3337226B2 (ja) 1997-02-03 1998-02-03 Rna転写合成モニター方法及びその装置
EP98901107A EP0965635A1 (en) 1997-02-03 1998-02-03 Method for monitoring transcriptional synthesis of rna and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/20632 1997-02-03
JP2063297 1997-02-03

Publications (1)

Publication Number Publication Date
WO1998033897A1 true WO1998033897A1 (fr) 1998-08-06

Family

ID=12032618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000444 WO1998033897A1 (fr) 1997-02-03 1998-02-03 Procede de controle de la synthese de transcription de l'arn et dispositif a cet effet

Country Status (4)

Country Link
US (1) US6180347B1 (ja)
EP (1) EP0965635A1 (ja)
JP (1) JP3337226B2 (ja)
WO (1) WO1998033897A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052293A1 (en) * 1999-05-12 2000-11-15 Laboratory of Molecular Biophotonics Nucleic acid detection in cytoplasm
US6396584B1 (en) 1999-01-25 2002-05-28 Hamamatsu Photonics K.K. Pipette adapter, absorbance measuring pipette, tip, absorbance measuring apparatus, and absorbance measuring
US6872525B2 (en) 2000-02-04 2005-03-29 Hamamatsu Photonics K.K. Method for selectively separating live cells expressing a specific gene

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002028884A1 (en) * 2000-10-04 2002-04-11 University Of Medicine And Dentistry Of New Jersey Site-specific protein modification
US20090011488A1 (en) * 2003-08-18 2009-01-08 Rosetta Inpharmatics, Llc Methods for storing compositions useful for synthesizing nucleic acid molecules
US20050208598A1 (en) * 2004-02-13 2005-09-22 Cox W G Biotin recognition sensors and high-throughput assays
KR20220041211A (ko) 2019-08-09 2022-03-31 넛크래커 테라퓨틱스 인코포레이티드 치료학적 조성물로부터 물질을 제거하기 위한 제조 방법 및 장치
WO2024074726A1 (en) * 2022-10-07 2024-04-11 Sanofi Spectral monitoring of in vitro transcription

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157570A (ja) * 1985-12-23 1987-07-13 シンジーン・インコーポレイテッド 標的一本鎖ポリヌクレオチド配列を検出するための分光学的方法およびそれに用いるプローブ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996143A (en) 1985-12-23 1991-02-26 Syngene, Inc. Fluorescent stokes shift probes for polynucleotide hybridization
WO1995003428A1 (en) 1993-07-20 1995-02-02 University Of Massachusetts Medical Center In vivo nucleic acid hybridization method
JP3189000B2 (ja) * 1994-12-01 2001-07-16 東ソー株式会社 特定核酸配列の検出方法
AU4321497A (en) 1996-09-27 1998-04-17 Laboratory Of Molecular Biophotonics Probes for detecting polynucleotides and detection method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157570A (ja) * 1985-12-23 1987-07-13 シンジーン・インコーポレイテッド 標的一本鎖ポリヌクレオチド配列を検出するための分光学的方法およびそれに用いるプローブ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOLLY C., ET AL.: "CONTRIBUTION OF GROWING RNA MOLECULES TO THE NUCLEAR TRANSCRIPTS FOCI OBSERVED BY FISH.", EXPERIMENTAL CELL RESEARCH, ACADEMIC PRESS, US, vol. 238., no. 01., 1 January 1998 (1998-01-01), US, pages 299 - 304., XP002912925, ISSN: 0014-4827, DOI: 10.1006/excr.1997.3838 *
See also references of EP0965635A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396584B1 (en) 1999-01-25 2002-05-28 Hamamatsu Photonics K.K. Pipette adapter, absorbance measuring pipette, tip, absorbance measuring apparatus, and absorbance measuring
EP1052293A1 (en) * 1999-05-12 2000-11-15 Laboratory of Molecular Biophotonics Nucleic acid detection in cytoplasm
US6872525B2 (en) 2000-02-04 2005-03-29 Hamamatsu Photonics K.K. Method for selectively separating live cells expressing a specific gene
US7132241B2 (en) 2000-02-04 2006-11-07 Hamamatsu Photonics, K.K.. Method for selectively separating live cells expressing a specific gene

Also Published As

Publication number Publication date
JP3337226B2 (ja) 2002-10-21
US6180347B1 (en) 2001-01-30
EP0965635A4 (ja) 1999-12-22
EP0965635A1 (en) 1999-12-22

Similar Documents

Publication Publication Date Title
EP3290528B1 (en) Methods and compositions for nucleic acid sequencing
EP1472369B1 (en) Quantitative methylation detection in dna samples
US6811977B2 (en) Rapid, quantitative method for the mass spectrometric analysis of nucleic acids for gene expression and genotyping
JP2009512837A (ja) 非蛍光性エネルギー移動
WO2005098036A1 (en) Oligonucleotide for detecting target dna or rna
KR20060136482A (ko) 표적 dna 또는 rna 탐지용 올리고뉴클레오티드
JP7041695B2 (ja) シーケンスアプリケーションにおけるヌクレオチドのためのショートペンダントアームリンカー
CN109182465B (zh) 一种高通量核酸表观遗传修饰定量分析方法
US11649489B2 (en) Nucleic acid sequencing method and nucleic acid sequencing kit
JP4370385B2 (ja) プライマー、プライマーセット、それを用いた核酸増幅方法および変異検出方法
US20220195499A1 (en) Quantification of ngs dna by adapter sequence
WO1998033897A1 (fr) Procede de controle de la synthese de transcription de l&#39;arn et dispositif a cet effet
CN114250283A (zh) 基于环境敏感染料的单色荧光mrt基因测序试剂及方法
EP3124622B1 (en) Fluorescent labeled single-stranded nucleic acid and use thereof
US20190382838A1 (en) Methods For Single-Molecule Fluorescence Amplification Of RNA
EP3011053A2 (en) Fluorophore-based oligonucleotide probes with a universal element
CN115323045A (zh) 一种基因测序试剂及基因测序方法
GB2517700A (en) Oligonucleotides comprising a secondary structure and uses thereof
EP1264899A2 (en) Methods and kits for preparing and detecting RNA probes
US20040234957A9 (en) Compositions and methods for labeling oligonucleotides
LARSSON In situ hybridization using biotin-labeled oligonucleotides: probe labeling and procedures for mRNA detection
US20200283834A1 (en) Rapid in situ detection of dna and rna
JP2000041700A (ja) 薬物の生物活性測定方法、そのスクリーニング方法、及び自動スクリーニング装置
CN109540856B (zh) 一种基于荧光共振能量转移检测不同亚型乳腺癌细胞的试剂
JP2003508064A (ja) 核酸増幅時の外因性コントロール、内部コントロールのための方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09269519

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998901107

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998901107

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998901107

Country of ref document: EP