WO1998031809A1 - Human cc chemokine slc - Google Patents

Human cc chemokine slc Download PDF

Info

Publication number
WO1998031809A1
WO1998031809A1 PCT/JP1998/000154 JP9800154W WO9831809A1 WO 1998031809 A1 WO1998031809 A1 WO 1998031809A1 JP 9800154 W JP9800154 W JP 9800154W WO 9831809 A1 WO9831809 A1 WO 9831809A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
human
sequence
slc
amino acid
Prior art date
Application number
PCT/JP1998/000154
Other languages
French (fr)
Japanese (ja)
Inventor
Morio Nagira
Toshio Imai
Osamu Yoshie
Original Assignee
Shionogi & Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shionogi & Co., Ltd. filed Critical Shionogi & Co., Ltd.
Priority to AU54967/98A priority Critical patent/AU5496798A/en
Publication of WO1998031809A1 publication Critical patent/WO1998031809A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/521Chemokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a novel human CC-type chemokine SL, a polynucleotide encoding the protein, a method for producing the protein, a pharmaceutical composition containing the protein or a polynucleotide encoding the protein, and a monoclonal antibody comprising the protein. Screening antibodies and hybridomas capable of producing the antibodies, and further screening agonists against agonism against biological effects induced by the binding of the proteins to their specific receptors. About the method. Background art
  • extrinsic or endogenous tissue injuries, invasions, or antigen exposures can induce strong inflammatory and immune responses. These reactions are important host defense responses, but can also sometimes cause acute or chronic illness.
  • a cause that induces an inflammatory or immune response is added to a tissue, first, inflammatory cells such as neutrophils, granulocytes, lymphocytes or macrophages or immunocompetent cells adsorb to vascular endothelial cells, extravascular And accumulation in invaded or damaged tissues or in the presence of antigens.
  • chemokines As a substance that induces such a series of cell migration reactions, there is a group of chemotactic sites, so-called chemokines.
  • Chemokines are a group of site forces that induce a chemotactic reaction (chemotactic reaction), and are closely related structurally to each other due to similarities in amino acid sequences. To date, more than 30 chemokines have been reported in humans. Chemokines are largely ⁇ or CXC (two cysteines separated by one amino acid) and i8 or CC from the arrangement of the first two of the four conserved cysteine residues in common. Type (two cysteines are next to each other).
  • CXC chemokines As human CXC chemokines, IL-8, ⁇ -TG, PF-4, MGSA / GRO, ENA-78, NAP-2, GCP-K GCP-2, IP-10, SDF-1 / PBSF, MIG, NA which is known.
  • cxc-type chemokines mainly induce neutrophil activation and migration.
  • human CC chemokines MIP-1 ⁇ , ⁇ -1 ⁇ , RANTES, MCP-K MCP-2, MCP-3, U-309, eotaxin and the like are known in humans.
  • CC-type chemokines mainly induce monocyte / macrophage activation and migration.
  • CC-type chemokines are known to exhibit activation and migration induction on T cells, basophils, and eosinophils (Oppenheim et al, Annu. Rev. Immunol. 9: 617- 648, 1991; Baggiol ini et a I., Adv. Immunol. 55: 97-179, 1994; Ben—Baruch et al., J. Biol. Chem. 270: 11703-11706, 1995; M. Baggiol ini et al. , Annu. Rev. Immunol. 15: 675-705, 1997; B. ⁇ Rollins, Blood 90: 909-928, 1997). Summary of the Invention
  • the present invention relates to a newly discovered human CC-type chemokine that is a ligand of CCR7 or a mutant thereof, which is found to be mainly constitutively expressed in secondary lymphoid tissues by a single-blot analysis.
  • Proteins that are fragments thereof preferably a human CC type chemokai having the amino acid residues 24 to 134 of SEQ ID NO: 1 or the amino acid residues 1 to 134 of SEQ ID NO: 1 Or a sequence containing at least one selected from substitution, deletion, insertion, and addition of one or several amino acid residues in this sequence and the function or activity of the human CC-type chemokine.
  • Screening agonist, inverse agonist or antagonist for biological action induced by binding A method in which a sample presumed to contain the agonist, inverse agonist or antagonist is added to a binding reaction between the protein and its specific receptor CCR7, and the inhibition of the binding is measured. Or a method comprising directly reacting with the protein specific receptor CCR7 to measure the binding and / or reactivity to the receptor; the present invention, which can be obtained by the screening method of the present invention.
  • Arginist, inverse agonist or antagonist for biological action induced by the binding of the protein to its specific receptor CCR7 BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows the nucleotide sequence and deduced amino acid sequence of human SLC cDNA.
  • FIG. 2 is a view showing the results of comparing the amino acid sequences of the SLC protein of the present invention and 14 known human CC-type chemokines. The numbers on the right show the amino acid identity with the SLC protein.
  • FIG. 3 is a photograph instead of a drawing showing the results of Northern blot analysis of SLC mRNA expression in various human tissues.
  • FIG. 4 is a diagram showing a purity assay of purified SLC protein using SDS-PAGE.
  • FIG. 5 is a graph showing induction of a chemotaxis reaction in human T cell line HUT78 cells and HUT102 cells by purified SLC protein.
  • Figure 6 shows the reactivity of purified SLC protein to various receptors It is a graph shown by the change of the waterfall.
  • FIG. 7 is a graph showing induction of a chemotaxis reaction in a mouse L1.2 cell line stably expressing human CCR 7 by purified SLC protein.
  • FIG. 8 is a graph showing promotion of HIV virus growth by SLC. Protein. Disclosure of the invention
  • CC-type chemokine In order to find a new CC-type chemokine, the present inventors, based on the amino acid sequence of various human CC-type chemokines, used a part of the nucleic acid sequence database GenBank published by PJCBI of the U.S.A. An Expressed Sequence Tag (EST) database composed of partial sequences was searched using TBLASTN search software. As a result, we found the presence of the sequence of a DNA fragment that is thought to encode a new CC-type chemokine-like protein, and isolated two types of cDNA clones that complement the full-length cDNA from human fetal lung tissue tnRNA. Then, the nucleotide sequence over the entire length was determined.
  • EST Expressed Sequence Tag
  • This gene is constitutively expressed mainly in secondary lymphoid tissues such as lymph nodes, small intestine, cecum, and spleen, and the protein produced using genetic engineering techniques is transferred to human T cells. On the other hand, they have shown that they have cell migration activity, and thus completed the present invention.
  • the new human CC-type chemokine was named SLC (Secondary Lymphoid tissue Chemokne).
  • SLC is predicted to be a protein consisting of 134 amino acids based on the open reading frame (0RF) predicted from the nucleotide sequence of cDNA. In mature proteins, glycine at position 23 and serine at position 24 are considered. The signal sequence is cleaved between the two, and it is presumed to be a basic protein consisting of 111 amino acids and having a molecular weight of about 12.2 kDa. Mature SLC shows significant homology to known CC chemokines, especially all four cysteines conserved in CC chemokines. However, the homology with existing CC-type chemokines is about 33% even for the highest MIP-13.
  • CCR7 described in Mark Birkenbach et al., J. Virol. 67: 2209-2220, 1993. This CCR 7 has been reported to be specifically expressed in lymphoid cell lines. Therefore, [Supra, Vicki and Schweickart et al., GENOMICS 23: 643-650, 1994], it is presumed that the ligand SLC of the present invention has a function of migrating lymphocytes.
  • CCR7 (described as EBI1 in the above-cited reference) is caused by infection with Epstein-Barr virus (EBV) and Human Herpesvirus 6 or 7 (HHV-6, 7).
  • the present invention provides a human CC-type chemokine that is a ligand of CCR7, a mutant thereof, or a fragment thereof, which is confirmed to be mainly constitutively expressed in secondary lymphoid tissues by Northern blot analysis.
  • a protein Preferably, the protein is a human CC-type chemokine having amino acid residues of at least 99 or a mutant thereof, or a fragment thereof.
  • secondary lymphoid tissue refers to a primary lymphoid tissue, such as bone marrow or thymus, which controls the production and differentiation of progenitor cells from which immunocompetent cells are derived, and includes lymph nodes, small intestine, Lymphoid tissues such as the cecum and spleen and tissues rich in lymphocytes, which means tissues that actually play an immune response.
  • the present invention relates to a human CC-type chemokine (SLC) having an amino acid sequence of amino acid residues 24 to 134 of SEQ ID NO: 1 or one or several amino acid residues of this sequence.
  • the human CC having a sequence containing at least one selected from substitution, deletion, insertion, and addition, and having a function or activity substantially the same as the function or activity of the human CC chemokine.
  • a human CC-type chemokine mutant that can function as an antagonist to the human CC-type chemokine.
  • the mutant is a variant in which the amino acid at amino acid residue 82 of SEQ ID NO: 1 is not a Tyr residue.
  • the present invention also relates to a human CC type chemokine (SLC precursor) having the amino acid sequence of amino acid residues 1 to 134 of SEQ ID NO: 1, or one or several amino acids added to this sequence.
  • a function comprising a sequence containing at least one selected from substitution, deletion, insertion and addition of a non-acid residue, and having substantially the same function or activity as that of the human CC-type chemokine; or
  • the present invention relates to a mutant of the human CC-type chemokine having activity, or a mutant of the human CC-type chemokine capable of functioning as an antagonist to the human CC-type chemokine.
  • a mutant in which the amino acid at amino acid residue 82 of SEQ ID NO: 1 is not a Tyr residue.
  • CC type chemokine variant refers to a protein having an amino acid sequence of the original protein having a sequence containing amino acid or amino acid sequence substitution, deletion, insertion, or addition, and / or chemical or biochemical A modified protein capable of containing a natural or unnatural amino acid, a protein whose function or activity is substantially the same as the CC-type chemokine, or an antagonist of the CC-type chemokine.
  • the present invention also includes a protein which is a fragment of the CC-type chemokine of the present invention or a mutant thereof.
  • the length of this fragment is, for example, 5 to 100 amino acid residues, or 20 to 80 amino acid residues, and each function or activity is substantially the same as that of the CC-type chemokine of the present invention.
  • the present invention relates to a polynucleotide encoding the CC-type chemokine of the present invention and a mutant of the protein.
  • polynucleotide molecule can also include non-natural molecules including DNA, RNA, or S-lig.
  • DNA it can be cDNA, genomic DNA or synthetic DNA. Both DNA and RNA may be double-stranded or single-stranded. In the case of a single strand, the coding strand or non-coding strand can be used.
  • it includes the nucleotide sequence from A at position 128 to A at position 46 of SEQ ID NO: 1, or the nucleotide sequence from A at position 590 to A at position 450 in SEQ ID NO: 1. It relates to a polynucleotide molecule.
  • the present invention provides variants of these polynucleotide molecules by base substitution, base addition or allelic mutation.
  • a variant by base substitution or base addition refers to the nucleotide sequence set forth in SEQ ID NO: 1.
  • the same amino acid sequence as the amino acid sequence of amino acids 1 to 134 shown in SEQ ID NO: 1 or the amino acid sequence of amino acids 24 to 134 shown in SEQ ID NO: 1 A variant that can encode the same protein as
  • mutant due to allelic mutation means a naturally occurring base mutation based on individual or ethnic differences, and the amino acid sequence to be encoded may be changed.
  • the present invention further provides a polynucleotide or oligonucleotide molecule having a sequence complementary to the entire length or a part of the nucleotide sequence from C at position 1 to A at position 864 of SEQ ID NO: 1, or a base substitution thereof, 2.
  • a sequence complementary to the 5 'non-coding portion is preferred, and more preferably a sequence complementary to the transcription initiation site, translation initiation site, 5' untranslated region, boundary region between exon and intron or 5 'CAP region. It is desirable that Preferred lengths are from about 10 base pairs (bp) to about 60 bp.
  • the present invention relates to a vector containing the polynucleotide molecule of the present invention.
  • the vectors of the present invention include vectors having various uses, such as expression vectors, cloning vectors, and therapeutic vectors.
  • the expression vector can be used for mass production of the protein of the present invention. Details of the expression vector are shown in the following section.
  • Therapeutic vector is used for the method of administering the polynucleotide molecule of the present invention and introducing it into cells.
  • the method using a viral vector and other methods (Nikkei Science, April 1994, pp. 20-45; Monthly Pharmaceutical Affairs, 36 (1) 23-48 (1 994); Experimental Medicine Special Edition, 12 (15), (1 994)). And any of these cited references (etc.) can be applied.
  • a method using a viral vector for example, the DNA or RNA of the present invention is incorporated into a viral vector such as a retrovirus, an adenovirus, an adeno-associated virus, a herpes virus, a vaccinia virus, a box virus, a polio virus, or a simbis virus.
  • the method introduced in is mentioned. Among them, a method using a retrovirus, an adenovirus, an adeno-associated virus, a vaccinia virus and the like is particularly preferable. Other methods include administration of plasmid directly into the muscle (DNA method), ribosome method, lipofectin method, microinjection method, calcium phosphate method, and electroporation method. DNA vaccine method and ribosome method are preferred.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a protein of the invention or a variant thereof or a polynucleotide molecule encoding them or a therapeutic vector containing it.
  • the pharmaceutical composition of the present invention includes, for example, anti-inflammatory agents, immune response regulators, anti-infective agents, anti-cancer agents, prophylactic agents or diagnostic agents for diseases related to inflammation and / or immunity.
  • the polynucleotide molecule of the present invention act as a medicine, an in vivo method of direct introduction into the body, and a method of introducing a gene into the cell outside the body by using a certain cell from a human and returning the cell to the body There is a way.
  • the dose of the protein or polynucleotide molecule of the present invention can be appropriately adjusted depending on the age, body weight, etc. of the patient, but usually 0.001 mg to 100 mg of the protein of the present invention, It is preferably administered once every few months. Since the protein of the present invention is an active substance in a living body, acute toxicity may not be a problem in the amount in which the activity of the protein occurs, that is, in the amount of the pharmaceutical composition containing the protein of the present invention. Easily guessed.
  • the present invention relates to an antibody against the protein of the present invention or a mutant thereof, particularly a monoclonal antibody, and a hybridoma cell producing the monoclonal antibody.
  • the present invention provides an agonist for the biological effects induced by the binding of the protein of the present invention to its specific receptor CCR7 by providing a relationship between the protein of the present invention and its specific receptor.
  • a method of searching for and evaluating a substance acting as an inverse agonist or antagonist That is, a sample presumed to contain the agonist, inverse agonist or antagonist is added to the binding reaction between the protein of the present invention and its specific receptor CCR7 to measure the inhibition of the binding, or to determine the specificity of the protein.
  • the present invention also relates to an agonist, inverted agonist or antagonist against a biological effect induced by binding of the protein of the present invention to its specific receptor CCR7, which can be obtained by the screening method of the present invention. You. Preferred embodiments of the invention
  • the present invention relates to a human CC-type chemokine whose constitutive expression is mainly observed in secondary lymphoid tissues and in the thymus by Northern blot analysis.
  • a gene recombination technique known in the art a technique for producing a recombinant protein in animal cells, insect cells, yeast and Escherichia coli, a method for separating and purifying expressed proteins, and an assay. Methods and immunological techniques can be employed.
  • DNA fragment containing DNA encoding the SLC protein of the present invention illustrates a method for sequencing a DNA fragment containing DNA encoding the SLC protein of the present invention.
  • the sequence of this DNA fragment can be obtained from cDNA derived from, for example, human lymph nodes, small intestine, cecum, thymus, spleen, or fetal lung tissue. Primers are required for cloning cDMA that encodes
  • GenBank a nucleic acid sequence database released by NCBI of the United States.It uses an Expressed Sequence Tag (EST) database consisting of cDNA partial sequences, and provides TBLASTN search software based on various human CC-type chemokine amino acid sequences. A search is performed to obtain a partial cDNA sequence that has significant homology to CC-type chemokines, but is thought to encode a protein different from known chemokines. Based on the obtained cDNA partial sequence, a primer pair for polymerase chain reaction (PCR) is synthesized.
  • PCR polymerase chain reaction
  • RACE method rapid amplification of cDNA ends
  • mRNA of human fetal lung tissue Frohman et al., Proc. Natl. Acad. Sci. USA 85: 8998-9002, 1988
  • Poly (A) + RNA was extracted from human fetal lung tissue using a Quickprep Micro mRNA purification kit (Pharmacia), and a marathon cDNA amplification kit (Ciontech) was extracted from this poly (A) + RNA. Perform 5 'RACE. And 3' RACE using).
  • cDNA is amplified from the upstream 5 'primer to the downstream 3' end to the 3 'end of the cDNA, and the resulting cDNA fragment is converted into an appropriate nucleotide sequence determination vector, for example, pGEM-T ( Promega) or pBluescript (Stratagene).
  • an appropriate nucleotide sequence determination vector for example, pGEM-T ( Promega) or pBluescript (Stratagene).
  • the recombinant plasmid was recovered, and the nucleotide sequence of the cloned cDNA fragment was determined by, for example, the Sanger method (Sanger et al., Proc. Natl. Acad. Sci. USA, 74: 5463-5467, 1977). decide.
  • cDNA is similarly amplified from the downstream 3 'primer to the upstream 5' end to the 5 'end of cDMA.
  • the obtained cDNA fragment is inserted into an appropriate nucleotide sequence determination vector in the same manner as described above, the recombinant plasmid is recovered, and the nucleotide sequence of the cloned cDNA is determined.
  • the base sequence corresponding to the full-length cDNA is determined.
  • amplification was performed by the polymerase chain reaction (PCR) using two types of primers synthesized based on the base sequences at both ends of the region encoding the SLC protein. Insert the DNA into an appropriate nucleotide sequence determination vector (described above), recover the recombinant vector, and determine the nucleotide sequence of the cloned cDNA (described above).
  • PCR polymerase chain reaction
  • the obtained cDNA encoding the SLC protein is inserted into an appropriate expression vector to provide an expression vector for expressing the SLC protein.
  • Appropriate expression vectors include, for example, pRSET, pGEMEX.pKK233-2 for bacteria, pYES2 for yeast, pVU393 for insect cells, pFAST-Bac, pEF-B0S for animal cells, pSRa, pDR2, and the like.
  • the expression vector is introduced into a suitable host cell, for example, a bacterium, yeast, insect cell, or animal cell, to produce a transformant.
  • prokaryotic microorganisms such as Escherichia coli
  • a strong promoter eg, T7 promoter
  • yeast it can be expressed as a fusion protein in which a signal sequence derived from a natural precursor of a yeast secretory protein (eg, a pheromone ⁇ prebub sequence) and a mature SLC protein are fused.
  • the gene for the precursor protein of the SLC protein which already contains a signal sequence, is inserted downstream of a strong promoter (eg, EF-1 ⁇ promoter), and is used as an effective selection marker (eg, dihydrofolate reductase).
  • a strong promoter eg, EF-1 ⁇ promoter
  • the cells can be introduced into animal cells (eg, CH0 dhfr- cells), and cells can be selected based on their resistance to the drug (in this case, metrexrexate), thereby establishing a highly expressing cell line. It can also be expressed by incorporating the gene for the SLC protein precursor containing the signal sequence into a virus or retrovirus and infecting animal cells with the recombinant virus. By culturing these transformants, SLC proteins can be produced and secreted.
  • the mature SLC protein can be prepared using the reported method (Clark-Lewis et al., Biochemistry 30: 3128-) using, for example, a solid phase method, paying attention to the presence of three disulfide bonds. 3135, 1991).
  • the obtained protein can be purified by a method known to those skilled in the art, for example, by a combination of affinity chromatography, ion exchange chromatography, gel filtration chromatography, reverse phase chromatography, and hydrophobic chromatography. (Imai et al., J. Biol. Chem. 271: 21514-21521, 1996).
  • mutant of the SLC protein of the present invention can be performed by a gene recombination technique (.Sambrook et al., Molecular Cloning: AI aboraroy manual, 2nd edn.New York, Cold Spring Harbor Laboratory) well known to those skilled in the art. This can be done using the introduced DNA.
  • Antibodies to the SLC protein of the present invention include, for example, a synthetic peptide synthesized by an ordinary peptide synthesizer based on a part of the deduced SLC amino acid sequence, and a bacterium, yeast, or insect transformed with a vector that expresses SLC. Purify SLC proteins produced by cells, animal cells, etc. by ordinary protein chemical methods and immunize them As a source, immunize animals such as mice, rats, eight-stars, and egrets to produce antibodies (polyclonal antibodies) derived from their sera.
  • lymphocytes are removed from the spleen or lymph nodes of immunized mouse rats, fused with myeloma cells, and subjected to Kohler and Milstein's method t Nature, 256, 495-497 (1975). )] Or a modified method of Ueda et al. [Proc. Natl. Acad. Sci. USA, 79: 4386-4390, 1982)] to produce a hybridoma and prepare a monoclonal clone from the hybridoma.
  • Antibodies can be produced.
  • a monoclonal antibody of the SLC protein can be obtained by the following steps.
  • the presence of the SLC mRNA and protein of the present invention can be carried out by using a detection method for ordinary specific mRNA and protein (Sambrook et al., Molecular Cloning: AI aboraroy manual, 2nd edn. New York, Cold Spring Harbor Laboratory 1989; Harlow and Lane, Antibodies: A laboratory manual, New York, Cold Spring Harbor Laboratory 1988).
  • mRNA can be detected by Northern blot analysis using an antisense RNA or cDNA as a probe.
  • mRNA is converted to CDNA with reverse transcriptase. It can also be detected by polymerase chain reaction (PCR) using appropriate primer combinations.
  • Protein can be detected by immunoprecipitation using an antibody specific to the SLC protein, Western blot, or the like.
  • a fixed amount of SLC labeled with a radioisotope, an enzyme such as peroxidase or alkaline phosphatase, or a fluorescent dye is added to a known concentration of unlabeled SL (: and anti-SLC polyclonal antibody or monoclonal antibody derived from serum)
  • a known concentration of unlabeled SL : and anti-SLC polyclonal antibody or monoclonal antibody derived from serum
  • a sample containing an unknown amount of antigen in place of the unlabeled antigen of known degree is added to the above reaction system, and the radioactivity, enzyme activity, or fluorescence intensity obtained after the reaction is determined.
  • the amount of antigen, ie, SLC protein in a sample can be determined. Quantification of SLC proteins could provide a new way to monitor inflammatory and immune responses.
  • the chemokine activity of the SLC protein of the present invention can be determined, for example, by placing SLC on one side of a culture vessel partitioned by a filter having a certain diameter of pores in a test tube and placing target cells on the other side. After a certain period of time, the number of cells that have moved through the pores of the filter to the side where SLC is present can be compared with the number of random migration. In vivo, it can also be demonstrated by administering purified SLC protein to animals and detecting cell invasion and aggregation by histological methods.
  • GenBank a nucleic acid sequence database released by NCBI in the United States, based on the Expressed Sequence Tag (EST) database composed of partial sequences derived from various cDNAs based on the amino acid sequences of various human CC-type chemokines.
  • EST data (GenBank Accession No .: W17274, 84422.), which was searched using TBLASTN search software and is thought to encode a chemokine protein that has significant homology to CC-type chemokines but is different from known chemokines. W84375, 67885, W67812, T25128).
  • the SLC cDNA was isolated by the RACE method using SLC-specific primers (Frohman et ai., Proc. Natl. Acad. Sci. USA 85: 8998-9002, 1988).
  • primers for RACE, NCC-8-5′RACE primer and NCC-8R-3 ′ RACE primer were synthesized based on the sequence of GenBank EST data W17274.
  • the sequences of the fJCC-8-5 'RACE primer and NCC-8R-3' RACE primer are as follows:
  • NCC-8-3 'RACE 5'-GAAGCCTGAACCCAAGATGCAAGAAGG-3' SEQ ID NO: 3
  • CDNA was synthesized from this mRNA using the Marathon cDNA Amplification Kit (Clontech).
  • reaction solution was cooled with water, and dATP, dCTP, dGTP, dTTP (0.2 mM each), E. coli DMA polymerase I (24 units), E. coli DNA ligase (4.8 units), and E . col i RNase H to (1 Yuni' g) was added, 100 mM KC and 10 mM sulfuric Anmoniu ⁇ , 5 mM MgC 1 2, 0.15 mM ⁇ -NAD, 20 mM Tris-HCI (pH7.5), 0.05 mg / ml A double-stranded cDNA synthesis reaction was performed for 1 hour and a half at 16 in 80 I of a serum albumin reaction solution.
  • T4 DNA polymerase (10 units) was added to the reaction solution, and the mixture was reacted at 16 ° C for 45 minutes to blunt the cDNA. After the reaction, phenol extraction and ethanol precipitation were performed, and the DNA was dissolved in 10 ⁇ l of distilled water. Add 20 pmole of Marathon cDNA adapter and T4 DNA ligase (1 unit) to 5 ⁇ l of the solution, and add 50 mM Tris-HCI (pH 7.8), 10 mM MgCI or 1 mM DTT, 1 mM ATP, 5 mM (w / v) In a reaction solution of polyethylene glycol (MW 8,000) in 10 I at 16 ° C.
  • PCR was carried out for 30 cycles at 94 ° C, 30 seconds; 60 ° C, 30 seconds; 68 ° C, 4 minutes.
  • the 3 ′ RACE reaction was performed under the same reaction conditions as above, except that the NCC-8-3 ′ RACE primer (SEQ ID NO: 3) was used instead of the NCC-8-5 ′ RACE primer.
  • each PCR product was separated by 23 ⁇ 4 low-melting point agarose gel electrophoresis, and the main 5 'RACE fragment (about 540 bp) and the main 3' RACE fragment (about 350 bp) were recovered by ethanol extraction.
  • each was dissolved in 10 ⁇ l of distilled water.
  • each DMA aqueous solution was mixed with 1.0 I of the vector pCR-lI (Stratagene), reacted with T4 DMA ligase at 16 ° C for about 20 hours, and ligated.
  • a replacement plasmid was prepared. Escherichia coli ( ⁇ ⁇ col i) XLI-Blue MRF '
  • Plasmid DNA was extracted from several of the colonies obtained in the above step, and the nucleotide sequences at the 5 'and 3' ends of the cDNA were examined using SP6 motor and primer and T7 promoter and primer. All had almost the same nucleotide sequence as EST W1727. Therefore, one clone obtained from each of the 5 'RACE reaction and the 3' RACE reaction was selected one by one (hereinafter referred to as 5'-RACE cDNA and 3'-RACE cDNA), and the entire nucleotide sequence of them was determined by Sanger et al. Natl. Acad. Sci. USA 74: 5463-5467, 977 977).
  • the full-length SLC cDNA was determined from the two partially overlapping cDNA sequences thus obtained. As a result, it was found that there was a nucleotide sequence encoding a protein consisting of 134 amino acid residues including methionine defined by the translation initiation codon ATG which appears first.
  • the amino acid sequence of this protein does not correspond to known chemokines, but has significant homology and contains the four conserved cysteine residues that are structural features of chemokines.
  • FIG. 1 shows the determined nucleotide sequence of the full-length cDNA and the amino acid sequence of the longest open reading frame (0RF) starting from the predicted start codon.
  • This gene has 0RF consisting of 134 amino acids, and has about 20 strongly hydrophobic amino acid sequences at its N-terminus, which are presumed to be signal peptides characteristic of secreted proteins.
  • the molecular weight of the protein consisting of 134 amino acids was 14,629.
  • the calculated cleavage site for the signal peptide was estimated to be between glycine at position 23 and serine at position 24.
  • the putative mature protein of 111 amino acids after signal peptide cleavage is presumed to be a secreted protein, and The molecular weight was 12, 23, and the isoelectric point was 10.72.
  • MIP-1 ⁇ Lipes et a, Proc. Nat, Acad. Sc, USA 85: 9704-9708, 1988
  • MIP- 1a Olet al., J. Biochem. 99: 885-894, 1986
  • 31% LD78- ⁇ (Nakao et al., Mol. Cel I. Biol. 10: 3646- 3658, 1990) '' And 3, eotaxin (Kitaura et al., J. Biol. Chem. 271: 7725-7730, 1996) and 3, MCP-1 (Furutan i et a I., Biochem. Biophys. Res. Commun.
  • FIG. 3 shows the expression of SLC mRNA in various human tissues. The results in FIG. 3 revealed that SLC mRNA was strongly expressed in immune system tissues, particularly in lymph nodes, secondary lymph tissues such as the small intestine, cecum, and spleen, and in the thymus.
  • the SLC protein was produced in insect cells by introducing cDNA encoding the SLC protein.
  • the SLC 5'-RACE cDNA (described above), which encodes the full-length SLC protein, is digested with the restriction enzymes BamHI and Xbal, and the vector pFAST-Bac (Gibco-BRL Inc.) is used to recombine with baculovirus in E. coli.
  • the vector pFAST-Bac-SLC was prepared by inserting the vector between BamHI and Xbal site. This vector was introduced into Escherichia coli (E.
  • coli) DmOBac manufactured by G'ibco-BRL
  • G'ibco-BRL G'ibco-BRL
  • a recombinant baculovirus DNA expressing the SLC protein.
  • This recombinant baculovirus DMA was introduced into insect cells Sf9 using CellFectin Reagent (manufactured by Gibco-BRL), and a recombinant baculovirus was obtained from the culture supernatant.
  • the recombinant baculovirus obtained in this manner was infected into High Five, an insect cell with high expression efficiency, and two days after the culture, the culture supernatant was recovered.
  • the culture supernatant of the insect cells infected with the recombinant baculovirus is sterilized by filtration through a 0.22 nm filter, and the ion exchange column HiTrap. SP cation exchange column (Pharmacia), washed with buffer A (50 mM HES pH 6.5), and eluted the protein with a gradient using buffer B (50 mM ES ⁇ 6.5, 1 ⁇ NaC I). The fraction containing SLC was identified using SDS-PAGE, and a protein of 15 kD was found in the eluted fraction of 0.4-0.5M NaCI. This fraction is collected on a Cosmosil reverse phase column.
  • Example 3 Using the culture supernatant containing the recombinant SLC obtained in Example 3, cell migration activity was examined.
  • human T cell lines HUT78 and HU02 imai et al., J. Biol. Chem. 271: 21514-21521, 1996) were used.
  • the test solution is diluted with a culture solution (RPM 1640, 20 mM Hepes (pH 7.4), ⁇ ! 3 ⁇ 4 BSA), and placed under a chemoaxis chamber (Chemotaxis chamber, Neuro Probe) of 48-well.
  • 4 ⁇ 10 5 TUT cell line HUT78 cells suspended in the above culture solution were added to the upper wells.
  • N-terminal amino acid sequence of purified SLC protein was determined using an amino acid sequencer (Shimadzu), and Ser-Asp-Gly-Gly-Ala-Gin-Asp-XX was used. -Leu-Lys-Tyr.
  • amino acid sequence deduced from the base sequence shown in FIG. 1 the amino acid sequence between the dalysine residue at position 23 and the serine residue at position 24, which is the cleavage site of the deduced signal sequence, is shown.
  • the signal peptide was truncated and agreed with the fJ-terminal amino acid sequence expected when a mature secreted SLC protein consisting of 111 amino acids was obtained.
  • Cells include mouse pre-B cell line L1.2 as a control and CC chemokine receptor of mouse pre-B cell line L1.2, which stably expresses seven types of receptors, human chemoforce-in receptor (CCR) 1 to CCR 7, respectively. Transfectants were used.
  • test Example 1 the test solution was diluted with a culture solution (RPM-1640, 20 mM Hepes (pH 7.4), 13 ⁇ 4 BSA), added to the lower well of a transwell chamber (Costar), and added to the upper well.
  • a murine pre-B-cell line L1.2 or CCR7 transflector Ek Tan Bok of 5Xl0 6 suspended above ⁇ solution After culturing at 37 ° C for 4 hours, the number of cells that had migrated to the lower well was counted using a cell sorter (Becton Dickinson).
  • Figure 7 shows the results. As shown in FIG.
  • PBMCs Peripheral blood mononuclear cells collected from healthy adult volunteers are cultured for 2 days in a culture solution (RPN 1640, 103 ⁇ 4FCS) containing mutadaltinin (PHA) and IL-2 at 20 U / ml. Then, human immunodeficiency virus (HIV) strain, NL432 or SF162 was added to these cells at a moi of about 0.1 and incubated at 37 ° C for 2 hours to infect the cells. After washing the infected cells, the cells were suspended in a culture solution containing IL-2 and 20 U / ml (RPN 1640, 10 UFCS) so that the cell flow rate became 1 ⁇ 10 6 / ml.
  • a culture solution RPN 1640, 103 ⁇ 4FCS
  • the culture was maintained for 7 days with or without SLC at the indicated concentration of 32-4000 ng / ml, and the amount of HIV production was determined by the HIV reverse transcriptase activity in the culture supernatant.
  • Reverse transcriptase activity was measured as follows.
  • FIG. 8 shows the results.
  • SLC significantly promotes viral replication of HIV at concentrations of 160-4000 ng / ml.
  • the virus strain used, NL432 is a T cell finger.
  • SF 162 is tropotrophic and is macrotrophic for monocytes, SLC promotes virus growth for both strains.
  • Chemokines which induce leukocyte migration and infiltration into tissues, are essential substances for inflammatory and immune responses in vivo.
  • CXC type and CC type are mainly known as chemokines, and there are multiple types of each type, ranging from producing tissues, producing cells, types of stimuli to induce production, induction of production to production cessation They exhibit different properties with respect to reaction time, types of target cells that induce migration, and the presence of specific receptors.
  • the SLC of the present invention structurally belongs to the group of CC-type chemokines, and is structurally expressed mainly in lymphoid tissues such as lymph nodes, small intestine, cecum, thymus, and spleen and in tissues rich in lymphocytes, and T cells It has the property of showing chemotactic activity for lymphocytes such as.
  • the SLC of the present invention provides a new means for elucidating its function, understanding the inflammatory and immune reactions involving lymphocytes, and inducing or suppressing such phenomena.
  • the SLC of the present invention is constitutively expressed mainly in secondary lymphoid tissues, for example, lymphatic tissues such as lymph nodes, small intestine, cecum and spleen, and thymus, the SLC is normal.
  • lymphocytes In living organisms, it controls the pharmacokinetics of lymphocytes, that is, circulatory circulation, which controls homing in lymphoid tissues, and is involved in the migration and establishment of lymphocytes in lymphoid tissues, maturation and differentiation, antigen recognition, survival, proliferation, etc. It is expected that Therefore, the SLC of the present invention, by elucidating its function, is useful for understanding the migration and establishment of lymphocytes in various lymphoid tissues, differentiation and maturation, antigen recognition, regulation of cell growth and survival, etc. It provides a useful tool for regulating such phenomena.
  • the SLC protein or a mutant thereof provided by the present invention regulates a physiological or pathological biological reaction involving SLC by enhancing or suppressing the action of SLC in vivo.
  • the polynucleotide molecule non-naturally occurring polynucleotide molecule including DNA, RNA or S-lignin, double-stranded or single-stranded, including DNA, RNA or S-ligigo
  • it may be directly administered to a living body as a polynucleotide, introduced into an appropriate vector and introduced into cells outside the body, and the cells (transformed cells) may be returned to the body, or introduced into an appropriate vector.
  • nucleotide sequence of SLC provided by the present invention, a polynucleotide molecule (non-natural molecule including DNA, RNA or S-oligo) which encodes SLC in full length or in part, and a specific antibody against SLC are those of SLC. It is useful for detecting and analyzing gene mutations, and is also useful for specifically detecting and quantifying SLC gene expression (mRNA) and protein expression. As a result, it provides new means for diagnosis and investigation of the causes of inflammatory diseases, blood system diseases, immune system diseases, infectious diseases, cancers, etc. involving the SLC gene or SLC protein. It is expected to provide a new means of treatment.
  • SLC promotes virus growth on both T cell-tropic viruses and macrophage monocyte-trophic virus strains and acts irrespective of virus cell tropism.
  • virus particles are detected in the blood of HIV immediately after infection, the amount of virus in the blood drops sharply for a long time until the onset of HIV. During this time, it is known that HIV is not at rest but is continuously growing in the lymph nodes (persistent infection).
  • SLC expressed in lymph nodes promotes the viral propagation of HIV in vitro indicates that HIV may be involved in the sustained growth of HIV in lymph nodes in vivo.
  • Inhibitors that inhibit the binding of SLC to its receptor CCR7 may be new anti-HIV drugs. Sequence listing SEQ ID NO: 1
  • Sequence type nucleic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A novel human CC chemokine SLC; its variants; proteins which are fragments of the same; and polynucleotide molecules encoding the same. The above proteins, the above polynucleotide molecules encoding these proteins, antibodies against these proteins, and agonists or antagonists to biological effects due to the bonding of the SLC proteins to receptors specific thereto provide useful means for the treatment and diagnosis of diseases such as inflammation, immunity, infection and cancer.

Description

明 細 書 ヒ卜 C C型ケモカイン S L C 技術分野  Specifi cations C C-type chemokines S L C Technical field
本発明は新規なヒ 卜 CC 型ケモカイン SL 該タンパク質をコードするポリヌ クレオチド、 該タンパク質の製造方法、 該タンパク質または該タンパク質をコー ドするポリヌクレオチドを含有する医薬組成物、 さらに、 該タンパク質の単クロ ーン抗体及び該抗体を産生し得るハイプリ ドーマに関し、 さらに該タンパク質と その特異的レセプターとの結合によリ誘発される生物作用に対するァゴニストノ ィンバースァゴニス卜 アンタゴニス卜をスクリ一二ングする方法に関する。 背景技術  The present invention relates to a novel human CC-type chemokine SL, a polynucleotide encoding the protein, a method for producing the protein, a pharmaceutical composition containing the protein or a polynucleotide encoding the protein, and a monoclonal antibody comprising the protein. Screening antibodies and hybridomas capable of producing the antibodies, and further screening agonists against agonism against biological effects induced by the binding of the proteins to their specific receptors. About the method. Background art
物理的、 化学的または生物学的な機序によリ起こる外来性あるいは内因性のさ まざまな組織傷害、 侵襲、 抗原暴露などは強い炎症反応や免疫反応を誘導する。 これらの反応は重要な生体防御反応であるが、 またときには急性あるいは慢性の 疾患の原因ともなりうる。 炎症反応や免疫反応を誘発する原因が組織に加えられ ると、 まず好中球、 顆粒球、 リンパ球あるいはマクロファージなどのような炎症 性細胞あるいは免疫担当細胞の血管内皮細胞への吸着、 血管外への移動、 そして 侵襲あるいは障害された組織や抗原の存在する組織での集積が起こる。 このよう な一連の細胞遊走反応を誘導する物質として一群のケモタクティック ·サイ 卜力 イン、 いわゆるケモカイン、 が存在する。 ケモカインは遊走反応 (ケモタクティ ック反応) を誘導する一群のサイ 卜力インであり、 アミノ酸配列の類似性から構 造的にも相互に密接に関係する。 これまでにヒ トでは 30 種以上のケモカインが 報告されている。 ケモカインは、 共通に保存された 4個のシスティン残基のうち の最初の 2個の並び方から、 大きく αあるいは CXC型 (2個のシスティンが 1 個 のアミノ酸で隔てられている) と i8あるいは CC 型 (2 個のシスティンが隣り合 つている) に分けられる。 CXC 型ケモカインとして、 ヒ 卜では、 I L- 8、 β -TG, PF-4、 MGSA/GRO , ENA- 78、 NAP- 2、 GCP- K GCP-2、 I P- 10, SDF- 1 /PBSF、 M I G、 な どが知られている。 cxc型ケモカインは主に好中球の活性化と遊走を誘導する。 CC型ケモカインとして、 ヒ トでは、 MIP-1 α、 ΜΙΡ-1 β , RANTES, MCP-K MCP-2, MCP- 3、 卜 309、 ェォタキシンなどが知られている。 CC 型ケモカインは、 主にモ ノサイ 卜/マクロファージの活性化と遊走を誘導する。 さらに CC 型ケモカイン には、 T 細胞、 好塩基球、 好酸球、 などに対して活性化と遊走誘導を示すものが 知られている ( Oppenheim et al, Annu. Rev. Immunol. 9: 617-648, 1991; Baggiol ini et a I . , Adv. Immunol. 55: 97-179, 1994; Ben— Baruch et al. , J. Biol. Chem. 270: 11703-11706, 1995; M. Baggiol ini et al, Annu. Rev. Immunol. 15: 675-705, 1997; B.丄 Rol l ins, Blood 90: 909-928, 1997)。 発明の概要 A variety of extrinsic or endogenous tissue injuries, invasions, or antigen exposures that are caused by physical, chemical, or biological mechanisms can induce strong inflammatory and immune responses. These reactions are important host defense responses, but can also sometimes cause acute or chronic illness. When a cause that induces an inflammatory or immune response is added to a tissue, first, inflammatory cells such as neutrophils, granulocytes, lymphocytes or macrophages or immunocompetent cells adsorb to vascular endothelial cells, extravascular And accumulation in invaded or damaged tissues or in the presence of antigens. As a substance that induces such a series of cell migration reactions, there is a group of chemotactic sites, so-called chemokines. Chemokines are a group of site forces that induce a chemotactic reaction (chemotactic reaction), and are closely related structurally to each other due to similarities in amino acid sequences. To date, more than 30 chemokines have been reported in humans. Chemokines are largely α or CXC (two cysteines separated by one amino acid) and i8 or CC from the arrangement of the first two of the four conserved cysteine residues in common. Type (two cysteines are next to each other). As human CXC chemokines, IL-8, β-TG, PF-4, MGSA / GRO, ENA-78, NAP-2, GCP-K GCP-2, IP-10, SDF-1 / PBSF, MIG, NA Which is known. cxc-type chemokines mainly induce neutrophil activation and migration. As human CC chemokines, MIP-1α, ΜΙΡ-1β, RANTES, MCP-K MCP-2, MCP-3, U-309, eotaxin and the like are known in humans. CC-type chemokines mainly induce monocyte / macrophage activation and migration. In addition, some CC-type chemokines are known to exhibit activation and migration induction on T cells, basophils, and eosinophils (Oppenheim et al, Annu. Rev. Immunol. 9: 617- 648, 1991; Baggiol ini et a I., Adv. Immunol. 55: 97-179, 1994; Ben—Baruch et al., J. Biol. Chem. 270: 11703-11706, 1995; M. Baggiol ini et al. , Annu. Rev. Immunol. 15: 675-705, 1997; B. 丄 Rollins, Blood 90: 909-928, 1997). Summary of the Invention
本発明は、 ン一ザンブロッ 卜解析により主として二次リンパ組織に構成的に発 現していることが認められる、 C C R 7のリガンドである新たに見出されたヒト CC 型ケモカインまたはその変異体、 またはそれらの断片であるタンパク質、 好 ましくは配列番号 1のアミノ酸残基 2 4から 1 3 4のアミノ酸配列あるいは配列 番号 1 のアミノ酸残基 1 から 1 3 4のアミノ酸配列を有するヒ 卜 CC 型ケモカイ ン、 またはこの配列に 1 または数個のアミノ酸残基の置換、 欠失、 挿入、 付加の 中から選ばれる少なくとも 1 つを含む配列を有しかっかつ該ヒ 卜 CC 型ケモカイ ンの機能または活性と実質的に同じ程度である機能または活性を有する、 あるい は該ヒ 卜 CC型ケモカインのアンタゴニストとして機能する該ヒ卜 CC型ケモカイ ンの変異体またはそれらの断片であるタンパク質 ;本発明のタンパク質を含有す る医薬組成物 ;本発明のタンパク質に対する抗体、 好ましくは単クローン抗体で ある抗体 ;本発明の単クローン抗体を産生するハイプリ ドーマ細胞; 本発明のタ ンパク質をコードするポリヌクレオチド分子、 好ましくは配列番号 1 の 1 2 8位 の Aから 4 6 0位の Aまでの塩基配列、 好ましくは配列番号 1 の 5 9位の Aから 4 6 0位の Aまでの塩基配列の全長または一部を含む本発明のポリヌクレオチド 分子、 またはその塩基置換、 塩基付加もしくはアレル変異による変異体 ;配列番 号 1 の〗 位の Cから 8 6 4位の Aまでの塩基配列の全長または一部と相補的な配 列を有するポリヌクレオチドまたはオリゴヌクレオチド分子、 またはその塩基置 換、 塩基付加もしくはアレル変異による変異体であって本発明のタンパク質の活 性または機能を阻害する分子 ;本発明のポリヌクレオチド分子を含有するべクタ 一、 好ましくは発現ベクターまたは治療用ベクターであるベクター ;本発明の発 現ベクターを宿主細胞に導入して得られる形質転換体;本発明の形質転換体を培 養し、 産生されたタンパク質を培養物から回収することを特徴とする、 本発明の タンパク質を製造する方法 ;本発明のポリヌクレオチド分子またはその変異体を 含有する医薬組成物 ;本発明の治療用ベクターを含有する医薬組成物 ;本発明の タンパク質とその特異的レセプター C C R 7との結合によリ誘発される生物作用 に対するァゴニス卜、 ィンバースァゴニス卜またはアンタゴニス卜をスクリ一二 ングする方法であって、 該ァゴ二スト、 インバースァゴニス卜またはアンタゴニ ス卜を含むと推定される試料を該タンパク質とその特異的レセプター C C R 7と の結合反応に加えてその結合阻止を測定したり、 あるいは該タンパク質の特異的 レセプター C C R 7と直接反応させて、 そのレセプターに対する結合性および または反応性を測定する工程を包含する方法 ;本発明のスクリーニング方法によ つて得ることのできる、 本発明の夕ンパク質とその特異的レセプター C C R 7と の結合によリ誘発される生物作用に対するァゴニス卜、 ィンバースァゴニストま たはアン夕ゴニス卜、 に関する。 図面の簡単な説明 The present invention relates to a newly discovered human CC-type chemokine that is a ligand of CCR7 or a mutant thereof, which is found to be mainly constitutively expressed in secondary lymphoid tissues by a single-blot analysis. Proteins that are fragments thereof, preferably a human CC type chemokai having the amino acid residues 24 to 134 of SEQ ID NO: 1 or the amino acid residues 1 to 134 of SEQ ID NO: 1 Or a sequence containing at least one selected from substitution, deletion, insertion, and addition of one or several amino acid residues in this sequence and the function or activity of the human CC-type chemokine. Mutants of the human CC-type chemokines having substantially the same function or activity, or functioning as antagonists of the human CC-type chemokines, or A protein which is a fragment; a pharmaceutical composition containing the protein of the present invention; an antibody against the protein of the present invention, preferably an antibody which is a monoclonal antibody; a hybridoma cell producing the monoclonal antibody of the present invention; A polynucleotide molecule encoding the protein, preferably a nucleotide sequence from A at position 128 to A at position 46 of SEQ ID NO: 1, preferably from A to position 460 of position 59 of SEQ ID NO: 1 A polynucleotide molecule of the present invention containing the full length or a part of the nucleotide sequence up to A, or a variant thereof due to base substitution, base addition or allelic mutation; A polynucleotide or oligonucleotide molecule having a sequence complementary to the full length or part of the nucleotide sequence of A molecule that is a mutant due to base addition or allelic mutation and that inhibits the activity or function of the protein of the present invention; a vector containing the polynucleotide molecule of the present invention, preferably an expression vector or a therapeutic vector A transformant obtained by introducing the expression vector of the present invention into a host cell; culturing the transformant of the present invention, and recovering the produced protein from the culture; A pharmaceutical composition containing the polynucleotide molecule of the present invention or a mutant thereof; a pharmaceutical composition containing the therapeutic vector of the present invention; a protein of the present invention and its specific receptor CCR7. Screening agonist, inverse agonist or antagonist for biological action induced by binding A method in which a sample presumed to contain the agonist, inverse agonist or antagonist is added to a binding reaction between the protein and its specific receptor CCR7, and the inhibition of the binding is measured. Or a method comprising directly reacting with the protein specific receptor CCR7 to measure the binding and / or reactivity to the receptor; the present invention, which can be obtained by the screening method of the present invention. Arginist, inverse agonist or antagonist for biological action induced by the binding of the protein to its specific receptor CCR7. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 ヒト SLCの cDNAの塩基配列と推定アミノ酸配列を示す図である。 図 2は、 本発明の SLCタンパク質と、 既知の 14種のヒ卜 CC型ケモカインとの アミノ酸配列を比較した結果を示す図である。 右の数値は SLCタンパク質とのァ ミノ酸一致率を示している。  FIG. 1 shows the nucleotide sequence and deduced amino acid sequence of human SLC cDNA. FIG. 2 is a view showing the results of comparing the amino acid sequences of the SLC protein of the present invention and 14 known human CC-type chemokines. The numbers on the right show the amino acid identity with the SLC protein.
図 3は、 各種のヒ卜組織における SLC の mRNAの発現をノーザンプロッ 卜によ リ解析した結果を示す図面に代わる写真である。  FIG. 3 is a photograph instead of a drawing showing the results of Northern blot analysis of SLC mRNA expression in various human tissues.
図 4は、 精製 SLCタンパク質を SDS- PAGEを用いて純度検定した図である。 図 5は、 精製 SLCタンパク質によるヒ ト T細胞株 HUT78細胞および HUT1 02細 胞のケモタキシス反応誘導を示すグラフである。  FIG. 4 is a diagram showing a purity assay of purified SLC protein using SDS-PAGE. FIG. 5 is a graph showing induction of a chemotaxis reaction in human T cell line HUT78 cells and HUT102 cells by purified SLC protein.
図 6は、 精製 SLCタンパク質の種々のレセプターに対する反応性を細胞内カル シゥ厶瀑度の変化によって示しているグラフである。 Figure 6 shows the reactivity of purified SLC protein to various receptors It is a graph shown by the change of the waterfall.
図 7は、 精製 SLC タンパク質によるヒ卜 C C R 7安定発現マウス L1.2細胞株 のケモタキシス反応誘導を示すグラフである。  FIG. 7 is a graph showing induction of a chemotaxis reaction in a mouse L1.2 cell line stably expressing human CCR 7 by purified SLC protein.
図 8は、 SLC.タンパク質による HIVウィルス増殖の促進を示すグラフである。 発明の開示  FIG. 8 is a graph showing promotion of HIV virus growth by SLC. Protein. Disclosure of the invention
本発明者らは、 新たな CC型ケモカインを見い出すべく、 種々のヒト CC型ケモ 力インアミノ酸配列をもとに、 アメリカ PJCBI が公開している核酸配列データべ ース GenBank の一部で、 cDNA部分配列から構成される Expressed Sequence Tag (EST)データベースを TBLASTN 検索ソフトを用いて検索した。 その結果、 新たな CC 型ケモカイン様夕ンパク質をコードすると考えられる DNA 断片の配列の存在 を見い出し、 ヒ ト胎児肺組織由来 tnRNAからその全長 cDNAを相補的にカバーする 2種類の cDNA クローンを分離して、 その全長にわたる塩基配列を決定した。 そ して、 この遺伝子はおもにリンパ節、 小腸、 盲腸、 脾臓などの二次リンパ組織全 般で構成的に発現しており、 遺伝子工学的技術を用いて産生したそのタンパク質 がヒ卜 T細胞に対して細胞遊走活性を有することを示して、 本発明を完成するに 至った。 そしてこの新規のヒ ト CC 型ケモカインを SLC (Secondary Lymphoid tissue Chemok ί ne) と命名した。  In order to find a new CC-type chemokine, the present inventors, based on the amino acid sequence of various human CC-type chemokines, used a part of the nucleic acid sequence database GenBank published by PJCBI of the U.S.A. An Expressed Sequence Tag (EST) database composed of partial sequences was searched using TBLASTN search software. As a result, we found the presence of the sequence of a DNA fragment that is thought to encode a new CC-type chemokine-like protein, and isolated two types of cDNA clones that complement the full-length cDNA from human fetal lung tissue tnRNA. Then, the nucleotide sequence over the entire length was determined. This gene is constitutively expressed mainly in secondary lymphoid tissues such as lymph nodes, small intestine, cecum, and spleen, and the protein produced using genetic engineering techniques is transferred to human T cells. On the other hand, they have shown that they have cell migration activity, and thus completed the present invention. The new human CC-type chemokine was named SLC (Secondary Lymphoid tissue Chemokne).
SLC は cDNA の塩基配列から予想されるオープンリーディングフレーム (open reading frame, 0RF) から 1 3 4個のアミノ酸からなるタンパク質と推定され、 さらに成熟型タンパク質では 2 3番目のグリシンと 2 4番目のセリンの間でシグ ナル配列が切断されて、 1 1 1 個のアミノ酸からなる分子量約 1 2. 2 kDaの塩 基性タンパク質であると推定される。 成熟型の SLC は既知の CC型ケモカインと 有意の相同性を示し、 特に CC型ケモカインで保存されている 4個のシスティン はすべて保存されている。 しかし、 既存の CC 型ケモカインとの相同性は最も高 い MIP-1 3に対しても 3 3 %程度である。  SLC is predicted to be a protein consisting of 134 amino acids based on the open reading frame (0RF) predicted from the nucleotide sequence of cDNA. In mature proteins, glycine at position 23 and serine at position 24 are considered. The signal sequence is cleaved between the two, and it is presumed to be a basic protein consisting of 111 amino acids and having a molecular weight of about 12.2 kDa. Mature SLC shows significant homology to known CC chemokines, especially all four cysteines conserved in CC chemokines. However, the homology with existing CC-type chemokines is about 33% even for the highest MIP-13.
本発明 SLC の機能解析の結果、 その特異的レセプターは Mark Birkenbach et al. , J. Vi rol. 67: 2209-2220, 1993 に記載されている C C R 7であることが判 明した。 この C C R 7はリンパ系細胞株に特異的に発現していると報告されてい るので [前掲、 Vicki し Schweickart et aに, GENOMICS 23: 643-650, 1994] 、 そのリガンドである本発明 SLCはリンパ球を遊走する機能を有していると推定さ れる。 また、 CCR7 (前掲文献には EBI1 として記述されている) はェプスタイン 一バールウィルス (Epstein- Barr virus、 EBV) ゃヒトヘルぺスウィルス (Human Herpesvirus) 6 または 7 (HHV- 6, 7)の感染により誘導されるレセプターであり (Ralf Burgs tah I er, et al. B i ochem. B i ophys. Res. Com. 215: 737- 743, 1995; Hi toshi Masegawa, et al. J. Virol. 68: 5326— 5329, 1994)、 EBV や HHV- 6, 7の惹き起こす疾病への関与が示唆されている。 従って、 そのリガンド である本発明 SLCは EBVや HHV-6, 7のライフサイクルを調節したり、 これらのゥ ィルスが惹き起こす疾病に関与していると推定される。 As a result of functional analysis of the SLC of the present invention, it was determined that the specific receptor was CCR7 described in Mark Birkenbach et al., J. Virol. 67: 2209-2220, 1993. This CCR 7 has been reported to be specifically expressed in lymphoid cell lines. Therefore, [Supra, Vicki and Schweickart et al., GENOMICS 23: 643-650, 1994], it is presumed that the ligand SLC of the present invention has a function of migrating lymphocytes. In addition, CCR7 (described as EBI1 in the above-cited reference) is caused by infection with Epstein-Barr virus (EBV) and Human Herpesvirus 6 or 7 (HHV-6, 7). Induced receptor (Ralf Burgs tah Ier, et al. Biochem. Biophys. Res. Com. 215: 737-743, 1995; Hi toshi Masegawa, et al. J. Virol. 68: 5326 — 5329, 1994), and it has been suggested that EBV and HHV-6, 7 are involved in diseases caused by them. Therefore, it is presumed that the ligand of the present invention, SLC, regulates the life cycle of EBV and HHV-6, 7, and is involved in diseases caused by these viruses.
本発明はノーザンプロッ ト解析によリ主として二次リンパ組織に構成的に発現 していることが認められる、 C C R 7のリガンドであるヒ卜 CC 型ケモカインま たはその変異体、 またはそれらの断片であるタンパク質に関する。 好ましくはァ ミノ酸残基 9 9個以上のヒ 卜 CC 型ケモカインまたはその変異体、 またはそれら の断片であるタンパク質である。  The present invention provides a human CC-type chemokine that is a ligand of CCR7, a mutant thereof, or a fragment thereof, which is confirmed to be mainly constitutively expressed in secondary lymphoid tissues by Northern blot analysis. Is a protein. Preferably, the protein is a human CC-type chemokine having amino acid residues of at least 99 or a mutant thereof, or a fragment thereof.
本明細書中、 「二次リンパ組織」 なる用語は、 免疫担当細胞のもとになる前駆 細胞の産生、 分化を支配する骨髄または胸腺などの一次リンパ組織に対する用語 であり、 リンパ節、 小腸、 盲腸、 脾臓などのリンパ系組織およびリンパ球に富む 組織であり現実に免疫応答を担う組織を意味する。  As used herein, the term "secondary lymphoid tissue" refers to a primary lymphoid tissue, such as bone marrow or thymus, which controls the production and differentiation of progenitor cells from which immunocompetent cells are derived, and includes lymph nodes, small intestine, Lymphoid tissues such as the cecum and spleen and tissues rich in lymphocytes, which means tissues that actually play an immune response.
ひとつの態様としては、 本発明は配列番号 1 のアミノ酸残基 2 4 - 1 3 4のァ ミノ酸配列を有するヒト CC型ケモカイン (SLC) 、 またはこの配列に 1 または数 個のアミノ酸残基の置換、 欠失、 挿入、 付加の中から選ばれる少なくとも 1 つを 含む配列を有し、 かつ該ヒト CC 型ケモカインの機能または活性と実質的に同じ 程度である機能または活性を有する該ヒ ト CC 型ケモカインの変異体、 あるいは 該ヒ ト CC型ケモカインに対するアンタゴニストとして機能しうる該ヒ ト CC型ケ モカインの変異体、 に関する。 好ましくは、 配列番号 1 のアミノ酸残基 8 2のァ ミノ酸が T y r残基でない変異体である。  In one embodiment, the present invention relates to a human CC-type chemokine (SLC) having an amino acid sequence of amino acid residues 24 to 134 of SEQ ID NO: 1 or one or several amino acid residues of this sequence. The human CC having a sequence containing at least one selected from substitution, deletion, insertion, and addition, and having a function or activity substantially the same as the function or activity of the human CC chemokine. And a human CC-type chemokine mutant that can function as an antagonist to the human CC-type chemokine. Preferably, the mutant is a variant in which the amino acid at amino acid residue 82 of SEQ ID NO: 1 is not a Tyr residue.
また、 本発明は、 配列番号 1 のアミノ酸残基 1 ~ 1 3 4のアミノ酸配列を有す るヒト CC 型ケモカイン (SLC 前駆体) 、 またはこの配列に 1 または数個のアミ ノ酸残基の置換、 欠失、 挿入、 付加の中から選ばれる少なくとも 1 つを含む配列 を有し、 かつ該ヒ卜 CC 型ケモカインの機能または活性と実質的に同じ程度であ る機能または活性を有する該ヒ ト CC型ケモカインの変異体、 あるいは該ヒ卜 CC 型ケモカインに対するアンタゴニス卜として機能しうる該ヒ卜 CC 型ケモカイン の変異体、 に関する。 好ましくは、 配列番号 1 のアミノ酸残基 8 2のアミノ酸が T y r残基でない変異体である。 The present invention also relates to a human CC type chemokine (SLC precursor) having the amino acid sequence of amino acid residues 1 to 134 of SEQ ID NO: 1, or one or several amino acids added to this sequence. A function comprising a sequence containing at least one selected from substitution, deletion, insertion and addition of a non-acid residue, and having substantially the same function or activity as that of the human CC-type chemokine; or The present invention relates to a mutant of the human CC-type chemokine having activity, or a mutant of the human CC-type chemokine capable of functioning as an antagonist to the human CC-type chemokine. Preferably, a mutant in which the amino acid at amino acid residue 82 of SEQ ID NO: 1 is not a Tyr residue.
本明細書中、 「CC 型ケモカインの変異体」 とは元のタンパク質のアミノ酸配 列にアミノ酸もしくはアミノ酸配列の置換、 欠失、 挿入、 付加を含む配列を有し、 および あるいは化学的または生化学的な改変または天然もしくは非天然のアミ ノ酸を含むことのできる改変夕ンパク質であリ、 機能または活性が実質的に該 CC型ケモカインと同じであるタンパク質あるいは該 CC型ケモカインのアンタゴ 二ストとして機能するタンパク質、 を意味する。  As used herein, the term "CC type chemokine variant" refers to a protein having an amino acid sequence of the original protein having a sequence containing amino acid or amino acid sequence substitution, deletion, insertion, or addition, and / or chemical or biochemical A modified protein capable of containing a natural or unnatural amino acid, a protein whose function or activity is substantially the same as the CC-type chemokine, or an antagonist of the CC-type chemokine. A protein that functions as
また、 本発明は本発明の CC 型ケモカインまたはその変異体の断片であるタン パク質をも包含する。 この断片の長さは例えば、 5から 1 0 0アミノ酸残基、 あ るいは 2 0から 8 0アミノ酸残基であり、 それぞれの機能または活性が実質的に 本発明の CC型ケモカインと同じであるタンパク質あるいは該 CC型ケモカインの アンタゴニストとして機能するタンパク質、 を意味する。  The present invention also includes a protein which is a fragment of the CC-type chemokine of the present invention or a mutant thereof. The length of this fragment is, for example, 5 to 100 amino acid residues, or 20 to 80 amino acid residues, and each function or activity is substantially the same as that of the CC-type chemokine of the present invention. A protein or a protein that functions as an antagonist of the CC-type chemokine.
別の態様として、 本発明は、 本発明の CC 型ケモカインおよび該タンパク質の 変異体をコードするポリヌクレオチド分子に関する。  In another aspect, the present invention relates to a polynucleotide encoding the CC-type chemokine of the present invention and a mutant of the protein.
本明細書中、 「ポリヌクレオチド分子」 は DNA、 RNA あるいは S—才リゴを含 む非天然分子も包含し得る。 DNA の場合、 cDNA、 ゲノミック DNA あるいは合成 DNAであり得る。 また DNAおよび R NA いずれも 2本鎖でも 1 本鎖でもあり得る。 1本鎖の場合、 コード鎖あるいは非コード鎖でぁリ得る。  As used herein, the term "polynucleotide molecule" can also include non-natural molecules including DNA, RNA, or S-lig. In the case of DNA, it can be cDNA, genomic DNA or synthetic DNA. Both DNA and RNA may be double-stranded or single-stranded. In the case of a single strand, the coding strand or non-coding strand can be used.
詳細には、 配列番号 1 の 1 2 8位の Aから 4 6 0位の Aまでの塩基配列、 また は配列番号 1 の 5 9位の Aから 4 6 0位の Aまでの塩基配列を含むポリヌクレオ チド分子に関する。  Specifically, it includes the nucleotide sequence from A at position 128 to A at position 46 of SEQ ID NO: 1, or the nucleotide sequence from A at position 590 to A at position 450 in SEQ ID NO: 1. It relates to a polynucleotide molecule.
さらに、 本発明はこれらのポリヌクレオチド分子の塩基置換、 塩基付加もしく はアレル変異による変異体を提供する。  Furthermore, the present invention provides variants of these polynucleotide molecules by base substitution, base addition or allelic mutation.
「塩基置換、 塩基付加による変異体」 とは、 配列番号 1 に記載された塩基配列 とは異なる遺伝子コードを用いて、 結果的には、 配列番号 1 に記載されたァミノ 酸 1 から 1 3 4のタンパク質と同じタンパク質、 あるいは配列番号 1 に記載され たアミノ酸配列 2 4から 1 3 4のタンパク質と同じタンパク質、 をコードしうる 変異体を意味する。 "A variant by base substitution or base addition" refers to the nucleotide sequence set forth in SEQ ID NO: 1. As a result, the same amino acid sequence as the amino acid sequence of amino acids 1 to 134 shown in SEQ ID NO: 1 or the amino acid sequence of amino acids 24 to 134 shown in SEQ ID NO: 1 A variant that can encode the same protein as
「アレル変異による変異体」 とは自然に存在する個人差や人種差に基づく塩基 変異を意味し、 コードするアミノ酸配列が変化する場合もある。  The term “mutant due to allelic mutation” means a naturally occurring base mutation based on individual or ethnic differences, and the amino acid sequence to be encoded may be changed.
本発明はさらに、 配列番号 1 の 1 位の Cから 8 6 4位の Aまでの塩基配列の全 長または一部と相補的な配列を有するポリヌクレオチドまたはオリゴヌクレオチ ド分子、 またはその塩基置換、 塩基付加もしくはアレル変異による変異体であつ て請求項 1 記載のタンパク質の活性または機能を阻害する分子。  The present invention further provides a polynucleotide or oligonucleotide molecule having a sequence complementary to the entire length or a part of the nucleotide sequence from C at position 1 to A at position 864 of SEQ ID NO: 1, or a base substitution thereof, 2. A molecule which is a mutant due to base addition or allelic mutation and which inhibits the activity or function of the protein according to claim 1.
特に、 5 'ノンコーディング部分の相補的な配列が好ましいが、 より好ましく は転写開始部位、 翻訳開始部位、 5 '非翻訳領域、 ェクソンとイントロンとの境 界領域もしくは 5 ' CAP領域に相補的配列であることが望ましい。 好ましい長さは、 約 1 0塩基対 ( b p ) から約 6 0 b pである。  Particularly, a sequence complementary to the 5 'non-coding portion is preferred, and more preferably a sequence complementary to the transcription initiation site, translation initiation site, 5' untranslated region, boundary region between exon and intron or 5 'CAP region. It is desirable that Preferred lengths are from about 10 base pairs (bp) to about 60 bp.
また、 別の態様として、 本発明は本発明のポリヌクレオチド分子を含有するべ クタ一に関する。 本発明ベクターには発現ベクター、 クローニングベクター、 治 療用ベクターなどの種々の用途を持つベクターが包含される。  In another aspect, the present invention relates to a vector containing the polynucleotide molecule of the present invention. The vectors of the present invention include vectors having various uses, such as expression vectors, cloning vectors, and therapeutic vectors.
発現ベクターは本発明タンパク質の大量生産に利用できる。 発現ベクターにつ いての詳細は以下の項に示す。  The expression vector can be used for mass production of the protein of the present invention. Details of the expression vector are shown in the following section.
治療用ベクターは本発明ポリヌクレオチド分子を投与し細胞内に導入する手 法に用い、 ウィルスベクターによる方法およびその他の方法 (日経サイエンス、 1 994年 4月号、 20-45頁 ; 月刊薬事、 36 ( 1 ) 23- 48 ( 1 994) ; 実験医学増刊、 1 2 ( 1 5)、 ( 1 994) ) . およびこれらの引用文献(等)のいずれの手法も適用することができる。 ウィルスベクターによる方法としては、 例えばレトロウイルス、 アデノウィ ルス、 アデノ関連ウィルス、 ヘルぺスウィルス、 ワクシニアウィルス、 ボック スウィルス、 ポリオウイルス、 シンビスウィルス等のウィルスベクター等に本 発明の DNAあるいは RNAを組み込んで導入する方法が挙げられる。 この中で、 レ トロウィルス、 アデノウイルス、 アデノ関連ウィルス、 ワクシニアウィルス等 を用いた方法が特に好ましい。 その他の方法としては、 プラスミ ドを直接筋肉内に投与する方法 (DNAヮクチ ン法) 、 リボソーム法、 リポフエクチン法、 マイクロインジェクション法、 リ ン酸カルシウム法、 エレク トロボレ一シヨン法等が挙げられ、 特に DNAワクチン 法、 リボソーム法が好ましい。 Therapeutic vector is used for the method of administering the polynucleotide molecule of the present invention and introducing it into cells. The method using a viral vector and other methods (Nikkei Science, April 1994, pp. 20-45; Monthly Pharmaceutical Affairs, 36 (1) 23-48 (1 994); Experimental Medicine Special Edition, 12 (15), (1 994)). And any of these cited references (etc.) can be applied. As a method using a viral vector, for example, the DNA or RNA of the present invention is incorporated into a viral vector such as a retrovirus, an adenovirus, an adeno-associated virus, a herpes virus, a vaccinia virus, a box virus, a polio virus, or a simbis virus. The method introduced in is mentioned. Among them, a method using a retrovirus, an adenovirus, an adeno-associated virus, a vaccinia virus and the like is particularly preferable. Other methods include administration of plasmid directly into the muscle (DNA method), ribosome method, lipofectin method, microinjection method, calcium phosphate method, and electroporation method. DNA vaccine method and ribosome method are preferred.
さらなる態様として. 本発明は本発明のタンパク質もしくはその変異体または それらをコードするポリヌクレオチド分子もしくはそれを含有する治療用べクタ 一を含有する医薬組成物に関する。 本発明の医薬組成物には例えば、 抗炎症剤、 免疫応答調節剤、 抗感染症剤、 抗癌剤、 炎症および または免疫に関連する疾患 の予防剤または診断剤が包含される。  In a further aspect, the present invention relates to a pharmaceutical composition comprising a protein of the invention or a variant thereof or a polynucleotide molecule encoding them or a therapeutic vector containing it. The pharmaceutical composition of the present invention includes, for example, anti-inflammatory agents, immune response regulators, anti-infective agents, anti-cancer agents, prophylactic agents or diagnostic agents for diseases related to inflammation and / or immunity.
本発明のポリヌクレオチド分子を医薬として作用させるには、 直接体内に導 入する i n v i v o方法、 およびヒ卜からある種の細胞を採用し体外で遺伝子を該 細胞に導入しその細胞を体内に戻す e x v i v o方法がある。  In order to make the polynucleotide molecule of the present invention act as a medicine, an in vivo method of direct introduction into the body, and a method of introducing a gene into the cell outside the body by using a certain cell from a human and returning the cell to the body There is a way.
本発明タンパク質またはポリヌクレオチド分子の投与量は、 患者の年齢、 体 重等により適宜調整することができるが、 通常本発明タンパク質として、 0. 00 1 mg〜1 00mgであり、 これを数日ないし数月に 1 回投与するのが好ましい。 なお、 本発明のタンパク質は生体内活性物質であることから、 該タンパク質の 活性が生じる量、 すなわち本発明のタンパク質を含む医薬組成物の使用量にお いてはその急性毒性は問題とならないことが容易に推測される。  The dose of the protein or polynucleotide molecule of the present invention can be appropriately adjusted depending on the age, body weight, etc. of the patient, but usually 0.001 mg to 100 mg of the protein of the present invention, It is preferably administered once every few months. Since the protein of the present invention is an active substance in a living body, acute toxicity may not be a problem in the amount in which the activity of the protein occurs, that is, in the amount of the pharmaceutical composition containing the protein of the present invention. Easily guessed.
さらに、 本発明は本発明のタンパク質またはその変異体に対する抗体、 特に単 クローン抗体、 および該単クローン抗体を産生するハイプリ ドーマ細胞に関する。 別の態様として、 本発明は、 本発明のタンパク質とその特異的レセプターの関 係を提供することによって、 本発明のタンパク質とその特異的レセプター C C R 7との結合により誘発される生物作用に対するァゴニス卜、 ィンバースァゴニス 卜またはアンタゴニストとして働く物質を探索し、 評価する工程を包含する方法 に関する。 すなわち、 該ァゴ二スト、 インバースァゴニストまたはアンタゴニス 卜を含むと推定される試料を本発明タンパク質とその特異的レセプター C C R 7 の結合反応に加えてその結合阻止を測定したり、 該タンパク質の特異的レセプタ 一への直接の結合性および または反応性を測定する工程を包含する方法に関す る。 また、 本発明は、 本発明のスクリーニング方法によって得ることのできる、 本 発明のタンパク質とその特異的レセプター C C R 7との結合により誘発される生 物作用に対するァゴニスト、 ィンバースァゴニストまたはアンタゴニストに関す る。 発明の好ましい実施の形態 Further, the present invention relates to an antibody against the protein of the present invention or a mutant thereof, particularly a monoclonal antibody, and a hybridoma cell producing the monoclonal antibody. In another aspect, the present invention provides an agonist for the biological effects induced by the binding of the protein of the present invention to its specific receptor CCR7 by providing a relationship between the protein of the present invention and its specific receptor. A method of searching for and evaluating a substance acting as an inverse agonist or antagonist. That is, a sample presumed to contain the agonist, inverse agonist or antagonist is added to the binding reaction between the protein of the present invention and its specific receptor CCR7 to measure the inhibition of the binding, or to determine the specificity of the protein. And measuring the direct binding and / or reactivity to the target receptor. The present invention also relates to an agonist, inverted agonist or antagonist against a biological effect induced by binding of the protein of the present invention to its specific receptor CCR7, which can be obtained by the screening method of the present invention. You. Preferred embodiments of the invention
本発明はノ一ザンブロッ 卜解析によって主として二次リンパ組織における、 お よび胸腺における構成的な発現が認められるヒ卜 CC型ケモカインに関する。 以下、 本発明タンパク質の調製工程を説明する。 本明細書において、 特に指示 のない限り、 当該分野で公知である遺伝子組換え技術、 動物細胞、 昆虫細胞、 酵 母および大腸菌での組換えタンパク質の生産技術、 発現したタンパク質の分離精 製法、 分析法および免疫学的手法が採用され得る。  The present invention relates to a human CC-type chemokine whose constitutive expression is mainly observed in secondary lymphoid tissues and in the thymus by Northern blot analysis. Hereinafter, the process for preparing the protein of the present invention will be described. In this specification, unless otherwise indicated, unless otherwise indicated, a gene recombination technique known in the art, a technique for producing a recombinant protein in animal cells, insect cells, yeast and Escherichia coli, a method for separating and purifying expressed proteins, and an assay. Methods and immunological techniques can be employed.
I . 本発明タンパク質の調製  I. Preparation of the protein of the present invention
本発明の SLCタンパク質をコードする DNAを含む DNA断片の配列決定方法を例 示する。 この DNA断片の配列は、 例えばヒ卜のリンパ節、 小腸、 盲腸、 胸腺、 脾 臓あるいは胎児肺組織などから由来した cDNA から得ることができるが、 そのた めには、 まず、 cDNAから SLCタンパク質をコードする cDMAのクローニングを行 うためのプライマーが必要である。  1 illustrates a method for sequencing a DNA fragment containing DNA encoding the SLC protein of the present invention. The sequence of this DNA fragment can be obtained from cDNA derived from, for example, human lymph nodes, small intestine, cecum, thymus, spleen, or fetal lung tissue. Primers are required for cloning cDMA that encodes
( 1 ) ESTライブラリ一からの SLC cDNA部分配列の検索  (1) Search for SLC cDNA partial sequence from EST library
アメリカ NCBI が公開している核酸配列データベース GenBank の一部であり、 cDNA 部分配列から構成される Expressed Sequence Tag (EST)データベースを、 種々のヒ 卜 CC型ケモカインアミノ酸配列をもとに TBLASTN検索ソフトを用いて 検索し、 CC 型ケモカインと有意の相同性をもつが、 既知のケモカインとは異な るタンパク質をコードすると考えられる cDNA 部分配列を得る。 得られた cDNA 部分配列をもとにポリメレース連鎖反応(PCR)用プライマー 1 対を合成する。  It is part of the GenBank, a nucleic acid sequence database released by NCBI of the United States.It uses an Expressed Sequence Tag (EST) database consisting of cDNA partial sequences, and provides TBLASTN search software based on various human CC-type chemokine amino acid sequences. A search is performed to obtain a partial cDNA sequence that has significant homology to CC-type chemokines, but is thought to encode a protein different from known chemokines. Based on the obtained cDNA partial sequence, a primer pair for polymerase chain reaction (PCR) is synthesized.
( 2 ) SLCの全長 cDNAの塩基配列の決定  (2) Determination of nucleotide sequence of full-length cDNA of SLC
つぎに、 これらのプライマーを用いて、 例えばヒ 卜胎児肺組織の mRNA から、 cDNA末端迅速増幅法 (Rapid Ampl if ication of cDNA Ends, RACE法) (Frohman et al. , Proc. Natl. Acad. Sci. USA 85 : 8998-9002, 1988) を利用して、 cDNA の全長にわたる塩基配列を決定する。 すなわち ヒ 卜胎児肺組織よ り Quickprep Micro mRNA 精製キッ ト(Pharmacia 社製)を用いて poly(A)+RNA を抽 出し、 この poly(A)+RNAからマラソン cDNA増幅キッ ト (C I ontech社製)を用い て、 5'側 RACE.と 3'側 RACEを行う。 すなわち、 まず上流側の 5'側プライマーか ら下流の 3'側へ向かって cDNAの 3'端まで cDNAを増幅し、 得られた cDNA断片を 適当な塩基配列決定用ベクター、 例えば pGEM- T (Promega社製) や pBluescript (Stratagene 社製) 、 に挿入する。 次に組換えプラスミ ドを回収し、 クロー二 ングされた cDNA 断片の塩基配列を、 例えば Sanger 法 (Sanger et al.、 Proc. Natl. Acad. Sci. USA, 74: 5463-5467, 1977) によって決定する。 つぎに、 同 様にして、 下流の 3'側プライマーから上流の 5'側へ向かって cDMA の 5'端まで cDNAを増幅する。 得られた cDNA断片を上記と同様に適当な塩基配列決定用べク ターに挿入し、 組換えプラスミ ドを回収し、 クローニングされた cDNA の塩基配 列を決定する。 このようにして決定した 2種類の cDNA クローンの塩基配列を両 者で共通する領域を用いて重ね合せることによって、 全長の cDNA に対応する塩 基配列が決定される。 Next, using these primers, for example, rapid amplification of cDNA ends (RACE method) from mRNA of human fetal lung tissue (Frohman et al., Proc. Natl. Acad. Sci. USA 85: 8998-9002, 1988) Determine the nucleotide sequence over the entire length of the cDNA. That is, poly (A) + RNA was extracted from human fetal lung tissue using a Quickprep Micro mRNA purification kit (Pharmacia), and a marathon cDNA amplification kit (Ciontech) was extracted from this poly (A) + RNA. Perform 5 'RACE. And 3' RACE using). That is, first, cDNA is amplified from the upstream 5 'primer to the downstream 3' end to the 3 'end of the cDNA, and the resulting cDNA fragment is converted into an appropriate nucleotide sequence determination vector, for example, pGEM-T ( Promega) or pBluescript (Stratagene). Next, the recombinant plasmid was recovered, and the nucleotide sequence of the cloned cDNA fragment was determined by, for example, the Sanger method (Sanger et al., Proc. Natl. Acad. Sci. USA, 74: 5463-5467, 1977). decide. Next, cDNA is similarly amplified from the downstream 3 'primer to the upstream 5' end to the 5 'end of cDMA. The obtained cDNA fragment is inserted into an appropriate nucleotide sequence determination vector in the same manner as described above, the recombinant plasmid is recovered, and the nucleotide sequence of the cloned cDNA is determined. By superimposing the base sequences of the two types of cDNA clones determined in this way using a region common to both, the base sequence corresponding to the full-length cDNA is determined.
( 3 ) SLCの全長 cDNAの調製  (3) Preparation of full-length SLC cDNA
得られた SLC の全長 cDNA の塩基配列をもとに、 SLC タンパク質をコードする 領域の両端の塩基配列にもとづいて合成した 2種類のプライマーを用いてポリメ ラーゼ連鎖反応法 (PCR) により増幅し、 適当な塩基配列決定用ベクター (上 記) に挿入し、 組換えベクターを回収して、 クローニングされた cDNA の塩基配 列を決定する (上記) 。  Based on the base sequence of the obtained SLC full-length cDNA, amplification was performed by the polymerase chain reaction (PCR) using two types of primers synthesized based on the base sequences at both ends of the region encoding the SLC protein. Insert the DNA into an appropriate nucleotide sequence determination vector (described above), recover the recombinant vector, and determine the nucleotide sequence of the cloned cDNA (described above).
(4 ) 組換え SLCの発現  (4) Expression of recombinant SLC
つぎに得られた SLC タンパク質をコードする cDNA を適当な発現ベクターに組 み込み、 SLC タンパク質を発現するための発現べクタ一とする。 適切な発現べク ターとしては、 例えば、 細菌については pRSET、 pGEMEX. pKK233- 2、 など、 酵 母については pYES2、 昆虫細胞については pVU 393、 pFAST- Bac、 動物細胞につい ては pEF- B0S、 pSRa、 pDR2、 などが各々挙げられる。 この発現ベクターを適当な 宿主細胞、 例えば、 細菌、 酵母、 昆虫細胞、 または動物細胞に導入して、 形質転 換体を作製する。 大腸菌などの原核微生物では、 原核微生物の分泌タンパク質に 由来するシグナル配列 (例えばシグナルペプチド OMPa) と成熟型 SLC タンパク 質とが融合した融合タンパク質として、 強力なプロモーター (例えば T7 プロモ 一ター) の支配下に発現し得る。 酵母では、 酵母の分泌タンパク質の天然前駆物 質に由来するシグナル配列 (例えばフェロモン αのプレブ口配列) と成熟型 SLC タンパク質とが融合した融合タンパク質として、 発現し得る。 動物細胞では、 す でに存在するシグナル配列を含む SLCタンパク質の前駆体タンパク質の遺伝子を 強力なプロモーター (例えば EF- 1 αプロモーター) の下流に挿入し、 効果的な 選択マーカー (例えばジヒドロ葉酸レダクターゼ) と共に動物細胞 (例えば CH0 dhfr- 細胞) に導入し、 薬剤 (この場合はメ 卜 トレキセー卜) に対する耐性によ リ細胞を選択し、 高発現の細胞株を樹立し得る。 またシグナル配列を含む SLC夕 ンパク質前駆体の遺伝子をウィルスまたはレ卜ロウィルスに組込み、 この組換え ウィルスを動物細胞に感染にさせることにより、 発現し得る。 これら形質転換体 を培養することにより、 SLCタンパク質が産生分泌され得る。 Next, the obtained cDNA encoding the SLC protein is inserted into an appropriate expression vector to provide an expression vector for expressing the SLC protein. Appropriate expression vectors include, for example, pRSET, pGEMEX.pKK233-2 for bacteria, pYES2 for yeast, pVU393 for insect cells, pFAST-Bac, pEF-B0S for animal cells, pSRa, pDR2, and the like. The expression vector is introduced into a suitable host cell, for example, a bacterium, yeast, insect cell, or animal cell, to produce a transformant. In prokaryotic microorganisms such as Escherichia coli, It can be expressed under the control of a strong promoter (eg, T7 promoter) as a fusion protein in which the derived signal sequence (eg, signal peptide OMPa) and the mature SLC protein are fused. In yeast, it can be expressed as a fusion protein in which a signal sequence derived from a natural precursor of a yeast secretory protein (eg, a pheromone α prebub sequence) and a mature SLC protein are fused. In animal cells, the gene for the precursor protein of the SLC protein, which already contains a signal sequence, is inserted downstream of a strong promoter (eg, EF-1α promoter), and is used as an effective selection marker (eg, dihydrofolate reductase). At the same time, the cells can be introduced into animal cells (eg, CH0 dhfr- cells), and cells can be selected based on their resistance to the drug (in this case, metrexrexate), thereby establishing a highly expressing cell line. It can also be expressed by incorporating the gene for the SLC protein precursor containing the signal sequence into a virus or retrovirus and infecting animal cells with the recombinant virus. By culturing these transformants, SLC proteins can be produced and secreted.
あるいは、 成熟型 SLCタンパク質は、 例えば固相法を用いて、 3個のジスルフ ィ ド結合の存在に必要な注意を払って、 報告された方法 (Clark-Lewis et al. , Biochemistry 30:3128-3135, 1991 ) をもちいて全合成される。  Alternatively, the mature SLC protein can be prepared using the reported method (Clark-Lewis et al., Biochemistry 30: 3128-) using, for example, a solid phase method, paying attention to the presence of three disulfide bonds. 3135, 1991).
得られたタンパク質の精製は当業者に周知の方法、 例えば、 ァフィ二ティー力 ラム、 イオン交換クロマトグラフィー、 ゲル濾過クロマトグラフィー、 逆相クロ マトグラフィー、 疎水クロマトグラフィー、 などを組み合わせて行うことができ る (Imai et al. , J. Biol. chem. 271: 21514-21521, 1996) 。  The obtained protein can be purified by a method known to those skilled in the art, for example, by a combination of affinity chromatography, ion exchange chromatography, gel filtration chromatography, reverse phase chromatography, and hydrophobic chromatography. (Imai et al., J. Biol. Chem. 271: 21514-21521, 1996).
本発明の SLCタンパク質の変異体の発現は、 当業者に周知の遺伝子組換え技術 (. Sambrook et a I. , Molecular Cloning: A I aboraroy manual, 2nd edn. New York, Cold Spring Harbor Laboratory) によって変異を導入した DNA を用いて 行うことができる。  Expression of the mutant of the SLC protein of the present invention can be performed by a gene recombination technique (.Sambrook et al., Molecular Cloning: AI aboraroy manual, 2nd edn.New York, Cold Spring Harbor Laboratory) well known to those skilled in the art. This can be done using the introduced DNA.
II . 本発明タンパク質に対する抗体の調製  II. Preparation of antibodies against the protein of the present invention
本発明の SLCタンパク質に対する抗体は、 例えば、 推定される SLCのアミノ酸 配列の一部に基づいて通常のペプチド合成機で合成した合成ペプチドや、 SLC を 発現するベクターで形質転換した細菌、 酵母、 昆虫細胞、 動物細胞、 などにより 産生された SLCタンパク質を通常のタンパク化学的方法で精製し、 これらを免疫 原として、 マウス、 ラッ ト、 八ムスター、 ゥサギ、 などの動物を免疫して、 その 血清由来の抗体 (ポリクローナル抗体) を作製する。 Antibodies to the SLC protein of the present invention include, for example, a synthetic peptide synthesized by an ordinary peptide synthesizer based on a part of the deduced SLC amino acid sequence, and a bacterium, yeast, or insect transformed with a vector that expresses SLC. Purify SLC proteins produced by cells, animal cells, etc. by ordinary protein chemical methods and immunize them As a source, immunize animals such as mice, rats, eight-stars, and egrets to produce antibodies (polyclonal antibodies) derived from their sera.
あるいは、 免疫したマウスゃラッ 卜の脾臓またはリンパ節からリンパ球を取り だ し 、 ミ エ ロ ー マ 細胞 と 融 合 さ せ て Kohler と Mi l stein の 方法 t Nature, 256, 495-497 (1975) ] 又 は そ の改良法で あ る Ueda ら の方法 [Proc. Nat l. Acad. Sci. USA, 79:4386-4390, 1982)] に従ってハイプリ ドーマを作 製し、 該ハイプリ ドーマから単クローン抗体を産生させ得る。 例えば以下の工程 により SLCタンパク質の単クローン抗体を得ることができる。  Alternatively, lymphocytes are removed from the spleen or lymph nodes of immunized mouse rats, fused with myeloma cells, and subjected to Kohler and Milstein's method t Nature, 256, 495-497 (1975). )] Or a modified method of Ueda et al. [Proc. Natl. Acad. Sci. USA, 79: 4386-4390, 1982)] to produce a hybridoma and prepare a monoclonal clone from the hybridoma. Antibodies can be produced. For example, a monoclonal antibody of the SLC protein can be obtained by the following steps.
( a ) SLCタンパク質によるマウスの免疫、  (a) Immunization of mice with SLC protein,
( b ) 免疫マウスの脾臓の除去及び脾臓細胞の分離、  (b) removal of spleen and separation of spleen cells from immunized mice,
( c ) 分離された脾臓細胞とマウスミエローマ細胞との融合促進剤 (例えば ポリエチレングリコール) の存在下での上記の Kohler らに記載の方法による融  (c) Fusing by the method described by Kohler et al. in the presence of a fusion promoter (eg, polyethylene glycol) between the isolated spleen cells and mouse myeloma cells.
( d ) 未融合ミエローマ細胞が成長しない選択培地での得られたハイプリ ド 一マ細胞の培養、 (d) culturing the obtained hybridoma cells in a selective medium in which unfused myeloma cells do not grow,
( e ) 酵素結合免疫吸着検定 (ELISA)、 ウェスタンプロッ ト、 などの方法に よる所望の抗体を生産するハイプリ ドーマ細胞の選択及び限定希釈法等によるク ローニング、  (e) Selection of hybridoma cells producing the desired antibody by methods such as enzyme-linked immunosorbent assay (ELISA) and western blotting, and cloning by limiting dilution, etc.
( f ) SLC 単クローン抗体を生産するハイプリ ドーマ細胞を培養し、 単クロー ン抗体を収穫する。  (f) Culture the hybridoma cells producing the SLC monoclonal antibody and harvest the monoclonal antibody.
【0 0】  [0 0]
III . SLCタンパク質の mRNAとタンパク質の検出  III. Detection of mRNA and protein of SLC protein
本発明の SLCの mRNAとタンパク質の存在は、 通常の特異的 mRNAおよびタンパ ク質に対する検出法を用いて行うことができる (Sambrook et al. , Molecular Cloning: A I aboraroy manual, 2nd edn. New York, Cold Spring Harbor Laboratory 1989; Harlow and Lane, Antibodies: A laboratory manual, New York, Cold Spring Harbor Laboratory 1988) 。 例えば、 mRNA はアンチセンス RNA や cDNA をプローブに用いたノーザンプロッ ト解析ゃィンサイツ ·ハイプリ ダイゼ一シヨン法により検出できる。 また、 mRNAを逆転写酵素で CDNA に変換し たのち、 適当なプライマーの組み合わせによるポリメラーゼ連鎖反応法 (PCR) によっても検出することができる。 タンパク質については、 SLC タンパク質に特 異的な抗体を用いた免疫沈降やウェスタンプロッ トなどにより検出することがで さる。 The presence of the SLC mRNA and protein of the present invention can be carried out by using a detection method for ordinary specific mRNA and protein (Sambrook et al., Molecular Cloning: AI aboraroy manual, 2nd edn. New York, Cold Spring Harbor Laboratory 1989; Harlow and Lane, Antibodies: A laboratory manual, New York, Cold Spring Harbor Laboratory 1988). For example, mRNA can be detected by Northern blot analysis using an antisense RNA or cDNA as a probe. Also, mRNA is converted to CDNA with reverse transcriptase. It can also be detected by polymerase chain reaction (PCR) using appropriate primer combinations. Protein can be detected by immunoprecipitation using an antibody specific to the SLC protein, Western blot, or the like.
IV . SLCタンパク質の免疫学的定量法  IV. Immunoassay for SLC protein
例えば、 放射性アイソトープ、 ペルォキシダーゼやアルカリフォスファターゼ のような酵素、 あるいは蛍光色素などで標識した一定量の SLCに、 濃度既知の非 標識 SL (:、 および血清由来の抗 SLCポリクロ一ナル抗体またはモノクローナル抗 体を加えて、 抗原抗体競合反応を行わせる。 非標識抗原の濃度を適当に変化させ た後、 抗体と結合した標識抗原と抗体に結合していない標識抗原とを適当な方法 で分離して、 抗体と結合した標識抗原の放射能量、 酵素活性または蛍光強度を測 定する。 非標識抗原量が増すにつれ、 抗体と結合する標識抗原の量は減少する。 この関係をグラフにして標準曲線を得る。 また SLCタンパク質上の異なるェピ卜 ープを認識する 2種類の単クローン抗体の一方を固相化し、 他方を上記のいずれ かの方法でラベルし、 固相化抗体に結合した SLCの量をラベル抗体で検出定量す る、 いわゆるサンドイッチ法も可能である。  For example, a fixed amount of SLC labeled with a radioisotope, an enzyme such as peroxidase or alkaline phosphatase, or a fluorescent dye, is added to a known concentration of unlabeled SL (: and anti-SLC polyclonal antibody or monoclonal antibody derived from serum) After appropriately changing the concentration of the unlabeled antigen, the labeled antigen bound to the antibody and the labeled antigen not bound to the antibody are separated by an appropriate method. Measure the amount of radioactivity, enzymatic activity or fluorescence intensity of the labeled antigen bound to the antibody As the amount of unlabeled antigen increases, the amount of labeled antigen bound to the antibody decreases This relationship is graphed to obtain a standard curve. In addition, one of the two types of monoclonal antibodies that recognize different epitopes on the SLC protein is immobilized, and the other is any one of the methods described above. Labeled, you detect quantify the amount of SLC bound to the solid phase antibody in the label antibody, the so-called sandwich method is also possible.
次に、 上記の反応系に潺度既知の非標識抗原の代わりに未知量の抗原を含む試 料を加え、 これを反応させた後に得られる、 放射能量、 酵素活性、 または蛍光強 度、 を標準曲線にあてはめれば、 試料中の抗原、 すなわち SLCタンパク質の量を 知ることができる。 SLC タンパク質を定量することによリ、 炎症反応や免疫反応 をモニターするための新しい方法が提供され得る。  Next, a sample containing an unknown amount of antigen in place of the unlabeled antigen of known degree is added to the above reaction system, and the radioactivity, enzyme activity, or fluorescence intensity obtained after the reaction is determined. When fitted to a standard curve, the amount of antigen, ie, SLC protein, in a sample can be determined. Quantification of SLC proteins could provide a new way to monitor inflammatory and immune responses.
V . SLCタンパク質のケモカイン活性の測定  V. Measurement of chemokine activity of SLC protein
本発明の SLCタンパクのケモカイン活性は、 例えば、 試験管内では、 一定の口 径のポアを有するフィルタ一を介在させて仕切った培養容器の一方の側に SLCを 入れ、 他方の側に標的細胞を入れて、 一定時間後にフィルターのポアを通過して SLC の存在する側へ移動した細胞数をランダムな移動数と比較して示し得る。 ま た、 生体内では、 精製した SLCタンパク質を動物に投与して細胞の浸潤と集合を 組織学的方法で検出することによつても示し得る。 実施例 The chemokine activity of the SLC protein of the present invention can be determined, for example, by placing SLC on one side of a culture vessel partitioned by a filter having a certain diameter of pores in a test tube and placing target cells on the other side. After a certain period of time, the number of cells that have moved through the pores of the filter to the side where SLC is present can be compared with the number of random migration. In vivo, it can also be demonstrated by administering purified SLC protein to animals and detecting cell invasion and aggregation by histological methods. Example
本発明を以下の実施例によりさらに説明する。  The present invention is further described by the following examples.
実施例 1  Example 1
SLCの cDNAの単離およびその構造決定  Isolation of SLC cDNA and determination of its structure
(1 ) ESTライブラリ一からの SLC cDNA 部分配列の検索。  (1) Search for partial sequence of SLC cDNA from EST library.
アメリカ NCBI が公開している核酸配列データベース GenBank の一部で、 さま ざまな cDNA に由来する部分配列から構成される Expressed Sequence Tag(EST) データベースを、 種々のヒト CC 型ケモカインのアミノ酸配列をもとに TBLASTN 検索ソフトを用いて検索し、 CC 型ケモカインと有意の相同性をもつが、 既知の ケモカインとは異なるケモカインタンパク質をコードすると考えられる ESTデー タ (GenBank ァクセッション ' ナンバー : W17274、 84422. W84375、 67885, W67812、 T25128) を見出した。 これらのデータはそれぞれヒ卜胎児肺 (W17274) 、 ヒト胎児心臓 (W84422、 W84375, W67885, W67812) および結腸直腸癌 (T25128) の cDNA ライブラリー由来の cDNA で、 長さは 535bp、 455bp、 400bp、 482bp、 196bp、 164bpであり、 それぞれ 1996年 4月 29日、 1996年 6月 27日、 1996年 6 月 27 日、 1996 年 10 月 15 日、 1996 年 10 月 15 日、 1995 年 8 月 24 日、 に GenBankに登録されている。  A part of GenBank, a nucleic acid sequence database released by NCBI in the United States, based on the Expressed Sequence Tag (EST) database composed of partial sequences derived from various cDNAs based on the amino acid sequences of various human CC-type chemokines. EST data (GenBank Accession No .: W17274, 84422.), which was searched using TBLASTN search software and is thought to encode a chemokine protein that has significant homology to CC-type chemokines but is different from known chemokines. W84375, 67885, W67812, T25128). These data are cDNAs from the human fetal lung (W17274), human fetal heart (W84422, W84375, W67885, W67812) and colorectal cancer (T25128) cDNA libraries, respectively, and are 535 bp, 455 bp, 400 bp, 482 bp, 196 bp, 164 bp, respectively, April 29, 1996, June 27, 1996, June 27, 1996, October 15, 1996, October 15, 1996, August 24, 1995 , Are registered with GenBank.
(2) SLC cDPJAの単離  (2) Isolation of SLC cDPJA
SLC cDNA の単離は、 SLC に特異的なプライマーを用いる RACE 法(Frohman et ai. , Proc. Natl. Acad. Sci. USA 85: 8998-9002, 1988)により行った。 まず、 GenBank EST データ W17274 の配列をもとに RACE 用プライマー、 NCC-8- 5'RACE プライマーおよび NCC-8R- 3' RACE プライマーを合成した。 fJCC-8-5' RACE プライ マーおよび NCC-8R-3' RACEプライマーの配列はそれぞれつぎの通リである :  The SLC cDNA was isolated by the RACE method using SLC-specific primers (Frohman et ai., Proc. Natl. Acad. Sci. USA 85: 8998-9002, 1988). First, primers for RACE, NCC-8-5′RACE primer and NCC-8R-3 ′ RACE primer were synthesized based on the sequence of GenBank EST data W17274. The sequences of the fJCC-8-5 'RACE primer and NCC-8R-3' RACE primer are as follows:
NCC-8-5' RACE 5' -CCTTCTTGCATCTTGGGTTCAGGCTTC-3' (配列番号 2) NCC-8-5 'RACE 5' -CCTTCTTGCATCTTGGGTTCAGGCTTC-3 '(SEQ ID NO: 2)
NCC-8-3' RACE 5' -GAAGCCTGAACCCAAGATGCAAGAAGG-3' (配列番号 3 ) 次に、 ヒ 卜胎児肺組織から、 QuickPrep Micro mRNA 精製キッ 卜 (Pharmacia 社製) を用いて mRNAを抽出した。 この mRNAから Marathon cDNA Amplification Kit (Clontech 社製) を用いて cDNA を合成した。 すなわちヒ 卜胎児肺 mRNA 1 At gと Marathon cDNA 合成プライマー 10 pmole とを含む水溶液 5 μ i を 70°Cで 2分間加熱し、 氷冷後、 これに dATP、 dCTP、 dGTP、 dTTP (各 1 mM) および MMLV (Moloney Murine Leukemia Virus) 逆転写酵素 (100 ュニッ ト) を加え、 50 mM Tris-HCI (pH8.3), 6 mM MgCI2, 75 mM KCI の反応液 10 I 中、 42°Cで 1 時間 一本鎖 cDNA合成反 応を行った。 反応後、 反応液を水冷し、 これに dATP、 dCTP、 dGTP、 dTTP (各 0.2 mM) 、 E. col i DMA ポリメラーゼ I (24 ユニッ ト) 、 Ε· coli DNA リガーゼ (4.8 ュニッ 卜 ) 、 および E. col i RNase H (1 ュニッ ト) を加え、 100 mM KCし 10 mM 硫酸アンモニゥ厶、 5 mM MgC 12, 0.15 mM β -NAD, 20 mM Tris-HCI (pH7.5), 0.05 mg/ml ゥシ血清アルブミンの反応液 80 I 中、 16 で 1時間半、 2本鎖 cDNA合成反応を行った。 NCC-8-3 'RACE 5'-GAAGCCTGAACCCAAGATGCAAGAAGG-3' (SEQ ID NO: 3) Next, mRNA was extracted from human fetal lung tissue using a QuickPrep Micro mRNA purification kit (Pharmacia). CDNA was synthesized from this mRNA using the Marathon cDNA Amplification Kit (Clontech). That is, 5 μi of an aqueous solution containing human fetal lung mRNA 1 Atg and Marathon cDNA synthesis primer 10 pmole at 70 ° C Heat for 2 minutes, cool on ice, add dATP, dCTP, dGTP, dTTP (1 mM each) and MMLV (Moloney Murine Leukemia Virus) reverse transcriptase (100 units), and add 50 mM Tris-HCI (pH 8. 3) A single-stranded cDNA synthesis reaction was performed at 42 ° C for 1 hour in 10 I of a reaction mixture of 6 mM MgCI 2 and 75 mM KCI. After the reaction, the reaction solution was cooled with water, and dATP, dCTP, dGTP, dTTP (0.2 mM each), E. coli DMA polymerase I (24 units), E. coli DNA ligase (4.8 units), and E . col i RNase H to (1 Yuni' g) was added, 100 mM KC and 10 mM sulfuric Anmoniu 厶, 5 mM MgC 1 2, 0.15 mM β -NAD, 20 mM Tris-HCI (pH7.5), 0.05 mg / ml A double-stranded cDNA synthesis reaction was performed for 1 hour and a half at 16 in 80 I of a serum albumin reaction solution.
次いで、 この反応液中に T4 DNAポリメラ一ゼ (10ユニッ ト) を加え、 16°Cで 45 分間反応し、 cDNA を平滑末端化した。 反応後、 フエノール抽出 ' エタノール 沈殿の操作を行った後、 DNAを 10 μ I の蒸留水に溶解した。 その内の 5 μ I の 溶液に Marathon cDNA アダプター 20 pmole および T4 DNA リガーゼ (1 ュニッ 卜) を加え、 50 mM Tris-HCI (pH7.8 )、 10 mM MgCIい 1 mM DTT、 1 mM ATP, 5¾ (w/v) ポリエチレングリコール(MW 8, 000)の反応液 10 I 中、 16°Cで約 20時間 反応させ、 2本鎖 cDNAの両端にアダプターを結合させた。 反応後、 70¾で 2分 間加熱してリガーゼを失活させ、 さらに 10 mM Tricine -K0H (pH9.2), 0.1 mM EDTA で 250倍に希釈後、 94°Cで 2 分間加熱し、 アダプターを結合させた 2本鎖 cDNAを変性させた。  Next, T4 DNA polymerase (10 units) was added to the reaction solution, and the mixture was reacted at 16 ° C for 45 minutes to blunt the cDNA. After the reaction, phenol extraction and ethanol precipitation were performed, and the DNA was dissolved in 10 μl of distilled water. Add 20 pmole of Marathon cDNA adapter and T4 DNA ligase (1 unit) to 5 μl of the solution, and add 50 mM Tris-HCI (pH 7.8), 10 mM MgCI or 1 mM DTT, 1 mM ATP, 5 mM (w / v) In a reaction solution of polyethylene glycol (MW 8,000) in 10 I at 16 ° C. for about 20 hours, adapters were bound to both ends of the double-stranded cDNA. After the reaction, heat at 70 ° C for 2 minutes to inactivate the ligase, dilute 250-fold with 10 mM Tricine-K0H (pH 9.2), 0.1 mM EDTA, heat at 94 ° C for 2 minutes, and remove the adapter. The bound double-stranded cDNA was denatured.
つぎに RACE反応を行った。 まず、 5' RACE反応では、 上記の変性させた cDNA 5 μ I に dATP、 dCTP、 dGTP、 dTTP (各 0, 2 mM) 、 TAKARA LA Taq (2, 5 ュニッ ト) 、 TaqStart 抗体 (0.55 μ. g) 、 アダプタ一部に結合する API プライマー 10 pmole. および NCC- 8-5' RACE プライマー (配列番号 2 ) 10 pmole を加え、 lx TAKARA LA Taq緩衝液の反応液 50 μ I 中、 94°Cで 1分の前処理後、 直ちに 94°C、 30秒 ; 60°C、 30秒 ; 68°C、 4分の条件で 30サイクルの PCRを行った。 また、 3' RACE 反応は、 上記と同様の反応条件で、 NCC- 8- 5'RACE プライマーの代わりに NCC-8-3' RACE プライマー (配列番号 3 ) を用いて行った。 反応後、 それぞれの PCR産物を 2¾低融点ァガロースゲル電気泳動で分離し、 おもな 5'RACE 断片 (約 540bp) およびおもな 3' RACE 断片 (約 350bp) をフ ιノール抽出法で回収し、 それぞれエタノール沈殿の操作を行った後、 10 μ I の蒸留水に溶解した。 それ ぞれの DMA水溶液の 5 μ I をベクター pCR-l I (St ratagene社製) 1.0 I と混合 し、 T4 DMA リガーゼを用いて 16°Cで約 20時間反応させて連結させ、 それぞれの 組換えプラスミ ドを作製した。 これを用いて大腸菌 (Ε· col i) XLI-Blue MRF'Next, a RACE reaction was performed. First, in the 5 'RACE reaction, 5A of the denatured cDNA was added to dATP, dCTP, dGTP, dTTP (0.2 mM each), TAKARA LA Taq (2,5 units), and TaqStart antibody (0.55 μ. g) Add 10 pmole of API primer that binds to a part of the adapter and 10 pmole of NCC-8-5 'RACE primer (SEQ ID NO: 2), and in lx TAKARA LA Taq buffer reaction mixture at 50 ° C, 94 ° C. Immediately after pretreatment for 1 minute, PCR was carried out for 30 cycles at 94 ° C, 30 seconds; 60 ° C, 30 seconds; 68 ° C, 4 minutes. The 3 ′ RACE reaction was performed under the same reaction conditions as above, except that the NCC-8-3 ′ RACE primer (SEQ ID NO: 3) was used instead of the NCC-8-5 ′ RACE primer. After the reaction, each PCR product was separated by 2¾ low-melting point agarose gel electrophoresis, and the main 5 'RACE fragment (about 540 bp) and the main 3' RACE fragment (about 350 bp) were recovered by ethanol extraction. , After performing an ethanol precipitation operation, each was dissolved in 10 μl of distilled water. 5 μI of each DMA aqueous solution was mixed with 1.0 I of the vector pCR-lI (Stratagene), reacted with T4 DMA ligase at 16 ° C for about 20 hours, and ligated. A replacement plasmid was prepared. Escherichia coli (Ε · col i) XLI-Blue MRF '
(Stratagene社製) を形質転換し、 コロニーを得た。 (Stratagene) was transformed to obtain colonies.
( 3 ) 陽性クローンの同定と塩基配列決定  (3) Identification of positive clones and nucleotide sequencing
上記工程で得られたコロニーの内の数個からプラスミ ド DNAを抽出し、 SP6 プ 口モーター · プライマーおよび T7 プロモーター · プライマーを用いて cDNA の 5'および 3' 端側の塩基配列を調べたところ、 すべて EST W1727 とほぼ同一の 塩基配列であった。 そこで 5' RACE反応および 3' RACE反応のそれぞれから得ら れたクローンを 1 個づっ選択し (以下 5' -RACE cDNAと 3'- RACE cDNAと称す) 、 それらについて全塩基配列を Sanger らの方法(Proc. Natl. Acad. Sci. USA 74: 5463-5467 , 〗 977)に従って決定した。 そしてこのようにして得られた一部重複 する 2つの cDNA配列から SLCの cDNAの全長が決定された。 その結果、 最初に現 れる翻訳開始コ ドン ATGの規定するメチォニンを含む 1 3 4個のアミノ酸残基か らなるタンパク質をコードする塩基配列が存在することが判明した。 このタンパ ク質のアミノ酸配列は既知のケモカインとは一致はしないが、 有意の相同性を有 し、 またケモカインの構造的特徴である保存された 4個のシスティン残基を含み、 また分泌タンパク質の特徴である N端側に疎水性に富むシグナル配列様の配列が 存在することから、 このタンパク質は新規のケモカインと推定された。  Plasmid DNA was extracted from several of the colonies obtained in the above step, and the nucleotide sequences at the 5 'and 3' ends of the cDNA were examined using SP6 motor and primer and T7 promoter and primer. All had almost the same nucleotide sequence as EST W1727. Therefore, one clone obtained from each of the 5 'RACE reaction and the 3' RACE reaction was selected one by one (hereinafter referred to as 5'-RACE cDNA and 3'-RACE cDNA), and the entire nucleotide sequence of them was determined by Sanger et al. Natl. Acad. Sci. USA 74: 5463-5467, 977 977). The full-length SLC cDNA was determined from the two partially overlapping cDNA sequences thus obtained. As a result, it was found that there was a nucleotide sequence encoding a protein consisting of 134 amino acid residues including methionine defined by the translation initiation codon ATG which appears first. The amino acid sequence of this protein does not correspond to known chemokines, but has significant homology and contains the four conserved cysteine residues that are structural features of chemokines. The presence of a highly hydrophobic signal sequence-like sequence on the N-terminal side, which is a characteristic feature, suggests that this protein is a novel chemokine.
(4 ) SLCの推定アミノ酸配列の解析  (4) Analysis of deduced amino acid sequence of SLC
決定された全長 cDNA の塩基配列および推定される開始コ ドンから始まる最長 の翻訳枠 (open reading frame : 0RF)のアミノ酸配列を図 1 に示す。 この遺伝 子は 1 3 4個のアミノ酸よりなる 0RFを有し、 N末端には分泌タンパク質に特徴 的なシグナルペプチドと推定される約 2 0個の疎水性の強いアミノ酸配列を有す る。 この 1 3 4個のアミノ酸からなるタンパク質の分子量は 1 4, 6 2 9であつ た。 シグナルペプチドの切断部位は、 計算によると、 2 3位のグリシンと 2 4位 のセリンの間と推定された。 シグナルペプチド切断後の、 1 1 1 個のアミノ酸か らなる、 推定上の成熟型タンパク質は、 分泌タンパク質であると推定され、 その 分子量は 1 2, 2 3 7、 また等電点は 1 0. 7 2であった。 FIG. 1 shows the determined nucleotide sequence of the full-length cDNA and the amino acid sequence of the longest open reading frame (0RF) starting from the predicted start codon. This gene has 0RF consisting of 134 amino acids, and has about 20 strongly hydrophobic amino acid sequences at its N-terminus, which are presumed to be signal peptides characteristic of secreted proteins. The molecular weight of the protein consisting of 134 amino acids was 14,629. The calculated cleavage site for the signal peptide was estimated to be between glycine at position 23 and serine at position 24. The putative mature protein of 111 amino acids after signal peptide cleavage is presumed to be a secreted protein, and The molecular weight was 12, 23, and the isoelectric point was 10.72.
アミノ酸配列の類似性解析は、 ClustalW プログラムを用いて行った。 その結 果を図 2に示す。 得られた cDNA塩基配列の 0RFから推定されるタンパク質を含 めてすべての CC 型ケモカインで保存されているアミノ酸は星印で示し、 またほ とんどの CC 型ケモカインで保存されているアミノ酸は黒丸で示した。 また得ら れた cDNA塩基配列の 0RFから推定されるタンパク質と他の CC型ケモカインとの 相同性の程度をシグナルべプチドが切断されたあとの成熟型タンパク質につい て!!!表示で右側に示した。 すなわち成熟型分泌タンパク質のァミノ酸配列は CC型 ケモカインに属する、 例えば、 MIP-1 β ( Lipes et aに, Proc. Natに Acad. Scに USA 85:9704-9708, 1988) と 33¾、 MIP-1 a (Obaru et al. , J. Biochem.99:885- 894, 1986 ) と 31% 、 LD78- β ( Nakao et al. , Mol. Cel I. Biol. 10:3646- 3658, 1990 ) ''と 3 、 eotaxin ( Kitaura et al. , J. Biol. Chem.271 :7725- 7730, 1996 ) と 3 、 MCP-1 ( Furutan i et a I . , B i ochem. B i ophys. Res. Commun. 159:249-255, 1989; Yoshimura et al. , FEBS Lett. 244:487-493, 1989) と 31¾、 MCP-2 ( Van Damme et al. , J. Exp. Med. 176:59-65, 1992 ) と 31¾ 、 CP-3 Amino acid sequence similarity analysis was performed using the ClustalW program. Figure 2 shows the results. Amino acids conserved in all CC-type chemokines, including proteins deduced from 0RF of the obtained cDNA base sequence, are indicated by asterisks, and amino acids conserved in most CC-type chemokines are indicated by solid circles. Indicated by In addition, the degree of homology between the protein deduced from 0RF of the obtained cDNA base sequence and other CC-type chemokines was determined for mature proteins after signal peptide cleavage. ! ! Indicated on the right side of the display. That is, the amino acid sequence of the mature secreted protein belongs to the CC-type chemokine. For example, MIP-1β (Lipes et a, Proc. Nat, Acad. Sc, USA 85: 9704-9708, 1988) and 33¾, MIP- 1a (Obaru et al., J. Biochem. 99: 885-894, 1986) and 31%, LD78-β (Nakao et al., Mol. Cel I. Biol. 10: 3646- 3658, 1990) '' And 3, eotaxin (Kitaura et al., J. Biol. Chem. 271: 7725-7730, 1996) and 3, MCP-1 (Furutan i et a I., Biochem. Biophys. Res. Commun. 159: 249-255, 1989; Yoshimura et al., FEBS Lett. 244: 487-493, 1989) and 31¾, MCP-2 (Van Damme et al., J. Exp. Med. 176: 59-65, 1992) ) And 31¾, CP-3
(Opdenakker et al. , Biochem. Biophys. Res. Commun. 191 :535-542, 1993) と 30¾、 CP-4 ( Uguccioni et al. , J. Exp. Med.183:2379-2384, 1996 ) と 28%、 RANTES(Opdenakker et al., Biochem.Biophys.Res.Commun.191: 535-542, 1993) and 30¾, CP-4 (Uguccioni et al., J. Exp.Med.183: 2379-2384, 1996) and 28 %, RANTES
(Schal I et al. , J. Immunol. 141 :1018-1025, 1988) と 27¾, 1-309 (Mi l ler et al. , J. Immunol. 143 : 2907-2916,〗 989 ) と 24¾ 、 TARC ( Imai et al. , J. Biol. Chem.271 : 21514-21521, 1996) と 21%、 の相同性があることが明らか となった。 また、 全ての CC ケモカインで保存されている、 4 つのシスティンは SLC でも保存されていることが明らかとなった。 従って、 得られたアミノ酸配列 は新規のヒ ト CC型ケモカインのものであると考えられる。 (Schal I et al., J. Immunol. 141: 1018-1025, 1988) and 27¾, 1-309 (Miler et al., J. Immunol. 143: 2907-2916,〗 989) and 24¾, TARC (Imai et al., J. Biol. Chem. 271: 21514-21521, 1996) and 21% homology. It was also found that four cysteines stored in all CC chemokines were also stored in SLC. Therefore, the obtained amino acid sequence is considered to be that of a novel human CC-type chemokine.
実施例 2  Example 2
ノーザンブロッ 卜解析による SLC mRNAの発現解析 各種のヒ卜組織より単離した poly(A)+RNA 2 μ gをァガロースゲル電気泳動に かけ、 既にナイロン膜に転写した状態のもの (マルチプルティ ッシュプロッ ト) を Clonetech 社より購入し、 マルチプライ厶 DNA 標識システム (Pharmacia 社 製) により 32 Pで標識した SLCの 5' -RACE cDNAをプローブとして、 ハイプリダイ ゼーシヨン反応を行った。 ハイブリダィゼ一シヨン溶液は 50%ホルムアミ ド、 5XSSC、 50m Tris. CI pH7.5、 5x Denhard' s solution, 0.5¾SDS. にサケ精子 DNA100 μ g/ml を加えたものを用い、 42°Cで 1 6時間ハイブリダィゼーシヨンを 行った。 膜の洗浄は 0. h SSC、 0. U SDS の緩衝液、 65°Cの条件で行った後、 X 線フイルム(Kodak 社製)に感光させ、 それらを現像して解析した。 各種のヒ卜組 織での SLC mRNAの発現を図 3に示す。 図 3の結果から、 SLCの mRNAは、 免疫系 組織、 特にリンパ節、 小腸、 盲腸、 脾臓等の二次リンパ組織、 および胸腺に強く 発現していることが明らかとなつた。 Expression analysis of SLC mRNA by Northern blot analysis 2 μg of poly (A) + RNA isolated from various human tissues was subjected to agarose gel electrophoresis and was already transferred to a nylon membrane (multiple tissue plot) Was purchased from Clonetech and probed with SLC 5'-RACE cDNA labeled with 32 P using a multiprime DNA labeling system (Pharmacia) as a probe. A Zession reaction was performed. The hybridization solution was 50% formamide, 5XSSC, 50m Tris.CI pH7.5, 5x Denhard's solution, 0.5¾SDS. And 100 μg / ml of salmon sperm DNA added at 42 ° C. Time hybridisation. After washing the membrane under the conditions of 0. h SSC and 0. U SDS buffer at 65 ° C, the membrane was exposed to an X-ray film (Kodak), developed, and analyzed. Figure 3 shows the expression of SLC mRNA in various human tissues. The results in FIG. 3 revealed that SLC mRNA was strongly expressed in immune system tissues, particularly in lymph nodes, secondary lymph tissues such as the small intestine, cecum, and spleen, and in the thymus.
実施例 3  Example 3
SLCタンパク質の調製  Preparation of SLC protein
( 1 ) SLCタンパク質の発現  (1) Expression of SLC protein
SLC タンパク質をコードする cDNA を導入して昆虫細胞に SLC タンパク質を産 生させた。 まず、 SLC タンパク質の全長をコードする cDNA を SLC の 5' -RACE cDNA (上記)を制限酵素 BamHI と Xbal で分解し、 大腸菌内でバキュロウィルスと 組み換えをおこせるベクター pFAST-Bac (Gibco-BRL社製) の BamHI と Xbal サイ 卜の間に挿入し、 ベクター pFAST- Bac-SLC を作製した。 このベクターを大腸菌 (E. coi i) DmOBac(G'ibco-BRL社製)に導入し、 SLCタンパク質を発現する組換 えバキュロウィルス DNAを作製した。 この組換えバキュロウィルス DMAを、 昆虫 細胞 Sf 9に、 Cel lFectin Reagent (G i bco-BRL 社製) を用いて導入しその培養 上清から組換えバキュロウィルスを得た。 こうして得られた組換えバキュロウィ ルスを発現効率のよい昆虫細胞 High Fiveに感染させ、 培養 2日後、 培養上清を 回収した。 この培養上清には野性型バキュロウィルスを感染させた培養上清には 存在していない約 1 5 kDのタンパク質が高濃度に検出された。 この約 1 5 kDの タンパク質は、 成熟型にプロセスされた SLCタンパク質であることが、 以下の試 験例 2において示されるが、 分子量が大きくなつているのは何らかの修飾による ものと推定される。  The SLC protein was produced in insect cells by introducing cDNA encoding the SLC protein. First, the SLC 5'-RACE cDNA (described above), which encodes the full-length SLC protein, is digested with the restriction enzymes BamHI and Xbal, and the vector pFAST-Bac (Gibco-BRL Inc.) is used to recombine with baculovirus in E. coli. The vector pFAST-Bac-SLC was prepared by inserting the vector between BamHI and Xbal site. This vector was introduced into Escherichia coli (E. coli) DmOBac (manufactured by G'ibco-BRL) to prepare a recombinant baculovirus DNA expressing the SLC protein. This recombinant baculovirus DMA was introduced into insect cells Sf9 using CellFectin Reagent (manufactured by Gibco-BRL), and a recombinant baculovirus was obtained from the culture supernatant. The recombinant baculovirus obtained in this manner was infected into High Five, an insect cell with high expression efficiency, and two days after the culture, the culture supernatant was recovered. In this culture supernatant, a protein of about 15 kD, which was not present in the culture supernatant infected with wild-type baculovirus, was detected at a high concentration. It is shown in Test Example 2 below that the protein of about 15 kD is a mature processed SLC protein, but the increase in molecular weight is presumed to be due to some modification.
(2) SLCタンパク質の精製  (2) Purification of SLC protein
組換えバキュロウィルスを感染させた昆虫細胞の培養上清を 0, 22 n mのフィ ルターでろ過滅菌し、 イオン交換カラム HiTrap. SP 陽イオン交換カラム (Pharmacia 社製) にアプライし、 緩衝液 A(50mM HES pH6.5)で洗浄後、 緩衝液 B(50mM ES ρΗ6· 5, 1Μ NaC I )によるグラディエントによりタンパク質を溶出させ た。 SLCを含む画分は SDS - PAGEを用いて同定し、 0.4- 0.5M NaCI の溶出画分に 1 5 kD のタンパク質を見出すことができた。 この画分をコスモシル逆相カラムThe culture supernatant of the insect cells infected with the recombinant baculovirus is sterilized by filtration through a 0.22 nm filter, and the ion exchange column HiTrap. SP cation exchange column (Pharmacia), washed with buffer A (50 mM HES pH 6.5), and eluted the protein with a gradient using buffer B (50 mM ES ρΗ6.5, 1ΜNaC I). The fraction containing SLC was identified using SDS-PAGE, and a protein of 15 kD was found in the eluted fraction of 0.4-0.5M NaCI. This fraction is collected on a Cosmosil reverse phase column.
(ナカライテスク社製) にアプライし、 溶液 C(0.05 FA)で洗浄後、 溶液 D (ァセ 卜ニトリル, 0.05¾ TFA)によるダラディエン卜をもちいた逆相クロマトグラフィ 一によつて精製を行なった。 SLC タンパク質はァセ卜二トリル 28¾!の位置の単一 ピークとして同定でき、 SDS-PAGE 後の銀染色によリほぼ単一バンドとして観察 され、 純度 9 5 %以上の SLCタンパク質を得ることに成功した。 精製 SLCタンパ ク質は凍結乾燥後、 エンド卜キシンフリーの蒸留水 (扶桑薬品株式会社製) に溶 解し、 ケモタキシス活性を測定した。 試験例 1 (Nacalai Tesque, Inc.), washed with solution C (0.05 FA), and purified by reverse phase chromatography using daradiene with solution D (acetonitrile, 0.05 , TFA). SLC protein is acetate nitrile 28¾! Was identified as a single peak at the position, and almost a single band was observed by silver staining after SDS-PAGE, and SLC proteins with a purity of 95% or more were successfully obtained. The purified SLC protein was lyophilized, dissolved in endotoxin-free distilled water (Fuso Pharmaceutical Co., Ltd.), and the chemotaxis activity was measured. Test example 1
精製 SLCタンパクの細胞遊走活性 Cell migration activity of purified SLC protein
実施例 3で得られた組換え SLCを含む培養上清を用いて細胞遊走活性を検討し た。 細胞としてはヒト T 細胞株 HUT78 および HU 02 ( imai et al., J. Biol. Chem. 271 :21514-21521, 1996)を用いた。 試験液を培養液 (RPM卜 1640, 20mM Hepes (pH7.4), 〗!¾ BSA) にて希釈 し、 4 8 ウ エノレの走化性チャ ンバ一 (chemotaxis chamber, Neuro Probe 社製) の下ゥエルに加え、 上ゥエルには上 記培養液に懸濁した 4x105個の T細胞株 HUT78細胞を加えた。 IV型コラーゲン溶 液 (5 μ g/ml 水溶液) で室温、 2時間コートしたポリビニルピロリ ドン不含ポ リカーボネー卜膜 (穴径 5 I m, Neuro Probe社製) で上下ゥエルの分離を行つ た。 3 7°Cで 2時間培養後、 膜を取り外し, PBS で上側を洗浄し,固定および染色 を行った。遊走した細胞は 8 0 0倍の顕微鏡下で、 1 ゥエルにつき無作為に選ん だ 5視野について数を測定した。 その結果を図 6に示す。 図 6のグラフに示され るように、 SLC精製タンパク質は HUT78細胞および HUT102 細胞に対して非常に 強い遊走活性を示したが、 溶解バッファーにはそのような遊走活性は検出されな かった。 試験例 2 Using the culture supernatant containing the recombinant SLC obtained in Example 3, cell migration activity was examined. As the cells, human T cell lines HUT78 and HU02 (imai et al., J. Biol. Chem. 271: 21514-21521, 1996) were used. The test solution is diluted with a culture solution (RPM 1640, 20 mM Hepes (pH 7.4),〗! ¾ BSA), and placed under a chemoaxis chamber (Chemotaxis chamber, Neuro Probe) of 48-well. In addition to the wells, 4 × 10 5 TUT cell line HUT78 cells suspended in the above culture solution were added to the upper wells. Separation of top and bottom wells was performed using a polyvinylpyrrolidone-free polycarbonate membrane (5 μm pore size, manufactured by Neuro Probe) coated with a type IV collagen solution (5 μg / ml aqueous solution) for 2 hours at room temperature. . After culturing at 37 ° C for 2 hours, the membrane was removed, the upper side was washed with PBS, and fixed and stained. The migrated cells were counted under a microscope at 800 × magnification for 5 fields randomly selected per well. Figure 6 shows the results. As shown in the graph of FIG. 6, the SLC-purified protein showed very strong migration activity on HUT78 and HUT102 cells, but no such migration activity was detected in the lysis buffer. Test example 2
SLCの N末端の決定  Determination of N-terminus of SLC
成熟型分泌 SLCの N末端を決定するために精製 SLCタンパクの N末端アミノ酸 配列は、 アミノ酸シーケンサー (島津社製) を用いて決定し、 Ser-Asp-Gly-Gly- Ala- Gin- Asp-X-X-Leu-Lys-Tyr であった。 このアミノ酸配列は、 図 1 に示した塩 基配列から推定されるアミノ酸配列のうち、 推定されるシグナル配列の切断部位 である 2 3位のダリシン残基と 2 4位のセリン残基の間でシグナルべプチドが切 断され、 1 1 1 個のアミノ酸からなる成熟型分泌 SLCタンパク質となったときに 予想される fJ末端アミノ酸配列と一致した。 試験例 3  To determine the N-terminus of mature secreted SLC The N-terminal amino acid sequence of purified SLC protein was determined using an amino acid sequencer (Shimadzu), and Ser-Asp-Gly-Gly-Ala-Gin-Asp-XX was used. -Leu-Lys-Tyr. In the amino acid sequence deduced from the base sequence shown in FIG. 1, the amino acid sequence between the dalysine residue at position 23 and the serine residue at position 24, which is the cleavage site of the deduced signal sequence, is shown. The signal peptide was truncated and agreed with the fJ-terminal amino acid sequence expected when a mature secreted SLC protein consisting of 111 amino acids was obtained. Test example 3
SLCの特異的レセプターの同定  Identification of specific receptors for SLC
SLCの特異的レセプターを決定するため、 種々のレセプターに対する SLCの反 応性を、 SLC とレセプターとの結合が惹き起こす細胞内カルシウム溏度の上昇で 検討した。 細胞には、 対照としてマウスプレ B細胞株 L1.2 を、 およびヒトケモ 力インレセプター (C C R) 1 から C C R 7までの 7種のレセプターをそれぞれ 安定に発現するマウスプレ B細胞株 L1.2の CCケモカインレセプタートランスフ ェクタン卜を用いた。  To determine the specific receptor for SLC, the responsivity of SLC to various receptors was examined by increasing the intracellular calcium concentration induced by the binding of SLC to the receptor. Cells include mouse pre-B cell line L1.2 as a control and CC chemokine receptor of mouse pre-B cell line L1.2, which stably expresses seven types of receptors, human chemoforce-in receptor (CCR) 1 to CCR 7, respectively. Transfectants were used.
これらの細胞 5x106を 2mM のカルシゥ厶インディケ一夕一 Fu ra-2AM を培養液 (RPMI-1640, 20mM Hepes (pH7.4), 1¾ FCS)中でローデイ ングした。 1% FCS を 含む HBSSで 2回洗浄後、 同緩衝液で 2ml に調整した。 Fura-2 由来の蛍光を、 絰 時的に蛍光強度計 (パーキンエルマ一製) で測定した。 その結果を図 7に示す。 図 7 に示されるように、 CCR7 のトランスフエクタントに SLCタンパク質を ΙΟηΜ 加えると強い一過性の細胞内カルシウム濃度の上昇が観察された。 一方、 親株 L1.2や、 その C C R 1 から C C R 6 卜ランスフエクタントに 10nM SLCタンパク 質を加えても反応は見られず、 それぞれの適切なリガンドを ΙΟηΜ 加えると細胞 内カルシウム濃度の上昇が検出された。 このことから、 CCR7 は SLC の特異的レ セプターであることが示された。 These cells (5 × 10 6) were loaded in a culture solution (RPMI-1640, 20 mM Hepes (pH 7.4), 1% FCS) at 2 mM calcium indica overnight. After washing twice with HBSS containing 1% FCS, the volume was adjusted to 2 ml with the same buffer. The fluorescence derived from Fura-2 was temporarily measured with a fluorescence intensity meter (Perkin-Elmer). Figure 7 shows the results. As shown in FIG. 7, a strong transient increase in intracellular calcium concentration was observed when the SLC protein was added to the CCR7 transfectant {η}. On the other hand, no reaction was observed when 10 nM SLC protein was added to the parent strain L1.2 or its CCR 1 to CCR 6 transfectants, and the intracellular calcium concentration increased when と ηΜ was added to each of the appropriate ligands. was detected. This indicated that CCR7 was a specific receptor for SLC.
次いで、 SLCの CCR7 トランスフエクタントに対する細胞遊走活性を検討した。 試験例 1 と同様に試験液を培溶液( RPMI-1640, 20mM Hepes (pH7.4), 1¾ BSA)に て希釈し、 トランスウエルチヤンバー (Costar 社製) の下ゥエルに加え、 上ゥ エルには上記培溶液に懸濁した 5xl06のマウスプレ B 細胞株 L1.2 またはその CCR7 トランスフエクタン卜を加えた。 37°Cで 4 時間培養後、 下ゥエルに遊走さ れてきた細胞数をセルソーター(べク トンディキンソン社製) で計測した。 その 結果を図 7に示す。 図 7に示されるように、 SLC 精製タンパク質は CCR7 トラン スフェクタントに対しては遊走活性を示したが、 その親株 L1.2 には遊走活性を 示さなかった。 このことから、 CCR7 トランスフエクタン卜の SLC への遊走には CCR7が必須であり、 CCR7は S LCの機能的なレセプターであることが示された。 試験例 4 Next, the cell migration activity of SLC against CCR7 transfectants was examined. As in Test Example 1, the test solution was diluted with a culture solution (RPM-1640, 20 mM Hepes (pH 7.4), 1¾ BSA), added to the lower well of a transwell chamber (Costar), and added to the upper well. the addition of a murine pre-B-cell line L1.2 or CCR7 transflector Ek Tan Bok of 5Xl0 6 suspended above培溶solution. After culturing at 37 ° C for 4 hours, the number of cells that had migrated to the lower well was counted using a cell sorter (Becton Dickinson). Figure 7 shows the results. As shown in FIG. 7, the purified SLC protein showed a migration activity against the CCR7 transfectant, but did not show a migration activity against its parent strain L1.2. This indicates that CCR7 is essential for the migration of CCR7 transfectants to SLC, and that CCR7 is a functional receptor for SLC. Test example 4
SLCによる HIVウィルス増殖促進作用  SLC promotes HIV virus growth
健常成人ボランティアよリ採取した末梢血単核球 (PBMC) をフイ トへ厶ァダル チニン (PHA) と IL-2, 20 U/ml を含む培養液 (RPN卜 1640, 10¾FCS) で 2 日間培 養し、 これらの細胞にヒ ト免疫不全ウィルス (HIV) 株、 NL432 あるいは SF162 を moi.約 0.1 で加え、 2 時間 37°Cにてインキュベーションし、 感染させた。 感 染細胞を洗浄後、 IL-2, 20 U/ml を含む培養液 (RPN卜 1640, 10¾FCS) で細胞瀑 度が 1 X 106/ml になるように懸濁した。 このとき、 示した濃度 32〜4000ng/ml の SLC を加え、 あるいは加えず、 7 日間培養維持し、 培養上清中の HIV逆転写酵素 活性で HIVの産生量を調べた。 逆転写酵素活性は以下のようにして測定した。 Peripheral blood mononuclear cells (PBMCs) collected from healthy adult volunteers are cultured for 2 days in a culture solution (RPN 1640, 10¾FCS) containing mutadaltinin (PHA) and IL-2 at 20 U / ml. Then, human immunodeficiency virus (HIV) strain, NL432 or SF162 was added to these cells at a moi of about 0.1 and incubated at 37 ° C for 2 hours to infect the cells. After washing the infected cells, the cells were suspended in a culture solution containing IL-2 and 20 U / ml (RPN 1640, 10 UFCS) so that the cell flow rate became 1 × 10 6 / ml. At this time, the culture was maintained for 7 days with or without SLC at the indicated concentration of 32-4000 ng / ml, and the amount of HIV production was determined by the HIV reverse transcriptase activity in the culture supernatant. Reverse transcriptase activity was measured as follows.
ΙΟΟμΙの 50mM Tris-HCI, pH8.3、 150m KCI、 lOmM MgCI 0.1¾ Nonidet P-40、 10mM ジチオスレィ トール、 5mg/nil ポリ(rA)、 5mg/ml (dt),2.18. [3H]dTTP からな る反応液に培養上清 10μΙ を加え、 37°Cで 3 時間反応させたのち氷冷して反応を 停止した。 反応液をセルハーべスターを用い、 DEAE-フィルターマッ ト (フアル マシア社製) に吸着させ、 5¾ Na2HP04と H20 で洗浄後、 LKB ベ一夕プレー卜シン チレーシヨンスぺク 卜ロスコピー (フアルマシア社製) によって放射活性を測定 した。 ΙΟΟμΙ of 50mM Tris-HCI, pH8.3, 150m KCI, lOmM MgCI 0.1¾ Nonidet P-40, 10mM Jichiosurei torr, 5 mg / nil poly (rA), 5mg / ml ( dt), 2. 18. [3 H] 10 µL of the culture supernatant was added to the reaction solution containing dTTP, and the mixture was reacted at 37 ° C for 3 hours, and then cooled with ice to stop the reaction. The reaction with base star Seruha, DEAE-filter mat is adsorbed on (Fuar Macia Co.), 5¾ Na 2 HP0 4 and washed with H 2 0, LKB base Isseki play Bok Shin Chireshiyonsu Bae click Bok Rosukopi ( Radioactivity was measured by a method manufactured by Pharmacia.
結果を図 8に示す。 図 8は、 SLCが濃度 160-4000ng/ml で HIVのウィルス増殖 を有意に促進することを示している。 用いたウィルス株である NL432は T細胞指 向性であり、 SF 1 62 はマクロファージノ単球指向性であるが、 SLC はそのどちら の株に対してもウィルス増殖を促進している。 産業上の利用可能性 Fig. 8 shows the results. FIG. 8 shows that SLC significantly promotes viral replication of HIV at concentrations of 160-4000 ng / ml. The virus strain used, NL432, is a T cell finger. Although SF 162 is tropotrophic and is macrotrophic for monocytes, SLC promotes virus growth for both strains. Industrial applicability
白血球の遊走と組織への浸潤を誘導するケモカインは生体内での炎症反応や免 疫反応にとって必須の物質である。 ケモカインには現在、 主に CXC型と CC型が 知られており、 それぞれに複数の種類が存在し、 産生組織、 産生細胞、 産生を誘 導する刺激の種類、 産生誘導から産生停止に到る反応時間、 遊走を誘導する標的 細胞の種類、 特異的レセプターの存在、 などに関し相互に異なる性質を示す。 本 発明の SLC は構造的には CC型ケモカインのグループに属し、 おもにリンパ節、 小腸、 盲腸、 胸腺、 脾臓などのリンパ系組織およびリンパ球に富む組織で構造的 に発現しており、 T 細胞のようなリンパ球に対して遊走活性を示すという性質を 示す。  Chemokines, which induce leukocyte migration and infiltration into tissues, are essential substances for inflammatory and immune responses in vivo. Currently, CXC type and CC type are mainly known as chemokines, and there are multiple types of each type, ranging from producing tissues, producing cells, types of stimuli to induce production, induction of production to production cessation They exhibit different properties with respect to reaction time, types of target cells that induce migration, and the presence of specific receptors. The SLC of the present invention structurally belongs to the group of CC-type chemokines, and is structurally expressed mainly in lymphoid tissues such as lymph nodes, small intestine, cecum, thymus, and spleen and in tissues rich in lymphocytes, and T cells It has the property of showing chemotactic activity for lymphocytes such as.
SLCは T細胞のようなリンパ球に対して遊走活性を示すことによリ、 リンパ球 が関与する急性あるいは慢性の炎症反応や免疫反応に関与することが容易に予想 される。 そのため本発明の SLCは、 その機能解明にょリ、 リンパ球の関わる炎症 反応や免疫反応を理解し、 またそのような現象を誘導したり抑制したりするあら たな手段を提供する。 また本発明の SLCは、 主として二次リンパ組織、 例えばリ ンパ節、 小腸、 盲腸および脾臓、 および胸腺などのリンパ系組織ではかなリのレ ベルで構成的に発現していることから、 正常の生体でもリンパ球の体内動態、 す なわち体内循環ゃリンパ組織でのホーミングを制御したリ、 またリンパ組織での リンパ球の移動と定着、 成熟分化、 抗原認識、 生存、 増殖、 等に関与しているこ とが予想される。 そのため、 本発明の SLCは、 その機能解明により、 各種リンパ 系組織でのリンパ球の移動と定着、 分化成熟、 抗原認識、 細胞の増殖や生存の調 節、 等を理解するのに役立ち、 またそのような現象を調節するのに有用な手段を 提供する。  Since SLC exhibits chemotactic activity on lymphocytes such as T cells, it is easily expected that SLC will be involved in acute or chronic inflammatory and immune reactions involving lymphocytes. Therefore, the SLC of the present invention provides a new means for elucidating its function, understanding the inflammatory and immune reactions involving lymphocytes, and inducing or suppressing such phenomena. In addition, since the SLC of the present invention is constitutively expressed mainly in secondary lymphoid tissues, for example, lymphatic tissues such as lymph nodes, small intestine, cecum and spleen, and thymus, the SLC is normal. In living organisms, it controls the pharmacokinetics of lymphocytes, that is, circulatory circulation, which controls homing in lymphoid tissues, and is involved in the migration and establishment of lymphocytes in lymphoid tissues, maturation and differentiation, antigen recognition, survival, proliferation, etc. It is expected that Therefore, the SLC of the present invention, by elucidating its function, is useful for understanding the migration and establishment of lymphocytes in various lymphoid tissues, differentiation and maturation, antigen recognition, regulation of cell growth and survival, etc. It provides a useful tool for regulating such phenomena.
すなわち本発明で提供される SLCのタンパク質あるいはその変異体は、 生体内 での SLCの作用を増強したり、 抑制したりすることにより、 SLCの関与する生理 的あるいは病理的な生体反応を調節することを可能とする。 また本発明によって提供される SLCを全長あるいは部分的にコードするポリヌ クレオチド分子 (DNA、 RNA あるいは S—才リゴ等を含む非天然ポリヌクレオチ ド分子、 2本鎖あるいは 1本鎖) は、 適当な方法によりそのままポリヌクレオチ ドとして生体内に投与したり、 適当なベクターに導入して生体外で細胞に導入し てその細胞 (形質転換細胞) を体内に戻したり、 あるいは適当なベクターに導入 して直接体内に投与したりしうる。 それによつて、 目的とする組織や細胞での SLC タンパク質の産生を増強したり抑制したりすることが可能となり、 それによ つて、 各種の炎症あるいは免疫反応による急性あるいは慢性疾患、 癌、 ウィルス やその他の微生物による感染症、 SLC遺伝子の構造や発現の異常をともなう疾患、 などへの治療法に有用である。 That is, the SLC protein or a mutant thereof provided by the present invention regulates a physiological or pathological biological reaction involving SLC by enhancing or suppressing the action of SLC in vivo. To make things possible. Further, the polynucleotide molecule (non-naturally occurring polynucleotide molecule including DNA, RNA or S-lignin, double-stranded or single-stranded, including DNA, RNA or S-ligigo) provided by the present invention may be a suitable one. Depending on the method, it may be directly administered to a living body as a polynucleotide, introduced into an appropriate vector and introduced into cells outside the body, and the cells (transformed cells) may be returned to the body, or introduced into an appropriate vector. It can be administered directly into the body. As a result, it is possible to enhance or suppress the production of SLC proteins in the target tissues or cells, thereby enabling acute or chronic diseases, cancers, viruses and other diseases caused by various inflammatory or immune reactions. It is useful for treatment of infectious diseases caused by microorganisms and diseases associated with abnormal SLC gene structure and expression.
また、 本発明によって提供される SLCの塩基配列、 SLCを全長あるいは部分的 にコードするポリヌクレオチド分子 (DNA、 RNA あるいは S —オリゴを含む非天 然分子) 、 SLC に対する特異的抗体は、 SLC の遺伝子変異を検出し解析するのに 有用であり、 また SLCの遺伝子発現 (mRNA) やタンパク質の発現を特異的に検出 し定量することに有用である。 それによつて SLC遺伝子や SLCタンパク質の関与 する炎症性疾患、 血液系疾患、 免疫系疾患、 感染症、 癌、 などの診断や原因究明 にあらたな手段を提供し、 またそのような疾患の診断および治療にあらたな手段 を提供することが期待される。  Further, the nucleotide sequence of SLC provided by the present invention, a polynucleotide molecule (non-natural molecule including DNA, RNA or S-oligo) which encodes SLC in full length or in part, and a specific antibody against SLC are those of SLC. It is useful for detecting and analyzing gene mutations, and is also useful for specifically detecting and quantifying SLC gene expression (mRNA) and protein expression. As a result, it provides new means for diagnosis and investigation of the causes of inflammatory diseases, blood system diseases, immune system diseases, infectious diseases, cancers, etc. involving the SLC gene or SLC protein. It is expected to provide a new means of treatment.
また、 SLCは T細胞指向性のウィルスおよびマクロファージノ単球指向性のゥ ィルスのどちらの株に対してもウィルス増殖を促進しウィルスの細胞指向性に関 わらず作用することが示された。 H I V は感染直後に血液中でもウィルス粒子が検 出されるものの、 以後、 発症までの長期にわたり血液中のウィルス量が激減する。 この間、 H I V は休止しているわけでなく、 リンパ節で持続的に増殖 (持続感染) していることが知られている。 リンパ節で発現している SLCが試験管内での H I V のウィルス増殖を促進することは、 生体内での H I Vのリンパ節での持続的な増殖 に関与している可能性を示している。 SLCとそのレセプター CCR7の結合を阻害す るインヒビターは新しい抗 H I V薬となる可能性がある。 配列表 配列番号: 1 In addition, it was shown that SLC promotes virus growth on both T cell-tropic viruses and macrophage monocyte-trophic virus strains and acts irrespective of virus cell tropism. Although virus particles are detected in the blood of HIV immediately after infection, the amount of virus in the blood drops sharply for a long time until the onset of HIV. During this time, it is known that HIV is not at rest but is continuously growing in the lymph nodes (persistent infection). The fact that SLC expressed in lymph nodes promotes the viral propagation of HIV in vitro indicates that HIV may be involved in the sustained growth of HIV in lymph nodes in vivo. Inhibitors that inhibit the binding of SLC to its receptor CCR7 may be new anti-HIV drugs. Sequence listing SEQ ID NO: 1
配列の長さ : 864 Array length: 864
配列の型 :核酸 Sequence type: Nucleic acid
鎖の数:二本鎖 Number of chains: double strand
トポロジー :直鎖状 Topology: linear
配列の種類: cDNA to mRNA Sequence type: cDNA to mRNA
起源 Origin
生物名 : ヒ卜  Organism name: Human
配列の特徴 Array features
特徴を表わす記号 : CDS  Characteristic symbol: CDS
存在位置 : 59..460  Location: 59..460
特徴を決定した方法: S  How the features were determined: S
C TTG CAG CTG CCC ACC TCA CCC TCA GCT CTG GCC TCT TAC TCA 43  C TTG CAG CTG CCC ACC TCA CCC TCA GCT CTG GCC TCT TAC TCA 43
CCC TCT ACC ACA GAC ATG GCT CAG TCA CTG GCT CTG AGC CTC CTT 88 CCC TCT ACC ACA GAC ATG GCT CAG TCA CTG GCT CTG AGC CTC CTT 88
Met Ala Gin Ser Leu Ala Leu Ser Leu Leu  Met Ala Gin Ser Leu Ala Leu Ser Leu Leu
1 5 10  1 5 10
ATC CTG GTT CTG GCC TTT GGC ATC CCC AGG ACC CAA GGC AGT GAT 133 I I e Leu Va I Leu Ala Phe Gly l ie Pro Arg Thr Gin Gly Ser Asp  ATC CTG GTT CTG GCC TTT GGC ATC CCC AGG ACC CAA GGC AGT GAT 133 I I e Leu Va I Leu Ala Phe Gly lie Pro Arg Thr Gin Gly Ser Asp
15 20 25  15 20 25
GGA GGG GCT CAG GAC TGT TGC CTC AAG TAC AGC CAA AGG AAG ATT 178 Gly Gly Ala Gin Asp Cys Cys Leu Lys Tyr Ser Gin Arg Lys l ie  GGA GGG GCT CAG GAC TGT TGC CTC AAG TAC AGC CAA AGG AAG ATT 178 Gly Gly Ala Gin Asp Cys Cys Leu Lys Tyr Ser Gin Arg Lys l ie
30 35 40  30 35 40
CCC GCC AAG GTT GTC CGC AGC TAC CGG AAG CAG GAA CCA AGC TTA 223 Pro Ala Lys Val Val Arg Ser Tyr Arg Lys Gin Gl u Pro Ser Leu  CCC GCC AAG GTT GTC CGC AGC TAC CGG AAG CAG GAA CCA AGC TTA 223 Pro Ala Lys Val Val Arg Ser Tyr Arg Lys Gin Glu Pro Ser Leu
45 50 55  45 50 55
GGC TGC TCC ATC CCA GCT ATC CTG TTC TTG CCC CGC AAG CGC TCT 268 Gly Cys Ser l ie Pro Ala l ie Leu Phe Leu Pro Arg Lys Arg Ser  GGC TGC TCC ATC CCA GCT ATC CTG TTC TTG CCC CGC AAG CGC TCT 268 Gly Cys Ser lie Pro Ala lie Leu Phe Leu Pro Arg Lys Arg Ser
60 65 70 2 ν α ^· 涎 ¾ ¾:籙 60 65 70 2 ν α ^ · 涎 ¾: ¾
^ m: 一  ^ m: one
瞵伞ー: om  瞵 伞: om
98 WW VVVVVVVV33 1013110103 VVVVlVVOi98 WW VVVVVVVV33 1013110103 VVVVlVVOi
028 3VV133V1V1 丄丄 V3丄 V1VVV 1311331131 0DV3333V3V 13VD333133 D3V1VD133V 09 DD13D3V00V 31V31VV3VD 0VV0113333 1313V00V30 V303V3DVDV 91V33V303V 00 033131DVDV 339V3DVDD3 VDV3VDV331 D3V303DV39 V3V333D10D V3130D1VDD 0^9 13D3V13i30 V03311V331 01V3333V03 VV丄丄丄 33_m 10111313V3 VOOOilDOOO 089 13D1V3300V DODVOOVODi D333DDDV31 331V13D0V0 DVV3VV391V 3VV333VVD1028 3VV133V1V1 丄丄 V3 丄 V1VVV 1311331131 0DV3333V3V 13VD333133 D3V1VD133V 09 DD13D3V00V 31V31VV3VD 0VV0113333 1313V00V30 V303V3DVDV 91V33V303V 00 033131DVDV 339V3DVDD3 VDV3VDV331 D3V303DV39 V3V333D10D V3130D1VDD 0 ^ 9 13D3V13i30 V03311V331 01V3333V03 VV 丄丄 丄 33_m 10111313V3 VOOOilDOOO 089 13D1V3300V DODVOOVODi D333DDDV31 331V13D0V0 DVV3VV391V 3VV333VVD1
029 309VV0il33 0VV03V3133 0V3DV3333V OVDDiOOOOV 3D133DV33V OiDVODOOVI sX"i OJd029 309VV0il33 0VV03V3133 0V3DV3333V OVDDiOOOOV 3D133DV33V OiDVODOOVI sX "i OJd
09f V33 D3D VVV 133 09f V33 D3D VVV 133
οει 9ZI 0 1  οει 9ZI 0 1
」リ丄 " ID J9S 3-< niO 」4丄 8JV "i SAQ 3 "Ί J9S 3 s A|D "Review" ID J9S 3- <niO "4 丄 8JV" i SAQ 3 "ΊJ9S 3 s A | D
8 30V DVD V3i 333 3V3 丄。 V 3DV 0VV 3D1 ODD VVV 331 333 DVV V33 8 30V DVD V3i 333 3V3 丄. V 3DV 0VV 3D1 ODD VVV 331 333 DVV V33
911 Oil 901  911 Oil 901
3 」リ丄 sAつ J8S B I v Λ I g 3JV dsy sAi 3JV 5λ3 3 "13 3 "Rs sA J8S B I v ΛIg 3JV dsy sAi 3JV 5λ3 3" 13
£0 VVV DVV 333 13V 3VV 331 309 DDD DOV 3V9 DVV D3V 001 ODD 9VD £ 0 VVV DVV 333 13V 3VV 331 309 DDD DOV 3V9 DVV D3V 001 ODD 9VD
001 S6 06  001 S6 06
B|V OJd sA"i u|3 OJd J3S OJd Jij丄 sA, dsy Π31 S!H u|3 law nan B | V OJd sA "i u | 3 OJd J3S OJd Jij 丄 sA, dsy Π31 S! H u | 3 law nan
8 ε 033 V33 VVV DV3 V33 031 V33 V3V 3VV 3V9 913 iVO 9V3 91V 913 8 ε 033 V33 VVV DV3 V33 031 V33 V3V 3VV 3V9 913 iVO 9V3 91V 913
98 08 9Z  98 08 9Z
"ID u|3 ΙΒΛ 丄 na, Π|3 sAi o」d dsv B I V sX3 na n |3 B|V U|0 ειε 0V3 0V3 3丄 3 33丄 313 9 9 3VV V33 3V3 V09 丄 3丄 13 DVD V09 9V0  "ID u | 3 ΙΒΛ 丄 na, Π | 3 sAi o" d dsv BIV sX3 na n | 3 B | VU | 0 ειε 0V3 0V3 3 丄 3 33 丄 313 9 9 3VV V33 3V3 V09 丄 3 丄 13 DVD V09 9V0
^SI00/86dUT/XDJ 配列 ^ SI00 / 86dUT / XDJ Array
CCTTCTTGCA TCTTGGGTTC AGGCTTC 27 配列番号 3  CCTTCTTGCA TCTTGGGTTC AGGCTTC 27 SEQ ID NO: 3
配列の長さ : 25 Array length: 25
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー :直鎖状  Topology: linear
配列の種類 :他の核酸 合成 DNA Sequence type: Other nucleic acid Synthetic DNA
配列 Array
GAAGCCTGAA CCCAAGATGC AAGAAGG 27  GAAGCCTGAA CCCAAGATGC AAGAAGG 27

Claims

請 求 の 範 囲 The scope of the claims
1 . ノーザンプロッ ト解析により主として二次リンパ組織に構成的に発現し ていることが認められる、 C C R 7のリガンドであるヒ ト CC 型ケモカインまた はその変異体、 またはそれらの断片であるタンパク質。 1. A protein that is a ligand for CCR7, a human CC-type chemokine or a mutant thereof, or a fragment thereof, which is mainly constitutively expressed in secondary lymphoid tissues by Northern blot analysis.
2 . 配列番号 1 のアミノ酸残基 2 4から 1 3 4のアミノ酸配列を有するヒ 卜 CC型ケモカイン、 またはこの配列に 1 または数個のアミノ酸残基の置換、 欠失、 挿入、 付加の中から選ばれる少なくとも 1 つを含む配列を有しかつ該ヒト CC 型 ケモカインの機能または活性と実質的に同じ程度である機能または活性を有する 該ヒ卜 CC 型ケモカインの変異体、 またはそれらの断片である、 請求項 1記載の 夕ンパク質。  2. A human CC-type chemokine having the amino acid sequence of amino acid residues 24 to 134 of SEQ ID NO: 1, or one or several amino acid residues substituted, deleted, inserted, or added to this sequence. A mutant of said human CC-type chemokine having a sequence containing at least one selected and having a function or activity substantially the same as the function or activity of said human CC-type chemokine, or a fragment thereof. The evening protein according to claim 1.
3 . 配列番号 1 のアミノ酸残基 2 4から 1 3 4のアミノ酸配列を有するヒ卜 CC 型ケモカインの配列に 1 または数個のアミノ酸残基の置換、 欠失、 挿入、 付 加の中から選ばれる少なくとも 1 つを含む配列を有しかつ該ヒ卜 CC 型ケモカイ ンのアンタゴニス卜として機能する該ヒ 卜 CC 型ケモカインの変異体またはその 断片である請求項 1 記載のタンパク質。  3. Select from substitution, deletion, insertion and addition of one or several amino acid residues to the sequence of human CC-type chemokine having amino acid residues 24 to 134 of SEQ ID NO: 1. The protein according to claim 1, which is a mutant of the human CC-type chemokine or a fragment thereof, which has a sequence containing at least one of the above-mentioned human CC-type chemokines and functions as an antagonist of the human CC-type chemokine.
4 . 配列番号 1 のアミノ酸残基 1 から 1 3 4のアミノ酸配列を有するヒ 卜 CC型ケモカイン、 またはこの配列に 1 または数個のアミノ酸残基の置換、 欠失、 挿入、 付加の中から選ばれる少なくとも 1 つを含む配列を有しかつ該ヒト CC 型 ケモカインの機能または活性と実質的に同じ程度である機能または活性を有する 該ヒ卜 CC 型ケモカインの変異体、 またはそれ の断片である請求項 1 記載の夕 ンパク質。  4. A human CC-type chemokine having the amino acid sequence of amino acid residues 1 to 134 of SEQ ID NO: 1, or a substitution, deletion, insertion or addition of one or several amino acid residues to this sequence A variant of said human CC-type chemokine, or a fragment thereof, having a sequence or sequence comprising at least one of the above-mentioned human CC-type chemokines and having a function or activity substantially the same as that of said human CC-type chemokine. Even protein described in Item 1.
5 . 配列番号 1 のアミノ酸残基 1 から 1 3 4のアミノ酸配列を有するヒ 卜 CC 型ケモカインの配列に〗 または数個のアミノ酸残基の置換、 欠失、 挿入、 付 加の中から選ばれる少なくとも 1 つを含む配列を有しかつ該ヒ卜 CC 型ケモカイ ンのアンタゴニストとして機能する該ヒ ト CC 型ケモカインの変異体、 またはそ の断片である請求項 1 記載のタンパク質。  5. It is selected from substitution, deletion, insertion or addition of one or several amino acid residues to the sequence of human CC-type chemokine having the amino acid residues 1 to 134 of SEQ ID NO: 1. 2. The protein according to claim 1, which is a mutant of the human CC-type chemokine having a sequence containing at least one and functions as an antagonist of the human CC-type chemokine, or a fragment thereof.
6 . 請求項 1 から 5までのいずれかに記載のタンパク質を含有する医薬組成 物。 6. A pharmaceutical composition containing the protein according to any one of claims 1 to 5.
7 . 請求項 1 から 5までのいずれかに記載のタンパク質に対する抗体。 7. An antibody against the protein according to any one of claims 1 to 5.
8 . 抗体が単クローン抗体である請求項 7記載の抗体。  8. The antibody according to claim 7, wherein the antibody is a monoclonal antibody.
9 . 請求項 8記載の単クローン抗体を産生するハイプリ ドーマ細胞。  9. A hybridoma cell producing the monoclonal antibody according to claim 8.
1 0 . 請求項 1 から 5までのいずれかに記載のタンパク質をコードするポリ ヌクレオチド分子。  10. A polynucleotide molecule encoding the protein according to any one of claims 1 to 5.
1 1 . 配列番号 1 の 1 2 8位の Aから 4 6 0位の Aまでの塩基配列の全長ま たは一部を含む請求項 1 0記載のポリヌクレオチド分子、 またはその塩基置換、 塩基付加もしくはァレル変異による変異体。  11. The polynucleotide molecule according to claim 10, comprising the full length or a part of the nucleotide sequence from A at position 128 to A at position 46 of SEQ ID NO: 1, or a base substitution or base addition thereof. Or a mutant due to an allelic mutation.
1 2 . 配列番号 1 の 5 9位の Aから 4 6 0位の Aまでの塩基配列の全長また は一部を含む請求項 1 0記載のポリヌクレオチド分子、 またはその塩基置換、 塩 基付加もしくはアレル変異による変異体。  12. The polynucleotide molecule according to claim 10, comprising the full length or a part of the nucleotide sequence from A at position 59 to A at position 46 of SEQ ID NO: 1, or a base substitution, base addition or Mutant due to allelic mutation.
1 3 . 列番号 1 の 1位の Cから 8 6 4位の Αまでの塩基配列の全長または 一部と相補的な配列を有するポリヌクレオチドまたはオリゴヌクレオチド分子、 またはその塩基置換、 塩基付加もしくはアレル変異による変異体であって請求項 1記載のタンパク質の活性または機能を阻害する分子。  1 3. Polynucleotide or oligonucleotide molecule having a sequence complementary to the full length or a part of the nucleotide sequence from C at position 1 to Α at position 864 of column number 1, or base substitution, base addition or allele thereof A molecule that is a mutant due to a mutation and inhibits the activity or function of the protein according to claim 1.
1 4 . 請求項 1 0から 1 3までのいずれかに記載のポリヌクレオチド分子を 含有するベクター。  14. A vector containing the polynucleotide molecule according to any one of claims 10 to 13.
1 5 . 発現ベクターまたは治療用ベクターである請求項 1 4に記載のベクタ  15. The vector according to claim 14, which is an expression vector or a therapeutic vector.
1 6 . 請求項 1 5に記載の発現ベクターを宿主細胞に導入して得られる形質 転換体 0 1 6. Claim 1 5 transformants 0 obtained by introducing into host cells an expression vector according to
1 7 . 請求項 1 5に記載の形質転換体を培養し、 産生されたタンパク質を培 養物から回収することを特徴とする、 請求項 1 から 5までのいずれかに記載の夕 ンパク質を製造する方法。  17. The protein according to any one of claims 1 to 5, wherein the transformant according to claim 15 is cultured, and the produced protein is recovered from the culture. How to make.
1 8 . 請求項 1 0から 1 3までのいずれかに記載のポリヌクレオチド分子ま たはその変異体を含有する医薬組成物。  18. A pharmaceutical composition comprising the polynucleotide molecule according to any one of claims 10 to 13 or a variant thereof.
1 9 . 請求項 1 5に記載の治療用ベクターを含有する医薬組成物。  19. A pharmaceutical composition comprising the therapeutic vector according to claim 15.
2 0 . 請求項 1 から 5までのいずれかに記載のタンパク質とその特異的レセ プターとの結合によリ誘発される生物作用に対するァゴニス卜、 ィンバースァゴ 二ストまたはアンタゴニス卜をスクリ一二ングする方法であって、 該ァゴニスト, インバースァゴニストまたはアンタゴニス卜を含むと推定される試料を該タンパ ク質とその特異的レセプター C C R 7との結合反応に加えてその結合阻止を測定 し、 あるいは該タンパク質の特異的レセプター C C R 7と直接反応させて、 その レセプターに対する結合性および または反応性を測定する工程を包含する方法,20. An agonist for the biological action induced by the binding of the protein according to any one of claims 1 to 5 to its specific receptor, inverted ago A method for screening a second or antagonist, comprising adding a sample presumed to contain the agonist, inverse agonist or antagonist to a binding reaction between the protein and its specific receptor CCR7. Measuring the inhibition of the binding, or reacting directly with the specific receptor CCR7 of the protein to determine the binding and / or reactivity to the receptor,
2 1 . 請求項 2 0に記載のスクリ一二ング方法によって得ることのできる、 請求項 1 から 5までのいずれかに記載のタンパク質とその特異的レセプター C C R 7との結合により誘発される生物作用に対するァゴニス卜、 インバースァゴニ ス卜またはアンタゴニス卜。 21. Biological action elicited by the binding of the protein according to any of claims 1 to 5 to its specific receptor CCR 7, which can be obtained by the screening method according to claim 20. Agonist, inverse agonist, or antagonist.
PCT/JP1998/000154 1997-01-20 1998-01-19 Human cc chemokine slc WO1998031809A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU54967/98A AU5496798A (en) 1997-01-20 1998-01-19 Human cc chemokine slc

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/7602 1997-01-20
JP760297 1997-01-20

Publications (1)

Publication Number Publication Date
WO1998031809A1 true WO1998031809A1 (en) 1998-07-23

Family

ID=11670358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000154 WO1998031809A1 (en) 1997-01-20 1998-01-19 Human cc chemokine slc

Country Status (2)

Country Link
AU (1) AU5496798A (en)
WO (1) WO1998031809A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009151A1 (en) * 1998-08-17 2000-02-24 Schering Corporation Regulation of dendritic cell trafficking
WO2000038706A3 (en) * 1998-12-31 2000-11-23 Chiron Corp Methods for treating cancer and for mediating chemotaxis of dendritic cells
US6153441A (en) * 1998-02-17 2000-11-28 Smithkline Beecham Corporation Methods of screening for agonists and antagonists for human CCR7 receptor and CKβ-9 ligand and interaction thereof
WO2004104574A3 (en) * 2003-05-23 2005-02-03 Bayer Healthcare Ag Diagnostics and therapeutics for diseases associated with c-c chemokine receptor type 7 (ccr7)
WO2005083440A2 (en) * 2004-02-19 2005-09-09 Yale University Identification of cancer protein biomarkers using proteomic techniques

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006169A1 (en) * 1994-08-23 1996-02-29 Human Genome Sciences, Inc. Human chemokine beta-9
WO1996025497A1 (en) * 1995-02-17 1996-08-22 Incyte Pharmaceuticals, Inc. New chemokines expressed in pancreas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006169A1 (en) * 1994-08-23 1996-02-29 Human Genome Sciences, Inc. Human chemokine beta-9
WO1996025497A1 (en) * 1995-02-17 1996-08-22 Incyte Pharmaceuticals, Inc. New chemokines expressed in pancreas

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153441A (en) * 1998-02-17 2000-11-28 Smithkline Beecham Corporation Methods of screening for agonists and antagonists for human CCR7 receptor and CKβ-9 ligand and interaction thereof
WO2000009151A1 (en) * 1998-08-17 2000-02-24 Schering Corporation Regulation of dendritic cell trafficking
WO2000038706A3 (en) * 1998-12-31 2000-11-23 Chiron Corp Methods for treating cancer and for mediating chemotaxis of dendritic cells
WO2004104574A3 (en) * 2003-05-23 2005-02-03 Bayer Healthcare Ag Diagnostics and therapeutics for diseases associated with c-c chemokine receptor type 7 (ccr7)
WO2005083440A2 (en) * 2004-02-19 2005-09-09 Yale University Identification of cancer protein biomarkers using proteomic techniques
WO2005083440A3 (en) * 2004-02-19 2006-03-16 Univ Yale Identification of cancer protein biomarkers using proteomic techniques
AU2005217375B2 (en) * 2004-02-19 2011-05-19 Yale University Identification of cancer protein biomarkers using proteomic techniques
AU2005217375C1 (en) * 2004-02-19 2012-06-07 Yale University Identification of cancer protein biomarkers using proteomic techniques
US8975379B2 (en) 2004-02-19 2015-03-10 Yale University Identification of cancer protein biomarkers using proteomic techniques
US9470688B2 (en) 2004-02-19 2016-10-18 Yale University Identification of cancer protein biomarkers using proteomic techniques
US10168334B2 (en) 2004-02-19 2019-01-01 Yale University Identification of cancer protein biomarkers using proteomic techniques

Also Published As

Publication number Publication date
AU5496798A (en) 1998-08-07

Similar Documents

Publication Publication Date Title
US7041802B2 (en) Peptidoglycan recognition proteins
US7198944B2 (en) Human chemokine β-9 viral vectors
AU717721B2 (en) A new chemokine expressed in fetal spleen, its production and uses
JP2003102486A (en) HUMAN CHEMOKINE beta-8, CHEMOKINE beta-1 AND MACROPHAGE INFLAMMATORY PROTEIN-4
JPH10508742A (en) Human chemokine polypeptide
JPH08503463A (en) C-CCKR-1, CC chemokine receptor
US20080317756A1 (en) Antibodies to Chemokine Alpha-5
US5652133A (en) Cloning and expression of the human macrophage inflammatory protein-1.alpha.α) /rantes receptor
AU695174B2 (en) Human chemotactic protein
MXPA97001330A (en) Chemistry beta-9 hum
JPH10513355A (en) Human chemokine β-11 and human chemokine α-1
PL204231B1 (en) Chemokine mutants in the treatment of multiple sclerosis
CA2310987A1 (en) Tnf ligand family gene
AU711573B2 (en) Short forms of chemokine beta-8
WO1998031809A1 (en) Human cc chemokine slc
AU733925B2 (en) Monocyte chemotactic protein-5 materials and methods
WO1998011138A1 (en) Chemokine alpha-4
WO1999062925A1 (en) Angiopoietin related gene sequence scarface 1
WO1998017800A1 (en) Novel human cc chemokine larc
WO1999026976A1 (en) Tnf ligand family gene
US7361737B2 (en) Mouse CXC chemokine receptor
US7217529B2 (en) Antibodies to chemokine Alpha-6
WO1996023410A1 (en) UBIQUITIN CONJUGATING ENZYMES 7, 8 and 9
JP4001246B2 (en) New human CC chemokine LARC
WO1998026071A1 (en) Human cc chemokine elc

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase