WO1998026071A1 - Human cc chemokine elc - Google Patents

Human cc chemokine elc Download PDF

Info

Publication number
WO1998026071A1
WO1998026071A1 PCT/JP1997/004573 JP9704573W WO9826071A1 WO 1998026071 A1 WO1998026071 A1 WO 1998026071A1 JP 9704573 W JP9704573 W JP 9704573W WO 9826071 A1 WO9826071 A1 WO 9826071A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
human
sequence
elc
amino acid
Prior art date
Application number
PCT/JP1997/004573
Other languages
French (fr)
Japanese (ja)
Inventor
Ryu Yoshida
Toshio Imai
Osamu Yoshie
Original Assignee
Shionogi & Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shionogi & Co., Ltd. filed Critical Shionogi & Co., Ltd.
Priority to AU54106/98A priority Critical patent/AU5410698A/en
Publication of WO1998026071A1 publication Critical patent/WO1998026071A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/521Chemokines
    • C07K14/523Beta-chemokines, e.g. RANTES, I-309/TCA-3, MIP-1alpha, MIP-1beta/ACT-2/LD78/SCIF, MCP-1/MCAF, MCP-2, MCP-3, LDCF-1, LDCF-2

Definitions

  • the present invention relates to a novel human CC-type chemokine, a polynucleotide molecule encoding the protein, a method for producing the protein, a pharmaceutical composition containing the protein, a polynucleotide encoding the protein, and the like.
  • the present invention relates to a method for screening agonist Z inverse agonist Z antagonist for biological action induced by binding to its specific receptor.
  • inflammatory and immune responses are important host defense responses, but can sometimes cause acute or chronic disease.
  • a cause that induces an inflammatory or immune response is added to a tissue, first, inflammatory cells such as neutrophils, granulocytes, lymphocytes, or macrophages or immunocompetent cells adhere to vascular endothelial cells, It moves out and accumulates in invaded or damaged tissues or in the presence of antigen.
  • chemokines As a substance that induces such a series of cell migration reactions, there is a group of chemotactic sites, so-called chemokines.
  • Chemokines are a group of site forces that induce a chemotactic reaction (chemotactic reaction), and are closely related structurally to each other due to similarities in amino acid sequences. To date, more than 30 chemokines have been reported in humans. Chemokines are largely ⁇ - or CXC-type (two cysteines separated by ⁇ amino acids) and i8 or CC from the arrangement of the first two of the four conserved cysteine residues in common. Type (two cysteines are adjacent to each other). As a CXC type chemokine, 1 L-8, ⁇ -TG.
  • CXC-type chemokines mainly induce neutrophil activation and migration.
  • CC type As human chemokines, MIP-1 ⁇ , .-1 ⁇ . RANTES, CP-K MCP-2, CP-3, U-309, and Eotaxin are known in humans.
  • CC-type chemokines mainly induce the activation and migration of monocytochrome Nomac phage.
  • B lymphocytes When B lymphocytes are infected with Epstain-Barr virus or CD4-positive T cells are infected with human herpes virus (Human Herpes virus) 6 or 7, they are selectively induced in lymphocytes whose expression is strongly induced.
  • human herpes virus Human Herpes virus 6 or 7
  • EBI-1 Epstain-Barr Virus-lnduced gene 1
  • the expressed G protein-coupled seven-transmembrane receptor EBI-1 (Epstain-Barr Virus-lnduced gene 1) is known (Birkenbach et al., J. Virol. 67: 2209). -2220, 1993; Hasegawa et al., J. Virol. 68: 5326- 5329, 1994).
  • the ligand for this receptor was unknown.
  • Induction of EBI-1 expression in host lymphocytes following infection with various lymphophilic viruses is important for acute infection, latent infection or reactivation of those lymphophilic viruses. It is considered to play a role. Therefore, it is expected that finding a ligand that specifically binds to the EBI-1 receptor will provide a therapeutic means for lymphophilic virus infection.
  • the present inventors have discovered the existence of a sequence of a DNA fragment thought to encode a new CC-type chemokine by a unique method, and complementarily cover the full-length cDNA from mRNA derived from human fetal lung tissue.
  • the various cDNA clones were separated and their full-length nucleotide sequences were determined.
  • This gene is constitutively expressed mainly in the immune system tissues such as lymph nodes, cecum, thymus, and spleen, and its protein produced by genetic engineering technology has cell-migrating activity on human T cells. was found.
  • the protein is known to be a ligand that specifically binds to the above-mentioned EB1-1, a so-called unique fan receptor, a ligand of which was not previously known.
  • the present invention has been clarified, and the present invention has been completed.
  • This new human CC-type chemokine was named ELC ( ⁇ -1-Ligand Chemokine).
  • ELC ⁇ -1-Ligand Chemokine
  • the present invention relates to a human CC-type chemokine or a mutant thereof, or a mutant thereof, which is constitutively expressed in an immune system tissue which is a ligand of the receptor EB-1 which is selectively expressed in lymphoid cells.
  • a protein which is a fragment, preferably a human CC type chemokine having an amino acid residue of amino acid residues 1 to 98 of SEQ ID NO: 1, more preferably amino acid residues 22 to 98 of SEQ ID NO: 1, or a sequence thereof Has at least one sequence selected from substitution, deletion, insertion and addition of one or several amino acid residues and has substantially the same function or activity as the human CC-type chemokine.
  • a method of performing A sample presumed to contain a gonist, an inverse gonist, or an angelic gonist is added to a binding reaction system between the protein and a specific receptor of the protein, and the inhibition of the binding is measured. Reacting directly with a specific receptor and measuring the binding and / or reactivity to that receptor.
  • FIG. 1 shows the nucleotide sequence and deduced amino acid sequence of human ELC cDNA.
  • FIG. 2 shows the results of comparing the amino acid sequences of the ELC protein of the present invention with nine kinds of known human CC-type chemokines.
  • FIG. 3 is a photograph instead of a drawing showing the result of Northern blot analysis of ELC mRNA expression in various human tissues.
  • FIG. 4 shows the genetic map of the recombinant vector pDREF-SEAP (His) 6 and the insertion position of the ELC cDNA.
  • FIG. 5 is a graph showing induction of the chemotaxis reaction of human T cell line HUT78 cells by the culture supernatant of 293 / EBNA-1 cells transfected with a vector expressing the recombinant ELC protein. As a control, the culture supernatant of 293 / EBNA-1 cells transfected with only one vector is used.
  • FIG. 6 is a graph showing the results of examining the binding of ELC-SEAP (His) 6 fusion protein using 293 / EBNA-1 cells expressing various cloned chemokine receptors. Detailed description of the invention
  • the ELC found by the present inventors is presumed to be a protein consisting of 98 amino acids from the open reading frame (0RF) predicted from the nucleotide sequence of cDNA.
  • the signal sequence is cleaved between the 2nd serine and the 2nd dalysin, and is estimated to be a basic protein of 77 amino acids with a molecular weight of about 8.8 kDa (see Figure 1).
  • Mature ELCs show significant homology to known CC chemokines, especially in CC chemokines. All four stored cysteines are stored. However, the homology with existing chemokines is about 31% even for the highest MlP-13.
  • one embodiment of the present invention is that it is constitutively expressed in immune system tissues such as lymph nodes, cecum, thymus, spleen, etc., exhibits chemotactic activity on T cells, and is selectively expressed on lymphocytes.
  • the present invention relates to a protein which is a human CC-type chemokine or a mutant thereof or a fragment thereof, which specifically binds to the human fan receptor EBI-1.
  • the present invention provides a human CC-type chemokine (ELC precursor) having the amino acid sequence of amino acid residues 1 to 98 of SEQ ID NO: 1 or the amino acid residues 22 to 98 of SEQ ID NO: 1.
  • a human CC-type chemokine having the amino acid sequence of SEQ ID NO: 1, or a sequence comprising at least one selected from substitution, deletion, insertion, and addition of one or several amino acid residues in this sequence.
  • the present invention relates to a protein which is a mutant of the human CC type chemokine or a fragment thereof.
  • CC-type chemokine variant has a sequence containing at least one selected from substitution, deletion, insertion and addition of amino acids or amino acid sequences in the amino acid sequence of the original protein. And / or a modified protein that can contain a chemically or biochemically modified or natural or unnatural amino acid, and whose function or activity is substantially the same as the CC-type chemokine. A protein that functions as an antagonist of the CC-type chemokine.
  • a protein that is a ⁇ fragment '' of the CC-type chemokine of the present invention or a mutant thereof refers to a protein having an amino acid sequence of 76 to 5, preferably 50 to 10, or about 9 amino acid residues. means.
  • the present invention relates to a polynucleotide molecule encoding the CC-type chemokine of the present invention or a mutant or a fragment thereof.
  • a polynucleotide molecule comprising:
  • a polynucleotide molecule of the present invention can be DNA or RNA.
  • DNA it may be cDNA, genomic DNA or synthetic DNA.
  • RNA in both cases of DNA and RNA, it can take a double-stranded or single-stranded form.
  • a single strand it may be a coding strand or a non-coding strand.
  • the present invention relates to variants of these polynucleotide molecules by base substitution, base addition or allelic mutation.
  • a variant by base substitution or base addition refers to the use of a different genetic code from the base sequence described in SEQ ID NO: 1 and, consequently, the amino acids 1 to 98 described in SEQ ID NO: 1. It means a mutant that can encode the same protein as the protein or the same protein as the amino acid sequence 22 to 98 described in SEQ ID NO: 1.
  • mutant due to allelic mutation means a naturally occurring base mutation based on individual or ethnic differences, and the amino acid sequence to be encoded may be changed.
  • the present invention further provides a ligated nucleotide molecule having a sequence complementary to a part of the nucleotide sequence from C at position 1 to G at position 687 of SEQ ID NO: 1, or base substitution, base addition, base modification,
  • the present invention relates to a molecule which is a mutant due to an allelic mutation and inhibits the activity or function of the protein of the present invention.
  • a sequence complementary to the 5 'non-coding portion is preferred, and more preferably a sequence complementary to the transcription initiation site, translation initiation site, 5' untranslated region, boundary region between exon and intron, or 5 'CAP region. It is a simple array.
  • Preferred lengths are from about 10 base pairs (bp) to about 60 bp.
  • the present invention relates to a vector containing the polynucleotide molecule of the present invention.
  • the vectors of the present invention include vectors having various uses, such as expression vectors, cloning vectors, and therapeutic vectors.
  • the expression vector can be used for mass production of the protein of the present invention. Details of the expression vector are shown in the following section.
  • Therapeutic vector is used in a method for introducing the polynucleotide molecule of the present invention into cells.
  • a method for introducing the polynucleotide molecule of the present invention into cells examples include a method using a viral vector and other methods (Nikkei Science, April 1994, pp. 20-45; Monthly Pharmaceutical Affairs, 36 (1) 23-48 (1994); Experimental Medicine Special Edition, 12 (15), (1994)), and the methods described in these references.
  • the polynucleotide molecule of the present invention is used for an RNA virus such as a retrovirus, an adenovirus, an adeno-associated virus, a herpes virus, a vaccinia virus, a box virus, a polio virus, and a simbis virus.
  • an RNA virus such as a retrovirus, an adenovirus, an adeno-associated virus, a herpes virus, a vaccinia virus, a box virus, a polio virus, and a simbis virus.
  • a retrovirus, an adenovirus, an adeno-associated virus, a vaccinia virus and the like is particularly preferable.
  • DNA method direct injection of plasmid into the muscle
  • ribosome method lipofectin method
  • microinjection method calcium phosphate method
  • electoral poration method DNA vaccine method and ribosome method are preferred.
  • the present invention relates to a transformant containing the above-described various vectors of the present invention.
  • the present invention also provides a transformant obtained by introducing the expression vector of the present invention into a host cell; culturing the transformant and collecting the produced protein to produce the protein of the present invention. About the method.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising the protein of the present invention or a polynucleotide molecule encoding the same, or the therapeutic vector of the present invention.
  • the pharmaceutical compositions of the present invention include, for example, anti-inflammatory agents, immune response modulators, anti-infective agents.
  • polynucleotide molecule of the present invention In order for the polynucleotide molecule of the present invention to act as a medicine, an in vivo method of directly introducing it into the body, or ex vivo, using a certain cell from human, introducing a gene into the cell, and returning the cell to the body. There is a vo way.
  • the dose of the protein or polynucleotide molecule of the present invention can be appropriately adjusted depending on the age, body weight, etc. of the patient.
  • the dose is 0.001 mg to 100 mg, and is preferably administered once every several days to several months. Since the protein of the present invention is an active substance in a living body, the amount of activity of the protein, that is, the amount of the pharmaceutical composition containing the protein of the present invention, is reduced. Therefore, it is easily presumed that acute toxicity is not a problem.
  • the present invention relates to an antibody against the protein of the present invention or a mutant thereof, particularly a monoclonal antibody, and a hybridoma cell producing the monoclonal antibody.
  • the present invention provides the protein of the present invention and its specificity. By providing a relationship with a specific receptor, the process of searching for and evaluating a substance that acts as an agonist, inverse agonist or antagonist for the biological action caused by the binding of the protein of the present invention to its specific receptor. Regarding the method of inclusion. That is, a sample presumed to contain the agonist, inverse agonist or antagonist is added to the binding reaction between the protein and its specific receptor, and the inhibition of the binding is measured. And measuring the direct binding and / or reactivity to a specific receptor.
  • the present invention relates to human CC-type chemokines that are constitutively expressed mainly in immune system tissues such as lymph nodes, cecum, thymus, and spleen.
  • the sequence of this DNA fragment can be obtained, for example, from cDNA obtained from human lymph nodes, cecum, thymus, spleen, or fetal lung tissue. Primers are required to clone the cDNA to be cloned.
  • GenBank a nucleic acid sequence database published by NCBI of the United States.
  • the database includes an Expressed Sequence Tag (EST) database consisting of cDNA partial sequences, and various human CC-type chemokine amino acid sequences.
  • EST Expressed Sequence Tag
  • a search yields a partial cDNA sequence that is thought to encode a protein that has significant homology to the cc-type chemokines but differs from known chemokines.
  • a primer pair for polymerase chain reaction (PCR) is synthesized based on the obtained cDNA partial sequence.
  • RNA was extracted using a Quickprep Micro mRNA purification kit (Pharmacia), and a marathon cDNA amplification kit (CI on tech) was extracted from the poly (A) + RNA.
  • cDNA is amplified from the upstream 5 'primer to the downstream 3' end to the 3 'end of the cDNA, and the resulting cDNA fragment is converted to an appropriate base sequencing vector such as pGEM-T (Promega And pBluescript
  • the recombinant plasmid was recovered, and the nucleotide sequence of the cloned cDNA fragment was analyzed by, for example, the Sanger method (Sanger et a, Proc. Nat I. Acad. Sc, USA, 74: 5463-5467, 1977). decide.
  • the cDNA is amplified from the downstream 3 'primer to the upstream 5' end to the 5 'end of the cDNA.
  • the obtained cDNA fragment is inserted into an appropriate nucleotide sequence determination vector in the same manner as described above, the recombinant plasmid is recovered, and the nucleotide sequence of the cloned cDNA is determined.
  • the nucleotide sequence corresponding to the full-length cDNA is determined.
  • the obtained cDNA encoding the ELC protein is inserted into an appropriate expression vector to prepare an expression vector for expressing the ELC protein.
  • suitable expression vectors include, for example, pRSET, pGEEX.pKK233-2 for bacteria, pYES2 for yeast, pVL1393 for insect cells, pEF-B0S, pSRa, pDR2 for animal cells, etc. Respectively.
  • Transformants are prepared by introducing this expression vector into an appropriate host cell, for example, a bacterium, yeast, insect cell or animal cell.
  • ⁇ Prokaryotic microorganisms such as Escherichia coli include signal sequences derived from secreted proteins of prokaryotic microorganisms (eg, It can be expressed as a fusion protein in which the signal peptide (OMPa) and the mature ELC protein are fused under the control of a strong promoter (eg, T7 promoter).
  • OMPa signal peptide
  • yeast it can be expressed as a fusion protein in which a signal sequence derived from a natural precursor of a yeast secretory protein (eg, a pheromone ⁇ prebuilt opening sequence) and an thermogenic ELC protein are fused.
  • the gene for the precursor protein of the ELC protein which contains a signal sequence that already exists, is inserted downstream of a strong promoter (eg, EF-1 ⁇ promoter) to form an effective selection marker (eg, dihydrogen). It can be introduced into animal cells (for example, CHO dhfr-cells) together with folate reductase), and cells can be selected based on resistance to a drug (in this case, methotrexate) to establish a highly expressing cell line.
  • the gene can be expressed by incorporating the gene for the ELC protein precursor containing the signal sequence into a virus or retrovirus, and infecting animal cells with the recombinant virus. By culturing these transformants, ELC protein can be produced and secreted.
  • the mature ELC protein or a protein fragment thereof can be obtained by the method described in the literature based on the determined base sequence (for example, using a solid phase method), paying attention to the presence of two disulfide bonds.
  • Total synthesis can be performed by Clark-Lewis et al., Biochemistry 30: 3128-3135, 1991) or by using a conventional peptide synthesizer.
  • Purification of the obtained protein can be performed by a method known to those skilled in the art, for example, by a combination of affinity chromatography, ion exchange chromatography, gel filtration chromatography, reverse phase chromatography, and hydrophobic chromatography.
  • Mutants and fragment proteins of the ELC protein of the present invention can be mutated by gene recombination techniques well known to those skilled in the art (Sambrook eta I., Molecular Cloning: AI aboraroy manual, 2nd edn.New York, Cold Spring Harbor Laboratory). It can be prepared using DNA into which is introduced.
  • Antibodies against the ELC protein of the present invention include, for example, a synthetic peptide synthesized with a conventional peptide synthesizer based on a part of the deduced ELC amino acid sequence, a bacterium, and a yeast transformed with an ELC-expressing vector.
  • ELC proteins produced by insect cells, animal cells, animal cells, etc. are purified by ordinary protein chemical methods, and these are used as immunogens to immunize animals such as mice, rats, hamsters, egrets, Prepare an antibody of origin (polyclonal antibody).
  • lymphocytes are removed from the spleen or lymph nodes of immunized mouse rats and fused with myeloma cells, and the method of Kohler and Mi Istein [Nature, 256, 495-497 (1975)] or an improved method thereof.
  • a hybridoma can be prepared according to the method of Ueda et al. [Pro Na 11. Acad. Sc, USA, 79: 4386-4390, 1982), and a monoclonal antibody can be produced from the hybridoma.
  • a monoclonal antibody of the ELC protein can be obtained by the following steps.
  • the presence of the mRNA and protein of the ELC of the present invention can be carried out using a detection method for ordinary specific mRNA and protein (Sambrook et al., Molecular Cloning: AI abo roy manual, 2nd edn. New York, Cold Sring Harbor Laboratory 1989; Harlow and Lane, Antibodies: A laboratory manual, New York, Cold Spring Harbor Laboratory 1988).
  • mRNA can be detected by Northern blot analysis using antisense RNA or cDNA as a probe or in situ hybridization method.
  • the mRNA can be converted to cDNA using reverse transcriptase, and then detected by polymerase chain reaction (PCR) using an appropriate combination of primers.
  • the protein can be detected by immunoprecipitation using an antibody specific to the ELC protein, Western blot, or the like.
  • ELC labeled with radioisotope an enzyme such as peroxidase or alkaline phosphatase, or a fluorescent dye
  • unlabeled ELC with a known concentration unlabeled ELC with a known concentration
  • anti-ELC polyclonal antibody derived from serum or monoclonal antibody An antigen-antibody competition reaction is performed by adding one null antibody. After appropriately changing the concentration of the unlabeled antigen, the labeled antigen bound to the antibody and the labeled antigen not bound to the antibody are separated by an appropriate method, and the radioactivity and enzyme activity of the labeled antigen bound to the antibody are separated. Or measure the fluorescence intensity.
  • the amount of unlabeled antigen increases, the amount of labeled antigen that binds to the antibody decreases. This relationship is graphed to obtain a standard curve.
  • one of the two types of monoclonal antibodies that recognize different epitopes on the ELC protein is immobilized, and the other is labeled by one of the above methods, and the amount of ELC bound to the immobilized antibody is determined by the amount of the labeled antibody.
  • sandwich method of detecting and quantifying by means of is also possible.
  • the chemokine activity of the ELC protein of the present invention can be determined, for example, by placing ELC on one side of a culture vessel partitioned with a filter having a certain diameter in a test tube and placing target cells on the other side. After a certain period of time, the number of cells that have moved through the pores of the filter to the side where ELCs are present can be compared with the number of random movements. In vivo, it can also be demonstrated by administering purified ELC protein to animals and detecting cell invasion and aggregation by histological methods.
  • the Expressed Sequence Tag (EST) database which is a part of the nucleic acid sequence database GenBank released by NCBI in the United States and composed of partial sequences derived from various cDNAs, is used for amino acids of various human CC-type chemokines. A search was performed using TBLASTN search software based on the acid sequence. Seven EST data (GenBank data) that have significant homology to CC-type chemokines but are thought to encode chemokine proteins different from known chemokines Session No .: T97490, D31180, D3143K W05519, W0740K N71167, N80273).
  • ELC mRNA was detected by polymerase chain reaction (PCR) using a combination of primers specific to ELC.
  • PCR polymerase chain reaction
  • a QuickPrep Micro mRNA purification kit (Pharmacia) ) was used to extract mRNA.
  • mRNA was synthesized using a Preamplification System (GIBCO-BRL).
  • PCR was performed using Ampl iTaq Kit (Takara Shuzo). That is, the obtained single-stranded cDNA was used as type III, and 400 nM of each of the nfJCC-6F primer, nNCC-6R primer and 100 U / ml Amp I iTaq DNA polymerase I were added to a reaction buffer (10 mM Tris-HC). PCR was performed using a DNA Thermal Cycler (Perkin-EImer) in addition to pH 8.3, 50 mM KCL, 1.5 mM MgCI2, 0.1 gelatin, 200 M each of dATP, dGTP, dCTP, and dTTP.
  • a DNA Thermal Cycler Perkin-EImer
  • the reaction was pre-treated at 94 ° C for 1 minute, followed by 5 reaction cycles of 94 ° C for 30 seconds, 72 ° C for 2 minutes, 5 cycles of 94 ° C for 30 seconds, and 70 ° C for 2 minutes. Five cycles, and finally 25 cycles of 94 ° C for 30 seconds and 68 ° C for 2 minutes were performed.
  • the amplified DNA fragment was separated by agarose electrophoresis and stained by ethidium bromide method. Approximately 170 bp of DNA derived from ELC cDNA was detected, confirming that human fetal lung tissue expresses ELC mRNA.
  • cDNA is synthesized from mRNA derived from human fetal lung tissue using the Marathon cDNA Amplification Kit (Clontech). That is, a 5 / I aqueous solution containing human fetal lung mRNA 1 and Marathon cDNA synthesis primer 10 pmole was heated at 70 ° C for 2 minutes, cooled on ice, and added to dATP, dCTP, dGTP and dTTP ( each 1 mM) and MMLV the (Moloney Murine Leukemia Virus) reverse transcriptase (100 units) was added, 50 mM Tr i s-HCI (pH8.3), 6 mM MgCI 2, 75 mM reaction solution 10 I in KCI The single-stranded cDNA synthesis reaction was performed at 42 ° C for 4 hours.
  • T4 DNA polymerase (10 units) was added to the reaction solution, and the mixture was reacted at 16 ° C for 45 minutes to blunt the cDNA. After the reaction, phenol extraction and ethanol precipitation were performed, and the DNA was dissolved in 10 I of distilled water.
  • Marathon cDNA Adaputa one 20 pmo le and T4 DNA Riga Ichize the (1 Yuni' g) was added to 5 il of solvent solution of them, 50 mM Tr i s-HCI (pH7.8) v 10 mM MgCI 2, 1 mM DTT, 1 mM ATP.
  • a RACE reaction (Frohman et al., Proc. Nat I. Acad. Sci. USA 85: 8998-9002, 1988) was performed.
  • 5 A of the denatured cDNA was added to dATP, dCTP, dGTP, dTTP (0.2 mM each), TAKARA LA Taq (2.5 units), and TaqStart antibody (0.55 ⁇ L).
  • g add 10 pmo Ie of API primer that binds to a part of the adapter, and 10 pmole of nNCC-6R primer (SEQ ID NO: 3), and in a 1x TAKARA LA Taq buffer reaction mixture at 94 ° C in 50 ⁇ I.
  • PCR was carried out for 30 cycles at 94, 30 seconds; 60 ° C, 30 seconds; 68 ° C, 4 minutes.
  • the 3 ′ RACE reaction was performed under the same reaction conditions as above, except that the nNCC-6F primer (SEQ ID NO: 2) was used instead of the nNCC-6R primer.
  • each PCR product was separated by 23 ⁇ 4 low melting point agarose gel electrophoresis, and the main 5 'RACE fragment (about 670 bp) and the main 3' RACE fragment
  • Plasmid DNA was extracted from several of the colonies obtained in the above steps, and the nucleotide sequences at the 5 'and 3' ends of the cDNA were examined using SP6 motor, primer and T7 promoter and primer. However, all had almost the same nucleotide sequence as EST W07401. Therefore, clones obtained from each of the 5 'RACE reaction and the 3' RACE reaction were selected one by one (hereinafter referred to as 5'-RACE cDNA and 3'-RACE cDNA), and the entire nucleotide sequence of them was determined by Sanger et al. Determined according to the method (Proc. Nat I. Acad. Sci. USA 74: 5463-5467, 1977).
  • the full-length ELC cDNA was determined from the two partially overlapping cDNA sequences thus obtained. As a result, it was found that there was a nucleotide sequence encoding a protein consisting of 98 amino acid residues including methinenin defined by the translation initiation codon ATG, which appears first.
  • the amino acid sequence of this protein is not identical to known chemokines, but has significant homology and contains four conserved cysteine residues that are structural features of chemokines. The presence of a highly hydrophobic signal sequence-like sequence on the N-terminal side, which suggests a novel chemokine.
  • FIG. 1 shows the determined nucleotide sequence of the full-length cDNA and the amino acid sequence of the longest translation frame (open read frame: 0RF) starting from the predicted start codon.
  • This gene has 0RF consisting of 98 amino acids, and has about 20 strongly hydrophobic amino acid sequences at the N-terminus, which are presumed to be signal peptides characteristic of secreted proteins. The molecular weight of this 98 amino acid protein was 10,992.
  • the calculated cleavage site for the fernal peptide was estimated to be between serine at position 21 and dalysin at position 22.
  • the putative mature protein consisting of 77 amino acid residues after signal peptide cleavage is presumed to be a secreted protein, with a molecular weight of 8,779 and an isoelectric point of 10.1. It was 6.
  • ELC niRNA expression analysis of ELC niRNA by Northern blot analysis 2 g of poly (A) + RNA isolated from various human tissues was subjected to agarose gel electrophoresis and transferred to a nylon membrane (multiple tissue plot). A hybridization reaction was performed using 5P-RACE cDNA of ELC, which was purchased from a company and labeled with 32 P by a multi-prime DNA labeling system (manufactured by Stratagene), as a probe. The hybridization solution was prepared by adding 100 ⁇ g / ml of salmon sperm DNA to QuikHyb (manufactured by Strat agene) and hybridization was performed at 65 ° C. for 1 hour.
  • FIG. 3 shows the expression of ELC mRNA in various human tissues.
  • the results in FIG. 3 revealed that mRMA of ELC was strongly and constitutively expressed in immune system tissues, particularly in lymph nodes, cecum, thymus, spleen, and the like.
  • the ELC protein was produced in animal cells by introducing cDNA encoding the ELC protein.
  • the cDNA encoding the full-length ELC protein was designated as ELC 5'-RACE cDNA (above), and the 5'-SALT ELC primer (SEQ ID NO: 4) and the 3'-ELC-Xbal primer (SEQ ID NO: 4) were used.
  • ELC 5'-RACE cDNA above
  • SEQ ID NO: 4 the 5'-SALT ELC primer
  • 3'-ELC-Xbal primer SEQ ID NO:
  • the obtained PCR product was digested with the restriction enzymes Sal I and Xbal, and the digestion was performed between the Sail and Xbal sites of the expression vector pDREF-Hyg (Imai et al., J. Biol. Chem. 271: 21514-21521, 1996).
  • pDREF-ELC which expresses the ELC protein.
  • This vector was introduced into 293 / EBNA-1 cells (Invitrogen) using Lipofectamine (Gibco-BRL).
  • As a control only the vector pDREF-Hyg was introduced. After 3 to 4 days of culture, the culture supernatant was collected, sterilized by filtration with a 0.22 ⁇ m filter, and the cell migration activity was measured as shown in the following test examples.
  • the carboxyl terminus of the ELC is A fusion protein in which phosphatase (SEAP) and histidine tag (His) 6 were fused was prepared.
  • SEAP can be detected and quantified by an immunological method using an enzyme activity anti-SEAP antibody.
  • Histidine tag (His) s having six consecutive amino acid histidines is introduced into Uanknecht et al., Proc. Natl. Acad. Sc, USA 88, which is introduced for affinity purification of a fusion protein using a nickel affinity column. : 8972-8976, 1991).
  • FIG. 5 shows a schematic diagram of a vector pDREF-SEAP (His) s for expressing a fusion protein of ELC and SEAP-(His)-.
  • Preparation of pDREF-SEAP (His) 6 was performed as follows. Using the plasmid pSEAP-Enhancer manufactured by CI ont ech as type II, a DNA encoding the amino acid sequence obtained by adding 6 histidines (His) to SEAP to a 5'-Xbal-AP primer (sequence number
  • the obtained DNA is digested with restriction enzymes Xbal and Notl, and then introduced between XbaI and No11 site of pDREF-Hyg (Imai et al., J. Biol. Chem. 271: 21514-21521, 1996).
  • pDREF-SEAP His
  • 0RF of the ELC cDNA was inserted between the SalI and Xbal sites of the pDREF-SEPAP (His) 6 vector, and the ELC was composed of 5 amino acid linkers (Se r -A vector pDREF-ELC_SEPAP (His) s encoding a protein fused to SEAP- (His) 6 via Arg- Ser_Ser-Gly) was prepared.
  • a cDNA encoding the full-length 0RF of the ELC was prepared by combining the 5'-RACE cDNA (above) of the ELC with the 5'-Salt ELC primer (SEQ ID NO: 4) and the 3 ' -Amplification was performed by PCR using ELC-Xba I primer 1 (SEQ ID NO: 5).
  • the pDREF-ELC-SEAP (HIS) 6 vector was introduced into 293 / EBNA-1 cells (Invitrogen) using ribofectamine (GIBC0-BRL). After 3 to 4 days of culture, collect the culture supernatant, pass through a 0.22 mm pore size filter, and mix with 20 mM HEPES (H 7.4).
  • the sample is diluted with a culture solution (D-MEM containing 10% fetal serum), added to the microplate, reacted for 1 hour at room temperature, washed with a washing solution (PBS containing 0.02% Tween-20), A 1-fold diluted bivalent rabbit heron anti-PLAP antibody was added and reacted for 1 hour. After further washing, peroxidase-conjugated streptavidin (Vector) was added and reacted for 30 minutes. After washing, the activity of the bound peroxidase was detected with 3.3'-5,5'-tetramethylbenzidine. The reaction was stopped with 1 NH 2 SO 4 and the absorbance at 450 nm was measured.
  • D-MEM containing 10% fetal serum
  • alkaline phosphatase The activity of alkaline phosphatase (AP) was measured by a chemiluminescence method using Great EscApe Detection Kit (manufactured by CI on tech) and determined as relative light intensity / second (RLU / s). The preparation of an AP standard curve was performed using purified placenta-type ALPHA rifatatases (manufactured by Cosmo Corporation). SEAP and ELC-SEAP actually used in the test were
  • the human T cell line HUT78 was used as the cells (Itnai et al., J. Biol. Chem. 271: 21514-21521, 1996).
  • the test solution was diluted with a culture solution (RPMI-1640, 20 mM Hepes (pH 7.4), UBSA) and added to the lower well of a 48-well chemotaxis chamber (chemotaxis chamber, manufactured by Neuro Probe). In the upper well, suspended in the above culture solution
  • ELC-SEAP His 6 was performed as follows to determine the N-terminus of mature secreted ELC. Add 20 mM Tri S-HCI (pH 8.0) and 1 OmM imidazole to the culture supernatant filtrate (containing 20 mM HEPES (pH 7.4) and 0.025! Sodium azide) obtained in Example 4, and add A buffer. The solution was applied to a 1 mI nickel affinity column Ni-NTA-Agarose (manufactured by QIAGEN) equilibrated with a liquid (20 mM Tris-HCI (pH 8.0) / 1 OmM imidazole).
  • the column to which the ELC-SEAP (His) 6 fusion protein was bound was washed with B buffer (20 litter Tris-HCI (pH 8.0), ⁇ 0 mM imidazole, 150 mM NaCI), and then buffer C (20 m Tris-HCI (pH 8) .0), 100 mM imidazole, 150 mM NaCl).
  • B buffer (20 litter Tris-HCI (pH 8.0), ⁇ 0 mM imidazole, 150 mM NaCI
  • buffer C (20 m Tris-HCI (pH 8) .0), 100 mM imidazole, 150 mM NaCl.
  • the fractions containing the ELC-SEAP (His) 6 fusion protein were identified using SDS-PAGE.
  • the N-terminal amino acid sequence of this purified ELC-SEAP (His) 6 fusion protein was determined using an amino acid sequencer (manufactured by Shimadzu) and analyzed using Gly-Thr-Asn-Asp-Ala-Glu-Asp. It was hot.
  • This amino acid sequence contains a signal between the serine residue at position 2 2 and the glycine residue at position 22 which are the cleavage sites of the deduced signal sequence in the amino acid sequence deduced from the nucleotide sequence shown in Fig. 1.
  • the peptide was completely cleaved to completely match the N-terminal amino acid sequence expected when a mature secreted ELC protein consisting of 77 amino acids was obtained.
  • the chemokine receptor 8 species already cloned and reported that is, CCR1 (Neote et al., Cell 72: 415) -425, ⁇ 993), CCR2 (Charo et a, Pro Natl. Acad. Sci. USA 91: 2752-2756, 1994), CCR3 (Ki taura et al., J. Bio Chem. 271: 7725-) 7730, 1996), CCR4 (Power et al., J. Biol. Chem. 270: 19495-19500, 1995), CCR5 (Kitaura et al., J. Biol. Chem.
  • Cells expressing each chemokine receptor were prepared as follows. First, cDNAs corresponding to ORFs of eight chemokine receptors were inserted between Xba I and No. 11 site of pDREF-Hyg vector (Imai et al., J. Biol. Chem.
  • each of the expression vectors was introduced into 293 / EBNA-1 cells derived from human fetal kidney (Invitrogen) using lipofectamine (Gibco-BRL) and expressed. After 2 days of culture, the cells were collected, suspended in RPM 1640 containing 20 mM HEPES (pH 7.4),]% BSA, 0.02 sodium azide, and ⁇ ⁇ M of ELC-SEAP (His) 6 and 4 ⁇ 10 5 The cells were reacted for 1 hour at room temperature in a solution of 200 ⁇ I.
  • ELC-SEAP (His) 6 is a novel receptor for which no specific ligand has been known so far--EB 1 (Birkenbach et al., J. Virol. 67: 2209-2220, 1993).
  • Chemokines which induce leukocyte migration and infiltration into tissues, are essential substances for inflammatory and immune responses in vivo.
  • CXC type and CC type are mainly known as chemokines, and there are multiple types of each type, ranging from producing tissues, producing cells, types of stimuli to induce production, induction of production to production cessation They exhibit different properties with respect to reaction time, types of target cells that induce migration, and the presence of specific receptors.
  • ELC specifically binds to G protein-coupled seven-transmembrane receptor EB1 (Birkenbach et al., J. Virol. 67: 2209-2220, 1993), which is selectively expressed on lymphocytes.
  • G protein-coupled seven-transmembrane receptor EB1 By exhibiting chemotactic activity on T cells, it is easily expected that they will participate in acute or chronic inflammatory and immune responses involving lymphocytes. Therefore, the ELC of the present invention, through further elucidation of its functions, understands the inflammatory and immune reactions involving lymphocytes and provides a new means to induce or suppress such phenomena. Offer.
  • the ELC of the present invention is constitutively expressed at a considerable level in lymphoid tissues such as lymph nodes, cecum, thymus, spleen, etc. And homing in lymphoid tissues, and is expected to be involved in lymphocyte migration and settlement, maturation and differentiation, antigen recognition, survival, proliferation, etc. in lymphoid tissues. Therefore, the ELC of the present invention, by elucidating its function, is useful for understanding lymphocyte migration and settlement in various lymphoid tissues, differentiation and maturation, antigen recognition, regulation of cell growth and survival, etc. It provides useful tools to control such phenomena.
  • the ELC protein or a mutant thereof provided by the present invention regulates a physiological or pathological biological reaction involving ELC by enhancing or suppressing the action of ELC in vivo. It is possible to do.
  • the specific binding between ELC and EB1 provided by the present invention is selectively expressed on lymphocytes, and is expressed by Epstein-Barr virus, Human Herpesvirus 6, Human Herpesvirus7. It provides a new means to elucidate the physiological and pathological functions of EBI-1, whose expression in lymphocytes is strongly induced by infection with lymphophilic herpes virus such as E. coli.
  • Antagonists and agonists against EBI-1 to block the specific binding of ELC to EB-1 and to promote or suppress the biological effects caused by the binding of ELC to EB-1 It provides a means for searching and evaluating.
  • Angiogonist agonists and the like for the binding reaction between ELC and EB-1 can regulate physiological or pathological biological reactions involving ELC and EBI-1.
  • induction of EBI-1 expression in host lymphocytes following infection with various lymphophilic viruses plays an important role in the acute, latent, or reactivation of those lymphophilic viruses. Therefore, agonists, inverse agonists or antagonists to ELC protein or its variants, or EBI-1 are expected to show therapeutic effects against lymphophilic herpesvirus infection Is done.
  • the polynucleotide (DNA or RNA, double-stranded or single-stranded) encoding the ELC provided by the present invention in full length or in part can be directly administered to a living body as a polynucleotide by an appropriate method.
  • the cells transformed cells
  • the cells can be returned to the body by introducing them into cells outside the body, or they can be introduced directly into a suitable vector and introduced into the body.
  • the nucleotide sequence of ELC is useful for detecting and analyzing ELC gene mutation. It is also useful for specifically detecting and quantifying ELC gene expression (mRNA) and protein expression. This provides a new means for diagnosis and investigation of the causes of blood system diseases, immune system diseases, infectious diseases, cancers, etc. involving the ELC gene and ELC protein, and new means for diagnosis and treatment of such diseases. It is expected to provide.
  • Sequence type nucleic acid
  • Organism name human
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid

Abstract

A novel human CC chemokine ELC and a polynucleotide molecule encoding the same. The above protein is a human CC chemokine which is constitutively expressed in lymphoid tissues and is a ligand of the receptor EBI-1 known as undergoing selective expression in lymphocytes or a fragment or a variant thereof. The invention also provides a specific bond of this protein to G protein conjugated 7-transmembrane receptor EBI-1 and a method for assaying agonists and antagonists to this specific ligand/receptor system with the use of this bond.

Description

明 細 書 ヒ ト C C型ケモカイン E L C 技術分野  Description Human C C-type chemokine ELC Technical field
本発明は新規なヒ 卜 CC型ケモカイン、 該タンパク質をコードするポリヌクレ ォチド分子、 該タンパク質の製造方法、 該タンパク質あるいは該タンパク質をコ ードするポリヌクレオチド等を含有する医薬組成物、 さらに該タンパク質とその 特異的レセプターとの結合により誘発される生物作用に対するァゴニスト Zイン バースァゴニス卜 Zアンタゴニス 卜をスクリーニングする方法に関する。 背景技術  The present invention relates to a novel human CC-type chemokine, a polynucleotide molecule encoding the protein, a method for producing the protein, a pharmaceutical composition containing the protein, a polynucleotide encoding the protein, and the like. The present invention relates to a method for screening agonist Z inverse agonist Z antagonist for biological action induced by binding to its specific receptor. Background art
物理的、 化学的あるいは生物学的な機序によリ起こる外来性あるいは内因性の さまざまな組織障害、 侵襲、 抗原暴露、 などは強い炎症反応や免疫反応を誘導す る。 これらの反応は重要な生体防御反応であるが、 ときには急性あるいは慢性の 疾患の原因ともなりうる。 炎症反応や免疫反応を誘発する原因が組織に加えられ ると、 まず好中球、 顆粒球、 リ ンパ球あるいはマクロファージなどのような炎症 性細胞あるいは免疫担当細胞の血管内皮細胞への吸着、 血管外への移動、 そして 侵襲あるいは障害された組織や抗原の存在する組織での集積が起こる。 このよう な一連の細胞遊走反応を誘導する物質として一群のケモタクティ ック · サイ ト力 イン、 いわゆるケモカインが存在する。 ケモカインは遊走反応 (ケモタクティ ッ ク反応) を誘導する一群のサイ ト力インであり、 アミノ酸配列の類似性から構造 的にも相互に密接に関係する。 これまでにヒ トでは 30種以上のケモカインが報 告されている。 ケモカインは、 共通に保存された 4個のシスティン残基のうちの 最初の 2個の並び方から、 大きく αあるいは CXC型 (2個のシスティンが〗個の アミノ酸で隔てられている) と i8あるいは CC型 (2個のシスティンが隣り合つ ている) に分けられる。 CXC型ケモカインとして、 ヒ トでは、 1 L- 8、 β -TG. PF- 4、 GSA/GRO , ENA-78 , NAP- 2、 GCP- 1 , GCP- 2、 I P- 1 0、 SDF- 1 /PB SF、 M I G、 などが 知られている。 CXC型ケモカインは主に好中球の活性化と遊走を誘導する。 CC型 ケモカインとして、 ヒ トでは、 MIP- 1 α、 ΜΙΡ-1 β . RANTES, CP-K MCP- 2、 CP-3, 卜 309、 ェ才タキシン(Eotaxin)などが知られている。 CC型ケモカインは、 主にモノサイ 卜ノマク口ファージの活性化と遊走を誘導する。 さらに CC型ケモ 力インには、 T細胞、 好塩基球、 好酸球、 などに対して活性化と遊走誘導を示す ものが知られている (Oppenhe i m et a !, Annu. Rev. Immunol. 9: 617-648, 1991 ; Bagg i o I i n i et aに, Adv. Immunol. 55: 97-179, 1994: Ben-Baruch et aに, J. Biol. Chem. 270: 11703-11706, 1995; M. Baggi o I ί n i et a I, Annu. Rev. Immunol. 15: 675— 705, 1997; B. J. Rol l ins, Blood 90: 909— 928, 1997)。 発明の開示 Various extrinsic or endogenous tissue disorders, invasions, antigenic exposures, etc., caused by physical, chemical or biological mechanisms can induce strong inflammatory and immune responses. These reactions are important host defense responses, but can sometimes cause acute or chronic disease. When a cause that induces an inflammatory or immune response is added to a tissue, first, inflammatory cells such as neutrophils, granulocytes, lymphocytes, or macrophages or immunocompetent cells adhere to vascular endothelial cells, It moves out and accumulates in invaded or damaged tissues or in the presence of antigen. As a substance that induces such a series of cell migration reactions, there is a group of chemotactic sites, so-called chemokines. Chemokines are a group of site forces that induce a chemotactic reaction (chemotactic reaction), and are closely related structurally to each other due to similarities in amino acid sequences. To date, more than 30 chemokines have been reported in humans. Chemokines are largely α- or CXC-type (two cysteines separated by〗 amino acids) and i8 or CC from the arrangement of the first two of the four conserved cysteine residues in common. Type (two cysteines are adjacent to each other). As a CXC type chemokine, 1 L-8, β-TG. PF-4, GSA / GRO, ENA-78, NAP-2, GCP-1, GCP-2, IP-10, SDF- 1 / PB SF, MIG, etc. are known. CXC-type chemokines mainly induce neutrophil activation and migration. CC type As human chemokines, MIP-1α, .-1β. RANTES, CP-K MCP-2, CP-3, U-309, and Eotaxin are known in humans. CC-type chemokines mainly induce the activation and migration of monocytochrome Nomac phage. Furthermore, there is known a CC-type chemoforce that activates and induces migration of T cells, basophils, and eosinophils (Oppenhe im et a !, Annu. Rev. Immunol. 9: 617-648, 1991; Baggio I ini et a, Adv. Immunol. 55: 97-179, 1994: Ben-Baruch et a, J. Biol. Chem. 270: 11703-11706, 1995; M Rev. Immunol. 15: 675—705, 1997; BJ Rollins, Blood 90: 909—928, 1997). Disclosure of the invention
B リンパ球に Epstain-Barr vi rusが感染したり、 CD 4陽性 T細胞にヒ トヘル ぺスウィルス(Human Herpes vi rus) 6や 7が感染するとその発現が強く誘導さ れるリンパ球に選択的に発現している Gタンパク質共役型 7回膜貫通レセプター EBI-1 (Epstai n-Barr Vi rus-l nduced gene 1) が知られている (Bi rkenbach et a I. , J. Vi rol. 67 : 2209-2220, 1993; Hasegawa et a I. , J. Vi rol. 68:5326- 5329, 1994)。 しかし、 このレセプターのリガンドは未知であった。 このような 各種リンパ好性ウィルスの感染に伴う宿主リンパ球での EBI-1の発現誘導は、 そ れらのリンパ好性ウィルスの急性感染、 潜伏感染あるいは再活性化などに対し、 なんらかの重要な役割を担うと考えられる。 従って、 EBI- 1 レセプターに特異的 に結合するリガンドを見出せば、 リンパ好性ウィルスの感染症に対し治療手段を 提供できることが期待される。  When B lymphocytes are infected with Epstain-Barr virus or CD4-positive T cells are infected with human herpes virus (Human Herpes virus) 6 or 7, they are selectively induced in lymphocytes whose expression is strongly induced. The expressed G protein-coupled seven-transmembrane receptor EBI-1 (Epstain-Barr Virus-lnduced gene 1) is known (Birkenbach et al., J. Virol. 67: 2209). -2220, 1993; Hasegawa et al., J. Virol. 68: 5326- 5329, 1994). However, the ligand for this receptor was unknown. Induction of EBI-1 expression in host lymphocytes following infection with various lymphophilic viruses is important for acute infection, latent infection or reactivation of those lymphophilic viruses. It is considered to play a role. Therefore, it is expected that finding a ligand that specifically binds to the EBI-1 receptor will provide a therapeutic means for lymphophilic virus infection.
本発明者らは、 独自の手法により、 新たな CC型ケモカインをコードすると考 えられる DNA断片の配列の存在を見い出し、 ヒ ト胎児肺組織由来 mRNAからその 全長 cDNAを相補的にカバ一する 2種類の cDNAク口ーンを分離し、 その全長にわ たる塩基配列を決定した。 そして、 この遺伝子はおもにリンパ節、 盲腸、 胸腺、 脾臓などの免疫系組織で構成的に発現しており、 遺伝子工学的技術を用いて産生 したそのタンパク質はヒ ト T細胞に対して細胞遊走活性を示すことを見出した。 さらに、 そのタンパク質は、 リガンドがこれまで知られていなかったいわゆる才 一ファンレセプターである上記 EB 1-1 に特異的に結合するリガンドであることを 明らかにし、 本発明を完成するに至った。 この新規なヒ ト CC型ケモカインを ELC (ΕΒΙ-1-Ligand Chemokine) と命名した。 EB卜 1 と特異的に結合するという 特徴は従来の CC型ケモカインでは知られていない。 発明の概要 The present inventors have discovered the existence of a sequence of a DNA fragment thought to encode a new CC-type chemokine by a unique method, and complementarily cover the full-length cDNA from mRNA derived from human fetal lung tissue. The various cDNA clones were separated and their full-length nucleotide sequences were determined. This gene is constitutively expressed mainly in the immune system tissues such as lymph nodes, cecum, thymus, and spleen, and its protein produced by genetic engineering technology has cell-migrating activity on human T cells. Was found. Furthermore, the protein is known to be a ligand that specifically binds to the above-mentioned EB1-1, a so-called unique fan receptor, a ligand of which was not previously known. The present invention has been clarified, and the present invention has been completed. This new human CC-type chemokine was named ELC (ΕΒΙ-1-Ligand Chemokine). The feature of specifically binding to EB1 is not known for conventional CC-type chemokines. Summary of the Invention
本発明は、 リンパ球系細胞において選択的に発現しているレセプター EB卜 1の リガンドである免疫系組織で構成的に発現しているヒ ト CC型ケモカインもしく . はその変異体またはそれらの断片であるタンパク質、 好ましくは配列番号 〗のァ ミノ酸残基 1 から 9 8、 より好ましくは配列番号 1のアミノ酸残基 2 2から 9 8 のアミノ酸配列を有するヒ ト CC型ケモカイン、 またはこの配列に 1 または数個 のアミノ酸残基の置換、 欠失、 挿入、 付加の中から選ばれる少なく とも 1 つを含 む配列を有しかつ該ヒ 卜 CC型ケモカインの機能または活性と実質的に同じ程度 である機能または活性を有するかまたは該ヒ ト CC型ケモカインのアンタゴニス 卜として機能する変異体、 またはこれらの断片であるタンパク質 ; 本発明のタン パク質を含有する医薬組成物 ; 本発明のタンパク質に対する抗体、 好ましくは単 クローン抗体 ; 本発明の単クロ一ン抗体を産生するハイブリ ドーマ細胞 ; 本発明 のタンパク質をコードするポリヌクレオチド分子、 好ましくは配列番号 1 の 1 3 9位の Aから 4 3 2位の Tまでの塩基配列、 よリ好ましくは配列番号 1 の 2 0 2 位の Gから 4 3 2位の Tまでの塩基配列を含むポリヌクレ才チド分子、 またはそ の塩基置換、 塩基付加もしくはアレル変異による変異体 ; 配列番号〗 の 1 位の C から 6 8 7位の Gまでの塩基配列の一部と相補的な配列を有するオリゴヌクレオ チド分子、 またはその塩基置換、 塩基付加、 アレル変異による変異体であって、 本発明のタンパク質の活性または機能を阻害する分子 ; 本発明のポリヌクレオチ ド分子を含有するベクター、 好ましくは発現べクタ一 ; 本発明のベクタ一を宿主 細胞に導入して得られる形質転換体 ; 本発明の形質転換株を培養し、 産生された タンパク質を回収することを特徴とする、 本発明タンパク質を製造する方法 ;本 発明のポリヌクレオチド分子またはその変異体を含有する医薬組成物 ; 本発明の タンパク質と EB 1-1 レセプターとの結合による作用に対するァゴニス ト、 インバ —スァゴニス卜またはアンタゴニストをスクリ一ニングする方法であって、 該ァ ゴニス卜、 インバースァゴニス トまたはアン夕ゴニス トを含むと推定される試料 を該タンパク質と該タンパク質の特異的レセプターとの結合反応系に加えてその 結合阻止を測定し、 あるいは該タンパク質の特異的なレセプターと直接反応させ て、 そのレセプターに対する結合性およびノまたは反応性を測定する工程を包含 する方法、 に関する。 図面の簡単な説明 The present invention relates to a human CC-type chemokine or a mutant thereof, or a mutant thereof, which is constitutively expressed in an immune system tissue which is a ligand of the receptor EB-1 which is selectively expressed in lymphoid cells. A protein which is a fragment, preferably a human CC type chemokine having an amino acid residue of amino acid residues 1 to 98 of SEQ ID NO: 1, more preferably amino acid residues 22 to 98 of SEQ ID NO: 1, or a sequence thereof Has at least one sequence selected from substitution, deletion, insertion and addition of one or several amino acid residues and has substantially the same function or activity as the human CC-type chemokine. A mutant or a fragment thereof which has a function or activity of a certain degree or functions as an antagonist of the human CC-type chemokine, or a fragment thereof; containing the protein of the present invention; A pharmaceutical composition; an antibody against the protein of the present invention, preferably a monoclonal antibody; a hybridoma cell producing the monoclonal antibody of the present invention; a polynucleotide molecule encoding the protein of the present invention, preferably 1 of SEQ ID NO: 1 A nucleotide sequence from A at position 39 to T at position 43, more preferably a polynucleotide molecule comprising a nucleotide sequence from position G at position 202 to position T at position 43 in SEQ ID NO: 1, or A mutant thereof due to base substitution, base addition or allelic mutation; an oligonucleotide molecule having a sequence complementary to a part of the base sequence from C at position 1 to G at position 687 of SEQ ID NO: ま た は, or a variant thereof A molecule which is a mutant due to base substitution, base addition, or allelic mutation, which inhibits the activity or function of the protein of the present invention; a vector containing the polynucleotide molecule of the present invention; A transformant obtained by introducing the vector of the present invention into a host cell; and culturing the transformant of the present invention to recover the produced protein. A method for producing a protein; a pharmaceutical composition containing the polynucleotide molecule of the present invention or a variant thereof; and a method for screening an agonist, an inva-suagonist or an antagonist for the action of the protein of the present invention by binding to the EB1-1 receptor. A method of performing A sample presumed to contain a gonist, an inverse gonist, or an angelic gonist is added to a binding reaction system between the protein and a specific receptor of the protein, and the inhibition of the binding is measured. Reacting directly with a specific receptor and measuring the binding and / or reactivity to that receptor. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 ヒ ト ELCの cDNAの塩基配列と推定アミノ酸配列を示す。  FIG. 1 shows the nucleotide sequence and deduced amino acid sequence of human ELC cDNA.
図 2は、 本発明の ELCタンパク質と既知の 9種のヒ ト CC型ケモカインとのァ ミノ酸配列を比較した結果を示す。  FIG. 2 shows the results of comparing the amino acid sequences of the ELC protein of the present invention with nine kinds of known human CC-type chemokines.
図 3は、 各種のヒ 卜組織における ELCの mRNAの発現をノーザンブロッ 卜によ り解析した結果を示す図面に代わる写真である。  FIG. 3 is a photograph instead of a drawing showing the result of Northern blot analysis of ELC mRNA expression in various human tissues.
図 4は、 組換えベクター pDREF- SEAP(His)6の遺伝子地図、 および ELCの cDNA の挿入位置を示す。 FIG. 4 shows the genetic map of the recombinant vector pDREF-SEAP (His) 6 and the insertion position of the ELC cDNA.
図 5は、 組換え ELCタンパク質を発現するべクタ一を トランスフエク 卜した 293/EBNA-1細胞の培養上清によるヒ ト T細胞株 HUT78細胞のケモタキシス反応 誘導を示すグラフである。 対照としてはべクタ一のみをトランスフエク 卜した 293/EBNA-1細胞の培養上清を用いている。  FIG. 5 is a graph showing induction of the chemotaxis reaction of human T cell line HUT78 cells by the culture supernatant of 293 / EBNA-1 cells transfected with a vector expressing the recombinant ELC protein. As a control, the culture supernatant of 293 / EBNA-1 cells transfected with only one vector is used.
図 6は、 種々のクローン化ケモカインレセプタ一を発現する 293/EBNA-1細胞 を用いて、 ELC- SEAP(His)6融合タンパクの結合を検討した結果を示すグラフで ある。 発明の詳しい説明  FIG. 6 is a graph showing the results of examining the binding of ELC-SEAP (His) 6 fusion protein using 293 / EBNA-1 cells expressing various cloned chemokine receptors. Detailed description of the invention
本発明者らにより見出された ELCは cDNAの塩基配列から予想されるオープン リーディ ングフレーム (open reading frame, 0RF) から 9 8個のアミノ酸から なるタンパク質と推定され、 さらに成熟型タンパク質では 2 1 番目のセリンと 2 2番目のダリシンの間でシグナル配列が切断されて 7 7個のアミノ酸からなる分 子量約 8. 8 kDaの塩基性タンパク質であると推定される (図 1 参照) 。 成熟型 の ELCは既知の CC型ケモカインと有意の相同性を示し、 特に CC型ケモカインで 保存されている 4個のシスティンはすべて保存されている。 しかし、 既存の ケモカインとの相同性は最も高い Ml P-1 3に対しても 31%程度である。 The ELC found by the present inventors is presumed to be a protein consisting of 98 amino acids from the open reading frame (0RF) predicted from the nucleotide sequence of cDNA. The signal sequence is cleaved between the 2nd serine and the 2nd dalysin, and is estimated to be a basic protein of 77 amino acids with a molecular weight of about 8.8 kDa (see Figure 1). Mature ELCs show significant homology to known CC chemokines, especially in CC chemokines. All four stored cysteines are stored. However, the homology with existing chemokines is about 31% even for the highest MlP-13.
即ち、 本発明の 1 つの態様は、 リンパ節、 盲腸、 胸腺、 脾臓などの免疫系組織 で構成的に発現しており、 T細胞に対して遊走活性を示し、 またリンパ球に選択 的に発現している才一ファンレセプター EBI-1 と特異的に結合するヒ ト CC型ケ モカインもしくはその変異体またはそれらの断片であるタンパク質に関する。 好 ましい態様として、 本発明は、 配列番号 1 のアミノ酸残基 1 ~ 9 8のアミノ酸配 列を有するヒ ト CC型ケモカイン (ELC前駆体) あるいは配列番号 1 のアミノ酸 残基 2 2 ~ 9 8のアミノ酸配列を有するヒ ト CC型ケモカイン (ELC) 、 またはこ の配列に 1 個または数個のアミノ酸残基の置換、 欠失、 挿入、 付加の中から選ば れる少なく とも 1 つを含む配列を有しかつ該ヒ 卜 CC型ケモカインの機能または 活性と実質的に同じ程度である機能または活性を有する該ヒ ト CC型ケモカイン の変異体または該ヒ ト CC型ケモカインに対するアンタゴニス トとして機能しう る該ヒ 卜 CC型ケモカインの変異体、 またはそれらの断片であるタンパク質に関 する。  That is, one embodiment of the present invention is that it is constitutively expressed in immune system tissues such as lymph nodes, cecum, thymus, spleen, etc., exhibits chemotactic activity on T cells, and is selectively expressed on lymphocytes. The present invention relates to a protein which is a human CC-type chemokine or a mutant thereof or a fragment thereof, which specifically binds to the human fan receptor EBI-1. In a preferred embodiment, the present invention provides a human CC-type chemokine (ELC precursor) having the amino acid sequence of amino acid residues 1 to 98 of SEQ ID NO: 1 or the amino acid residues 22 to 98 of SEQ ID NO: 1. A human CC-type chemokine (ELC) having the amino acid sequence of SEQ ID NO: 1, or a sequence comprising at least one selected from substitution, deletion, insertion, and addition of one or several amino acid residues in this sequence. A mutant of the human CC-type chemokine or an antagonist to the human CC-type chemokine having a function or activity substantially the same as the function or the activity of the human CC-type chemokine. The present invention relates to a protein which is a mutant of the human CC type chemokine or a fragment thereof.
本明細書中、 「CC型ケモカインの変異体」 とは元のタンパク質のアミノ酸配 列にアミノ酸もしくはアミノ酸配列の置換、 欠失、 挿入、 付加の中から選ばれる 少なくとも 1 つを含む配列を有し、 および/または化学的もしくは生化学的な改 変または天然もしくは非天然のアミノ酸を含むことのできる改変タンパク質であ り、 機能または活性が実質的に該 CC型ケモカインと同じであるタンパク質ある いは該 CC型ケモカインのアンタゴニス トとして機能するタンパク質、 を意味す る。  As used herein, the term "CC-type chemokine variant" has a sequence containing at least one selected from substitution, deletion, insertion and addition of amino acids or amino acid sequences in the amino acid sequence of the original protein. And / or a modified protein that can contain a chemically or biochemically modified or natural or unnatural amino acid, and whose function or activity is substantially the same as the CC-type chemokine. A protein that functions as an antagonist of the CC-type chemokine.
本発明の CC型ケモカインまたはその変異体の 「断片」 であるタンパク質とは、 アミノ酸残基数 7 6から 5個、 好ましくは 5 0から 1 0個、 あるいは 9個程度の アミノ酸配列を有するタンパク質を意味する。  A protein that is a `` fragment '' of the CC-type chemokine of the present invention or a mutant thereof refers to a protein having an amino acid sequence of 76 to 5, preferably 50 to 10, or about 9 amino acid residues. means.
別の態様として、 本発明は、 本発明の CC型ケモカインもしくはその変異体ま たはそれらの断片をコードするポリヌクレオチド分子に関する。 詳細には、 配列 番号 1 に記載の塩基配列の 2 0 2位の Gから 4 3 2位の Tを含むポリヌクレオチ ド分子、 あるいは配列番号 1 に記載の塩基配列の 1 3 9位の Aから 4 3 2位の T を含むポリヌクレオチド分子に関する。 In another aspect, the present invention relates to a polynucleotide molecule encoding the CC-type chemokine of the present invention or a mutant or a fragment thereof. Specifically, a polynucleotide molecule containing a G from position 202 to a T of position 432 of the nucleotide sequence shown in SEQ ID NO: 1 or an A molecule at position 139 in the nucleotide sequence shown in SEQ ID NO: 1 4 3 2nd place T And a polynucleotide molecule comprising:
本発明のポリヌクレオチド分子は DNAでも RNAでもあり得る。 DNAの場合、 cDNA, ゲノミック DNAあるいは合成 DNAであり得る。 また、 DNAおよび RNAいず れの場合でも 2本鎖または 1 本鎖の形態をとり得る。 1 本鎖の場合、 コード鎖あ るいは非コード鎖であり得る。  A polynucleotide molecule of the present invention can be DNA or RNA. In the case of DNA, it may be cDNA, genomic DNA or synthetic DNA. In addition, in both cases of DNA and RNA, it can take a double-stranded or single-stranded form. In the case of a single strand, it may be a coding strand or a non-coding strand.
さらに、 本発明はこれらのポリヌクレオチド分子の塩基置換、 塩基付加もしく はアレル変異による変異体に関する。  Furthermore, the present invention relates to variants of these polynucleotide molecules by base substitution, base addition or allelic mutation.
「塩基置換、 塩基付加による変異体」 とは、 配列番号 1 に記載された塩基配列 とは異なる遺伝子コードを用いて、 結果的には、 配列番号 1 に記載されたァミノ 酸 1 から 9 8のタンパク質と同じタンパク質、 あるいは配列番号 1 に記載された ァミノ酸配列 2 2から 9 8のタンパク質と同じタンパク質、 をコー ドしうる変異 体を意味する。  "A variant by base substitution or base addition" refers to the use of a different genetic code from the base sequence described in SEQ ID NO: 1 and, consequently, the amino acids 1 to 98 described in SEQ ID NO: 1. It means a mutant that can encode the same protein as the protein or the same protein as the amino acid sequence 22 to 98 described in SEQ ID NO: 1.
「アレル変異による変異体」 とは自然に存在する個人差や人種差に基づく塩基 変異を意味し、 コードするアミノ酸配列が変化する場合もある。  The term “mutant due to allelic mutation” means a naturally occurring base mutation based on individual or ethnic differences, and the amino acid sequence to be encoded may be changed.
本発明はさらに、 配列番号 1 の 1 位の Cから 6 8 7位の Gまでの塩基配列の一 部と相補的な配列を有する才リゴヌクレオチド分子、 またはその塩基置換、 塩基 付加、 塩基修飾、 アレル変異による変異体であって、 本発明タンパク質の活性ま たは機能を阻害する分子に関する。 特に、 5 'ノンコーディ ング部分の相補的な 配列が好ましいが、 より好ましくは転写開始部位、 翻訳開始部位、 5 '非翻訳領 域、 ェクソンとイントロンとの境界領域もしくは 5' CAP領域に相補的な配列であ る。 好ましい長さは、 約 1 0塩基対 ( b p ) 〜約 6 0 b pである。  The present invention further provides a ligated nucleotide molecule having a sequence complementary to a part of the nucleotide sequence from C at position 1 to G at position 687 of SEQ ID NO: 1, or base substitution, base addition, base modification, The present invention relates to a molecule which is a mutant due to an allelic mutation and inhibits the activity or function of the protein of the present invention. In particular, a sequence complementary to the 5 'non-coding portion is preferred, and more preferably a sequence complementary to the transcription initiation site, translation initiation site, 5' untranslated region, boundary region between exon and intron, or 5 'CAP region. It is a simple array. Preferred lengths are from about 10 base pairs (bp) to about 60 bp.
また、 別の態様として、 本発明は本発明のポリヌクレオチド分子を含有するべ クタ一に関する。 本発明ベクターには発現ベクター、 クローニングベクター、 治 療用ベクターなどの種々の用途を持つベクターが包含される。  In another aspect, the present invention relates to a vector containing the polynucleotide molecule of the present invention. The vectors of the present invention include vectors having various uses, such as expression vectors, cloning vectors, and therapeutic vectors.
発現べクタ一は本発明タンパク質の大量生産に利用できる。 発現ベクターにつ いての詳細は以下の項に示す。  The expression vector can be used for mass production of the protein of the present invention. Details of the expression vector are shown in the following section.
治療用ベクターは本発明ポリヌクレオチド分子を細胞内に導入する手法に用 いられ、 このような手法としてウィルスベクターによる方法およびその他の方 法 (日経サイエンス、 1994年 4月号、 20- 45頁; 月刊薬事、 36 (1 ) 23-48 (1994) ; 実験医学増刊、 1 2 ( 1 5)、 (1 994) )、 およびこれらの引用文献記載の手法が挙げら れる。 Therapeutic vector is used in a method for introducing the polynucleotide molecule of the present invention into cells. Examples of such a method include a method using a viral vector and other methods (Nikkei Science, April 1994, pp. 20-45; Monthly Pharmaceutical Affairs, 36 (1) 23-48 (1994); Experimental Medicine Special Edition, 12 (15), (1994)), and the methods described in these references.
ウィルスベクターによる方法としては、 例えばレ トロウイルス、 アデノウィ ルス、 アデノ関連ウィルス、 ヘルぺスウィルス、 ワクシニアウィルス、 ボック スウィルス、 ポリオウイルス、 シンビスウィルス等の RNAウィルス等に本発明の ポリヌクレオチド分子を組み込んで導入する方法が挙げられる。 この中で、 レ トロウィルス、 アデノウイルス、 アデノ関連ウィルス、 ワクシニアウィルス等 を用いた方法が特に好ましい。  As a method using a viral vector, for example, the polynucleotide molecule of the present invention is used for an RNA virus such as a retrovirus, an adenovirus, an adeno-associated virus, a herpes virus, a vaccinia virus, a box virus, a polio virus, and a simbis virus. There is a method of incorporating and introducing. Among them, a method using a retrovirus, an adenovirus, an adeno-associated virus, a vaccinia virus and the like is particularly preferable.
その他の方法としては、 プラスミ ドを直接筋肉内に投与する方法 (DNAヮクチ ン法) 、 リボソーム法、 リポフエクチン法、 マイクロインジェクション法、 リ ン酸カルシウム法、 エレク ト口ポレーシヨン法等が挙げられ、 特に DNAワクチン 法、 リボソーム法が好ましい。  Other methods include direct injection of plasmid into the muscle (DNA method), ribosome method, lipofectin method, microinjection method, calcium phosphate method, and electoral poration method. DNA vaccine method and ribosome method are preferred.
また、 別の態様として、 本発明は、 本発明の上記種々のべクタ一を含有する形 質転換体に関する。 また、 本発明は本発明の発現ベクターを宿主細胞に導入して 得られる形質転換体 ; 該形質転換体を培養し、 産生されたタンパク質を回収する ことを特徴とする本発明のタンパク質を製造する方法に関する。  In another aspect, the present invention relates to a transformant containing the above-described various vectors of the present invention. The present invention also provides a transformant obtained by introducing the expression vector of the present invention into a host cell; culturing the transformant and collecting the produced protein to produce the protein of the present invention. About the method.
さらなる態様として、 本発明は本発明の夕ンパク質またはそれをコードするポ リヌクレオチド分子あるいは本発明の治療用べクタ一を含有する医薬組成物に関 する。 本発明の医薬組成物には例えば、 抗炎症剤、 免疫応答調節剤、 抗感染症剤. 抗癌剤、 炎症およびノまたは免疫に関連する病気の予防薬または診断薬が包含さ れる。  In a further aspect, the present invention relates to a pharmaceutical composition comprising the protein of the present invention or a polynucleotide molecule encoding the same, or the therapeutic vector of the present invention. The pharmaceutical compositions of the present invention include, for example, anti-inflammatory agents, immune response modulators, anti-infective agents. Anti-cancer agents, prophylactic or diagnostic agents for inflammation and diseases related to inflammation or immunity.
本発明のポリヌクレオチド分子を医薬として作用させるには、 直接体内に導 入する i n v i v o方法、 およびヒ トからある種の細胞を採用し体外で遺伝子を該 細胞に導入しその細胞を体内に戻す e x v i vo方法がある。  In order for the polynucleotide molecule of the present invention to act as a medicine, an in vivo method of directly introducing it into the body, or ex vivo, using a certain cell from human, introducing a gene into the cell, and returning the cell to the body. There is a vo way.
本発明タンパク質またはポリヌクレオチド分子の投与量は、 患者の年齢、 体 重等により適宜調整することができるが、 通常本発明タンパク質として、  The dose of the protein or polynucleotide molecule of the present invention can be appropriately adjusted depending on the age, body weight, etc. of the patient.
0. 001 mg~ 1 00mgであり、 これを数日ないし数月に 1 回投与するのが好ましい。 なお、 本発明のタンパク質は生体内活性物質であることから、 該タンパク質の 活性が生じる量、 すなわち本発明のタンパク質を含む医薬組成物の使用量にお いてはその急性毒性は問題とならないことが容易に推測される。 The dose is 0.001 mg to 100 mg, and is preferably administered once every several days to several months. Since the protein of the present invention is an active substance in a living body, the amount of activity of the protein, that is, the amount of the pharmaceutical composition containing the protein of the present invention, is reduced. Therefore, it is easily presumed that acute toxicity is not a problem.
さらに、 本発明は本発明のタンパク質またはその変異体に対する抗体、 特に単 クローン抗体、 および該単クローン抗体を産生するハイプリ ドーマ細胞に関する, 別の態様として、 本発明は、 本発明のタンパク質とその特異的レセプターとの 関係を提供することによって、 本発明のタンパク質とその特異的レセプ夕一との 結合により引き起こされる生物作用に対するァゴニス卜、 インバースァゴニスト またはアンタゴニストとして働く物質を探索し、 評価する工程を包含する方法に 関する。 すなわち、 該ァゴ二ス ト、 インバースァゴニス トまたはアンタゴニス卜 を含むと推定される試料を該夕ンパク質とその特異的レセプターの結合反応に加 えてその結合阻止を測定したり、 該タンパク質に対する特異的レセプターへの直 接の結合性および/または反応性を測定する工程を包含する方法に関する。 発明の好ましい実施の形態  Further, the present invention relates to an antibody against the protein of the present invention or a mutant thereof, particularly a monoclonal antibody, and a hybridoma cell producing the monoclonal antibody. In another aspect, the present invention provides the protein of the present invention and its specificity. By providing a relationship with a specific receptor, the process of searching for and evaluating a substance that acts as an agonist, inverse agonist or antagonist for the biological action caused by the binding of the protein of the present invention to its specific receptor. Regarding the method of inclusion. That is, a sample presumed to contain the agonist, inverse agonist or antagonist is added to the binding reaction between the protein and its specific receptor, and the inhibition of the binding is measured. And measuring the direct binding and / or reactivity to a specific receptor. Preferred embodiments of the invention
本発明はおもにリンパ節、 盲腸、 胸腺、 脾臓などの免疫系組織で構成的に発現 しているヒ 卜 CC型ケモカインに関する。  The present invention relates to human CC-type chemokines that are constitutively expressed mainly in immune system tissues such as lymph nodes, cecum, thymus, and spleen.
本発明タンパク質の調製工程を以下説明する。 本明細書において、 特に指示の ない限り、 当該分野で公知である遺伝子組換え技術、 動物細胞、 昆虫細胞、 酵母 および大腸菌での組換えタンパク質の生産技術、 発現したタンパク質の分離精製 法、 分析法および免疫学的手法が採用され得る。  The process for preparing the protein of the present invention will be described below. In the present specification, unless otherwise indicated, unless otherwise indicated, a gene recombination technique known in the art, a technique for producing a recombinant protein in animal cells, insect cells, yeast and Escherichia coli, a method for separating and purifying expressed proteins, and a method for analysis And immunological techniques can be employed.
I . 本発明タンパク質の調製  I. Preparation of the protein of the present invention
本発明の ELCタンパク質をコードする DNAを含む DNA断片の配列決定方法を例 示する。 この DNA断片の配列は、 例えばヒ トのリンパ節、 盲腸、 胸腺、 脾臓ある いは胎児肺組織などから入手した cDNAから得ることができるが、 そのためには、 まず、 cDNAから ELCタンパク質をコ一ドする cDNAのクローニングを行うための プライマーが必要である。  1 illustrates a method for sequencing a DNA fragment containing a DNA encoding the ELC protein of the present invention. The sequence of this DNA fragment can be obtained, for example, from cDNA obtained from human lymph nodes, cecum, thymus, spleen, or fetal lung tissue. Primers are required to clone the cDNA to be cloned.
( 1 ) ESTライブラリ一からの ELC cDNA部分配列の検索  (1) Search for ELC cDNA partial sequence from EST library
アメリカ NCB Iが公開している核酸配列データベース Ge nBa nkの一部であり、 cDNA部分配列から構成される Exp r e s s e d S eq u e n c e Tag (EST)データベースを、 種々のヒ 卜 CC型ケモカインアミノ酸配列をもとに TBLASTN検索ソフ トを用いて 検索し、 cc型ケモカインと有意の相同性をもつが、 既知のケモカインとは異な るタンパク質をコードすると考えられる cDNA部分配列を得る。 得られた cDNA部 分配列をもとにポリメレース連鎖反応(PCR)用プライマー 1 対を合成する。 It is a part of the GenBank, a nucleic acid sequence database published by NCBI of the United States.The database includes an Expressed Sequence Tag (EST) database consisting of cDNA partial sequences, and various human CC-type chemokine amino acid sequences. Using TBLASTN search software A search yields a partial cDNA sequence that is thought to encode a protein that has significant homology to the cc-type chemokines but differs from known chemokines. A primer pair for polymerase chain reaction (PCR) is synthesized based on the obtained cDNA partial sequence.
( 2 ) ELCの全長 cDNAの塩基配列の決定  (2) Determination of nucleotide sequence of full-length ELC cDNA
つぎに、 これらのプライマーを用いて、 例えばヒ ト胎児肺組織の mRNAから、 cDNA末端迅速増幅法 (rapid ampl if ication of c隱 ends, RACE ¾) (Frohman et aに, Pro Natl. Acad. Scに USA 85 : 8998-9002, 1988) を利用して、 cDNAの全長にわたる塩基配列を決定する。 すなわちヒ 卜胎児肺組織よリ  Next, using these primers, for example, from the mRNA of human fetal lung tissue, rapid amplification of cDNA ends (RACE II) (Frohman et al., Pro Natl. Acad. U.S.A. 85: 8998-9002, 1988) to determine the nucleotide sequence over the entire length of the cDNA. That is, human fetal lung tissue
Quickprep Micro mRNA 精製キッ ト(Ph a r mac i a社製)を用いて po I y (A) +RNAを抽 出し、 この poly(A) + RNAからマラソン cDNA増幅キッ ト (C I on t e c h社製)を用い て、 5'側 RACEと 3'側 RACEを行う。 まず、 上流側の 5 '側プライマーから下流の 3'側へ向かって cDNAの 3'端まで cDNAを増幅し、 得られた cDNA断片を適当な塩 基配列決定用ベクター、 例えば pGEM- T (Promega社製) や pBluescript PoIy (A) + RNA was extracted using a Quickprep Micro mRNA purification kit (Pharmacia), and a marathon cDNA amplification kit (CI on tech) was extracted from the poly (A) + RNA. Perform 5 'RACE and 3' RACE by using. First, cDNA is amplified from the upstream 5 'primer to the downstream 3' end to the 3 'end of the cDNA, and the resulting cDNA fragment is converted to an appropriate base sequencing vector such as pGEM-T (Promega And pBluescript
(Stratagene社製) に挿入する。 次に組換えプラスミ ドを回収し、 クローニン グされた cDNA断片の塩基配列を、 例えば Sanger法 (Sanger et aに、 Proc. Nat I. Acad. Scに USA, 74: 5463-5467, 1977) によって決定する。 つぎに、 同 様にして、 下流の 3'側プライマーから上流の 5'側へ向かって cDNAの 5'端まで cDNAを増幅する。 得られた cDNA断片を上記と同様に適当な塩基配列決定用べク ターに挿入し、 組換えプラスミ ドを回収し、 クローニングされた cDNAの塩基配 列を決定する。 このようにして決定した 2種類の cDNAクロ一ンの塩基配列を両 者で共通する領域を用いて重ね合せることによって、 全長の cDNAに対応する塩 基配列が決定される。  (Stratagene). Next, the recombinant plasmid was recovered, and the nucleotide sequence of the cloned cDNA fragment was analyzed by, for example, the Sanger method (Sanger et a, Proc. Nat I. Acad. Sc, USA, 74: 5463-5467, 1977). decide. Next, in the same manner, the cDNA is amplified from the downstream 3 'primer to the upstream 5' end to the 5 'end of the cDNA. The obtained cDNA fragment is inserted into an appropriate nucleotide sequence determination vector in the same manner as described above, the recombinant plasmid is recovered, and the nucleotide sequence of the cloned cDNA is determined. By superimposing the nucleotide sequences of the two types of cDNA clones determined in this way using a region common to both, the nucleotide sequence corresponding to the full-length cDNA is determined.
( 3 ) ELCの全長 cDNAの調製  (3) Preparation of full-length ELC cDNA
得られた ELCの全長 cDNAの塩基配列をもとに、 ELCタンパク質をコードする 領域の両端の塩基配列にもとづいて合成した 2種類のプライマーを用いてポリメ ラーゼ連鎖反応法 (PCR) により増幅し、 適当な塩基配列決定用ベクター (上 記) に挿入し、 組換えべクタ一を回収して、 クロ一ニングされた cDNAの塩基配 列を決定する (上記) 。  Based on the nucleotide sequence of the obtained full-length cDNA of ELC, it was amplified by the polymerase chain reaction (PCR) using two types of primers synthesized based on the nucleotide sequences at both ends of the region encoding the ELC protein. Insert into an appropriate nucleotide sequence determination vector (described above), recover the recombinant vector, and determine the nucleotide sequence of the cloned cDNA (described above).
( 4 ) 組換え ELCの発現 つぎに得られた ELCタンパク質をコードする cDNAを適当な発現ベクターに組 み込み、 ELCタンパク質を発現するための発現ベクターとする。 適切な発現べク ターとしては、 例えば、 細菌については pRSET、 pGE EX. pKK233- 2、 など、 酵 母については pYES2、 昆虫細胞については pVL1393、 動物細胞については pEF - B0S、 pSRa、 pDR2、 などが各々挙げられる。 この発現ベクターを適当な宿主細胞、 例えば、 細菌、 酵母、 昆虫細胞または動物細胞に導入し、 形質転換体を作製する < 大腸菌などの原核微生物では、 原核微生物の分泌タンパク質に由来するシグナル 配列 (例えばシグナルペプチド OMPa) と成熟型 ELCタンパク質とが融合した融 合タンパク質として、 強力なプロモータ一 (例えば T7プロモーター) の支配下 に発現し得る。 酵母では、 酵母の分泌タンパク質の天然前駆物質に由来するシグ ナル配列 (例えばフェロモン αのプレブ口配列) と成熱型 ELCタンパク質とが融 合した融合タンパク質として、 発現し得る。 動物細胞では、 すでに存在するシグ ナル配列を含む ELCタンパク質の前駆体タンパク質の遺伝子を強力なプロモータ 一 (例えば EF-1 αプロモーター) の下流に挿入し、 効果的な選択マーカ一 (例 えばジヒ ドロ葉酸レダクターゼ) と共に動物細胞 (例えば CHO dhf r- 細胞) に 導入し、 薬剤 (この場合はメ ト トレキセ一ト) に対する耐性により細胞を選択し、 高発現の細胞株を樹立し得る。 またシグナル配列を含む ELC夕ンパク質前駆体の 遺伝子をウィルスまたはレ トロウィルスに組込み、 この組換えウィルスを動物細 胞に感染にさせることにより、 発現し得る。 これら形質転換体を培養することに より、 ELCタンパク質が産生分泌され得る。 (4) Expression of recombinant ELC Next, the obtained cDNA encoding the ELC protein is inserted into an appropriate expression vector to prepare an expression vector for expressing the ELC protein. Suitable expression vectors include, for example, pRSET, pGEEX.pKK233-2 for bacteria, pYES2 for yeast, pVL1393 for insect cells, pEF-B0S, pSRa, pDR2 for animal cells, etc. Respectively. Transformants are prepared by introducing this expression vector into an appropriate host cell, for example, a bacterium, yeast, insect cell or animal cell. <Prokaryotic microorganisms such as Escherichia coli include signal sequences derived from secreted proteins of prokaryotic microorganisms (eg, It can be expressed as a fusion protein in which the signal peptide (OMPa) and the mature ELC protein are fused under the control of a strong promoter (eg, T7 promoter). In yeast, it can be expressed as a fusion protein in which a signal sequence derived from a natural precursor of a yeast secretory protein (eg, a pheromone α prebuilt opening sequence) and an thermogenic ELC protein are fused. In animal cells, the gene for the precursor protein of the ELC protein, which contains a signal sequence that already exists, is inserted downstream of a strong promoter (eg, EF-1α promoter) to form an effective selection marker (eg, dihydrogen). It can be introduced into animal cells (for example, CHO dhfr-cells) together with folate reductase), and cells can be selected based on resistance to a drug (in this case, methotrexate) to establish a highly expressing cell line. In addition, the gene can be expressed by incorporating the gene for the ELC protein precursor containing the signal sequence into a virus or retrovirus, and infecting animal cells with the recombinant virus. By culturing these transformants, ELC protein can be produced and secreted.
成熟型 ELC夕ンパク質またはその断片であるタンパク質は、 例えば固相法を用 いて、 2個のジスルフィ ド結合の存在に必要な注意を払い、 決定された塩基配列 を基に文献記載の方法 (Clark- Lewis et aに, Biochemistry 30:3128-3135, 1991) によって、 あるいは通常のペプチド合成装置を用いて全合成することがで きる。  The mature ELC protein or a protein fragment thereof can be obtained by the method described in the literature based on the determined base sequence (for example, using a solid phase method), paying attention to the presence of two disulfide bonds. Total synthesis can be performed by Clark-Lewis et al., Biochemistry 30: 3128-3135, 1991) or by using a conventional peptide synthesizer.
得られたタンパク質の精製は当業者に周知の方法、 例えば、 ァフィ二ティー力 ラム、 イオン交換クロマ トグラフィー、 ゲル濾過クロマ トグラフィー、 逆相クロ マトグラフィ一、 疎水クロマトグラフィー、 などを組み合わせて行うことができ る (Imai et a I. , J. Biol. chem. 271: 21514-21521, 1996) 。 本発明の ELCタンパク質の変異体および断片タンパク質は、 当業者に周知の遺 伝子組換え技術 ( Sambrook e t a I. , Molecular Cloning: A I aboraroy manual, 2nd edn. New York, Cold Spring Harbor Laboratory) によって変異を導入した DNAを用いて調製することができる。 Purification of the obtained protein can be performed by a method known to those skilled in the art, for example, by a combination of affinity chromatography, ion exchange chromatography, gel filtration chromatography, reverse phase chromatography, and hydrophobic chromatography. (Imai et al., J. Biol. Chem. 271: 21514-21521, 1996). Mutants and fragment proteins of the ELC protein of the present invention can be mutated by gene recombination techniques well known to those skilled in the art (Sambrook eta I., Molecular Cloning: AI aboraroy manual, 2nd edn.New York, Cold Spring Harbor Laboratory). It can be prepared using DNA into which is introduced.
II . 本発明タンパク質に対する抗体の調製  II. Preparation of antibodies against the protein of the present invention
本発明の ELCタンパク質に対する抗体は、 例えば、 推定される ELCのアミノ酸 配列の一部に基づいて通常のぺプチド合成機で合成した合成べプチドゃ、 ELCを 発現するベクターで形質転換した細菌、 酵母、 昆虫細胞、 動物細胞、 などにより 産生された ELCタンパク質を通常のタンパク化学的方法で精製し、 これらを免疫 原として、 マウス、 ラッ ト、 ハムスター、 ゥサギ、 などの動物を免疫して、 その 血清由来の抗体 (ポリクロ一ナル抗体) を作製する。  Antibodies against the ELC protein of the present invention include, for example, a synthetic peptide synthesized with a conventional peptide synthesizer based on a part of the deduced ELC amino acid sequence, a bacterium, and a yeast transformed with an ELC-expressing vector. ELC proteins produced by insect cells, animal cells, animal cells, etc., are purified by ordinary protein chemical methods, and these are used as immunogens to immunize animals such as mice, rats, hamsters, egrets, Prepare an antibody of origin (polyclonal antibody).
あるいは、 免疫したマウスゃラッ 卜の脾臓またはリンパ節からリンパ球を取り だし、 ミエローマ細胞と融合させて Kohlerと Mi Isteinの方法 [Nature, 256, 495-497 (1975)] 又はその改良法である Ued aらの方法 [ P r o Na 11. Ac ad. Scに USA, 79:4386-4390, 1982)] に従ってハイプリ ドーマを作製し、 該ハイブリ ドー マから単クローン抗体を産生させ得る。 例えば以下の工程により ELCタンパク質 の単クローン抗体を得ることができる。  Alternatively, lymphocytes are removed from the spleen or lymph nodes of immunized mouse rats and fused with myeloma cells, and the method of Kohler and Mi Istein [Nature, 256, 495-497 (1975)] or an improved method thereof. A hybridoma can be prepared according to the method of Ueda et al. [Pro Na 11. Acad. Sc, USA, 79: 4386-4390, 1982), and a monoclonal antibody can be produced from the hybridoma. For example, a monoclonal antibody of the ELC protein can be obtained by the following steps.
( a ) ELCタンパク質によるマウスの免疫、  (a) Immunization of mice with ELC protein,
( b ) 免疫マウスの脾臓の除去及び脾臓細胞の分離、  (b) removal of spleen and separation of spleen cells from immunized mice,
( c ) 分離された脾臓細胞とマウスミエローマ細胞との融合促進剤 (例えば ポリエチレンダリコール) の存在下での上記の Kohler らに記載の方法による融  (c) Fusion by the method described by Kohler et al. in the presence of a fusion promoter (eg, polyethylene dalicol) between the isolated spleen cells and mouse myeloma cells
( d ) 未融合ミエローマ細胞が成長しない選択培地での得られたハイプリ ド 一マ細胞の培養、 (d) culturing the obtained hybridoma cells in a selective medium in which unfused myeloma cells do not grow,
( e ) 酵素結合免疫吸着検定 (ELISA)、 ウェスタンプロッ ト、 などの方法に よる所望の抗体を生産するハイプリ ドーマ細胞の選択及び限定希釈法等によるク ローニング、  (e) Selection of hybridoma cells producing the desired antibody by methods such as enzyme-linked immunosorbent assay (ELISA) and western blotting, and cloning by limiting dilution, etc.
( f ) ELC単クローン抗体を生産するハイプリ ドーマ細胞を培養し、 単クロ 一ン抗体を収穫する。 III . ELCタンパク質の mRNAとタンパク質の検出 (f) Culture the hybridoma cells producing the ELC monoclonal antibody, and harvest the monoclonal antibody. III. Detection of mRNA and protein of ELC protein
本発明の ELCの mRNAと夕ンパク質の存在は、 通常の特異的 mRNAおよびタンパ ク質に対する検出法を用いて行うことができる (Sambrook et al. , Molecular Cloning: A I abo ra roy manual, 2nd edn. New York, Cold S ring Harbor Laboratory 1989; Harlow and Lane, Antibodies: A laboratory manual, New York, Cold Spring Harbor Laboratory 1988) 。 例えば、 mRNAはアンチセンス RNAや cDNAをプローブに用いたノーザンプロッ 卜解析やインサイッ(in si tu)ハ イブりダイゼーシヨン法により検出できる。 また、 mRNAを逆転写酵素で cDNAに 変換したのち、 適当なプライマーの組み合わせによるポリメラーゼ連鎖反応法 (PCR) によっても検出することができる。 タンパク質については、 ELCタンパ ク質に特異的な抗体を用いた免疫沈降やウェスタンプロッ トなどにより検出する ことができる。  The presence of the mRNA and protein of the ELC of the present invention can be carried out using a detection method for ordinary specific mRNA and protein (Sambrook et al., Molecular Cloning: AI abo roy manual, 2nd edn. New York, Cold Sring Harbor Laboratory 1989; Harlow and Lane, Antibodies: A laboratory manual, New York, Cold Spring Harbor Laboratory 1988). For example, mRNA can be detected by Northern blot analysis using antisense RNA or cDNA as a probe or in situ hybridization method. Alternatively, the mRNA can be converted to cDNA using reverse transcriptase, and then detected by polymerase chain reaction (PCR) using an appropriate combination of primers. The protein can be detected by immunoprecipitation using an antibody specific to the ELC protein, Western blot, or the like.
IV. ELCタンパク質の免疫学的定量法  IV. Immunoassay for ELC protein
例えば、 放射性アイソ トープ、 ペルォキシダ一ゼやアルカリフォスファターゼ のような酵素、 あるいは蛍光色素などで標識した一定量の ELCに、 濃度既知の非 標識 ELC、 および血清由来の抗 ELCポリク口一ナル抗体またはモノクロ一ナル抗 体を加えて、 抗原抗体競合反応を行わせる。 非標識抗原の濃度を適当に変化させ た後、 抗体と結合した標識抗原と抗体に結合していない標識抗原とを適当な方法 で分離して、 抗体と結合した標識抗原の放射能量、 酵素活性または蛍光強度を測 定する。 非標識抗原量が増すにつれ、 抗体と結合する標識抗原の量は減少する。 この関係をグラフにして標準曲線を得る。 また ELCタンパク質上の異なるェピト ープを認識する 2種類の単クローン抗体の一方を固相化し、 他方を上記のいずれ かの方法でラベルし、 固相化抗体に結合した ELCの量をラベル抗体で検出定量す る、 いわゆるサンドイッチ法も可能である。  For example, a fixed amount of ELC labeled with radioisotope, an enzyme such as peroxidase or alkaline phosphatase, or a fluorescent dye, unlabeled ELC with a known concentration, and anti-ELC polyclonal antibody derived from serum or monoclonal antibody An antigen-antibody competition reaction is performed by adding one null antibody. After appropriately changing the concentration of the unlabeled antigen, the labeled antigen bound to the antibody and the labeled antigen not bound to the antibody are separated by an appropriate method, and the radioactivity and enzyme activity of the labeled antigen bound to the antibody are separated. Or measure the fluorescence intensity. As the amount of unlabeled antigen increases, the amount of labeled antigen that binds to the antibody decreases. This relationship is graphed to obtain a standard curve. In addition, one of the two types of monoclonal antibodies that recognize different epitopes on the ELC protein is immobilized, and the other is labeled by one of the above methods, and the amount of ELC bound to the immobilized antibody is determined by the amount of the labeled antibody. The so-called sandwich method of detecting and quantifying by means of is also possible.
次に、 上記の反応系に濃度既知の非標識抗原の代わりに未知量の抗原を含む試 料を加え、 これを反応させた後に得られる、 放射能量、 酵素活性、 または蛍光強 度、 を標準曲線にあてはめれば、 試料中の抗原、 すなわち ELCタンパク質の量を 知ることができる。 ELCタンパク質を定量することにより、 炎症反応や免疫反応 をモニターするための新しい方法が提供され得る。 V . ELC夕ンパク質のケモカイン活性の測定 Next, a sample containing an unknown amount of antigen in place of the unlabeled antigen with a known concentration is added to the above reaction system, and the radioactivity, enzyme activity, or fluorescence intensity obtained after the reaction is standardized. By applying the curve, you can determine the amount of antigen, ie, ELC protein, in the sample. Quantifying ELC proteins could provide a new way to monitor inflammatory and immune responses. V. Measurement of chemokine activity of ELC protein
本発明の ELCタンパクのケモカイン活性は、 例えば、 試験管内では、 一定の口 径のポアを有するフィルターを介在させて仕切った培養容器の一方の側に ELCを 入れ、 他方の側に標的細胞を入れて、 一定時間後にフィルターのポアを通過して ELCの存在する側へ移動した細胞数をランダムな移動数と比較して示し得る。 ま た、 生体内では、 精製した ELCタンパク質を動物に投与して細胞の浸潤と集合を 組織学的方法で検出することによつても示し得る。 実施例  The chemokine activity of the ELC protein of the present invention can be determined, for example, by placing ELC on one side of a culture vessel partitioned with a filter having a certain diameter in a test tube and placing target cells on the other side. After a certain period of time, the number of cells that have moved through the pores of the filter to the side where ELCs are present can be compared with the number of random movements. In vivo, it can also be demonstrated by administering purified ELC protein to animals and detecting cell invasion and aggregation by histological methods. Example
本発明を以下の実施例によりさらに詳細に説明するが、 これらは本発明の範囲 をいかなる意味においても限定するものでない。  The invention will be described in more detail by the following examples, which do not limit the scope of the invention in any way.
実施例 1  Example 1
ELCの cDNAの単離およびその構造決定  Isolation of ELC cDNA and determination of its structure
( 1 ) ESTライブラリ一からの ELC cDNA 部分配列の検索。  (1) Search for the partial sequence of ELC cDNA from the EST library.
アメリカ NCBIが公開している核酸配列データベース GenBankの一部で、 さま ざまな cDNAに由来する部分配列から構成される Expressed Sequence Tag(EST) データべ一スを、 種々のヒ ト CC型ケモカインのァミノ酸配列をもとに TBLASTN 検索ソフ トを用いて検索し、 CC型ケモカインと有意の相同性をもつが、 既知の ケモカインとは異なるケモカインタンパク質をコー ドすると考えられる 7個の ESTデータ (GenBankァクセッション ' ナンバー : T97490、 D31180、 D3143K W05519, W0740K N71167、 N80273) を見出した。 これらのデータはそれぞれヒ 卜 胎児肝臓および脾臓、 ヒ 卜胎児肺、 ヒ 卜胎児肺、 ヒ ト胎児肺, ヒ ト胎児肺、 ヒ ト 胎児肺、 ヒ ト胎児肺の cDNAライブラリ一由来の cDNAであり、 長さはそれぞれ 347bp、 330bp、 261bp、 501bp、 196bp、 238bp、 395bpであり、 各々 1995年 3月 29日、 1995年 2月 8日、 1995年 2月 8日、 1996年 4月 23日、 1996年 4月 25日、 1996年 3月 14日、 1996年 3月 29日に GenBa nkに登録されている。  The Expressed Sequence Tag (EST) database, which is a part of the nucleic acid sequence database GenBank released by NCBI in the United States and composed of partial sequences derived from various cDNAs, is used for amino acids of various human CC-type chemokines. A search was performed using TBLASTN search software based on the acid sequence. Seven EST data (GenBank data) that have significant homology to CC-type chemokines but are thought to encode chemokine proteins different from known chemokines Session No .: T97490, D31180, D3143K W05519, W0740K N71167, N80273). These data are cDNAs from the human fetal liver and spleen, human fetal lung, human fetal lung, human fetal lung, human fetal lung, human fetal lung, and human fetal lung cDNA libraries, respectively. The lengths are 347 bp, 330 bp, 261 bp, 501 bp, 196 bp, 238 bp, and 395 bp, respectively, March 29, 1995, February 8, 1995, February 8, 1995, April 23, 1996, Registered with GenBank on April 25, 1996, March 14, 1996 and March 29, 1996.
(2 ) ELC itiRNA発現ヒ ト組織の確認  (2) Confirmation of human tissue expressing ELC itiRNA
ELC mRNAの検出は、 ELCに特異的なプライマーの組み合わせによるポリメラ一 ゼ連鎖反応法 (PCR) を用いて行った。 まず、 GenBank EST データ W07401の配列 をもとに PCR用プライマ一 1 対、 nNCC- 6Fプライマ一および nNCC- 6Rプライマー を合成した。 nNCC- 6Fプライマ一および nNCC- 6Rプライマーの配列はそれぞれつ ぎの通りである : ELC mRNA was detected by polymerase chain reaction (PCR) using a combination of primers specific to ELC. First, the sequence of GenBank EST data W07401 Based on this, one pair of primers for PCR, nNCC-6F primer and nNCC-6R primer were synthesized. The sequences of the nNCC-6F primer and the nNCC-6R primer are as follows:
nNCC- 6F 5' -GAGCCCGGAGTCCGAGTCAAGCATT-3 ' (配列番号 2 ) nNCC-6R 5' -CTCTGACCACACTCACCCTCTCGCT-3' (配列番号 3 ) 次に、 ヒ 卜胎児肺組織から、 QuickPrep Micro mRNA 精製キッ ト (Pharmacia 社製) を用いて mRNAを抽出した。 精製した mRNAを錶型として、 一本鎖 cDNAを Preampl if ication System (G I BCO- BRL社製) を用いて合成した。 つぎに  nNCC-6F 5'-GAGCCCGGAGTCCGAGTCAAGCATT-3 '(SEQ ID NO: 2) nNCC-6R 5'-CTCTGACCACACTCACCCTCTCGCT-3' (SEQ ID NO: 3) Next, a QuickPrep Micro mRNA purification kit (Pharmacia) ) Was used to extract mRNA. Using the purified mRNA as type III, single-stranded cDNA was synthesized using a Preamplification System (GIBCO-BRL). Next
Ampl iTaq Kit (Takara Shuzo社製) を用いて PCRを行った。 すなわち、 得られ た一本鎖 cDNAを錶型とし、 各 400 nMの nfJCC- 6Fプライマーと nNCC - 6Rプライマ —および 100 U/ml Amp I iTaq DNAポリメレース I を反応緩衝液 (10 mM Tris-HCし pH 8.3、 50 mM KCL 1.5 mM MgCI2、 0. ゼラチン、 各 200 Mの dATP、 dGTP、 dCTP、 dTTP) に加え、 DNA Thermal Cycler (Pe r k i n- E I mer社製) を用いて PCR を行った。 反応は、 94°Cで 1分間前処理した後、 94°Cで 30秒間、 72°Cで 2分間 の反応サイクルを 5回、 94°Cで 30秒間、 70°Cで 2分間のサイクルを 5回、 最後 に 94°Cで 30秒間、 68°Cで 2分間のサイクルを 25回行った。 増幅された DNA断片 をァガロース電気泳動により分離し、 ェチジゥム · ブロミ ド法で染色した。 ELC の cDNAに由来する約 170bpの DNAが検出されたことから、 ヒ 卜胎児肺組織が ELC mRNAを発現することを確認した。 PCR was performed using Ampl iTaq Kit (Takara Shuzo). That is, the obtained single-stranded cDNA was used as type III, and 400 nM of each of the nfJCC-6F primer, nNCC-6R primer and 100 U / ml Amp I iTaq DNA polymerase I were added to a reaction buffer (10 mM Tris-HC). PCR was performed using a DNA Thermal Cycler (Perkin-EImer) in addition to pH 8.3, 50 mM KCL, 1.5 mM MgCI2, 0.1 gelatin, 200 M each of dATP, dGTP, dCTP, and dTTP. The reaction was pre-treated at 94 ° C for 1 minute, followed by 5 reaction cycles of 94 ° C for 30 seconds, 72 ° C for 2 minutes, 5 cycles of 94 ° C for 30 seconds, and 70 ° C for 2 minutes. Five cycles, and finally 25 cycles of 94 ° C for 30 seconds and 68 ° C for 2 minutes were performed. The amplified DNA fragment was separated by agarose electrophoresis and stained by ethidium bromide method. Approximately 170 bp of DNA derived from ELC cDNA was detected, confirming that human fetal lung tissue expresses ELC mRNA.
( 3 ) ELC cDNAの単離  (3) Isolation of ELC cDNA
まずヒ ト胎児肺組織由来の mRNAから Marathon cDNA Ampl i f icat ion Kit (Clontech社製) を用いて cDNAを合成する。 すなわち、 ヒ ト胎児肺の mRNA 1 と Marathon cDNA 合成プライマ一 10 pmoleとを含む、 水中溶液 5 / I を 70°Cで 2分間加熱し、 氷冷後、 これに dATP、 dCTP、 dGTPおよび dTTP (各 1 mM) ならびに MMLV (Moloney Murine Leukemia Virus) 逆転写酵素 (100ユニッ ト) を加え、 50 mM Tr i s-HCI (pH8.3)、 6 mM MgCI2、 75 mM KCI の反応液 10 I 中、 42°Cで 〗時間、 一本鎖 cDNA合成反応を行った。 反応後、 反応液を氷冷し、 これ に dATP、 dCTP、 dGTP、 dTTP (各 0.2 mM) 、 E. col i DNA ポリメラーゼ I (24ュ ニッ ト) 、 E. col i DNA リガーゼ (4.8ユニッ ト ) 、 および E. col i RNase H (1ュニッ ト) を加え、 100 mM KCI, 10 硫酸ァンモニゥ厶、 5 m MgCIい First, cDNA is synthesized from mRNA derived from human fetal lung tissue using the Marathon cDNA Amplification Kit (Clontech). That is, a 5 / I aqueous solution containing human fetal lung mRNA 1 and Marathon cDNA synthesis primer 10 pmole was heated at 70 ° C for 2 minutes, cooled on ice, and added to dATP, dCTP, dGTP and dTTP ( each 1 mM) and MMLV the (Moloney Murine Leukemia Virus) reverse transcriptase (100 units) was added, 50 mM Tr i s-HCI (pH8.3), 6 mM MgCI 2, 75 mM reaction solution 10 I in KCI The single-stranded cDNA synthesis reaction was performed at 42 ° C for 4 hours. After the reaction, cool the reaction mixture on ice, add dATP, dCTP, dGTP, dTTP (0.2 mM each), E. coli DNA polymerase I (24 units), E. coli DNA ligase (4.8 units) , And E. col i RNase H (1 unit), add 100 mM KCI, 10 mM ammonium sulfate, 5 mM MgCI
0. 15 mM ^3 -NAD, 20 mM Tris-HCI (pH7.5)、 0.05 mg/ml ゥシ血清アルブミン の 反応液 80 l 中、 16°Cで 1時間半、 2本鎖 cDfJA合成反応を行った。 0.15 mM ^ 3 -NAD, 20 mM Tris-HCI (pH7.5), 0.05 mg / ml Pserum serum albumin went.
次いで、 この反応液中に T4 DNAポリメラーゼ (10ユニッ ト) を加え、 16°Cで 45分間反応し、 cDNAを平滑末端化した。 反応後、 フエノール抽出 ' エタノール 沈殿の操作を行った後、 DNAを 10 I の蒸留水に溶解した。 その内の 5 i lの溶 液に Marathon cDNA ァダプタ一 20 pmo leおよび T4 DNA リガ一ゼ (1ュニッ ト) を加え、 50 mM Tr i s-HCI (pH7.8 ) v 10 mM MgCI2、 1 mM DTT、 1 mM ATP. 5¾ (w/v) ポリエチレングリコール(MW 8, O00)の反応液 10 I 中、 16°Cで約 20時間 反応させ、 2本鎖 cDNAの両端にアダプタ一を結合させた。 反応後、 70°Cで 2分 間加熱してリガーゼを失活させ、 さらに 10 mM Tr ici ne - KOH (pH9.2)、 0. 1 mM EDTAで 250倍に希釈後、 94°Cで 2分間加熱し、 アダプターを結合させた 2本鎖 cDNAを変性させた。 Next, T4 DNA polymerase (10 units) was added to the reaction solution, and the mixture was reacted at 16 ° C for 45 minutes to blunt the cDNA. After the reaction, phenol extraction and ethanol precipitation were performed, and the DNA was dissolved in 10 I of distilled water. Marathon cDNA Adaputa one 20 pmo le and T4 DNA Riga Ichize the (1 Yuni' g) was added to 5 il of solvent solution of them, 50 mM Tr i s-HCI (pH7.8) v 10 mM MgCI 2, 1 mM DTT, 1 mM ATP. 5¾ (w / v) Polyethylene glycol (MW 8, O00) was reacted at 16 ° C for about 20 hours in 10 I of a reaction mixture, and adapters were bound to both ends of double-stranded cDNA. . After the reaction, heat the mixture at 70 ° C for 2 minutes to inactivate the ligase, further dilute 250-fold with 10 mM Tricine-KOH (pH 9.2) and 0.1 mM EDTA, and then dilute at 94 ° C. Heating for 20 minutes denatured the adapter-bound double-stranded cDNA.
つぎ Ίこ RACE反応(Frohman et aし, Proc. Na t I. Acad. Sc i. USA 85 : 8998-9002, 1988)を行った。 まず、 5' RACE反応では、 上記の変性させた cDNA 5 μ I に dATP、 dCTP、 dGTP、 dTTP (各 0. 2 mM) 、 TAKARA LA Taq (2. 5ユニッ ト) 、 TaqStart 抗 体 (0.55 μ g) 、 アダプタ一部に結合する API プライマー 10 pmo I e、 および nNCC-6Rプライマ一 (配列番号 3 ) 10 pmoleを加え、 1x TAKARA LA Taq緩衝液 の反応液 50 μ I 中、 94°Cで 1分の前処理後、 直ちに 94て、 30秒 ; 60°C、 30秒 ; 68°C、 4分の条件で 30サイクルの PCRを行った。 また、 3' RACE反応は、 上記と 同様の反応条件で、 nNCC- 6Rプライマ一の代わりに nNCC- 6Fプライマー (配列番 号 2) を用いて行った。 反応後、 それぞれの PCR産物を 2¾低融点ァガロースゲル 電気泳動で分離し、 おもな 5' RACE断片 (約 670bp) およびおもな 3' RACE断片 Next, a RACE reaction (Frohman et al., Proc. Nat I. Acad. Sci. USA 85: 8998-9002, 1988) was performed. First, in the 5 'RACE reaction, 5 A of the denatured cDNA was added to dATP, dCTP, dGTP, dTTP (0.2 mM each), TAKARA LA Taq (2.5 units), and TaqStart antibody (0.55 μL). g), add 10 pmo Ie of API primer that binds to a part of the adapter, and 10 pmole of nNCC-6R primer (SEQ ID NO: 3), and in a 1x TAKARA LA Taq buffer reaction mixture at 94 ° C in 50 μI. Immediately after the pretreatment for 1 minute, PCR was carried out for 30 cycles at 94, 30 seconds; 60 ° C, 30 seconds; 68 ° C, 4 minutes. The 3 ′ RACE reaction was performed under the same reaction conditions as above, except that the nNCC-6F primer (SEQ ID NO: 2) was used instead of the nNCC-6R primer. After the reaction, each PCR product was separated by 2¾ low melting point agarose gel electrophoresis, and the main 5 'RACE fragment (about 670 bp) and the main 3' RACE fragment
(約 360bp) をフエノール抽出法で回収し、 それぞれエタノール沈殿の操作を行 つた後、 10 I の蒸留水に溶解した。 それぞれの DNA水溶液の 5 I を ベクタ -pCR-l I (Stratagene社製) 1.0 μ Ι と混合し、 Τ4 DNAリガーゼを用いて 16°C で約 20時間反応させて連結させ、 それぞれの組換えプラスミ ドを作製した。 こ れを用いて大腸菌 (E. col i) XL1- Blue MRF' ( S t r a t age n e社製) を形質転換し、 コロニーを得た。 ( 4 ) 陽性クローンの同定と塩基配列決定 (Approximately 360 bp) was recovered by phenol extraction, ethanol precipitation was performed, and dissolved in 10 I of distilled water. 5 I of each DNA aqueous solution was mixed with 1.0 μΙ of vector-pCR-lI (manufactured by Stratagene), and allowed to react with Τ4 DNA ligase at 16 ° C for about 20 hours to ligate. Was prepared. Using this, Escherichia coli (E. coli) XL1-Blue MRF '(manufactured by Stratage ne) was transformed to obtain colonies. (4) Identification of positive clones and nucleotide sequencing
上記工程で得られたコロニーの内の数個からプラスミ ド DNAを抽出し、 SP6プ 口モーター · プライマ一および T7 プロモーター · プライマーを用いて cDNAの 5'および 3' 端側の塩基配列を調べたところ、 すべて EST W07401 とほぼ同一の 塩基配列であった。 そこで 5' RACE反応および 3' RACE反応のそれぞれから得ら れたクローンを 1 個づっ選択し (以下 5' -RACE cDNAと 3' -RACE cDNAと称す) 、 それらについて全塩基配列を Sangerらの方法(Proc. Nat I. Acad. Sc i. USA 74: 5463-5467, 1977)に従って決定した。 そしてこのようにして得られた一部重複す る 2つの cDNA配列から ELCの cDNAの全長が決定された。 その結果、 最初に現れ る翻訳開始コ ドン ATGの規定するメチ才ニンを含む 98個のアミノ酸残基からな るタンパク質をコードする塩基配列が存在することが判明した。 このタンパク質 のアミノ酸配列は既知のケモカインとは一致はしないが、 有意の相同性を有し、 またケモカインの構造的特徴である保存された 4個のシスティン残基を含むこと, また分泌タンパク質の特徴である N端側に疎水性に富むシグナル配列様の配列が 存在すること、 などから新規のケモカインと推定された。  Plasmid DNA was extracted from several of the colonies obtained in the above steps, and the nucleotide sequences at the 5 'and 3' ends of the cDNA were examined using SP6 motor, primer and T7 promoter and primer. However, all had almost the same nucleotide sequence as EST W07401. Therefore, clones obtained from each of the 5 'RACE reaction and the 3' RACE reaction were selected one by one (hereinafter referred to as 5'-RACE cDNA and 3'-RACE cDNA), and the entire nucleotide sequence of them was determined by Sanger et al. Determined according to the method (Proc. Nat I. Acad. Sci. USA 74: 5463-5467, 1977). The full-length ELC cDNA was determined from the two partially overlapping cDNA sequences thus obtained. As a result, it was found that there was a nucleotide sequence encoding a protein consisting of 98 amino acid residues including methinenin defined by the translation initiation codon ATG, which appears first. The amino acid sequence of this protein is not identical to known chemokines, but has significant homology and contains four conserved cysteine residues that are structural features of chemokines. The presence of a highly hydrophobic signal sequence-like sequence on the N-terminal side, which suggests a novel chemokine.
( 5 ) ELCの推定アミノ酸配列の解析  (5) Analysis of deduced amino acid sequence of ELC
決定された全長 cDNAの塩基配列および推定される開始コ ドンから始まる最長 の翻訳枠 (open readi ng f rame : 0RF)のアミノ酸配列を図 1 に示す。 この遺伝子 は 9 8個のアミノ酸よりなる 0RFを有し、 N末端には分泌タンパク質に特徴的な シグナルペプチドと推定される約 2 0個の疎水性の強いアミノ酸配列を有する。 この 9 8個のアミノ酸からなるタンパク質の分子量は 1 0, 9 9 2であった。 シ ダナルぺプチドの切断部位は、 計算によると、 2 1 位のセリンと 2 2位のダリシ ンの間と推定された。 シグナルペプチド切断後の、 7 7個のアミノ酸残基からな る推定上の成熟型タンパク質は、 分泌タンパク質であると推定され、 その分子量 は 8, 7 7 9、 また等電点は 1 0 . 1 6であった。  FIG. 1 shows the determined nucleotide sequence of the full-length cDNA and the amino acid sequence of the longest translation frame (open read frame: 0RF) starting from the predicted start codon. This gene has 0RF consisting of 98 amino acids, and has about 20 strongly hydrophobic amino acid sequences at the N-terminus, which are presumed to be signal peptides characteristic of secreted proteins. The molecular weight of this 98 amino acid protein was 10,992. The calculated cleavage site for the fernal peptide was estimated to be between serine at position 21 and dalysin at position 22. The putative mature protein consisting of 77 amino acid residues after signal peptide cleavage is presumed to be a secreted protein, with a molecular weight of 8,779 and an isoelectric point of 10.1. It was 6.
アミノ酸配列の類似性解析は、 Clusta プログラムを用いて行った。 その結 果を図 2に示す。 得られた cDNA塩基配列の 0RFから推定されるタンパク質を含 めてすべての CC型ケモカインで保存されているアミノ酸は星印で示し、 またほ とんどの CC型ケモカインで保存されているアミノ酸は黒丸で示した。 また得ら れた cDNA塩基配列の ORFから推定されるタンパク質と他の CC型ケモカインとの 相同性の程度をシグナルべプチドが切断されたあとの成熟型タンパク質につい て!!!表示で右側に示した。 本発明の成熟型分泌タンパク質のアミノ酸配列は MIP -Amino acid sequence similarity analysis was performed using the Clusta program. Figure 2 shows the results. Amino acids conserved in all CC-type chemokines, including proteins deduced from 0RF of the obtained cDNA base sequence, are indicated by asterisks, and amino acids conserved in most CC-type chemokines are indicated by solid circles. Indicated by Also gained The degree of homology between the protein deduced from the ORF of the obtained cDNA base sequence and other CC-type chemokines is shown on the right side of the mature protein after the signal peptide is cleaved !!! The amino acid sequence of the mature secreted protein of the present invention is MIP-
1 β (Lipes et al. , Proc. Nat I. Acad. Sci. USA 85 : 9704— 9708, 1988) と 3 、1 β (Lipes et al., Proc. Nat I. Acad. Sci. USA 85: 9704-9708, 1988) and 3,
LARC (Hieshima et a I ., J. B i o I . Chem. ,投稿中) と 30%、 RANTES (Schal I et al. , J. Immunol. 141 :1018-1025, 1988) と 30¾、 MIP- 1 a (Obaru et LARC (Hieshima et a I., J. Bio I. Chem., Submitted) and 30%, RANTES (Schal I et al., J. Immunol. 141: 1018-1025, 1988) and 30¾, MIP-1 a (Obaru et
al. , J. Biochem. 99:885-894, 1986) と 28¾S、 CP-3 ( Opdenakke r et al., J. Biochem. 99: 885-894, 1986) and 28¾S, CP-3 (Opdenakker et al.
al. , Biochem. Biophys. Res. Commun. 191 : 535-542, 1993) と 23%、 MCP-2 (Vanal., Biochem. Biophys. Res.Commun. 191: 535-542, 1993) and 23%, MCP-2 (Van
Damme et al. , J. Exp. Med. 176:59-65, 1992) と 23¾、 1-309 (Mi l ler et al. , J. Immunol. 143:2907-2916, 1989) と 23¾、 MCP-1 (Furutani et Damme et al., J. Exp. Med. 176: 59-65, 1992) and 23¾, 1-309 (Miler et al., J. Immunol. 143: 2907-2916, 1989) and 23¾, MCP- 1 (Furutani et
al. , Biochem. Biophys. Res. Commun. 159: 249-255, 1989; Yoshimura et al. , FEBSal., Biochem. Biophys. Res. Commun. 159: 249-255, 1989; Yoshimura et al., FEBS.
Lett. 244:487-493, 1989) と 21 ¾の相同性があることが明らかとなった。 また、 全ての CC型ケモカインで保存されている 4つのシスティンは ELCでも保存され ていることが明らかとなった。 従って、 得られたアミノ酸配列は新規のヒ ト CC 型ケモカインのものであると考えられる。 Lett. 244: 487-493, 1989) and 21% homology. It was also found that all four cysteines stored in all CC-type chemokines were also stored in ELC. Therefore, the obtained amino acid sequence is considered to be that of a novel human CC-type chemokine.
実施例 2  Example 2
ノーザンブロッ ト解析による ELC niRNAの発現解析 各種のヒ ト組織より単離した poly(A)+RNA 2 gをァガロースゲル電気泳動に かけてナイロン膜に転写した状態のもの (マルチプルティ ッシュプロッ ト) を Clonetech社より購入し、 マルチプライ厶 DNA標識システム ( S t r a t agene社製) により 32Pで標識した ELCの 5' -RACE cDNAをプローブとして、 ハイブリダイゼー シヨン反応を行った。 ハイブリダィゼーシヨン溶液は QuikHyb (St rat agene社製) にサケ精子 DNA100 μ g/ml を加えたものを用い、 65°Cで 1 時間ハイプリダイゼー シヨンを行った。 膜の洗浄は 0.2xSSC、 0. 1¾ SDSの緩衝液、 65°Cの条件で行った 後、 X線フイルム(Kodak社製)に感光させ、 それらを現像して解析した。 各種の ヒ ト組織での ELC mRNAの発現を図 3に示す。 図 3の結果から、 ELCの mRMAは、 免疫系組織、 特にリンパ節、 盲腸、 胸腺、 脾臓、 等に強く構成的に発現している ことが明らかとなった。 Expression analysis of ELC niRNA by Northern blot analysis 2 g of poly (A) + RNA isolated from various human tissues was subjected to agarose gel electrophoresis and transferred to a nylon membrane (multiple tissue plot). A hybridization reaction was performed using 5P-RACE cDNA of ELC, which was purchased from a company and labeled with 32 P by a multi-prime DNA labeling system (manufactured by Stratagene), as a probe. The hybridization solution was prepared by adding 100 μg / ml of salmon sperm DNA to QuikHyb (manufactured by Strat agene) and hybridization was performed at 65 ° C. for 1 hour. The membrane was washed under conditions of 0.2xSSC, 0.1¾ SDS buffer and 65 ° C, exposed to an X-ray film (Kodak), developed, and analyzed. Figure 3 shows the expression of ELC mRNA in various human tissues. The results in FIG. 3 revealed that mRMA of ELC was strongly and constitutively expressed in immune system tissues, particularly in lymph nodes, cecum, thymus, spleen, and the like.
実施例 3 組換え型 ELCタンパク質の調製 Example 3 Preparation of recombinant ELC protein
ELCタンパク質をコードする cDNAを導入して動物細胞に ELCタンパク質を産 生させた。 まず、 ELCタンパク質の全長をコー ドする cDNAを ELCの 5' - RACE cDNA (上記)を錶型として、 5'- Sal卜 ELCプライマー (配列番号 4 ) と 3'- ELC - Xbal プライマー (配列番号 5 ) を用いた PCRにより増幅した :  The ELC protein was produced in animal cells by introducing cDNA encoding the ELC protein. First, the cDNA encoding the full-length ELC protein was designated as ELC 5'-RACE cDNA (above), and the 5'-SALT ELC primer (SEQ ID NO: 4) and the 3'-ELC-Xbal primer (SEQ ID NO: 4) were used. 5) Amplified by PCR using:
5' - Sal I-ELCプライマー  5 '-Sal I-ELC primer
5' -CGCGTCGACCCCTCCATGGCCCTGCTACTGGCC-3' (配列番号 4 ) 5'-CGCGTCGACCCCTCCATGGCCCTGCTACTGGCC-3 '(SEQ ID NO: 4)
3' -ELC-Xbal プライマー  3'-ELC-Xbal primer
5' -CGCTCTAGAACTGCTGCGGCGCTTCATCTTGGC-3' (配列番号 5 ) 5'-CGCTCTAGAACTGCTGCGGCGCTTCATCTTGGC-3 '(SEQ ID NO: 5)
得られた PCR産物を制限酵素 Sal I と Xbal で分解し、 発現ベクター pDREF-Hyg ( Imai et al. , J. Biol. Chem. 271: 21514 - 21521, 1996) の Sai l と Xbalサイ 卜の間に挿入し、 ELCタンパク質を発現するべクタ一 pDREF- ELCを作製した。 こ のベクターを 293/EBNA- 1細胞( I nv i t rogen社製)にリポフエクタミン(Gi bco- BRL 社製)を用いて導入した。 対照としてはベクター pDREF- Hygのみを導入した。 培 養 3 ~ 4 日後、 培養上清を回収して、 0.22 μ mのフィルターでろ過滅菌し、 以 下の試験例で示すようにして細胞遊走活性を測定した。  The obtained PCR product was digested with the restriction enzymes Sal I and Xbal, and the digestion was performed between the Sail and Xbal sites of the expression vector pDREF-Hyg (Imai et al., J. Biol. Chem. 271: 21514-21521, 1996). Into pDREF-ELC, which expresses the ELC protein. This vector was introduced into 293 / EBNA-1 cells (Invitrogen) using Lipofectamine (Gibco-BRL). As a control, only the vector pDREF-Hyg was introduced. After 3 to 4 days of culture, the culture supernatant was collected, sterilized by filtration with a 0.22 μm filter, and the cell migration activity was measured as shown in the following test examples.
実施例 4  Example 4
アルカリフォスファタ一ゼ標識 ELCタンパク質の調製  Preparation of alkaline phosphatase labeled ELC protein
( 1 ) 融合タンパク質の調製  (1) Preparation of fusion protein
分泌型成熟 ELCタンパク質のァミノ末端を決定し、 また ELCタンパク質と細胞 膜上の特異的レセプ夕一との結合を以下の試験例で示すように解析する目的で、 ELCのカルボキシル末端に分泌型アルカリフォスファターゼ (SEAP) およびヒス チジンタグ(Hi s)6を融合した融合タンパク質を調製した。 SEAPは酵素活性ゃ抗 SEAP抗体を用いた免疫学的方法で検出および定量ができる。 またアミノ酸ヒス チジンが 6個連続したヒスチジンタグ(H i s) sはニッケルァフィ二ティーカラ厶を 用いる融合タンパク質のァフィ二ティー精製のために導入する Uanknecht et al. , Proc. Natl. Acad. Scに USA 88: 8972-8976, 1991 ) 。 ELCと SEAP -(H i s) - との融合夕ンパク質を発現するためのベクター pDREF- SEAP(His)sの模式図を図 5 に示す。 pDREF- SEAP(His)6の作製はつぎのように行った。 C I o n t ec h社製のプラスミ ド pSEAP- Enhancerを錶型として、 SEAPにヒスチジンが 6個つながった(His)6部分 を加えたアミノ酸配列をコー ドする DNAを 5' -Xbal- APプライマー (配列番号 In order to determine the amino terminus of the secreted mature ELC protein and to analyze the binding of the ELC protein to a specific receptor on the cell membrane as shown in the following test example, the carboxyl terminus of the ELC is A fusion protein in which phosphatase (SEAP) and histidine tag (His) 6 were fused was prepared. SEAP can be detected and quantified by an immunological method using an enzyme activity anti-SEAP antibody. A histidine tag (His) s having six consecutive amino acid histidines is introduced into Uanknecht et al., Proc. Natl. Acad. Sc, USA 88, which is introduced for affinity purification of a fusion protein using a nickel affinity column. : 8972-8976, 1991). FIG. 5 shows a schematic diagram of a vector pDREF-SEAP (His) s for expressing a fusion protein of ELC and SEAP-(His)-. Preparation of pDREF-SEAP (His) 6 was performed as follows. Using the plasmid pSEAP-Enhancer manufactured by CI ont ech as type II, a DNA encoding the amino acid sequence obtained by adding 6 histidines (His) to SEAP to a 5'-Xbal-AP primer (sequence number
6 ) および 3'- AP(HIS)6- Not l プライマ一 (配列番号 7 ) を用いた PCRにより増 幅した : 6) and amplified by PCR using 3′-AP (HIS) 6 -Notl primer (SEQ ID NO: 7):
5' -Xbal-APプライマー  5'-Xbal-AP primer
5' -CGCTCTAGAAGCTCCGGAATCATCCCAGTTGAGGAGGAGAAC-3' (配列番号 6 ) 5'-CGCTCTAGAAGCTCCGGAATCATCCCAGTTGAGGAGGAGAAC-3 '(SEQ ID NO: 6)
3' -AP(HI S) 6- Notl プライマー  3'-AP (HIS) 6-Notl primer
5' -CGCGCGGCCGCTCAGTGATGGTGATGGTGATGACCCGGGTGCGCGGCGTCGGT-3' (配列番号 7 ) 5'-CGCGCGGCCGCTCAGTGATGGTGATGGTGATGACCCGGGTGCGCGGCGTCGGT-3 '(SEQ ID NO: 7)
得られた DNAを制限酵素 Xbal と Notl で分解後、 pDREF- Hyg (Imai et al. , J. Biol. Chem. 271: 21514-21521, 1996)の Xb a I と No 11サイ トの間に導入して、 pDREF- SEAP(His)sを作製した。 The obtained DNA is digested with restriction enzymes Xbal and Notl, and then introduced between XbaI and No11 site of pDREF-Hyg (Imai et al., J. Biol. Chem. 271: 21514-21521, 1996). Thus, pDREF-SEAP (His) s was prepared.
次に、 図 4に示すように、 pDREF-SEPAP(His)6ベクタ一の Sal I と Xbalサイ ト の間に ELC cDNAの 0RFを挿入し、 ELCが 5個のアミノ酸からなるリンカ一(Se r- Arg- Ser_Ser- Gly)を介して SEAP- (His)6と融合したタンパク質をコードするべク ター pDREF- ELC_SEPAP(His)sを作製した。 このべクタ一を作製するため、 ELCの 全長 0RFをコ一ドする cDNAを ELCの 5' -RACE cDNA (上記) を錶型として、 5' - Sal卜 ELCプライマー (配列番号 4 ) と 3' - ELC-Xba I プライマ一 (配列番号 5 ) を用いた PCRで増幅した。 Next, as shown in Fig. 4, 0RF of the ELC cDNA was inserted between the SalI and Xbal sites of the pDREF-SEPAP (His) 6 vector, and the ELC was composed of 5 amino acid linkers (Se r -A vector pDREF-ELC_SEPAP (His) s encoding a protein fused to SEAP- (His) 6 via Arg- Ser_Ser-Gly) was prepared. To prepare this vector, a cDNA encoding the full-length 0RF of the ELC was prepared by combining the 5'-RACE cDNA (above) of the ELC with the 5'-Salt ELC primer (SEQ ID NO: 4) and the 3 ' -Amplification was performed by PCR using ELC-Xba I primer 1 (SEQ ID NO: 5).
得られた DNAを制限酵素 Sa I I と Xbal で分解後、 pDREF- SEAP (H I S) sの Sal I と Xbalサイ トの間に導入して、 pDREF- ELC- SEAP(HIS)Sを作製した (図 4 ) 。 After degradation resulting DNA with restriction enzymes Sa II and Xbal, and introduced between the pDREF- SEAP (HIS) s Sal I and Xbal sites of was prepared pDREF- ELC- SEAP (HIS) S (FIG. Four ) .
pDREF- ELC-SEAP(HIS)6ベクタ一を 293/EBNA- 1細胞( I nv i t rogen社製)にリボフ ェクタミン(GIBC0- BRL社製)を用いて導入した。 培養 3〜 4 日後、 培養上清を回 収し、 0.22 mmのポアサイズのフィルタ一を通し、 20 mM HEPES ( H 7.4) と The pDREF-ELC-SEAP (HIS) 6 vector was introduced into 293 / EBNA-1 cells (Invitrogen) using ribofectamine (GIBC0-BRL). After 3 to 4 days of culture, collect the culture supernatant, pass through a 0.22 mm pore size filter, and mix with 20 mM HEPES (H 7.4).
0.02¾ ァジ化ナトリウムを加えて 4 °Cに保存した。 0.02 Sodium azide was added and stored at 4 ° C.
( 2 ) 融合タンパク質の定量  (2) Quantification of fusion protein
産生されたヒ ト ELC- SEAP(His)6融合夕ンパク質の定量はサンドイッチ型の酵 素結合免疫吸着法 (Enzyme-Linked Immunosorbent assay: EUSA)により行った' すなわち、 9 6穴マイクロテス 卜プレー ト(Maxsorb) (Nunc社製)を単クローン型 抗胎盤アル力リフォスファターゼ抗体(anti-PLAP) (Medix Biotech社製)(10 mg/ml, 50m Tris-HCI, pH 9. 5)でコートし、 ゥシ血清アルブミン (BSA) (1 mg/ml, リン酸緩衝液 (PBS))で非特異的結合をブロックした。 検体は培養液(10¾! ゥシ胎児血清を含む D- MEM)で希釈し、 マイクロプレー トに加えて室温で 1 時間 反応後、 洗浄液(0.02% Tween- 20を含む PBS)で洗浄し、 1000倍に希釈したビ才 チン化ゥサギ抗 PLAP抗体を加えて 1 時間反応した。 さらに洗浄後、 パーォキシ ダーゼ結合ス トレブトアビジン(Vector社製)を加えて 3 0分間反応した。 洗浄 後、 結合したパ一才キシダ一ゼの活性を 3.3' -5, 5'-テトラメチルベンチジンで 検出した。 反応を 1 N H2S04で停止し、 450 nmの吸光度を測定した。 アルカリフ 才スファターゼ (AP) の活性を Great EscApe Detect ion Ki t (C I on t e c h社製)を 用いたケミルミネセンス法で測定し、 相対光量/秒 (RLU/s) として求めた。 AP 標準曲線の作製は精製胎盤型アル力リフォスファタ一ゼ(Cosmo Βίο社製)を用い て行った。 実際に試験に用いた SEAPと ELC- SEAPは 1 pmol 当たりそれぞれ Quantification of the produced human ELC-SEAP (His) 6 fusion protein was performed by a sandwich-type enzyme-linked immunosorbent assay (EUSA). That is, a 96-well microtest plate (Maxsorb) (manufactured by Nunc) was replaced with a monoclonal anti-placental al-force phosphatase antibody (anti-PLAP) (manufactured by Medix Biotech) (10 mg / ml, 50m Tris-HCI). , pH 9.5) and non-specific binding was blocked with serum albumin (BSA) (1 mg / ml, phosphate buffered saline (PBS)). The sample is diluted with a culture solution (D-MEM containing 10% fetal serum), added to the microplate, reacted for 1 hour at room temperature, washed with a washing solution (PBS containing 0.02% Tween-20), A 1-fold diluted bivalent rabbit heron anti-PLAP antibody was added and reacted for 1 hour. After further washing, peroxidase-conjugated streptavidin (Vector) was added and reacted for 30 minutes. After washing, the activity of the bound peroxidase was detected with 3.3'-5,5'-tetramethylbenzidine. The reaction was stopped with 1 NH 2 SO 4 and the absorbance at 450 nm was measured. The activity of alkaline phosphatase (AP) was measured by a chemiluminescence method using Great EscApe Detection Kit (manufactured by CI on tech) and determined as relative light intensity / second (RLU / s). The preparation of an AP standard curve was performed using purified placenta-type ALPHA rifatatases (manufactured by Cosmo Corporation). SEAP and ELC-SEAP actually used in the test were
1.45x 108 RLU/sと 1.99x 108 RLU/sであった。 1.45x10 8 RLU / s and 1.99x10 8 RLU / s.
試験例 1 Test example 1
組換え ELCタンパク質の細胞遊走活性 Cell migration activity of recombinant ELC protein
実施例 3で得られた組換え ELCを含む培養上清を用いて細胞遊走活性を検討し た。 細胞としてはヒ ト T細胞株 HUT78を用いた ( Itnai et al., J. Biol. Chem. 271 :21514-21521, 1996)。 試験液を培養液 (RPMI- 1640, 20mM Hepes (pH7.4), U BSA)にて希釈し、 4 8ゥエルの走化性チャンバ一 ( chemotaxi s chamber, Neuro Probe社製) の下ゥエルに加え、 上ゥエルには上記培養液に懸濁した  Using the culture supernatant containing the recombinant ELC obtained in Example 3, cell migration activity was examined. The human T cell line HUT78 was used as the cells (Itnai et al., J. Biol. Chem. 271: 21514-21521, 1996). The test solution was diluted with a culture solution (RPMI-1640, 20 mM Hepes (pH 7.4), UBSA) and added to the lower well of a 48-well chemotaxis chamber (chemotaxis chamber, manufactured by Neuro Probe). In the upper well, suspended in the above culture solution
4x105個の T細胞株 HUT78細胞を加えた。 IV型コラーゲン溶液 (5 g/ml水溶 液) で室温、 1 時間コートしたポリ ビニルピロリ ドン不含ポリカーボネー卜膜 (穴径 5 μ m, Neuro Probe社製) で上下ゥエルの分離を行った。 3 7 °Cで 2時 間培養後、 膜を取り外し、 PBSで上側を洗浄し、 固定および染色を行った。 遊走 した細胞は 4 0 0倍の顕微鏡下で、 1 ゥエルにつき無作為に選んだ 5視野につい て数を測定した。 その結果を図 6に示す。 図 6のグラフに示されるように、 ELC をコードするベクターを導入した 293/EBNA- 1細胞の培養上清は HUT78細胞に対 して強い遊走活性を示したが、 ベクターのみを導入した 293/EBNA-1細胞の培養 上清にはそのような遊走活性は検出されなかった。 4 × 10 5 T cell lines HUT78 cells were added. The upper and lower wells were separated using a polyvinylpyrrolidone-free polycarbonate membrane (5 μm pore size, manufactured by Neuro Probe) coated with a type IV collagen solution (5 g / ml aqueous solution) for 1 hour at room temperature. After culturing at 37 ° C for 2 hours, the membrane was removed, the upper side was washed with PBS, and the cells were fixed and stained. The migrated cells were counted under a microscope at a magnification of 400 × for 5 fields selected at random per well. Figure 6 shows the results. As shown in the graph of Fig. 6, the culture supernatant of 293 / EBNA-1 cells transfected with the vector encoding ELC However, such migration activity was not detected in the culture supernatant of 293 / EBNA-1 cells transfected with the vector alone.
試験例 2 Test example 2
ELC- SEAP(His)sの精製と N末端の決定 Purification of ELC-SEAP (His) s and determination of N-terminus
成熟型分泌 ELCの N末端を決定するために ELC- SEAP(His)6の精製を以下のよ うに行なった。 実施例 4で得られた培養上清ろ液 (20mM HEPES (pH7.4)と 0.025! アジ化ナトリウムを含む) に 20mM Tri S- HCI (pH8.0)と 1 OmMイミダゾールを加 え、 A緩衝液 (20mM Tris- HCI (pH8.0) /1 OmMイミダゾ一ル)で平衡化した 1 m I容 量のニッケルァフィ二ティーカラム Ni-NTA- Agarose (QIAGEN社製) にアプライ した。 この ELC- SEAP(His)6融合タンパクの結合したカラムを B緩衝液 (20ιιιΜ Tris-HCI (pH8.0)、 〗0mMイミダゾール、 150mM NaCI)で洗浄後、 緩衝液 C (20m Tris-HCI (pH8.0) , lOOmMイミダゾ一ル、 150mM NaC I )により溶出した。 ELC- SEAP(His)6融合夕ンパク質を含むフラクションは SDS- PAGEを用いて同定した。 この精製 ELC- SEAP(His)6融合夕ンパク質の N末端アミノ酸配列は、 アミノ酸シ 一ケンサ一 (島津社製) を用いて決定し、 Gly- Thr- Asn- Asp- Ala- Glu-Aspであつ た。 このアミノ酸配列は、 図 1 に示した塩基配列から推定されるアミノ酸配列の うち、 推定されるシグナル配列の切断部位である 2 〗 位のセリン残基と 2 2位の グリシン残基の間でシグナルペプチドが切断され、 7 7個のアミノ酸からなる成 熟型分泌 ELCタンパク質となったときに予想される N末端アミノ酸配列と完全に 一致した。 Purification of ELC-SEAP (His) 6 was performed as follows to determine the N-terminus of mature secreted ELC. Add 20 mM Tri S-HCI (pH 8.0) and 1 OmM imidazole to the culture supernatant filtrate (containing 20 mM HEPES (pH 7.4) and 0.025! Sodium azide) obtained in Example 4, and add A buffer. The solution was applied to a 1 mI nickel affinity column Ni-NTA-Agarose (manufactured by QIAGEN) equilibrated with a liquid (20 mM Tris-HCI (pH 8.0) / 1 OmM imidazole). The column to which the ELC-SEAP (His) 6 fusion protein was bound was washed with B buffer (20 litter Tris-HCI (pH 8.0),〗 0 mM imidazole, 150 mM NaCI), and then buffer C (20 m Tris-HCI (pH 8) .0), 100 mM imidazole, 150 mM NaCl). The fractions containing the ELC-SEAP (His) 6 fusion protein were identified using SDS-PAGE. The N-terminal amino acid sequence of this purified ELC-SEAP (His) 6 fusion protein was determined using an amino acid sequencer (manufactured by Shimadzu) and analyzed using Gly-Thr-Asn-Asp-Ala-Glu-Asp. It was hot. This amino acid sequence contains a signal between the serine residue at position 2 2 and the glycine residue at position 22 which are the cleavage sites of the deduced signal sequence in the amino acid sequence deduced from the nucleotide sequence shown in Fig. 1. The peptide was completely cleaved to completely match the N-terminal amino acid sequence expected when a mature secreted ELC protein consisting of 77 amino acids was obtained.
試験例 3 Test example 3
ELC- SEAP(His)fi融合夕ンパク質の各種ケモカインレセプターへの結合試験 Binding test of ELC-SEAP (His) fi fusion protein to various chemokine receptors
実施例 4で得られた ELC- SEAP(His)6融合夕ンパク質を用いて既にクローン化 され報告されているケモカインレセプ夕一 8種、 すなわち、 CCR1 (Neote et al. , Cel l 72: 415-425, 〗 993)、 CCR2 (Charo et aし, Pro Natl. Acad. Sc i. USA 91 : 2752-2756, 1994)、 CCR3 (Ki taura et al. , J. Bioに Chem. 271: 7725- 7730, 1996)、 CCR4 (Power et al. , J. Biol. Chem. 270: 19495-19500, 1995)、 CCR5 (K i taura et a I. , J. Biol. Chem. 271: 7725-7730, 1996), BLR1 (Dobner et al. , Eur. J. Immuno I. 22: 2795-2799, 1992)、 EBI-1 (Bi rkenbach et al. , J. Vi rol. 67: 2209-2220, 〗 993)、 LESTR (Loetscher et al. , J. Biol. Chem. 269: 232-237, 1994)との結合性を検討した。 それぞれのケモカインレセプター を発現する細胞は以下のように作製した。 まず pDREF- Hygベクター (Imai et al. , J. Biol. Chem. 271 : 21514-21521 , 1996)の Xba I と No 11サイ トの間に 8種 類のケモカインレセプターの ORFに対応する cDNAを挿入して発現べクタ一を作 製した。 つぎに、 それぞれの発現べクタ一をヒ 卜胎児腎臓由来 293/EBNA-1細胞 ( Invi trogen社製) にリポフエクタミン(G i bco- BRL)を用いて導入し、 発現させ た。 培養 2 日後に細胞を回収し、 20 mM HEPES (pH 7.4), ] % BSA, 0.02¾ アジ化 ナトリウムを含む RPM卜 1640に懸濁し、 〗 μ Mの ELC-SEAP(His)6と 4x105の細胞 を 200 μ I の溶液中で室温 1 時間反応させた。 洗浄後、 細胞を 50 I の 1¾ Tri ton X- 100を含む 10 β M Tr i s-HCI (pH 8.0)で溶解し、 細胞に由来するフォ スファタ一ゼを 6 5 °Cで 1 0分間の処理で不活化し、 遠心後、 25 ml の上清中の AP活性を測定した。 その結果、 図 6に示すように ELC- SEAP(His)6はこれまで特 異的なリガンドが知られていなかった才ーファンレセプタ一 EB卜 1 (Bi rkenbach et al. , J. Vi rol. 67:2209-2220, 1993)と特異的に結合することが明らかとな つた。 産業上の利用可能性 Using the ELC-SEAP (His) 6 fusion protein obtained in Example 4, the chemokine receptor 8 species already cloned and reported, that is, CCR1 (Neote et al., Cell 72: 415) -425,〗 993), CCR2 (Charo et a, Pro Natl. Acad. Sci. USA 91: 2752-2756, 1994), CCR3 (Ki taura et al., J. Bio Chem. 271: 7725-) 7730, 1996), CCR4 (Power et al., J. Biol. Chem. 270: 19495-19500, 1995), CCR5 (Kitaura et al., J. Biol. Chem. 271: 7725-7730, 1996) ), BLR1 (Dobner et al., Eur.J. Immuno I. 22: 2795-2799, 1992), EBI-1 (Birkenbach et al., J. Virol. 67: 2209-2220, 993) and LESTR (Loetscher et al., J. Biol. Chem. 269: 232-237, 1994). Cells expressing each chemokine receptor were prepared as follows. First, cDNAs corresponding to ORFs of eight chemokine receptors were inserted between Xba I and No. 11 site of pDREF-Hyg vector (Imai et al., J. Biol. Chem. 271: 21514-21521, 1996). Thus, an expression vector was produced. Next, each of the expression vectors was introduced into 293 / EBNA-1 cells derived from human fetal kidney (Invitrogen) using lipofectamine (Gibco-BRL) and expressed. After 2 days of culture, the cells were collected, suspended in RPM 1640 containing 20 mM HEPES (pH 7.4),]% BSA, 0.02 sodium azide, and〗 μM of ELC-SEAP (His) 6 and 4 × 10 5 The cells were reacted for 1 hour at room temperature in a solution of 200 µI. After washing, the cells are lysed with 10 β M Tris-HCI (pH 8.0) containing 50 I of 1¾ Triton X-100, and the phosphatase derived from the cells is incubated at 65 ° C for 10 minutes. After inactivation by treatment and centrifugation, the AP activity in 25 ml of the supernatant was measured. As a result, as shown in FIG. 6, ELC-SEAP (His) 6 is a novel receptor for which no specific ligand has been known so far--EB 1 (Birkenbach et al., J. Virol. 67: 2209-2220, 1993). Industrial applicability
白血球の遊走と組織への浸潤を誘導するケモカインは生体内での炎症反応や免 疫反応にとって必須の物質である。 ケモカインには現在、 主に CXC型と CC型が 知られており、 それぞれに複数の種類が存在し、 産生組織、 産生細胞、 産生を誘 導する刺激の種類、 産生誘導から産生停止に到る反応時間、 遊走を誘導する標的 細胞の種類、 特異的レセプターの存在、 などに関し相互に異なる性質を示す。  Chemokines, which induce leukocyte migration and infiltration into tissues, are essential substances for inflammatory and immune responses in vivo. Currently, CXC type and CC type are mainly known as chemokines, and there are multiple types of each type, ranging from producing tissues, producing cells, types of stimuli to induce production, induction of production to production cessation They exhibit different properties with respect to reaction time, types of target cells that induce migration, and the presence of specific receptors.
ELCはリンパ球に選択的に発現する Gタンパク質共役 7回膜貫通型レセプター EB卜 1 (Bi rkenbach et al. , J. Vi rol. 67: 2209-2220, 1993)に特異的に結合し、 また T細胞に対して遊走活性を示すことにより、 リ ンパ球が関与する急性あるい は慢性の炎症反応や免疫反応に関与することが容易に予想される。 そのため本発 明の ELCは、 そのさらなる機能解明により、 リ ンパ球の関わる炎症反応や免疫反 応を理解し、 またそのような現象を誘導したり抑制したりするあらたな手段を提 供する。 ELC specifically binds to G protein-coupled seven-transmembrane receptor EB1 (Birkenbach et al., J. Virol. 67: 2209-2220, 1993), which is selectively expressed on lymphocytes. By exhibiting chemotactic activity on T cells, it is easily expected that they will participate in acute or chronic inflammatory and immune responses involving lymphocytes. Therefore, the ELC of the present invention, through further elucidation of its functions, understands the inflammatory and immune reactions involving lymphocytes and provides a new means to induce or suppress such phenomena. Offer.
また、 本発明 ELCは、 リンパ節、 盲腸、 胸腺、 脾臓、 などのリンパ系組織では かなりのレベルで構成的に発現していることから、 正常の生体でもリンパ球の体 内動態、 すなわち体内循環やリ ンパ組織でのホーミング、 を制御したり、 またリ ンパ組織でのリンパ球の移動と定着、 成熟分化、 抗原認識、 生存、 増殖、 等に関 与していることが予想される。 そのため、 本発明の ELCは、 その機能解明により、 各種リンパ系組織でのリンパ球の移動と定着、 分化成熟、 抗原認識、 細胞の増殖 や生存の調節、 等を理解するのに役立ち、 またそのような現象を調節するのに有 用な手段を提供する。 すなわち本発明で提供される ELCのタンパク質あるいはそ の変異体は、 生体内での ELCの作用を増強したり、 抑制したりすることにより、 ELCの関与する生理的あるいは病理的な生体反応を調節することを可能とする。 本発明によって提供される ELCと EB卜 1 との特異的な結合は、 リ ンパ球で選択 的に発現されており、 また Eps ta i n- Barr vi rus、 Human Herpesvi rus 6、 Human Herpesvi rus 7などのリンパ好性へルぺスウィルスの感染によってリンパ球での 発現が強く誘導される EBI-1 の生理機能や病理機能を解明するためのあらたな 手段を提供する。 また ELCと EB卜 1 との特異的な結合を阻止したり、 ELCと EB卜 1の結合によリ引き起こされる生物作用を促進したり抑制するための EBI- 1 に対 するアンタゴニス トやァゴニス トなどを探索し評価するための手段を提供する。  In addition, the ELC of the present invention is constitutively expressed at a considerable level in lymphoid tissues such as lymph nodes, cecum, thymus, spleen, etc. And homing in lymphoid tissues, and is expected to be involved in lymphocyte migration and settlement, maturation and differentiation, antigen recognition, survival, proliferation, etc. in lymphoid tissues. Therefore, the ELC of the present invention, by elucidating its function, is useful for understanding lymphocyte migration and settlement in various lymphoid tissues, differentiation and maturation, antigen recognition, regulation of cell growth and survival, etc. It provides useful tools to control such phenomena. That is, the ELC protein or a mutant thereof provided by the present invention regulates a physiological or pathological biological reaction involving ELC by enhancing or suppressing the action of ELC in vivo. It is possible to do. The specific binding between ELC and EB1 provided by the present invention is selectively expressed on lymphocytes, and is expressed by Epstein-Barr virus, Human Herpesvirus 6, Human Herpesvirus7. It provides a new means to elucidate the physiological and pathological functions of EBI-1, whose expression in lymphocytes is strongly induced by infection with lymphophilic herpes virus such as E. coli. Antagonists and agonists against EBI-1 to block the specific binding of ELC to EB-1 and to promote or suppress the biological effects caused by the binding of ELC to EB-1 It provides a means for searching and evaluating.
ELCと EB卜 1 との結合反応に対するアン夕ゴニス トゃァゴニス トなどは、 ELCや EBI-1が関与する生理的あるいは病理的な生体反応の調節を可能にする。 さらに、 各種のリンパ好性ウィルスの感染に伴う宿主リンパ球での EBI- 1の発現誘導は、 それらのリンパ好性ウィルスの急性感染、 潜伏感染、 あるいは再活性化、 などに 対しなんらかの重要な役割を担うと考えられ、 そのため ELCタンパク質あるいは その変異体、 あるいは EBI-1 に対するァゴニス ト、 インバースァゴニストあるい はアンタゴニストはリンパ好性へルぺスウィルスの感染症に対し治療効果を示す ことが期待される。 Angiogonist agonists and the like for the binding reaction between ELC and EB-1 can regulate physiological or pathological biological reactions involving ELC and EBI-1. In addition, induction of EBI-1 expression in host lymphocytes following infection with various lymphophilic viruses plays an important role in the acute, latent, or reactivation of those lymphophilic viruses. Therefore, agonists, inverse agonists or antagonists to ELC protein or its variants, or EBI-1 are expected to show therapeutic effects against lymphophilic herpesvirus infection Is done.
また本発明によって提供される ELCを全長あるいは部分的にコ一 ドするポリヌ クレオチド (DNAあるいは RNA、 2本鎖あるいは 1 本鎖) は、 適当な方法により そのままポリヌクレオチドとして生体内に投与したり、 適当なベクターに導入し て生体外で細胞に導入してその細胞 (形質転換細胞) を体内に戻したり、 あるい は適当なベクターに導入して直接体内に投与したり しうる。 それによつて、 目的 とする組織や細胞での ELC夕ンパク質の産生を増強したり抑制したりすることが 可能となり、 癌、 ウィルスやその他の微生物による感染症、 ELC遺伝子の構造や 発現の異常をともなう疾患、 などへの治療法に有用である。 The polynucleotide (DNA or RNA, double-stranded or single-stranded) encoding the ELC provided by the present invention in full length or in part can be directly administered to a living body as a polynucleotide by an appropriate method. Into a suitable vector The cells (transformed cells) can be returned to the body by introducing them into cells outside the body, or they can be introduced directly into a suitable vector and introduced into the body. As a result, it is possible to enhance or suppress the production of ELC protein in target tissues and cells, and to infect cancers, infectious diseases caused by viruses and other microorganisms, and to impair the structure and expression of ELC genes. It is useful for the treatment of diseases associated with
また、 本発明によって提供される ELCの塩基配列、 ELCを全長あるいは部分的 にコードするポリヌクレオチド (DNAあるいは RNA) 、 ELCに対する特異的抗体 は、 ELCの遺伝子変異を検出し解析するのに有用であり、 また ELCの遺伝子発現 ( mRNA) やタンパク質の発現を特異的に検出し定量することに有用である。 それ によって ELC遺伝子や ELCタンパク質の関与する血液系疾患、 免疫系疾患、 感染 症、 癌、 などの診断や原因究明にあらたな手段を提供し、 またそのような疾患の 診断および治療にあらたな手段を提供することが期待される。 In addition, the nucleotide sequence of ELC, a polynucleotide (DNA or RNA) that encodes ELC in full length or part, and a specific antibody against ELC provided by the present invention are useful for detecting and analyzing ELC gene mutation. It is also useful for specifically detecting and quantifying ELC gene expression (mRNA) and protein expression. This provides a new means for diagnosis and investigation of the causes of blood system diseases, immune system diseases, infectious diseases, cancers, etc. involving the ELC gene and ELC protein, and new means for diagnosis and treatment of such diseases. It is expected to provide.
配列表 Sequence listing
配列番号 : 1 SEQ ID NO: 1
配列の長さ : 687 Array length: 687
配列の型 : 核酸 Sequence type: nucleic acid
鎖の数 : 二本鎖 Number of chains: double strand
トポロジー : 直鎖状 Topology: linear
配列の種類 : cDNA to mRNA Sequence type: cDNA to mRNA
起源 Origin
生物名 : ヒ 卜  Organism name: human
配列の特徴 Array features
特徴を表わす記号 : CDS  Characteristic symbol: CDS
存在位置 : 139..432  Location: 139..432
特徴を決定した方法 : S  How the feature was determined: S
CATTCCCAGC CTCACATCAC TCACACCTTG CATTTCACCC CTGCATCCCA GTCGCCCTGC 60 AGCCTCACAC AGATCCTGCA CACACCCAGA CAGCTGGCGC TCACACATTC ACCGTTGGCC 120 TGCCTCTGTT CACCCTCC ATG GCC CTG CTA CTG GCC CTC AGC CTG CTG GTT 171 CATTCCCAGC CTCACATCAC TCACACCTTG CATTTCACCC CTGCATCCCA GTCGCCCTGC 60 AGCCTCACAC AGATCCTGCA CACACCCAGA CAGCTGGCGC TCACACATTC ACCGTTGGCC 120 TGCCTCTGTT CACCCTCC ATG GCC CTG CTA CTG GCC CTC AGC CTG CTG GTT 171
Met A I a Leu Leu Leu Ala Leu Se r Leu Leu Va I  Met A I a Leu Leu Leu Ala Leu Ser r Leu Leu Va I
10  Ten
CTC TGG ACT TCC CCA GCC CCA ACT CTG AGT GGC ACC AAT GAT GCT GAA 219 Leu Trp Thr Ser Pro A I a Pro Thr Leu Ser G I y Th r Asn Asp A I a G I u  CTC TGG ACT TCC CCA GCC CCA ACT CTG AGT GGC ACC AAT GAT GCT GAA 219 Leu Trp Thr Ser Pro A Ia Pro Thr Leu Ser G IyThr Asn Asp AIa G Iu
20  20
GAC TGC TGC CTG TCT GTG ACC CAG AAA CCC ATC CCT GGG TAC ATC GTG 267 Asp Cys Cys Leu Ser Va I Thr Gin Lys Pro l ie Pro Gl y Tyr l ie Va I  GAC TGC TGC CTG TCT GTG ACC CAG AAA CCC ATC CCT GGG TAC ATC GTG 267 Asp Cys Cys Leu Ser Va I Thr Gin Lys Pro lie Pro Gly y Tyr lie Va I
30 40  30 40
AGG AAC TTC CAC TAC CTT CTC ATC AAG GAT GGC TGC AGG GTG CCT GCT 315 Arg Asn Phe His Tyr Leu Leu l ie Lys Asp G I y Cys Arg Va I Pro A I a AGG AAC TTC CAC TAC CTT CTC ATC AAG GAT GGC TGC AGG GTG CCT GCT 315 Arg Asn Phe His Tyr Leu Leu lie Lys Asp G I y Cys Arg Va I Pro A Ia
50  50
GTA GTG TTC ACC ACA CTG AGG GGC CGC CAG CTC TGT GCA CCC CCA GAC 363 Val Val Phe Thr Thr Leu Arg Gl Arg Gin Leu Cys Ala Pro Pro AspGTA GTG TTC ACC ACA CTG AGG GGC CGC CAG CTC TGT GCA CCC CCA GAC 363 Val Val Phe Thr Thr Leu Arg Gl Arg Gin Leu Cys Ala Pro Pro Asp
60 70 60 70
CAG CCC TGG GTA GAA CGC ATC ATC CAG AGA CTG CAG AGG ACC TCA GCC 411 CAG CCC TGG GTA GAA CGC ATC ATC CAG AGA CTG CAG AGG ACC TCA GCC 411
Gin Pro Trp Val G I u Arg Me l ie Gin Arg Leu Gin Arg Thr Ser A I a Gin Pro Trp Val G I u Arg Me lie Gin Arg Leu Gin Arg Thr Ser A I a
80 90  80 90
AAG ATG AAG CGC CGC AGC AGT TAA C CTATGACCG TGCAGAGGGA GCCCGGAGTC 465 Ly s Met Lys Arg Arg Ser Ser  AAG ATG AAG CGC CGC AGC AGT TAA C CTATGACCG TGCAGAGGGA GCCCGGAGTC 465 Lys Met Lys Arg Arg Ser Ser
CGAGTCAAGC ATTGTGAATT ATTACCTAAC CTGGGGAACC GAGGACCAGA AGGAAGGACC 525CGAGTCAAGC ATTGTGAATT ATTACCTAAC CTGGGGAACC GAGGACCAGA AGGAAGGACC 525
AGGCTTCCAG CTCCTCTGCA CCAGACCTGA CCAGCCAGGA CAGGGCCTGG GGTGTGTGTG 585AGGCTTCCAG CTCCTCTGCA CCAGACCTGA CCAGCCAGGA CAGGGCCTGG GGTGTGTGTG 585
AGTGTGAGTG TGAGCGAGAG GGTGAGTGTG GTCAGAGTAA AGCTGCTCCA CCCCCAGATT 645AGTGTGAGTG TGAGCGAGAG GGTGAGTGTG GTCAGAGTAA AGCTGCTCCA CCCCCAGATT 645
GCAATGCTAC CAATAAAGCC GCCTGGTGTT TACAACTAAT TG 687 配列番号 : 2 GCAATGCTAC CAATAAAGCC GCCTGGTGTT TACAACTAAT TG 687 SEQ ID NO: 2
配列の長さ : 25 Array length: 25
配列の型 : 核酸 Sequence type: nucleic acid
鎖の数 : 一本鎖 Number of chains: single strand
トポロジー : 直鎖状 Topology: linear
配列の種類 : 他の核酸 合成 DNA Sequence type: Other nucleic acid Synthetic DNA
配列 Array
GAGCCCGGAG TCCGAGTCAA GCATT 25 配列番号 3  GAGCCCGGAG TCCGAGTCAA GCATT 25 SEQ ID NO: 3
配列の長さ : 25 Array length: 25
配列の型 : 核酸 Sequence type: nucleic acid
鎖の数 : 一本鎖 Number of chains: single strand
トポロジー : 直鎖状 Topology: linear
配列の種類 : 他の核酸 合成 DNA Sequence type: Other nucleic acid Synthetic DNA
配列 CTCTGACCAC ACTCACCCTC TCGCT 25 配列番号 4 Array CTCTGACCAC ACTCACCCTC TCGCT 25 SEQ ID NO: 4
配列の長さ : 33 Array length: 33
配列の型 : 核酸 Sequence type: nucleic acid
鎖の数 : 一本鎖 Number of chains: single strand
トポロジー : 直鎖状  Topology: linear
配列の種類 : 他の核酸 合成 DNA Sequence type: Other nucleic acid Synthetic DNA
配列 Array
CGCGTCGACC CCTCCATGGC CCTGCTACTG GCC 33 配列番号 5  CGCGTCGACC CCTCCATGGC CCTGCTACTG GCC 33 SEQ ID NO: 5
配列の長さ : 33 Array length: 33
配列の型 : 核酸 Sequence type: nucleic acid
鎖の数 : 一本鎖 Number of chains: single strand
トポロジー : 直鎖状 Topology: linear
配列の種類 : 他の核酸 合成 D NA Sequence type: Other nucleic acid Synthetic DNA
配列 Array
CGCTCTAGAA CTGCTGCGGC GCTTCATCTT G GC 33 配列番号 6  CGCTCTAGAA CTGCTGCGGC GCTTCATCTT G GC 33 SEQ ID NO: 6
配列の長さ : 42 Array length: 42
配列の型 : 核酸 Sequence type: nucleic acid
鎖の数 : 一本鎖 Number of chains: single strand
卜ポロジ一 : 直鎖状 Topology: Linear
配列の種類 : 他の核酸 合成 DNA Sequence type: Other nucleic acid Synthetic DNA
配列 Array
CGCTCTAGAA GCTCCGGAAT CATCCCAGTT GAGGAGGAGA AC 42 配列番号 1 CGCTCTAGAA GCTCCGGAAT CATCCCAGTT GAGGAGGAGA AC 42 SEQ ID NO: 1
配列の長さ : 53 Array length: 53
配列の型 : 核酸 Sequence type: nucleic acid
鎖の数 : 一本鎖 Number of chains: single strand
トポロジー : 直鎖状 Topology: linear
配列の種類 : 他の核酸 合成 DNA Sequence type: Other nucleic acid Synthetic DNA
配列 Array
CGCGCGGCCG CTCAGTGATG GTGATGGTGA TGACCCGGGT GCGC GGCGT C GGT 53  CGCGCGGCCG CTCAGTGATG GTGATGGTGA TGACCCGGGT GCGC GGCGT C GGT 53

Claims

請 求 の 範 囲 The scope of the claims
1 . リンパ球系細胞において選択的に発現しているレセプター EB卜 1のリ ガンドである免疫系組織で構成的に発現しているヒ ト CC型ケモカインもしくは その変異体またはそれらの断片であるタンパク質。 1. Human CC-type chemokine or its variant or a fragment thereof, which is constitutively expressed in the immune system tissue, which is a ligand of the receptor EB-1 that is selectively expressed in lymphoid cells. .
2 . 配列番号 〗のアミノ酸残基 2 2から 9 8のアミノ酸配列を有するヒ 卜 CC型ケモカイン、 またはこの配列に 1 または数個のアミノ酸残基の置換、 欠失、 挿入、 付加の中から選ばれる少なくとも 1 つを含む配列を有しかつ該ヒ 卜 C C型 ケモカインの機能または活性と実質的に同じ程度である機能または活性を有する 該ヒ 卜型 C Cケモカインの変異体、 またはこれらの断片である請求項 1 記載の夕 ンパク質。  2. A human CC-type chemokine having the amino acid sequence of amino acids 22 to 98 of SEQ ID NO: ま た は, or one or several amino acid residues substituted, deleted, inserted, or added to this sequence. A variant of said human CC-type chemokine having a sequence containing at least one of said human CC-type chemokines and having a function or activity substantially the same as the function or activity of said human CC-type chemokine, or a fragment thereof. The protein of claim 1.
3 . 配列番号 1のアミノ酸残基 2 2から 9 8のアミノ酸配列を有するヒ 卜 CC型ケモカインの配列に 1 または数個のアミノ酸残基の置換、 欠失、 挿入、 付 加の中から選ばれる少なく とも 1 つを含む配列を有しかつ該ヒ ト CC型ケモカイ ンのアンタゴニス 卜として機能する該ヒ ト CC型ケモカインの変異体、 またはそ の断片である請求項 1 記載のタンパク質。  3. Amino acid residue of SEQ ID NO: 1 It is selected from substitution, deletion, insertion and addition of one or several amino acid residues to the sequence of human CC type chemokine having an amino acid sequence of 22 to 98. 2. The protein according to claim 1, which is a mutant of said human CC-type chemokine, which has a sequence containing at least one and functions as an antagonist of said human CC-type chemokine, or a fragment thereof.
4 . 配列番号 1 のアミノ酸残基 1 から 9 8のアミノ酸配列を有するヒ ト CC 型ケモカイン、 またはこの配列に 1 または数個のアミノ酸残基の置換、 欠失、 挿 入、 付加の中から選ばれる少なく とも 1 つを含む配列を有しかつ該ヒ 卜 CC型ケ モカインの機能または活性と実質的に同じ程度である機能または活性を有する該 ヒ ト CC型ケモカインの変異体、 またはそれらの断片である請求項 1 記 Kのタン パク質。  4. A human CC-type chemokine having the amino acid sequence of amino acid residues 1 to 98 of SEQ ID NO: 1, or one or several amino acid residues substituted, deleted, inserted or added to this sequence. A variant of said human CC-type chemokine having a sequence comprising at least one of said human CC-type chemokines and having a function or activity substantially the same as the function or activity of said human CC-type chemokine, or a fragment thereof. The protein of claim 1, which is:
5 . 配列番号 1 のアミノ酸残基 1 から 9 8のアミノ酸配列を有するヒ ト CC 型ケモカインの配列に 1 または数個のアミノ酸残基の置換、 欠失、 挿入、 付加の 中から選ばれる少なくとも 1 つを含む配列を有しかつ該ヒ ト CC型ケモカインの アンタゴニス トとして機能する該ヒ 卜 CC型ケモカインの変異体、 またはその断 片である請求項 1 記載のタンパク質。  5. At least one selected from substitution, deletion, insertion, and addition of one or several amino acid residues in the sequence of human CC-type chemokine having the amino acid residues 1 to 98 of SEQ ID NO: 1 2. The protein according to claim 1, which is a mutant of said human CC-type chemokine, which has a sequence containing the same and functions as an antagonist of said human CC-type chemokine, or a fragment thereof.
6 . 請求項 1から 5までのいずれかに記載のタンパク質を含有する医薬組成 物。 6. A pharmaceutical composition containing the protein according to any one of claims 1 to 5.
7 . 請求項 〗から 5までのいずれかに記載のタンパク質に対する抗体。 7. An antibody against the protein according to any one of claims 1 to 5.
8 . 単クローン抗体である請求項 7記載の抗体。 8. The antibody according to claim 7, which is a monoclonal antibody.
9 . 請求項 8に記載の単クローン抗体を産生するハイプリ ドーマ細胞。 9. A hybridoma cell producing the monoclonal antibody according to claim 8.
1 0 . 請求項 1から 5までのいずれかに記載のタンパク質をコードするポリ ヌクレオチド分子。 10. A polynucleotide molecule encoding the protein according to any one of claims 1 to 5.
1 1 . 配列番号 1 の 2 0 2位の Gから 4 3 2位の Tまでの塩基配列を含む請 求項 1 0記載のポリヌクレオチド分子、 またはその塩基置換、 塩基付加もしくは アレル変異による変異体。  11. The polynucleotide molecule according to claim 10, comprising the nucleotide sequence from G at position 202 to T at position 432 in SEQ ID NO: 1, or a variant thereof by base substitution, base addition or allelic variation. .
1 2 . 配列番号 1 の 1 3 9位の Aから 4 3 2位の Tまでの塩基配列を含む請 求項 1 0記載のポリヌクレオチド分子、 またはその塩基置換、 塩基付加もしくは ァレル変異による変異体。  12. The polynucleotide molecule according to claim 10, comprising the nucleotide sequence from A at position 13 to T at position 43 in SEQ ID NO: 1, or a variant thereof by base substitution, base addition or allelic mutation .
1 3 . 配列番号 1 の 1 位の Cから 6 8 7位の Gまでの塩基配列の一部と相補 的な配列を有する才リゴヌクレオチド分子、 またはその塩基置換、 塩基付加、 ァ レル変異による変異体であって、 請求項 1 記載のタンパク質の活性または機能を 阻害する分子。  1 3. A ligated nucleotide molecule having a sequence complementary to a part of the nucleotide sequence from C at position 1 to G at position 687 of SEQ ID NO: 1, or mutation due to base substitution, base addition, or allelic mutation thereof A molecule that inhibits the activity or function of the protein according to claim 1, which is a body.
1 4 . 請求項 9から 1 3までのいずれかに記載のポリヌクレオチド分子を含 有するベクター。  14. A vector comprising the polynucleotide molecule according to any one of claims 9 to 13.
1 5 . 発現ベクターまたは治療用べクタ一である請求 1頁 1 4記載のベクター。 15. The vector according to claim 1 which is an expression vector or a therapeutic vector.
1 6 . 請求項 1 5記載の発現ベクターを宿主細胞に導入して得られる形質転 換体。 16. A transformant obtained by introducing the expression vector according to claim 15 into a host cell.
1 7 . 請求項 1 6記載の形質転換株を培養し、 産生されたタンパク質を回収 することを特徴とする、 請求項 1 から 5までのいずれかに記載のタンパク質を製 造する方法。  17. A method for producing the protein according to any one of claims 1 to 5, wherein the transformant according to claim 16 is cultured, and the produced protein is recovered.
1 8 . 請求項 1 0から 1 3までのいずれかに記載のポリヌクレオチド分子ま たはその変異体を含有する医薬組成物。  18. A pharmaceutical composition comprising the polynucleotide molecule according to any one of claims 10 to 13 or a variant thereof.
1 9 . 請求項 1 5記載の治療用ベクターを含有する医薬組成物。  19. A pharmaceutical composition comprising the therapeutic vector according to claim 15.
2 0 . 請求項 1 から 5までのいずれかに記載の夕ンパク質と E B 1 - 1 レセプタ 一との結合による作用に対するァゴニスト、 インバースァゴニス トまたはアンタ ゴニストをスクリーニングする方法であって、 該ァゴ二スト、 インバースァゴニ ストまたはアンタゴニス トを含むと推定される試料を該タンパク質と該タンパク 質の特異的レセプターとの結合反応系に加えてその結合阻止を測定し、 あるいは 該タンパク質の特異的なレセプターと直接反応させて、 そのレセプターに対する 結合性および/または反応性を測定する工程を包含する方法。 20. A method for screening an agonist, an inverse agonist, or an antagonist for the effect of binding of the protein according to any one of claims 1 to 5 to an EB1-1 receptor. Agagonist, Inverse Agoni A sample presumed to contain a test or antagonist is added to a binding reaction system between the protein and a specific receptor for the protein, and the inhibition of the binding is measured, or the sample is reacted directly with the specific receptor for the protein. Measuring the binding and / or reactivity to its receptor.
2 1 . 請求項 2 0に記載の方法によって得ることのできる、 請求項 1 から 5 までのいずれかに記載のタンパク質と EBI-1 レセプターとの結合による作用に対 するァゴニス卜、 インバースァゴニス トまたはアンタゴニス 卜。  21. An agonist, an inverse agonis, which can be obtained by the method according to claim 20 and exerts an action on the binding of the protein according to any one of claims 1 to 5 to an EBI-1 receptor. Or antagonist.
PCT/JP1997/004573 1996-12-13 1997-12-12 Human cc chemokine elc WO1998026071A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU54106/98A AU5410698A (en) 1996-12-13 1997-12-12 Human cc chemokine elc

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33373096 1996-12-13
JP8/333730 1996-12-13

Publications (1)

Publication Number Publication Date
WO1998026071A1 true WO1998026071A1 (en) 1998-06-18

Family

ID=18269322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004573 WO1998026071A1 (en) 1996-12-13 1997-12-12 Human cc chemokine elc

Country Status (2)

Country Link
AU (1) AU5410698A (en)
WO (1) WO1998026071A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009151A1 (en) * 1998-08-17 2000-02-24 Schering Corporation Regulation of dendritic cell trafficking

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996022374A1 (en) * 1995-01-19 1996-07-25 Incyte Pharmaceuticals, Inc. A new chemokine expressed in fetal spleen, its production and uses
WO1996024668A1 (en) * 1995-02-08 1996-08-15 Human Genome Sciences, Inc. Human chemokine beta-11 and human chemokine alpha-1
WO1996039522A1 (en) * 1995-06-05 1996-12-12 Human Genome Sciences, Inc. Human chemokine beta-11 and human chemokine alpha-1
WO1997015594A1 (en) * 1995-10-24 1997-05-01 Smithkline Beecham Corporation Novel chemokine for mobilizing stem cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996022374A1 (en) * 1995-01-19 1996-07-25 Incyte Pharmaceuticals, Inc. A new chemokine expressed in fetal spleen, its production and uses
WO1996024668A1 (en) * 1995-02-08 1996-08-15 Human Genome Sciences, Inc. Human chemokine beta-11 and human chemokine alpha-1
WO1996039522A1 (en) * 1995-06-05 1996-12-12 Human Genome Sciences, Inc. Human chemokine beta-11 and human chemokine alpha-1
WO1997015594A1 (en) * 1995-10-24 1997-05-01 Smithkline Beecham Corporation Novel chemokine for mobilizing stem cells

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. BIOL. CHEM., 272(21), (1997), YOSHIDA R. et al., "Molecular Cloning of a Novel Human CC Chemokine EBI1-Ligand Chemokine that is a Specific Functional Ligand for EBI1, CCR7", p. 13803-13809. *
J. IMMUNOL., 158(3), (1997), ROSSI D.L. et al., "Identification Through Bioinformatics of Two New Macrophage Proinflammatory Human Chemokines", p. 1033-1036. *
J. VIROL., 68(8), (1994), HASEGAWA H. et al., "Induction of G Protein-Coupled Peptide Receptor EBI 1 by Human Herpesvirus 6 and 7 Infection in CD4+ T Cells", p. 5326-5329. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009151A1 (en) * 1998-08-17 2000-02-24 Schering Corporation Regulation of dendritic cell trafficking

Also Published As

Publication number Publication date
AU5410698A (en) 1998-07-03

Similar Documents

Publication Publication Date Title
US7175988B2 (en) Human G-protein Chemokine Receptor (CCR5) HDGNR10
US7501123B2 (en) Human G-protein chemokine receptor (CCR5) HDGNR10
CN1227265C (en) Antibodies to CCR5
JP4502408B2 (en) CXCR3 chemokine receptor, antibody, nucleic acid and method of use
US20090286956A1 (en) DELTA3, FTHMA-070, TANGO85, TANGO77, SPOIL, NEOKINE, TANGO129, and INTEGRIN ALPHA SUBUNIT Protein and nucleic acid molecules and uses thereof
US20090047735A1 (en) Antibodies Against Human G-Protein Chemokine Receptor (CCR5) HDGNR10
JP2008178408A (en) Human pf4a receptor and use of the same
JPH08503463A (en) C-CCKR-1, CC chemokine receptor
JPH11243960A (en) Human chemokine cc eotaxin 3
EP1366058B1 (en) Human g-protein chemokine receptor (ccr5) hdgnr10
JP4754143B2 (en) Chemokine receptor
WO1998017800A1 (en) Novel human cc chemokine larc
JP2000508527A (en) Monocyte chemotactic protein-5 substances and methods
AU2002250032A1 (en) Human G-protein chemokine receptor (CCR5) HDGNR10
WO1998026071A1 (en) Human cc chemokine elc
WO1998031809A1 (en) Human cc chemokine slc
Youn et al. Molecular cloning and characterization of a cDNA, CHEMR1, encoding a chemokine receptor with a homology to the human CC chemokine receptor, CCR-4
US7361737B2 (en) Mouse CXC chemokine receptor
WO1998024817A1 (en) Novel dna, novel protein, and novel antibody
JP4001246B2 (en) New human CC chemokine LARC
JPH11302298A (en) Human cc-type kemokine ilc
JP2003533230A (en) SSA-56 kDa polypeptides and fragments thereof, and polynucleotides encoding said polypeptides and therapeutic uses
JP2002320492A (en) HUMAN CHEMOKINE beta-11 AND HUMAN CHEMOKINE alpha-1

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase