WO1998031196A1 - Planar heating element - Google Patents

Planar heating element Download PDF

Info

Publication number
WO1998031196A1
WO1998031196A1 PCT/JP1997/000052 JP9700052W WO9831196A1 WO 1998031196 A1 WO1998031196 A1 WO 1998031196A1 JP 9700052 W JP9700052 W JP 9700052W WO 9831196 A1 WO9831196 A1 WO 9831196A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
layer
ptc layer
planar
positive
Prior art date
Application number
PCT/JP1997/000052
Other languages
French (fr)
Japanese (ja)
Inventor
Eiichi Shitamori
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to CA002256616A priority Critical patent/CA2256616A1/en
Priority to PCT/JP1997/000052 priority patent/WO1998031196A1/en
Priority to EP97900419A priority patent/EP1009196A1/en
Priority to AU13982/97A priority patent/AU1398297A/en
Publication of WO1998031196A1 publication Critical patent/WO1998031196A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/24Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor being self-supporting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/146Conductive polymers, e.g. polyethylene, thermoplastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient

Definitions

  • the present invention relates to a sheet heating element provided with a positive temperature coefficient tree. Background technology
  • This planar surface is obtained by providing a pair of electrodes on a planar surface formed by blending conductive particles such as carbon black into a plastic resin and providing a pair of electrodes. When a current flows, the sheet generates heat due to the Joule heat.
  • the sheet that emits planar light has a positive temperature coefficient characteristic (PTC characteristic) in which the electric resistance value increases as the temperature rises. Depending on the environmental temperature and heat dissipation, heat is generated in the heat generating portion.
  • PTC characteristic positive temperature coefficient characteristic
  • the heat release sheet radiates heat in two directions in the central region, but radiates heat not only in the front and back sides but also in three directions including the sides in the both side regions. It tends to be hotter than on the area. When this tendency becomes stronger, the temperature of the central region becomes extremely higher than the temperature of the both side regions in the ⁇ ⁇ where the birth-resistant sheet has a positive coefficient of tree growth. A fever event occurs.
  • 3 ⁇ 4It has LS.
  • the thickness force of the equalizer is increased by 5 or the soaking plate becomes «, which is not only inconvenient but also increases the cost.
  • the uniformity is arranged only in the high portion of the sheet, the thickness of the sheet heating element becomes extremely large, which is not suitable for use as a thin heater.
  • An object of the present invention is to sufficiently prevent local heat generation, to reduce the change in resistance with time, and to reduce the cost at a low cost. In addition, there is little change in resistance until the expected exacerbation, and It is another object of the present invention to provide a planar body having a property of increasing the thickness. Disclosure of the invention
  • the present invention eliminates the PTC characteristic of the generated resistance sheet or reduces the PTC characteristic of the resistance sheet to a smaller rising magnification than the PTC characteristic of at least a portion near the coating. Or, it is intended to raise the rise to achieve the purpose of knitting.
  • the surface emitting device of the present invention is a surface emitting device in which a plurality of Sl covering members coated with IS are attached to a surface emitting sheet at predetermined intervals from each other.
  • a PTC layer having a positive coefficient whose electric resistance value increases by 5 with an increase in temperature is provided. Does not have the Biea coefficient characteristic, or the rise rate is smaller than that of the ⁇ 3 ⁇ ⁇ c layer or the rise temperature is lower than the temperature at which the rise rate of the PTC layer indicates the failure rate of the PTC layer. Let it have a higher positive coefficient tree than the ⁇ ⁇ c layer.
  • this crane resistance sheet has no special order of the PTC, or has a smaller rising magnification or a rising ratio as compared with the PTC layer. Since it is taller, for example, even if the situation is different between the central region and the both side regions, local building does not occur in the carving-resistant sheet.
  • the vicinity of at least one of the electrodes is a PTC layer having a positive temperature coefficient characteristic, the merit of the positive coefficient characteristic possessed by other planar gonads can be maintained.
  • the ratio of the portion having a large positive coefficient characteristic with a large change in resistance in the overall planar failure is determined.
  • the haze and overall resistance can be reduced. Therefore, it is not necessary to use a carton-resistant sheet, so it is possible to use a sheet-like sheet! 3 ⁇ 41 Cost can be reduced.
  • the rise rate of the positive temperature coefficient characteristic in the PTC layer may be 5 or less within the range of the temperature indicating the uppermost magnification of the layer, and the rise temperature of the positive coefficient characteristic in the til self-propelled sheet is further reduced. May be 5 ° C. or more higher than the custom temperature rise temperature of the PTC layer.
  • the rise ratio of the positive coefficient characteristic of the development sheet with respect to the PTC layer is set to 0.5 or less as described above in the following range, which indicates the maximum rise magnification of the PTC layer.
  • Sheet compared to PTC layer If the rise of the positive coefficient characteristic is increased by 5 ° C or more as described above, local heat generation on the surface of the sheet can be reliably prevented and the coefficient characteristic of the PTC layer can be reduced. Control becomes possible.
  • the knitted fabric covering member includes a PTC layer having a positive coefficient characteristic in which the electric resistance value increases with rise in the vicinity of the knitted fabric, and a PTC layer covering the PTC layer.
  • the PTC layer-covered member and the knitting three-shot cage sheet may be configured to use the same resin.
  • the p ⁇ c layer previously released together with “mis” is extracted as 3 ⁇ 4if with the p ⁇ c layer covering member, and the 3 ⁇ 4S covering member is defined as i ⁇ . Since this PTC layer covering the Hatsukago anti sheet one bets made of the same material, the origination 3 ⁇ 4 £ ⁇ that force 5 easily and surely to anti sheet. In addition, the durability of the planar horn is improved.
  • the knitting layer may be configured by a single wire group of a plurality of 3 ⁇ 4®3 ⁇ 4 conductors, and the ttiSPTC layer may be configured by individually covering the knitting single wires.
  • the knitting 3 ⁇ is composed of a single wire group of a plurality of conductors.
  • the layer may cover a part of the single wire group, and may be composed of two or more hectares with different rising magnification and rising ⁇ .
  • Volume 3 is composed of a single wire group consisting of a plurality of conductors. This single wire group has different distances from the above-mentioned resistance sheet. May be used.
  • the distributed PTC layer may be made of a heating material having a thermoplastic resin and conductive particles, or a material.
  • the knitting-resisting sheet may be separated from the material, the W material, or the material having the thermoplastic resin and the conductive particles.
  • the resistance sheet and the PTC layer are insulated between the resistance sheet and the PTC layer so that the anti-sheet and the Ptc layer are thermally heated.
  • the structure may be connected with # heat (for example, a board) via a.
  • FIG. 1 is a perspective view in which a part of a sheet heating element according to a first embodiment of the present invention is partially broken.
  • FIG. 2 is a plan view of FIG.
  • FIG. 3 is a graph showing the respective positive temperature coefficient characteristics of the coating member and the heat-resistant sheet.
  • Fig. 4 (A) is a graph showing the positive coefficient characteristic of the covering member
  • Fig. 4 (B) is a graph showing the positive temperature coefficient characteristic I 'of the heating resistor sheet
  • Fig. 4 (C) is 6 is a graph showing the positive temperature coefficient characteristic of the entire f-shaped surface.
  • FIG. 5 is a perspective view in which a part of a planar excerpt book according to the second embodiment of the present invention is partially broken. You.
  • FIG. 6 is a plan view of FIG.
  • Figure 7 (A) is a graph showing the positive 3 ⁇ 4 ⁇ coefficient characteristics of the coating
  • FIG. 7 (B) is a graph showing a positive coefficient Japanese I 1 Raw withdrawal 3 ⁇ 43 ⁇ 4 anti sheet
  • FIG. 7 (C) Is a graph showing the positive temperature coefficient characteristics of the entire surface fi *.
  • FIG. 8 is a perspective view, partially broken away, of a planar heating element according to a third embodiment of the present invention.
  • FIG. 9 is a plan view of FIG.
  • FIG. 10 is a sectional view of FIG.
  • FIG. 11 is a cross-sectional view of a planar gonad according to a fourth embodiment of the present invention.
  • FIG. 12 is a sectional view of a planar gonad according to a fifth embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of a planar sprout according to a sixth embodiment of the present invention.
  • Fig. 14 is a graph showing the positive ⁇ coefficient characteristics of the whole area of the spontaneous chionon in the 6th W state.
  • FIG. 15 is a cross-sectional view of a planar emitter according to a seventh embodiment of the present invention.
  • FIG. 16 is a graph showing the positive temperature coefficient characteristics of the entire planar emission according to the seventh embodiment. Best form to carry out the invention
  • FIGS. 1 and 2 show a sheet heating element 1 according to a first embodiment of the present invention in a ⁇ state.
  • FIG. 1 is a perspective view in which a part of the sheet heating element 1 is cut away, and
  • FIG. 2 is a plan view thereof.
  • planar chion 1 is applied to the anti-suction sheet 2 formed by the plane arrow and the end of the anti-skin 2 Rarely covered 3 And two outer coatings made of PET film and the like provided as necessary.
  • the anti-sheet 2 is made of sheet-like material such as sheet-like nichrome, stainless steel, aluminum etching material, etc., sheet-like IT0 material or sheet-like conductive material, sheet-like material mt or polystyrene (PS), Positive temperature coefficient characteristics (PTC characteristics) that consist of non-crystalline I "resin such as krill resin (PMMA), vinyl chloride, etc. and green carbon black (CB). ).
  • the starting sheet 2 has a thickness of 0.1 to 5 thighs, preferably 0.1 to 2 strokes, a width of 2.5 to 6000 mm, and is not limited in length.
  • the single wires 3A have a thickness of two or less ⁇ . ⁇ As mentioned above, the simple thickness is related to the number of 3 mm single wires.
  • the electrode 3 is not limited to the single conductive wire 3A shown in the figure, but may be made of a metal tape or a conductive base.
  • the w mi 4 is formed in a ⁇ shape, and is provided on both sides of the sheet 2 along the length direction.
  • the S3 ⁇ 4 coating member 4 is formed in a cross section having a thickness of 0.3 mm to 5 mm and a width of 0.5 mm to 30 im, preferably 1 stroke to 10 mm.
  • the 3 ⁇ 41® coating is made by passing a single wire 3A of a conductive wire through an extruded rope die in a straightforward manner without crossing a double bottle, and extruding the material together with these wires. t.
  • the coating member 4 is a PTC layer having a u-coefficient characteristic formed of a woven material provided with a thermoplastic resin and conductive particles.
  • thermoplastic resin a crystalline thermoplastic resin is preferable.
  • Polyolefin resin and its copolymer resin, polyamide resin, polyester resin, heat Plastic polyester paste, polyphenylene oxide and nonyl pearl, polysulfone and the like can be mentioned.
  • knitted polyolefin resin examples include, for example, high-density polyethylene, medium, polyethylenes such as poly (ethylene terephthalate), polyethylene (eg, polyethylene igf), polypropylenes such as isocyclic polypropylene, syndiotactic polypropylene, and polybutene. —Methylpentene-11 resin and the like.
  • ethylene-propylene copolymer weight ⁇ ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer ethylene-ethyl acrylate copolymer weight ⁇ : ( ⁇ ⁇ ), ethylene-methyl acrylate Ethylene-acrylate copolymers such as copolymers # Copolymers of olefins and vinylation such as ethylene-vinyl monochloride copolymers, fluorine-containing ethylene-based copolymers, and their modified products can also be used.
  • Examples of the vinyl acetate resin include a vinyl acetate resin, polyvinyl acetate, and polyvinyl butyral.
  • Knitting 3 Polyamide ⁇ ⁇ ⁇ ⁇ Examples of the sealing oil include nylon 6, nylon 8, nylon 11, nylon 66, nylon 610 and the like.
  • the polyacetal may be a homopolymer or a copolymer.
  • plastic polyester resin examples include polyethylene terephthalate and polybutylene terephthalate.
  • gen-based polymers and copolymers such as trans-1,3-polyisoprene and syndiotactic-1,2-polybutadiene are also used. can do.
  • One type of crystalline thermoplastic resin may be used alone or two or more types may be used in combination as a polymer blend or the like.
  • thermoplastic resins high-density polyethylene, low-density polyethylene, linear polyethylene, ethylene-vinyl acetate copolymer ethylene Olefin-based copolymers such as ethyl acrylate copolymer and trans-1,4-polyisoprene are preferred.
  • the crystalline thermoplastic resin of the knitting type can also be used as a yarn with other polymers or additives, if necessary.
  • Conductive particles include, for example, particles such as carbon black particles, graphite particles, iron (Fe), nickel (Ni), platinum (Pt), copper (Cu), silver (Ag), and gold (Au). ), Powdered material such as pot fine change fiber, hidden matter such as carbon difficulties, conductive M material (ITO, etc.), barium titanate (BaTio3), titanium titanate (SrTio3), etc. No »fee or the like having a positive temperature coefficient, especially! 1 students can be mentioned. Among these, granular materials such as carbon black particles and graphite particles, and particularly carbon black particles are preferable.
  • Knitting 3 The various types of conductive particles may be used in one type of job, or two or more types may be used in combination as a mixture.
  • the average particle size is usually 10 to 200 nm, preferably 15 to 100; If the conductive particles are in a difficult state, the aspect ratio is usually 1 to 1000, preferably 1 to 100.
  • the mixing ratio of the raw resin and the conductive particles is usually 10-80: 90-20, preferably 55-75: 45-25 as a weight ratio. If the ratio of the conductive particles is less than this range! ⁇ The resistance value of the coating 4 becomes large, and the sheet-like difficulty 1 may not generate enough heat for practical use.On the other hand, if the mixing ratio of the conductive particles is larger than this range, the positive coefficient characteristic may not be sufficiently exhibited. become.
  • the specific resistance value of the material of the H-coated member 4 can be determined according to the specification and purpose, but is usually ⁇ , 10 to 50000 ⁇ -cm ⁇ , preferably 40 to 20000 ⁇ ⁇ ⁇ .
  • Knitting ⁇ By mixing the crystalline resin and the conductive particles, a coating member of 4 s can be obtained.At this time or after JJ, the thermoplastic crystalline resin in the knitted heating material is crosslinked. It is preferable to cure the object. When this product is cured, the positive temperature characteristic is reduced, and defects due to thermal deformation such as planar emission and thermal softening can be prevented.
  • thermoplastic resin can be performed using a crosslinking agent and / or »f line.
  • crosslinking agent and / or »f line.
  • the bio-thermoplastic resin is a polyolefin-based resin ⁇
  • an oxide can be used as a suitable crosslinking agent.
  • the oxide include benzoyl peroxide, lauroyl peroxide, dicumyl peroxide, tert-butyl peroxide, tert-butyl vinyl benzoate, tert-butyl cumyl peroxide, tert-butyl hydroperoxide.
  • Oxide 2,5-dimethinolae 2,5-di (tert-butylperoxy) hexine-1,3,1-bis (tert-butylperoxyisopropyl) benzene, 1,1-bis (tert-butylperoxy) ) 1,3,3,5-Trimethylcyclohexane, n-butyl-4,4-bis (tert-butylperoxy) valerate, 2,2-bis (tert-butylperoxy) butane, tert-butylbenzyloxybenzene, etc. Can be mentioned.
  • 2,5-dimethyl-1,2,5-di (tert-butyl peroxy) hexine-13 is particularly preferred.
  • a fifi auxiliary such as triaryl cyanurate ⁇ divinyl benzene or triaryl isocyanurate. Is also good.
  • the ratio of the use of the transcript is usually
  • FIG. 3 is a graph showing the positive temperature coefficient characteristics of the electrode covering member 4 and the developing sheet 2 .
  • P indicates the positive temperature coefficient growth of the electrode covering member 4, and its start-up magnification X is obtained by the following equation.
  • R indicates the resistance at ⁇
  • R 25 indicates the resistance at 25 ° C.
  • S indicates the positive temperature coefficient characteristic of the heat generating resistance sheet 2 having no PTC characteristic, and its uppermost magnification is 0.
  • Coating 3 ⁇ 4W 4 is formed from ethylene-ethyl acrylate copolymer (EEA) and carbon black (CB).
  • Anti-sheet 2 is formed from non-crystalline injection resin such as polystyrene (PS) and resin black.
  • the resistance value of the electrode coating Sl3 ⁇ 4i4 increases with the rise in the resistance value of the electrode sheet Sl3 ⁇ 4i4.
  • the positive temperature coefficient characteristic S does not show a large change in the resistance value even when increases.
  • the overall positive coefficient custom order (P + S) of the planar horn 1 shows a characteristic in which the resistance value increases with the increase. Note that, in the graph of FIG. 4 (C), the dotted line indicates the case of the emission sheet 2 only.
  • the two coatings 4 each coated with 3 are attached to the sheet-like coherent sheet 2 at a predetermined distance from each other, and the US coating 4 is increased with increasing temperature.
  • the positive coefficient characteristic required for the planar emission book 1 can be ensured by the covering member 4.
  • the birth resistance sheet 2 is positive.
  • FIG. 5 differs from the first embodiment in that the carcass-resistant sheet has a positive coefficient characteristic, and the other structure is the same as the first embodiment.
  • FIG. 5 and 6 show a sheet heating element 11 according to a second embodiment of the present invention.
  • FIG. 5 is a side view in which a part of the planar freshness 11 is broken
  • FIG. 6 is a plan view thereof.
  • the sheet-like sheet 11 is composed of a sheet-like sheet 12 formed by applying the sheet-like object to a plane arrow, and both ends of the sheet 1. It is provided with two knitting S® coatings 4 provided to cover the knitting electrodes 3 and an outer material made of PET film or the like provided as necessary.
  • the 3 ⁇ 4M3 ⁇ 4 sheet 12 is a sheet or film-like sheet made of a woven material by the extrusion extrusion method, and has a thickness of 0.1 to 5 mm, preferably 0.1 to 2 thighs. And its width is between 2.5 and 6000D blood, and there is no limit on its length.
  • Coating members 4 are provided on both ends of the heat generating sheet 12 by heat sealing or ultrasonic sheaf.
  • the heat-generating yarn of the development sheet 11 has a positive temperature coefficient characteristic.
  • thermoplastic resin used for the material of the anti-fiber sheet 12 is preferably a crystalline thermoplastic resin
  • thermoplastic resin used for the material of the covering member 4 is a thermoplastic resin.
  • Resins, especially crystalline thermoplastic resins may be of the same type or different from each other. However, it is usually desirable to use the same type to maintain better adhesion due to heat.
  • the conductive particles used for the heat-generating material of the anti-sheet 12 and the 3 ⁇ 4H coating member 4 may be of the same type or different from each other.
  • the blend ratio of the thermoplastic resin is adjusted in order to make the positive coefficient characteristic of mii differ from that of the rights sheet 12.
  • S1 and S2 show the positive temperature coefficient characteristics of the heat generating resistance sheet 12 among which si is the maximum rise magnification of the electrode coating member 4 whose rise magnification constitutes the p ⁇ c layer. In the range below the temperature indicated by, the case where it is smaller than the electrode coating member 4 is shown.
  • the positive coefficient characteristic S1 of the generated M sheet 12 is smaller than the positive coefficient characteristic P of the coating 4 within a range of Tp max or less at the magnification Xp max of the mil coating member 4 at g ⁇ il. That is, assuming that the rising magnification of the source sheet 12 is Xs, Xs ⁇ Xp, and preferably Xs ⁇ 0.5 Xp.
  • the rising temperature of the positive temperature coefficient custom-made S2 of the heating resistor sheet 12 is higher than that of the electrode covering member 4. That is, assuming that the rise ⁇ S is when the resistance value R is 2 XR25, the rise at the time of 2 x Rp25 is tp in the m® covering member 4, and 2 x Rs25 in the carrot anti-sheet 12 The rise time at the time is ts.
  • the rise temperature tp is lower than the rise temperature ts (0 ° C ⁇ ts-tp), and the difference between tp and ts is preferably 5 ° C or more (5 ° C ⁇ ts-tp), more preferably Is more than 10 ° C (10 ° C ⁇ ts-tp).
  • 3 ⁇ 4 ⁇ Coating 4 is formed from a mixture of ethylene-ethyl acrylate copolymer ( ⁇ ⁇ ⁇ ) and carbon black (CB).
  • Coating sheet 12 is high-density polyethylene (HD PE).
  • HD PE high-density polyethylene
  • the custom-made positive coefficient P of the IS-coated member 4 increases as the resistance increases as shown in Fig. 7 (A).
  • FIG. 7 (B) the resistance value of the positive temperature coefficient characteristic S2 of the developed S sheet 12 increases as the temperature rises. This is different from the coefficient characteristic P of the covering member 4.
  • the rising ⁇ l tp of the covering member 4 is 67 ° C.
  • the rise temperature ts of the heating resistance sheet 12 is 120 ° C.
  • the rise tp of the electrode coating i 4 is 5 times larger than the rise ts of the cost reduction sheet 12. 3 ° C high.
  • the overall resistance of the sheet-like horn 11 indicates that the resistance value will rise as the separation increases. This special order, especially the increase in specific resistance value, is for m & m i4 (PTC layer)! : Variable depending on the specific resistance value.
  • the dotted line indicates the case where only the heating resistor sheet 12 is used.
  • the m @ -covered member 4 is a PTC layer having a positive temperature coefficient characteristic
  • the heating resistance sheet 12 has a rising magnification Xs that is equal to the electrode.
  • the t is smaller than the rising magnification Xp of the S covering member 4 or the rising ts is 3 ⁇ 4H covering member 4. Since the structure has a positive temperature coefficient characteristic higher than the rise temperature tp of the sheet, similar to the first embodiment, no local 3 ⁇ 4 is generated in the heat generating sheet 12 and the planar state
  • the positive ⁇ coefficient tree required for the excellence book can be secured by the covering member 4.
  • the ratio of the portion having a large positive coefficient characteristic in which the resistance change is large can be reduced, and the change over time in the whole can be reduced. This eliminates the necessity for forming the birth control sheet 12, thereby reducing manufacturing costs.
  • the rising magnification Xs of the heat generating resistance sheet 12 is set to 0.5 or less with respect to the rising magnification Xp of the electrode covering member 4, or the rising temperature of the heat generating sheet 12 is ts. If the temperature is higher than the rising temperature ts of the electrode covering member 5 by 5 ° C. or more, local heat generation on the surface of the heating resistor sheet 12 can be reliably prevented and the correctness of the covering member 4 can be reduced. ⁇ Control is possible with coefficient characteristics.
  • FIG. 8 to 10 show a sheet heating element 21 according to a third embodiment of the present invention.
  • FIG. 8 is a marginal view in which a part of the sheet heating element 21 is broken
  • FIG. FIG. 10 is a plan view
  • FIG. 10 is a sectional view thereof.
  • the surface emitting »2 1 is composed of the self-issued security sheet 12, the two knitted coverings 3 ⁇ 43 ⁇ 44 coated with the ⁇ S 3, and the coated sheet 12 and 3 ⁇ 4S coated A thread that covers the member 4 and a heat resistance material 23 that covers both sides of the sheet 13 and the electrode covering member 4 from the outside of the cranes 22 are provided.
  • the heat-resistant sheet 12 and the coating member 4 are connected to each other with a heating material 23 via a gap 22 so that the coating 1 2 and the coating member 4 become thermally Hi. Structure.
  • the heat source 23 is a heat-generating material. It effectively removes the heat generated by the sheet 12, which is a PTC layer.
  • the coating 4 is used to make heat from a pot made of copper, gold, silver, aluminum, iron, stainless steel, etc.
  • the insulating layer 22 formed in a plate shape or a sheet shape is fixed with an adhesive tape, an adhesive or the like.
  • the yarn @@ 22 ensures that the current flows through the starting sheet 12, and is made of a film having a high thread color margin effect, such as polyethylene terephthalate (PET) or polyethylene (PE). That is, when the thigh sheet 12 and the covering member 4 are directly connected to each other with the heating material 23, the current flows to the heating material 23 and does not flow to the spread sheet 12, but the birth resistance. Since an inconvenience occurs in which the sheet 12 is not removed, the inconvenience was avoided by providing the insulating layer 22 between the heat-releasing sheet 12 and the S3 ⁇ 4 covering member 4 and the heat source 23.
  • PET polyethylene terephthalate
  • PE polyethylene
  • the heat generating sheet 12 and the PTC layer 3 ⁇ 4 @ coating 4 become thermally. Since the heat-resistant sheet 12 and the covering member 4 are connected to each other with the heating material 23 via the insulated jf 22, the heat of the heat-resistant sheet 12 is directly transmitted to Sj 3, and the coefficient characteristic is increased. The effect by the can be exhibited effectively.
  • FIG. 11 shows a sheet heating element 31 according to the fourth actual SIB mode of the present invention.
  • reference 31 is a knitting basket anti-sheet 12, a covering member 34 provided at both ends of the basket knitting anti-sheet 12 and covering the knitting machine 3, and provided as necessary ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the 3 ⁇ 4 coating 34 includes a PTC layer 34A disposed near ⁇ 3 and having a positive coefficient characteristic whose electric resistance value increases with an increase in iSJg, and a PTC layer coating 4B that covers the PTC layer 34A. Configuration.
  • the PTC layer 34A is formed in a circular cross section so as to cover the electrode 3 in which the conductive single wires 3A are arranged side by side in a row.
  • the resin used for the PTC layer covering member 34B is the same as the resin used for the anti-thigh sheet 12. Therefore, according to the fourth »B mode, the same effect as in the second mode can be obtained.
  • the PTC layer-coated thigh 34B and the outgoing anti-sheet 2 have the same material. Therefore, the heat during these times becomes easier, and the smack of Sm: decreases. Also, by using a material that is less heat-resistant than the EEA that constitutes the coating 4 for the PTC layer coating 34, durability and performance stability at high temperatures are improved.
  • FIG. 12 shows a sheet heating element 41 according to a fifth embodiment of the present invention.
  • the fifth embodiment has the same structure as that of the fourth embodiment, except that the conductive single wire 3 is individually covered with the PTC layer 34.
  • FIG. 12 is a cross-sectional view of the sheet heating element 41.
  • a planar sprout horn 41 is provided, and a thigh anti-seat sheet 12, a covering member 44 provided at both ends of the anti-suction sheet 12 and covering the knitted fabric 3, and if necessary, And a packaging material made of a PET film or the like.
  • the covering member 44 is placed in the vicinity of 3; a PTC layer 44A having a positive coefficient characteristic in which the electric resistance value increases with an increase in 3 ⁇ 4, and covers the PTC layer 44A. til own PTC layer coating 5 # 34B.
  • the positive coefficient characteristic of the PTC layer 44 A is the same as or different from that of the covering member 4, and individually covers three conductive single wires 3 A arranged in four rows and one row. It is.
  • each of the conductive single wires 3A constituting the PTC layer 44A is individually coated, these PTC layers 44A Can be covered with a PTC layer coating Sl3 ⁇ 4i34B that can use a material with a larger ⁇ ⁇ S than the PTC layer 44A.Therefore, the deformation of the PTC layer 44A when pressure is applied to the surface 41 itself is small, The pressure resistance is improved. Also, since the position of each conductive single wire 3A of S3 can be maintained, the adverse effect on the performance of 3 at the time of attaching to the power generation sheet 21 can be minimized.
  • a sixth embodiment of the present invention will be described with reference to FIGS. 13 and 14.
  • FIG. 13 shows a sheet heating element 51 according to a sixth embodiment of the present invention.
  • the sixth embodiment has the same structure as the fourth embodiment except that the conductive single wire 3A is covered with a plurality of types of PTC layers.
  • FIG. 13 is a sectional view of the sheet heating element 51.
  • the surface rising 51 is provided with three knitting anti-sheets 12, a knitting cover 54 provided at both ends of the spreading anti-sheet 12 and covering the knitting, and is provided as necessary. And an exterior material made of a PET film or the like.
  • the electrode 3 is composed of a single wire group composed of a plurality of conductive wires 3 A arranged in a horizontal row, and in FIG.
  • the covering member 54 is a part of the single wire group, specifically, the first PTC layer 54A that covers the three conductive single wires 3A, and the first PTC layer 54A that covers the remaining three conductive single wires 3A.
  • This configuration includes a 2 PTC layer 54B and a PTC layer covering member 34B that covers the first and second PTC layers 54A and 54B.
  • the first PTC layer 54A has the same positive coefficient characteristics as the BPTC layer 34A, and the second PTC layer 54B has a positive temperature coefficient that differs from the first PTC layer 548 in the rise magnification and. It has characteristics.
  • Fig. 14 shows the surface of ⁇ using the first and second PTC layers 54A and 54B.
  • the PTC layer may be composed of not only the first and second types but also three or more types.
  • the same effect as in the second embodiment can be achieved, and in addition, power is supplied to the conductive wire 3A provided on each of the PTC layers 54A and 54B of a plurality of trees. By switching between them, different positive coefficient characteristics can be selected, and the heat generation of the sheet heating element 51 can be reduced.
  • FIG. 15 shows a sheet heating element 61 according to a seventh embodiment of the present invention.
  • the structure is the same as that of the second mm except that the conductive single wire 3A is vertically arranged in multiple ij.
  • FIG. 15 is a sectional view of the sheet heating element 61.
  • the planar flaky 61 is composed of a knitting self-antibody sheet 12 and a T coating member 4 having a thickness of T which is provided on both ends of the antibody sheet 12 and covers the ⁇ 3. And an exterior material such as a PET film provided as necessary.
  • each of the conductors is composed of first and second single wire groups 31, 32 each composed of five conductive single wires 3A.
  • it is Rooster ⁇ ] thereto thereto heating resistance sheet 12 and the flat row.
  • These single wire groups 31, 32 are configured to be energized simultaneously or selectively. In the case of 3 ⁇ 4 ⁇ in which only the first single wire group 31 was energized and i ⁇ in which the second single wire group 32 was energized, the distance between the single wire groups 31, 32 from the hanging anti-sheet 12 was different, resulting in planar heat generation. Positive temperature coefficient special order for body 61 is different.
  • FIG. 16 shows the positive coefficient characteristic of the sheet heating element 61 when the first and second single wire groups 31, 32 are energized.
  • P + S c is a energized only in the first single-wire group 31
  • P + S D is a ⁇ was energized to only the second single-wire group 32.
  • it differs by a temperature delta t and P + S c and ⁇ + S D.
  • the single wire group may include not only the first and second 2Ss but also three or more types.
  • 3 ⁇ 43 is composed of a plurality of single conductor groups of the separate conductors 38, and this single conductor group is generated from the joint.
  • the distance from the sheet 12 is different, and it is generated by switching between the power lines composed of a plurality of single wire groups 31 and 32, which are roared in parallel with the anti-sheet 12, and the energized single wire groups 31,32.
  • Difficult example 1 corresponds to the first condition, in which the heat-resistant sheet 2 is formed from an aluminum etching material.
  • the aluminum etching material has a width 245 ⁇ length lm and a resistance value of 1 K ⁇ . / m.
  • EE A ethylene-ethyl acrylate copolymer
  • CDPDJ6182 manufactured by Nippon Rikiichi Co., Ltd.
  • CB carbon RANK
  • Each electrode 3 was formed by arranging 10 single wires 3A in parallel without crossing each other.
  • Heat history is cycled 15 times at a lower temperature limit of 120 ° C and an upper temperature limit of 70 ° C (heating / cooling rate: 1 ° C / temperature for 10 minutes at 50 ° C. Then, the temperature changed to the next temperature.)
  • the resistance value was changed by thermal eyebrows, it was 10.5% in the case of Jonggyo 1, whereas it was 120% in the case of «
  • the change in resistance due to heat was less than one-fourth of that in the sheet body of Example
  • Example 2 corresponds to the second situation, in which the anti-sheet 12 and 80 parts by weight of high-density polyethylene (HDPE) [Idemitsu HDPE 230 J; Idemitsu Kosan 3 ⁇ 4 ⁇ company] 20 parts by weight of carbon black (CB) (diamond black; manufactured by San-Daisei Kogyo Co., Ltd.), and 1S-coated member 4 is made of the same ethylene monomer as in Example 1. It was obtained from the exfoliated products of the rate copolymer (EEA) and Ribonbon black (CB). Each was formed by arranging 10 single wires 3 A in parallel without crossing each other.
  • HDPE high-density polyethylene
  • ESA rate copolymer
  • CB Ribonbon black
  • the planar M book 11 of this structure exhibited good positive coefficient waitability for the same reason as in Example 1.
  • This positive coefficient characteristic is the same as that shown in Fig. 7 (C).
  • one side of the sheet heating element 11 was covered with a heat insulating material (styrene foam) along the electrode 3 to generate a temperature difference of 20 ° C on the surface. Did not occur. This is because the temperature of the resin used in the heating sheet 12 is 120 ° C. or higher, and there is no large direct rise (positive temperature coefficient characteristic) at 100 ° C. or lower.
  • Example 3 corresponds to the fourth embodiment, in which the PTC layer 34A has the same configuration as the electrode covering member 4 of Example 1, and the PTC layer covering 34B is 55 parts by weight of high-density polyethylene (HDPE). ) And 45 parts by weight of carbon black (CB).
  • the PTC layer-coated member 34B has a low specific resistance and does not contribute to heat generation.
  • Other configurations of the third embodiment are the same as those of the second embodiment.
  • m4 corresponds to the fifth embodiment, and has the same structure as that of Example 3 except that each conductive single wire 3A is covered with a PTC layer 44A.
  • Example 4 of SS the position of the conductive single wire 3 A is maintained and the deformation of the PTC layer 44 A is suppressed by using ⁇ 110? Which is larger than ££ 8. .
  • Example 1 At room temperature, the three parts of Example 1 were added. When a pressure of 10 kg / cm 2 was applied to the sample, the resistance changed by 20%, but in Example 4, the resistance changed within 3%.
  • the IPTC layer 54A has the same configuration as the PTC layer 34A of Example 3, and the second PTC layer 54B has a linear shape as a thermoplastic resin.
  • LLDPE ⁇ -degree polyethylene
  • CB carbon black
  • the resistance between the conductive single wire 3A coated on the first PTC layer 54 ⁇ and the conductive single wire 3A coated on the second PTC layer 54B is switched to provide a resistance characteristic.
  • the maximum temperature of the sheet heating element 51 is about 80 ° C. for the first PTC layer 54A and 100 ° C. for the second PTC layer 54B.
  • the required amount of heat varies depending on the season, and H1 ⁇ 2Example 6 is suitable as one of the adjustment methods.
  • Flame Example 6 which corresponds to the 73 ⁇ 4 »condition, originating H ⁇ than the distance D i and D 2 from sheet 12 using two different single-wire groups 31, 32 ⁇ Example 2 and the same structure It is.
  • Example 6 the thickness h method T of the coating 3 ⁇ 4 ⁇ 3 ⁇ 4 ⁇ 4 was set to ⁇ . ⁇ , was set to 0.2, and D 2 was set to 0.4 ⁇ .
  • the difference At between P + Sc and P + SD shown in FIG. 16 is 20 ° C.
  • the power can be changed by 20 ° C by switching the group of single wires 31 and 32 to be energized.
  • the covering is formed by expanding a plurality of single wires 3A into a flat plate shape and swelling the leaked material, and forming a rectangular cross section.
  • the @g provided on the S @ coating may be formed by forming a plurality of single wires into a circular cross section by breaking, or by forming one thick single wire.
  • the number of the electrode covering members 4 may be three or more.
  • the cross section of the S3 ⁇ 4 coating 4 may be various triangles such as a triangle, a pentagon, and the like.
  • a plurality of electrode covering members each covering an electrode are attached to the sheet-like carving sheet at a predetermined interval from each other.
  • the PTC layer has a positive coefficient property that increases the PTC layer.
  • the PTC layer should be a PTC layer that does not have a positive coefficient characteristic or that has a rising magnification that indicates the maximum rising magnification of the PTC layer. Is it smaller or rising compared to the layer? Since the structure has higher positive ⁇ coefficient characteristics than the TC layer, In this way, heat generation can be sufficiently prevented, resistance changes with time are small, and it can be viewed at low cost.
  • the rise of the resistance can be arbitrarily adjusted by changing the specific resistance value of the PTC layer with respect to the resistance sheet. Having. Industrial availability
  • a heater for beta of a fiber roof for example, a heater for beta of a fiber roof, a heater for floor heating, and a certain heater are suitable for use as an anti-fog for mirror.

Landscapes

  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

A planar heating element in which a plurality of electrode coating members (4) respectively coating electrodes (3) are attached to a planar heating resistor sheet (2) at prescribed intervals. In each electrode coating member (4), at least the vicinity of the electrode (3) is constituted of a PTC layer having a positive temperature coefficient characteristic that the electrical resistance value of the PTC layer increases as the temperature rises. The sheet (2) does not have a positive temperature coefficient characteristic or has a positive temperature coefficient characteristic that the rise magnification of the sheet (2) is smaller than that of the PTC layer or the rise temperature of the sheet (2) is higher than that of the PTC layer at temperatures lower than the temperature at which the PTC layer exhibits the maximum rise magnification.

Description

明 細 書 面 状 発 熱 体 技 術 分 野  Heat-dissipating body technology field
本発明は、 正温度係数樹生を備えた面状発熱体に関するものである。 背 景 技 術  The present invention relates to a sheet heating element provided with a positive temperature coefficient tree. Background technology
ii¾の贈等のため、 纖表面近傍に面状発難を埋設し、 この面状猶淋を発 熱させることが行われている。 また、 面状発き!^を蓄齊 と 化して床暖房用ュ ニッ卜としても用いられている。  In order to give ii¾, etc., it has been practiced to bury a planar fire near the surface of the fiber and heat the surface. In addition, the surface is coming! The ^ has been converted to a storage unit, which is also used as a floor heating unit.
この面状発淋は、 可塑†生樹脂にカーボンブラヅク等の導電性粒子を融和して なる面状の発 ί¾δ抗シ一トに一対の電極を設けたものであり、 これらの電極間に電 流を流すと、 そのジュール熱によりシートが発熱する構造である。  This planar surface is obtained by providing a pair of electrodes on a planar surface formed by blending conductive particles such as carbon black into a plastic resin and providing a pair of electrodes. When a current flows, the sheet generates heat due to the Joule heat.
面状発»の発 ¾¾抗シートは温度の上昇とともに電気抵抗値が増大する正温度 係数特性 (P T C特性) を備えており、 環境の温度や熱の放散状況によっては発熱 部分に が発生する。  The sheet that emits planar light has a positive temperature coefficient characteristic (PTC characteristic) in which the electric resistance value increases as the temperature rises. Depending on the environmental temperature and heat dissipation, heat is generated in the heat generating portion.
例えば、 発 シートは、 その中央部領域において 2方向に放熱されるが、 そ の両側部領域において表裏だけでなく側部を含む 3方向に放熱されるので、 中央部 領域の面上は両側部領域の面上よりも高温となる傾向がある。 この傾向が強くなる と、 発誕抗シートが正 係数樹生を有している ¾ ^では、 極 に中央部領域の 温度が両側部領域の温度に比べて高くなり、 中央部だけ発熱するという局所発熱現 象が発生する。  For example, the heat release sheet radiates heat in two directions in the central region, but radiates heat not only in the front and back sides but also in three directions including the sides in the both side regions. It tends to be hotter than on the area. When this tendency becomes stronger, the temperature of the central region becomes extremely higher than the temperature of the both side regions in the 抗 ^ where the birth-resistant sheet has a positive coefficient of tree growth. A fever event occurs.
そのため、 従来では、 面状の発^ ¾抗シート全面に均熱板を配したり、 温度の高 レ、部分のみに均卖 M反を配したりして局所発熱を防止する«例 (特開昭 54-156242 号) がある。 また、 の面状発 では、 熱可塑性樹脂及び導電性粒子から発 «抗シート を膨する際、 抵抗の絰時変ィ匕ゃ熱^ による変化を «するため、 齊麵や圧力For this reason, in the past, local heat generation was prevented by arranging a heat equalizing plate over the entire surface of the sheet-like heat generating sheet, or by arranging a uniform M counter only at the high temperature or in the part. No. 54-156242). In addition, in the case of the sheet-like development, when the anti-sheet is expanded from the thermoplastic resin and the conductive particles, the resistance changes due to the change of heat due to aging and heat.
¾LSを施している。 ¾It has LS.
各用途における問 として、 室温での抵抗値と発熱が安定した での抵抗値 との差が大きいため、 ¾λ時電力と安定時電力との差が大きく、 ブレーカ IS!十時に 工夫を要し、 契約電力を大きくする必要がある。  As a problem in each application, the difference between the resistance value at room temperature and the resistance value when the heat generation is stable is large, so the difference between the 時 λ power and the stable power is large, and the breaker IS! It is necessary to increase contract power.
しかしながら、 前述の では、 均齊嫩の厚み力5大きくなり、 あるいは、 均熱 板の开娥が «となって、 «が不便であるだけでな コストが高くなる要 因となっている。 また、 の高い部分のみに均^ t反を配する では、 面状発熱 体の厚みが非常に大きくなり、 薄型ヒ一夕としての用途に適さない。 However, in the above-mentioned case, the thickness force of the equalizer is increased by 5 or the soaking plate becomes «, which is not only inconvenient but also increases the cost. In addition, if the uniformity is arranged only in the high portion of the sheet, the thickness of the sheet heating element becomes extremely large, which is not suitable for use as a thin heater.
また、 熱可塑性樹脂及び導電性粒子から発 «抗シートを する際に «aや 圧力 βを行っているため、 s¾t工程が増え、 この点からも i¾iコストか isくなる 要因になっている。  In addition, when a sheet is formed from a thermoplastic resin and conductive particles, an a and a pressure β are performed, so that the number of s¾t steps is increased, and from this point, the i¾i cost is also a factor.
本発明の目的は、 局所発熱を十分に防止し、 抵抗の経時変化が少なく、 かつ、 低 コストで l¾iでき、 その上、 想定した発謝 までは抵抗変ィ匕が少なく、 ある 以上で ¾ί¾直が増大する特性を有する面状 体を提供することにある。 発 明 の 開 示  An object of the present invention is to sufficiently prevent local heat generation, to reduce the change in resistance with time, and to reduce the cost at a low cost. In addition, there is little change in resistance until the expected exacerbation, and It is another object of the present invention to provide a planar body having a property of increasing the thickness. Disclosure of the invention
そのため、 本発明は、 発齊 ¾£抗シートについて P T C特性をなくすか、 あるい は、 発 抗シートの P T C特性を 被覆 のうち少なくとも ¾の近傍の部 分の P T C特性より立上倍率を小さくし又は立上 を高くして編己目的を^ gし ようとするものである。  For this reason, the present invention eliminates the PTC characteristic of the generated resistance sheet or reduces the PTC characteristic of the resistance sheet to a smaller rising magnification than the PTC characteristic of at least a portion near the coating. Or, it is intended to raise the rise to achieve the purpose of knitting.
具 には、 本発明の面状発»は、 それそれ ISを被覆した複数の Sl¾被覆部 材が互 、に所定間隔離れて面状発 ¾g抗シ一トに取り付けられた面状発 であつ て、 前記電極被覆部材のうち少なくとも 1本の電極の近傍は温度の上昇とともに電 気抵抗値力5増大する正 係数特 を有する P T C層であり、 編己発賁概抗シ一ト は、 編 Biea 係数特性を有しないか、 あるいは、 立上倍率が編己 P T C層の駄 立上倍率を示す温度以下の範囲において ΚΠ3Ρ τ c層に比べて小さいか又は立上温 度が編己 ρ τ c層に比べて高い正 係数樹生を有することを とする。 The surface emitting device of the present invention is a surface emitting device in which a plurality of Sl covering members coated with IS are attached to a surface emitting sheet at predetermined intervals from each other. In the vicinity of at least one electrode among the electrode covering members, a PTC layer having a positive coefficient whose electric resistance value increases by 5 with an increase in temperature is provided. Does not have the Biea coefficient characteristic, or the rise rate is smaller than that of the ΚΠ3Ρ τ c layer or the rise temperature is lower than the temperature at which the rise rate of the PTC layer indicates the failure rate of the PTC layer. Let it have a higher positive coefficient tree than the ρ τ c layer.
本発明では、 間に戆流を流すと、 発齊 »ΐシートで発熱されるが、 この鶴 抵抗シートは、 P T C特注がなく、 あるいは、 P T C層に比べて立上倍率が小さく 又は立上^背が高いので、 例えば、 況が中央部領域と両側部領域とで相違し ても、 発籠抗シートにおいて局所建が発生することがない。 その上、 部材のうち少なくとも 1本の電極の近傍は正温度係数特性を有する P T C層である から、 «の面状発淋が有している正 係数特性のメリットを維持できる。 さ らに、 発«抗シー卜として大きな正^ ^係数特 f生を有しない部材を使用するから、 面状発難全体として、 抵抗の変ィ匕が大きい正 係数特性を有する部分の割合を 霞し、 全体の抵 i¾s時変ィ匕を小さくできる。従って、 発籠抗シートを舰する 際の が不要とされるので、 面状発^^の! ¾1コストを低くできる。  In the present invention, when a current flows in between, the heat is generated by the heat generating sheet. However, this crane resistance sheet has no special order of the PTC, or has a smaller rising magnification or a rising ratio as compared with the PTC layer. Since it is taller, for example, even if the situation is different between the central region and the both side regions, local building does not occur in the carving-resistant sheet. In addition, since the vicinity of at least one of the electrodes is a PTC layer having a positive temperature coefficient characteristic, the merit of the positive coefficient characteristic possessed by other planar gonads can be maintained. Furthermore, since a member that does not have a large positive coefficient characteristic is used as a resistance sheet, the ratio of the portion having a large positive coefficient characteristic with a large change in resistance in the overall planar failure is determined. The haze and overall resistance can be reduced. Therefore, it is not necessary to use a carton-resistant sheet, so it is possible to use a sheet-like sheet! ¾1 Cost can be reduced.
また、 発 氐抗シートの ¾ί¾値に対して、 P T C層 被覆部材) の *、 比 抵抗値を調整変更することで、 ヒー夕全体の ¾ίϊΐ値が大きくなる を可変的に設 計することが可能となり、 各用途に応じた特注が容易に得られる。  In addition, by adjusting and changing the * and specific resistance values of the PTC layer-covered member with respect to the resistance value of the development sheet, it is possible to variably design the resistance value of the entire heater to be increased. It is easy to obtain a custom order for each application.
ここで、 編己発堯誕抗シー卜における正 係数特性の立上倍率力;編己 Ρ Τ。層 の最^ Ϊ上倍率を示す温度以下の範囲で P T C層における正温度係数特性の立上倍 率の 5以下としてもよく、 さらには、 til己発 «抗シートにおける正 係数 特性の立上温度を前記 P T C層における正温度係数特注の立上温度より 5 °C以上高 くしてもよい。  Here, the rise magnification force of the positive coefficient characteristic in the knitting 発 誕 誕 ;; knitting Ρ Τ. The rise rate of the positive temperature coefficient characteristic in the PTC layer may be 5 or less within the range of the temperature indicating the uppermost magnification of the layer, and the rise temperature of the positive coefficient characteristic in the til self-propelled sheet is further reduced. May be 5 ° C. or more higher than the custom temperature rise temperature of the PTC layer.
発謹抗シ一トにおける正 係数特性が大きいと、 発鐘抗シ一卜の面上に温 度差が生じた時に局所発熱が発生しやすい。 これを防止するには、 発羅抗シート における正温度係数特注を小さくする必要がある。 そのため、 発 氐抗シートの P T C層に対する正 係数特〖生の立上倍率を P T C層の最大立上倍率を示す 以 下の範囲で前述の通り 0. 5以下とし、 あるいは、 発^ ί氐抗シートを P T C層に比 ベて正 係数特性の立上驢を前述の通り 5 °C以上高くすれば、 発嫩抗シート の面上の局所発熱を確実に防止することができるとともに、 P T C層での正 係 数特性で コントロールが可能となる。 If the positive coefficient characteristic of the anti-shock sheet is large, local heat generation is likely to occur when a temperature difference occurs on the surface of the anti-shock sheet. In order to prevent this, it is necessary to reduce the custom order of the positive temperature coefficient in the anti-shear sheet. Therefore, the rise ratio of the positive coefficient characteristic of the development sheet with respect to the PTC layer is set to 0.5 or less as described above in the following range, which indicates the maximum rise magnification of the PTC layer. Sheet compared to PTC layer If the rise of the positive coefficient characteristic is increased by 5 ° C or more as described above, local heat generation on the surface of the sheet can be reliably prevented and the coefficient characteristic of the PTC layer can be reduced. Control becomes possible.
ここで、 本発明では、 編己 被覆部材は、 編己 «@の近傍に配置さ の上 昇とともに電気抵抗値が増大する正 係数特性を有する P T C層と、 この P T C 層を被覆する P T C層被覆部材とを備え、 この P T C層被覆部材と編 3発籠抗 シートとは使用される樹脂が同じである構成としてもよい。  Here, in the present invention, the knitted fabric covering member includes a PTC layer having a positive coefficient characteristic in which the electric resistance value increases with rise in the vicinity of the knitted fabric, and a PTC layer covering the PTC layer. The PTC layer-covered member and the knitting three-shot cage sheet may be configured to use the same resin.
この構成では、 予め misとともに 出した p τ c層を p τ c層被覆部材と ¾if 出して ¾S被覆部材を i ^する。 この P T C層被覆 と発籠抗シ一トとは同じ 材質であるから、 を発 ¾£抗シートに鬲嬉すること力5容易かつ確実となる。 さ らに、 面状発齊淋の耐久性が図られる。 In this configuration, the p τ c layer previously released together with “mis” is extracted as ¾if with the p τ c layer covering member, and the ¾S covering member is defined as i ^. Since this PTC layer covering the Hatsukago anti sheet one bets made of the same material, the origination ¾ £鬲嬉that force 5 easily and surely to anti sheet. In addition, the durability of the planar horn is improved.
さらに、 編己 ま複数本の ¾®¾導線の単線群から構成さ^ tiiiSP T c層は 編己単線をそれそれ個別に被覆した構成でもよい。  Further, the knitting layer may be configured by a single wire group of a plurality of ¾®¾ conductors, and the ttiSPTC layer may be configured by individually covering the knitting single wires.
この構成では、 面状発熱体自体に圧力がかかった時の P T C層の変形が少なく、 耐圧力性能の向上が図られる。 しカゝも、 を発 «抗シートに取り付ける際の電 極の性能に与える悪影響を最小限に抑えることができる。  With this configuration, the deformation of the PTC layer when pressure is applied to the sheet heating element itself is small, and the pressure resistance performance is improved. Also, it is possible to minimize the adverse effect on the performance of the electrode when attaching the electrode to the resistance sheet.
また、 本発明では、 編 3βは複数本の 導線の単線群から構成さ fji3 P T。層はそれそれ 単線群の一部を被覆するとともに立上倍率及び立上^^が 異なる 2禾 Ι 以上から構成されたものとしてもよい。  In the present invention, the knitting 3β is composed of a single wire group of a plurality of conductors. The layer may cover a part of the single wire group, and may be composed of two or more hectares with different rising magnification and rising ^^.
この構成では、 複数種類の P T C層にそれそれ設けられた 導線への通電を 切り換えることにより、 異なる正 係数特性を選択することができ、 発嫌 a¾の In this configuration, different positive coefficient characteristics can be selected by switching the energization to the conductors provided in the various types of PTC layers.
$1脚が可能となる。 $ 1 leg is possible.
さらに、 編 3ΙΙϋは複数本の 導線の単線群から構成さ この単線群は前 記発齊 ¾¾抗シートからの距離が異なりそれそれ tiff己発 «抗シートと平行に配列さ れた複数の単線群から構成されたものでもよい。  Volume 3 is composed of a single wire group consisting of a plurality of conductors. This single wire group has different distances from the above-mentioned resistance sheet. May be used.
この構成では、 通電する単線群を切り換えることにより、 異なる正fl¾係数樹生 を選択することができ、 発齊 ^の制御が可能となる。 In this configuration, by switching the group of energized single wires, different positive fl ¾ coefficient Can be selected, and control of the origin is possible.
また、 Ιί配 P T C層を熱可塑性樹脂及び導電性粒子を有する発熱«物、 あるい は、 料から してもよい。  Further, the distributed PTC layer may be made of a heating material having a thermoplastic resin and conductive particles, or a material.
さらに、 編己猶 抗シートを、 熱可塑性樹脂及び導電性粒子を有する発卖¾« 物、 «W料、 あるいは、 材料から離してもよい。  Further, the knitting-resisting sheet may be separated from the material, the W material, or the material having the thermoplastic resin and the conductive particles.
また、 ri己発 «抗シ一トと編己 p τ c層とが熱的に になるように編己 抵抗シート及ひ 己 P T C層は間に絶縁層 (例えば、 P E Tフィルム、 P Eフィル ム) を介して熱良 # 料(例えば、 板) で接続した構造でもよい。  In addition, the resistance sheet and the PTC layer are insulated between the resistance sheet and the PTC layer so that the anti-sheet and the Ptc layer are thermally heated. The structure may be connected with # heat (for example, a board) via a.
発顯抗シ一トと P T C層とを熱良 料で接続すれば、 発籠抗シ一卜の熱が ¾亟に直接伝わり、 正 係数特性による効果を発揮することができる。 ここで、 発«抗シートと P T C層とを熱良 «W料で直封妾続すると、 戆流は熱良 料に 流れて発齊¾£抗シートには流れないので、 発熱抵抗シートでの発熱がされなくなる が、 本発明では、 シート及び P T C層と熱良 ¾ 料との間に絶 を設け ることにより、 発 ¾¾抗シ一トに 流が確実に流れるようにして発 カ果を担保で ぎる。 図 面 の 簡 単 な 説 明  If the display sheet and the PTC layer are connected by a heat charge, the heat of the display sheet is transmitted directly to the pipe, and the effect of the positive coefficient characteristic can be exhibited. Here, if the heat-resistant sheet and the PTC layer are directly sealed with heat, the heat will flow into the heat-heated material and will not flow into the heat-resistant sheet. Although heat is no longer generated, in the present invention, by providing a gap between the sheet and the PTC layer and the heat generating material, the flow is reliably flown to the generating sheet and the generated result is secured. I can go. Brief explanation of drawings
第 1図は本発明の第 1実6¾態にかかる面状発熱体の一部を破断した斜視図であ る。  FIG. 1 is a perspective view in which a part of a sheet heating element according to a first embodiment of the present invention is partially broken.
第 2図は第 1図の平面図である。  FIG. 2 is a plan view of FIG.
第 3図は ¾ 被覆部材と発^ g抗シートとのそれぞれの正温度係数特性を示すグ ラフである。  FIG. 3 is a graph showing the respective positive temperature coefficient characteristics of the coating member and the heat-resistant sheet.
第 4図 (A) は 被覆部材の正 係数特性を示すグラフであり、 第 4図 (B) は発熱抵抗シートの正温度係数特 I'生を示すグラフであり、 第 4図 (C) は面 状発^ f本全体の正温度係数特 を示すグラフである。  Fig. 4 (A) is a graph showing the positive coefficient characteristic of the covering member, Fig. 4 (B) is a graph showing the positive temperature coefficient characteristic I 'of the heating resistor sheet, and Fig. 4 (C) is 6 is a graph showing the positive temperature coefficient characteristic of the entire f-shaped surface.
第 5図は本発明の第 2実 «態にかかる面状発謝本の一部を破断した余 見図であ る。 FIG. 5 is a perspective view in which a part of a planar excerpt book according to the second embodiment of the present invention is partially broken. You.
第 6図は第 5図の平面図である。  FIG. 6 is a plan view of FIG.
第 7図 (A) は 被覆 の正 ¾ ^係数特性を示すグラフであり、 第 7図 (B) は撤 ¾¾抗シートの正 係数特 I1生を示すグラフであり、 第 7図 (C) は面 状発 f i*全体の正温度係数特性を示すグラフである。 Figure 7 (A) is a graph showing the positive ¾ ^ coefficient characteristics of the coating, FIG. 7 (B) is a graph showing a positive coefficient Japanese I 1 Raw withdrawal ¾¾ anti sheet, FIG. 7 (C) Is a graph showing the positive temperature coefficient characteristics of the entire surface fi *.
第 8図は本発明の第 3実 ί ^態にかかる面状発熱体の一部を破断した斜視図であ る。  FIG. 8 is a perspective view, partially broken away, of a planar heating element according to a third embodiment of the present invention.
第 9図は第 8図の平面図である。  FIG. 9 is a plan view of FIG.
第 1 0図は第 8図の断面図である。  FIG. 10 is a sectional view of FIG.
第 1 1図は本発明の第 4実½0態にかかる面状発淋の断面図である。  FIG. 11 is a cross-sectional view of a planar gonad according to a fourth embodiment of the present invention.
第 1 2図は本発明の第 5実 5©¾態にかかる面状発 ¾淋の断面図である。  FIG. 12 is a sectional view of a planar gonad according to a fifth embodiment of the present invention.
第 1 3図は本発明の第 6実 «態にかかる面状発齊淋の断面図である。  FIG. 13 is a cross-sectional view of a planar sprout according to a sixth embodiment of the present invention.
第 1 4図は第 6 W¾態にかかる面状発齊淋全体の正^^係数特性を示すグラフ である。  Fig. 14 is a graph showing the positive ^^ coefficient characteristics of the whole area of the spontaneous chionon in the 6th W state.
第 1 5図は本発明の第 7実 態にかかる面状発 の断面図である。  FIG. 15 is a cross-sectional view of a planar emitter according to a seventh embodiment of the present invention.
第 1 6図は第 7実¾¾態にかかる面状発 全体の正温度係数特性を示すグラフ である。 発 明 を 実 施 す る た め の 最 良 の 形 態  FIG. 16 is a graph showing the positive temperature coefficient characteristics of the entire planar emission according to the seventh embodiment. Best form to carry out the invention
以下に本発明の纖の形態を謝図面に基づいて説明する。 ここで、 各難の形態 において、 同一構成要素は同一符号を付して説明を省略もしくは簡略にする。 第 1図及び第 2図には本発明の第 1実 ίδ¾態にカゝかる面状発熱体 1が示されてい る。 第 1図は面状発熱体 1の一部を破断した斜視図であり、 第 2図は、 その平面図 である。 Hereinafter, the form of the fiber of the present invention will be described with reference to the drawings. Here, in each difficult mode, the same components are denoted by the same reference numerals, and the description is omitted or simplified. FIGS. 1 and 2 show a sheet heating element 1 according to a first embodiment of the present invention in a δ state. FIG. 1 is a perspective view in which a part of the sheet heating element 1 is cut away, and FIG. 2 is a plan view thereof.
これらの図において、 面状発齊淋 1は、 平面矢研狱に舰して形成された発羅 抗シ一ト 2と、 この発堯嫩抗シ一ト 2の端部にそれそ き込まれ 3を被覆し た 2本の 3被覆 4と、 必要に応じて設けられた P E Tフィルム等からなる外 装材とを備えて構成されている。 In these figures, the planar chion 1 is applied to the anti-suction sheet 2 formed by the plane arrow and the end of the anti-skin 2 Rarely covered 3 And two outer coatings made of PET film and the like provided as necessary.
発 «抗シート 2は、 シート状ニクロム、 ステンレス、 アルミエッチング材料等 のシート状^ 材料、 シート状 I T 0材料やシート状導電性無酣料、 シート状有 mt あるいは、 ポリスチレン (P S) 、 メ夕クリル樹脂 (PMMA)、 塩化ビ ニル等の非結晶 I"生樹脂と力一ボンブラック (CB) とからなる, «物から形成さ 温度の上昇とともに抵抗値が増大する正温度係数特性(P T C特性) を有するもの ではない。  The anti-sheet 2 is made of sheet-like material such as sheet-like nichrome, stainless steel, aluminum etching material, etc., sheet-like IT0 material or sheet-like conductive material, sheet-like material mt or polystyrene (PS), Positive temperature coefficient characteristics (PTC characteristics) that consist of non-crystalline I "resin such as krill resin (PMMA), vinyl chloride, etc. and green carbon black (CB). ).
発 シート 2は、 その厚さは 0.1 〜 5 腿、 好ましくは、 0.1 〜2 画であり、 その幅は 2.5臓 〜 6000mmであり、 その長さの制限はない。  The starting sheet 2 has a thickness of 0.1 to 5 thighs, preferably 0.1 to 2 strokes, a width of 2.5 to 6000 mm, and is not limited in length.
は、 «S導線の単線 3 Aを互いに交差するとなく複数本(図では 4本) 平行かつ平板状に一列に並んで形成されており、 この単線 3 Aは太さが 2 臓以下 Ο. ΐππη以上であるが、 具簡な太さは単線 3 Αの数との関係で される。 なお、 この電極 3は、 図示の ¾Μ導線の単線 3 Aに限定されるものではなく、 金属テ一 プ、 導電性べ一ストから構成してもよい。  Is formed of a plurality of (4 in the figure) single wires 3A of the S conductor, which do not intersect each other, and are formed in parallel and in a line in a flat plate shape. The single wires 3A have a thickness of two or less 臓. Ϊ́ππη As mentioned above, the simple thickness is related to the number of 3 mm single wires. The electrode 3 is not limited to the single conductive wire 3A shown in the figure, but may be made of a metal tape or a conductive base.
w m i 4は; ¾ 状に形成されており、 シート 2の両側にぉ ヽて長 さ方向に沿って 2本 されている。  The w mi 4 is formed in a 状 shape, and is provided on both sides of the sheet 2 along the length direction.
S¾被覆部材 4は、 厚さ 0.3mm 〜 5 删、 幅 0.5咖 〜30im、 好ましくは、 1 画〜 10mmの断面矢研狱に形成されている。  The S¾ coating member 4 is formed in a cross section having a thickness of 0.3 mm to 5 mm and a width of 0.5 mm to 30 im, preferably 1 stroke to 10 mm.
¾1®被覆 は、 ¾Μ導線の単線 3 Aを複瓶いに交差することなく ラな 扰態で押出礙繩のダイに通し、 これらの¾»導線とともに発 物を押し出 すという 出法により^ tされる。  The ¾1® coating is made by passing a single wire 3A of a conductive wire through an extruded rope die in a straightforward manner without crossing a double bottle, and extruding the material together with these wires. t.
動 3被覆部材 4は、 熱可塑性樹脂及び導電性粒子を備えた発赛絲誠物から形成さ u 正 係数特性を有する P T C層である。  The coating member 4 is a PTC layer having a u-coefficient characteristic formed of a woven material provided with a thermoplastic resin and conductive particles.
この熱可塑性樹脂としては、 結晶性熱可塑性樹脂が好まし 具ィ柳には、 ポリ ォレフィン樹脂及びその共重合樹脂、 ポリアミド系樹脂、 ポリァセ夕一ル樹脂、 熱 可塑性ポリエステル糊旨、 ポリフエニレンォキシド及びノニル鈿旨、 ポリスルフォ ン等を挙げることができる。 As this thermoplastic resin, a crystalline thermoplastic resin is preferable. Polyolefin resin and its copolymer resin, polyamide resin, polyester resin, heat Plastic polyester paste, polyphenylene oxide and nonyl pearl, polysulfone and the like can be mentioned.
編己ポリオレフイン樹脂としては、 例えば、 高密度ポリエチレン、 中、 {驢度ポ リエチレン、 igf貞状 度ポリェチレン等のポリエチレン類、 アイソ夕クチックポ リプロピレン、 シンジオタクチックポリプロピレン等のポリプロピレン類、 ポリブ テン、 4—メチルペンテン一 1樹脂等を挙げることができる。  Examples of the knitted polyolefin resin include, for example, high-density polyethylene, medium, polyethylenes such as poly (ethylene terephthalate), polyethylene (eg, polyethylene igf), polypropylenes such as isocyclic polypropylene, syndiotactic polypropylene, and polybutene. —Methylpentene-11 resin and the like.
また、 第 1の の形態においては、 エチレン一プロピレン共重^^ エチレン —酢酸ビニル共重合体、 エチレン一アクリル酸共重合 エチレン一ェチルァクリ レート共重^: (Ε ΕΑ)、 エチレン一メチルァクリレート共重合体等のエチレン —ァクリレート系共重合 # エチレン一塩化ビニル共重合体等のォレフィンとビニ ル化 との共重合体及びフッ素含有エチレン系重^ k ならびに、 これらの変成 物も使用できる。  In the first embodiment, ethylene-propylene copolymer weight ^^ ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer ethylene-ethyl acrylate copolymer weight ^: (Ε ΕΑ), ethylene-methyl acrylate Ethylene-acrylate copolymers such as copolymers # Copolymers of olefins and vinylation such as ethylene-vinyl monochloride copolymers, fluorine-containing ethylene-based copolymers, and their modified products can also be used.
酢酸ビニル系樹脂としては、 例えば、 酢酸ビニル樹脂、 ポリビニルァセトァ セ夕一ル、 ポリビニルプチラール等を挙げることができる。  Examples of the vinyl acetate resin include a vinyl acetate resin, polyvinyl acetate, and polyvinyl butyral.
編3ポリアミド ί封脂としては、 例えば、 ナイロン 6、 ナイロン 8、 ナイロン 11、 ナイロン 66、 ナイロン 610等を挙げることができる。  Knitting 3 Polyamide と し て Examples of the sealing oil include nylon 6, nylon 8, nylon 11, nylon 66, nylon 610 and the like.
Ιίί己ポリァセタールは、 単一重合体であっても共重合体であってもよい。  The polyacetal may be a homopolymer or a copolymer.
可塑性ポリエステル樹脂としては、 例えば、 ポリエチレンテレフ夕レート、 ポリプチレンテレフタレート等を挙げることができる。  Examples of the plastic polyester resin include polyethylene terephthalate and polybutylene terephthalate.
また、 編 晶性熱可塑性樹脂としては、 編3のほかに、 例えば、 トランス- 1 , 3—ポリイソプレン、 シンジオタクチック一 1 , 2—ポリブタジエン等のジェン系 重合体及び共重合体等も使用することができる。  As the crystalline thermoplastic resin, besides the knitting 3, for example, gen-based polymers and copolymers such as trans-1,3-polyisoprene and syndiotactic-1,2-polybutadiene are also used. can do.
編己各種の結晶性熱可塑性樹脂は、 1種 «Iで用いてもよいし、 2種以上をポリ マ一ブレンド等として併用してもよい。  One type of crystalline thermoplastic resin may be used alone or two or more types may be used in combination as a polymer blend or the like.
もっとも、 編己各種の結晶性熱可塑性樹脂の中でも、 高密度ポリエチレン、 低密 度ポリエチレン、 直鎖状ポリエチレンやエチレン一酢酸ビニル共重合 エチレン ーェチルァクリレ一ト共重合体等のォレフィン系共重合体やトランス一 1, 4ーポ リイソプレン等が好ましい。 However, among the various types of crystalline thermoplastic resins, high-density polyethylene, low-density polyethylene, linear polyethylene, ethylene-vinyl acetate copolymer ethylene Olefin-based copolymers such as ethyl acrylate copolymer and trans-1,4-polyisoprene are preferred.
編路種の結晶性熱可塑性樹脂は、 必要に応じて他のポリマ一や添加物との糸誠 物として することもできる。  The crystalline thermoplastic resin of the knitting type can also be used as a yarn with other polymers or additives, if necessary.
編 3導電性粒子としては、 例えば、 カーボンブラック粒子、 グラフアイト粒子等 の粒状物、 鉄(Fe)、 ニッケル (Ni) 、 プラチナ (Pt) 、 銅 (Cu) 、 銀(Ag)、 金 (Au)等の鍋腿子、 鍋 細変化維等の粉状物、 炭素難等の隱状 物、 導電性 M 料(I T O等)、 チタン酸バリウム (BaTio3) , チタン酸スト口 ンチゥム (SrTio3)等の正温度係数特!1生を有する無»料等を挙げることができる。 これらの中でもカーボンブラヅク粒子、 グラフアイト粒子等の粒状物、 特に、 力一 ボンブラヅク粒子が好ましい。 3 Conductive particles include, for example, particles such as carbon black particles, graphite particles, iron (Fe), nickel (Ni), platinum (Pt), copper (Cu), silver (Ag), and gold (Au). ), Powdered material such as pot fine change fiber, hidden matter such as carbon difficulties, conductive M material (ITO, etc.), barium titanate (BaTio3), titanium titanate (SrTio3), etc. No »fee or the like having a positive temperature coefficient, especially! 1 students can be mentioned. Among these, granular materials such as carbon black particles and graphite particles, and particularly carbon black particles are preferable.
編 3各種の導電性粒子は、 1種職で用いてもよいし、 2種以上を混^ lとして 併用してもよい。  Knitting 3 The various types of conductive particles may be used in one type of job, or two or more types may be used in combination as a mixture.
導電性粒子の粒径としては、 特に制限はないが、 例えば、 平均粒径が通常 10〜 200 nm、 好ましくは、 15〜; 100簡である。 導電性粒子が,難状である には、 そのァスぺクト比は通常 1〜1000、 好ましくは、 1〜100ネ敏である。  There is no particular limitation on the particle size of the conductive particles, but for example, the average particle size is usually 10 to 200 nm, preferably 15 to 100; If the conductive particles are in a difficult state, the aspect ratio is usually 1 to 1000, preferably 1 to 100.
編 31¾ 生樹脂と導電性粒子との配合割合は、 重量比として、 通常、 10-80: 90 〜20、 好ましくは、 55〜75 : 45〜25である。 導電性粒子の西己合割合がこの範囲よ り少ないと!^被覆 4の抵抗値が大きくなり、 面状発難 1が実用上、 十分に 発熱しないことがあり、 一方、 導電性粒子の配合割合がこの範囲より多いと正 係数特性が十分に発現しないことになる。  31. The mixing ratio of the raw resin and the conductive particles is usually 10-80: 90-20, preferably 55-75: 45-25 as a weight ratio. If the ratio of the conductive particles is less than this range! ^ The resistance value of the coating 4 becomes large, and the sheet-like difficulty 1 may not generate enough heat for practical use.On the other hand, if the mixing ratio of the conductive particles is larger than this range, the positive coefficient characteristic may not be sufficiently exhibited. become.
¾H被覆部材 4の発 «物の比抵抗値は仕様や目的に応じて すること ができるが、 通常の^、 10〜50000 Ω - cm^ 好ましくは、 40〜20000 Ω · αηで ある。  The specific resistance value of the material of the H-coated member 4 can be determined according to the specification and purpose, but is usually ^, 10 to 50000 Ω-cm ^, preferably 40 to 20000 Ω · αη.
編 Β結晶性樹脂と導電性粒子とを混合し して 被覆部材 4力 s得られるが、 この妮時又は^J 後において編己発熱糸誠物中の熱可塑性結晶性樹脂を架橋して 物を硬化させることが好ましい。 この発 物を硬化させると、 正温度 特性が 3娘されるとともに、 面状発»の熱変形あるレ、は熱軟化等による不良を防 止することがでさる。 Knitting Β By mixing the crystalline resin and the conductive particles, a coating member of 4 s can be obtained.At this time or after JJ, the thermoplastic crystalline resin in the knitted heating material is crosslinked. It is preferable to cure the object. When this product is cured, the positive temperature characteristic is reduced, and defects due to thermal deformation such as planar emission and thermal softening can be prevented.
結曰 ¾t生熱可塑性樹脂の架橋は架橋剤及び/又は »f線を利用して行うことができ る。雄碟橋剤は、 結晶性熱可塑性樹脂の禾顧に応じて、 有 化物、 硫黄化合 物、 ォキシム類、 ニトロソ化^!)、 ァミン化^)、 ポリアミン化^)等から ¾ 択して^することができる。  Conclusion Crosslinking of the thermoplastic resin can be performed using a crosslinking agent and / or »f line. Depending on the type of crystalline thermoplastic resin used, maleic, bridging agents, sulfides, oximes, and nitrosated ^! ), Aminated ^), polyaminated ^) and the like.
例えば、 編己結曰 ¾†生熱可塑性樹脂がポリオレフイン系樹 β である には、 好 適な架橋剤として、 例えば、 有 化物を利用することができる。 この有 化物としては、 例えば、 ベンゾィルパーォキシド、 ラウロイルパーォキシド、 ジク ミルパーォキシド、 tert—ブチルパーォキシド、 tert—ブチルバ一ォキシベンゾ エート、 tert—ブチルクミルパーォキシド、 tert—プチルヒドロパーォキシド、 2 , 5—ジメチノレー 2 , 5—ジ (tert—ブチルパーォキシ) へキシン一 3、 1 , 1—ビ ス (tert—ブチルペルォキシイソプロビル) ベンゼン、 1 , 1一ビス (tert—プチ ルペルォキシ) 一3 , 3 , 5—トリメチルシクロへキサン、 n—プチルー 4 , 4一 ビス (tert—ブチルペルォキシ) バレレート、 2 , 2—ビス (tert—ブチルペルォ キシ) ブタン、 tert—プチルベルォキシベンゼン等を挙げることができる。  For example, knitting conclusions: If the bio-thermoplastic resin is a polyolefin-based resin β, for example, an oxide can be used as a suitable crosslinking agent. Examples of the oxide include benzoyl peroxide, lauroyl peroxide, dicumyl peroxide, tert-butyl peroxide, tert-butyl vinyl benzoate, tert-butyl cumyl peroxide, tert-butyl hydroperoxide. Oxide, 2,5-dimethinolae 2,5-di (tert-butylperoxy) hexine-1,3,1-bis (tert-butylperoxyisopropyl) benzene, 1,1-bis (tert-butylperoxy) ) 1,3,3,5-Trimethylcyclohexane, n-butyl-4,4-bis (tert-butylperoxy) valerate, 2,2-bis (tert-butylperoxy) butane, tert-butylbenzyloxybenzene, etc. Can be mentioned.
これらの中でも、 特に、 2 , 5—ジメチル一 2 , 5—ジ (tert—ブチルパーォキ シ) へキシン一 3等が好ましい。 なお、 これらの各種の有誦変化物は 1種戦で 使用してもよいし、 必要に応じて、 トリァリルシアヌレートゃジビニルベンゼン、 トリァリルイソシァヌレート等の架 fiffi助剤を添加してもよい。  Of these, 2,5-dimethyl-1,2,5-di (tert-butyl peroxy) hexine-13 is particularly preferred. These various recitations may be used in a single match, or if necessary, may be added with a fifi auxiliary such as triaryl cyanurate ゃ divinyl benzene or triaryl isocyanurate. Is also good.
編 誦変化物の使用割合は、 編結晶生樹脂 重量部に対して、 通常、 The ratio of the use of the transcript is usually
0.01〜 5重量部、 好ましくは、 0.05〜 2重量部である。 この割合が 0.01重量部未 満では、 架樹匕が不十分となり、 正 係数特 I'生が十分に発現しなかったり、 高温 領域での抵抗の低下がみられる等の問題が生じやすい。 一方、 5重量部を越えると、 架樹匕度が高くなりすぎて、 «性が低下したり、 正 係数特性の低下する現象 がみられることになる。 It is 0.01 to 5 parts by weight, preferably 0.05 to 2 parts by weight. If this ratio is less than 0.01 part by weight, the bridging becomes insufficient, and problems such as insufficient generation of the positive coefficient characteristic I ′ and a decrease in resistance in a high-temperature region are likely to occur. On the other hand, if it exceeds 5 parts by weight, the degree of bridging will be too high, and the phenomena will decrease and the positive coefficient characteristic will decrease. Will be seen.
3図には電極被覆部材 4及び発 «抗シ一ト 2の正温度係数特性を示すグラフ が示されている。第 3図において、 Pは電極被覆部材 4の正温度係数樹生を示すも ので、 その立上倍率 X は次の式で求められる。 FIG. 3 is a graph showing the positive temperature coefficient characteristics of the electrode covering member 4 and the developing sheet 2 . In FIG. 3, P indicates the positive temperature coefficient growth of the electrode covering member 4, and its start-up magnification X is obtained by the following equation.
Xp=R/R 25  Xp = R / R 25
ここで、 Rは^ の時の抵抗値を示し、 R 25は 2 5 °Cの時の抵抗値を示 す。 最^ t±倍率 Xp maxは、 Xp max=R pmax/R 25で示される。  Here, R indicates the resistance at ^, and R 25 indicates the resistance at 25 ° C. The maximum Δt ± magnification Xp max is represented by Xp max = R pmax / R 25.
これに対して、 Sは P T C特性を有しない発齊 ¾¾抗シート 2の正温度係数特性を 示すもので、 その最^ ϋ上倍率は 0である。  On the other hand, S indicates the positive temperature coefficient characteristic of the heat generating resistance sheet 2 having no PTC characteristic, and its uppermost magnification is 0.
被覆 ¾W 4がエチレン一ェチルァクリレート共重合体 (E E A) とカーボン ブラック (C B) とから形成さ 発«抗シート 2がポリスチレン (P S ) 等の 非結晶注樹脂と力一ボンブラックとからなる糸誠物から形成されてい では、 電 極被覆 Sl¾i4の正 係数特 ffiPは第 4図 (A) に示す通り 上昇に伴って抵抗 値が上昇するようになっており、 発«抗シート 2の正温度係数特性 Sは第 4図 (B ) に示す通り、 が上昇しても抵抗値に大きな変化がない。 面状発齊淋 1の 全体の正 係数特注 (P + S) は、 第 4図 (C) に示す通り、 上昇に伴って 抵抗値が上昇する特性が示されている。 なお、 第 4図 (C) のグラフ中、 点線部分 は発 ^シート 2のみの場合を示す。  Coating ¾W 4 is formed from ethylene-ethyl acrylate copolymer (EEA) and carbon black (CB). Anti-sheet 2 is formed from non-crystalline injection resin such as polystyrene (PS) and resin black. As shown in Fig. 4 (A), the resistance value of the electrode coating Sl¾i4 increases with the rise in the resistance value of the electrode sheet Sl¾i4. As shown in Fig. 4 (B), the positive temperature coefficient characteristic S does not show a large change in the resistance value even when increases. As shown in Fig. 4 (C), the overall positive coefficient custom order (P + S) of the planar horn 1 shows a characteristic in which the resistance value increases with the increase. Note that, in the graph of FIG. 4 (C), the dotted line indicates the case of the emission sheet 2 only.
従って、 第 態によれば、 それぞれ ® 3を被覆した 2本の 被覆滅 4が互いに所定間隔離れて面状発齊嫩抗シ一ト 2に取り付けら この US被覆部 材 4が温度の上昇とともに電気抵抗値が増大する正温度係数特性を有する P T C層 であり、 発齊滅抗シート 2が fllS正^^係数特 I"生を有しない構造とされているから、 ¾S3の間に S¾を流すと発 抗シート 2で放熱される力 この放熱に際して、 例えば、 職況が中央部領域と両側部領域とで相違しても、 発责 抗シ一ト 2に おいて局所発熱が発生することがない。 その上、 面状発謝本 1として要求される正 係数特性は 被覆部材 4で担保できる。 さらに、 発齊誕抗シート 2は正¾¾ 係数樹生を有するものではないので、 面状発難全体 1として、 抵抗の変化が大き い正 係数特性を有する部分の割合を ί«し、 全体の抵 ίή¾時変化を小さくでき る。 よって、 発舰抗シート 2を舰する際の »aが不要とされるので、 難コ ストを低くできる。 Therefore, according to the first embodiment, the two coatings 4 each coated with 3 are attached to the sheet-like coherent sheet 2 at a predetermined distance from each other, and the US coating 4 is increased with increasing temperature. A PTC layer with positive temperature coefficient characteristics that increases the electrical resistance value. Since the heat-dissipating anti-sheet 2 has a structure without fllS positive ^^ coefficient characteristics I ", S flows between ¾S3 In this heat radiation, for example, even if the job conditions are different between the central area and the both side areas, local heat may be generated in the fire-resistant sheet 2. In addition, the positive coefficient characteristic required for the planar emission book 1 can be ensured by the covering member 4. In addition, the birth resistance sheet 2 is positive. Since it does not have a coefficient tree, the ratio of a portion having a positive coefficient characteristic with a large change in resistance can be increased as the whole planar failure 1, and the overall change with time can be reduced. Therefore, since »a is not required when the development sheet 2 is applied, difficult costs can be reduced.
次に、 本発明の第 2 ¾K態を第 5図及び第 6図に基づいて説明する。第 2雄 形態は、 発籠抗シートが正 係数特性を有する構造である点で第 1 態と 相違するもので、 他の構造は第 1実 «態と同じである。  Next, a second embodiment of the present invention will be described with reference to FIGS. 5 and 6. FIG. The second male embodiment differs from the first embodiment in that the carcass-resistant sheet has a positive coefficient characteristic, and the other structure is the same as the first embodiment.
第 5図及び第 6図には本発明の第 2実 ^態にかかる面状発熱体 1 1が示されて いる。第 5図は面状発鮮 1 1の一部を破断した余观図であり、 第 6図は、 その平 面図である。  5 and 6 show a sheet heating element 11 according to a second embodiment of the present invention. FIG. 5 is a side view in which a part of the planar freshness 11 is broken, and FIG. 6 is a plan view thereof.
これらの図において、 面状発齊淋 1 1は、 発齊 物を平面矢研狱に«して形 成された発 »抗シ一ト 1 2と、 この発 l¾抗シート 2の両端部に設けられ編己電 極 3を被覆した 2本の編己 S®被覆 4と、 必要に応じて設けられた P E Tフィ ルム等からなる外装材とを備えて構成されている。  In these figures, the sheet-like sheet 11 is composed of a sheet-like sheet 12 formed by applying the sheet-like object to a plane arrow, and both ends of the sheet 1. It is provided with two knitting S® coatings 4 provided to cover the knitting electrodes 3 and an outer material made of PET film or the like provided as necessary.
発 M¾シート 1 2は、 押出藤法により猶絲誠物をシート状あるいはフィル ム状の面状に^^さたものであり、 その厚さは 0.1 〜5麗、 好ましくは、 0.1 〜 2腿であり、 その幅は 2.5雇〜 6000D血であり、 その長さの制限はない。  The ¾M¾ sheet 12 is a sheet or film-like sheet made of a woven material by the extrusion extrusion method, and has a thickness of 0.1 to 5 mm, preferably 0.1 to 2 thighs. And its width is between 2.5 and 6000D blood, and there is no limit on its length.
発»½シート 1 2の両側端部には 被覆部材 4がヒートシール又は超音波 シーフレにより ΐ嬉されている。  Coating members 4 are provided on both ends of the heat generating sheet 12 by heat sealing or ultrasonic sheaf.
発 啦抗シート 1 1の発熱糸誠物は正温度係数特性を備えている。  The heat-generating yarn of the development sheet 11 has a positive temperature coefficient characteristic.
第 2 «¾態においては、 発纖抗シート 1 2の発 § 誠物に使用する熱可塑性 樹脂、 特に、 結晶性熱可塑性樹脂と、 ¾ϋ被覆部材 4の発辦誠物に使用する熱可 塑性樹脂、 特に、 結晶性熱可塑性樹脂とは、 互いに同じ種類であってもよ ある いは、 相違してもよい。 もっとも、 熱醒による接着性をより良好に保っためには、 通常、 同じ種類のものを使用するのが望ましい。  In the second aspect, the thermoplastic resin used for the material of the anti-fiber sheet 12 is preferably a crystalline thermoplastic resin, and the thermoplastic resin used for the material of the covering member 4 is a thermoplastic resin. Resins, especially crystalline thermoplastic resins, may be of the same type or different from each other. However, it is usually desirable to use the same type to maintain better adhesion due to heat.
発^ ffi抗シート 1 2の発熱«物に使用する導電性粒子と、 ¾H被覆部材 4の発 奏 滅物に使用する導電性粒子とは、 互いに同じ種類であってもよく、 あるいは、 相違してもよい。The conductive particles used for the heat-generating material of the anti-sheet 12 and the ¾H coating member 4 The conductive particles used for the relics may be of the same type or different from each other.
miiと權 シ一卜 1 2とは正 係数特生を相違させるため、 熱 可塑性樹脂のブレンド比率が調整されている。  The blend ratio of the thermoplastic resin is adjusted in order to make the positive coefficient characteristic of mii differ from that of the rights sheet 12.
第 3図において、 S1及び S2は発齊¾¾抗シート 1 2の正温度係数特性を示すもの で、 このうち siは立上倍率が p τ c層を構成する電極被覆部材 4の最大立上倍率 を示す温度以下の範囲において電極被覆部材 4に比べて小さい場合を示し、 S2は 立上^^が ¾ 被覆部材 4に比べて高 、^を示す。  In FIG. 3, S1 and S2 show the positive temperature coefficient characteristics of the heat generating resistance sheet 12 among which si is the maximum rise magnification of the electrode coating member 4 whose rise magnification constitutes the p τ c layer. In the range below the temperature indicated by, the case where it is smaller than the electrode coating member 4 is shown.
mil被覆部材 4の g^il上倍率 Xp maxの時の Tp max以下の範囲にぉレヽて、 発 M¾シ一ト 1 2の正 係数特性 S1は^被覆 4の正 係数特性 Pよ り小さい。 つまり、 発 «ΐシ一ト 1 2の立上倍率を Xsとすると、 Xs<Xpであり、 好ましくは、 Xs≤0 . 5 Xpである。  The positive coefficient characteristic S1 of the generated M sheet 12 is smaller than the positive coefficient characteristic P of the coating 4 within a range of Tp max or less at the magnification Xp max of the mil coating member 4 at g ^ il. That is, assuming that the rising magnification of the source sheet 12 is Xs, Xs <Xp, and preferably Xs≤0.5 Xp.
また、 発熱抵抗シ一ト 1 2の正温度係数特注 S2は立上温度が電極被覆部材 4に 比べて高い。 つまり、 立上^ Sを抵抗値 Rが 2 X R 25の時の とすると、 m® 被覆部材 4では、 2 xRp25の時の立上 は tpであり、 発籠抗シート 1 2では、 2 xRs25の時の立上温度は tsである。 立上温度 tpは立上温度 tsより低い ( 0 °C <ts-tp) ものであり、 tpと tsとの差は、 好ましくは 5 °C以上 (5 °C≤ts— tp) 、 より好ましくは、 1 0 °C以上 ( 1 0 °C≤ts-tp) である。  In addition, the rising temperature of the positive temperature coefficient custom-made S2 of the heating resistor sheet 12 is higher than that of the electrode covering member 4. That is, assuming that the rise ^ S is when the resistance value R is 2 XR25, the rise at the time of 2 x Rp25 is tp in the m® covering member 4, and 2 x Rs25 in the carrot anti-sheet 12 The rise time at the time is ts. The rise temperature tp is lower than the rise temperature ts (0 ° C <ts-tp), and the difference between tp and ts is preferably 5 ° C or more (5 ° C≤ts-tp), more preferably Is more than 10 ° C (10 ° C≤ts-tp).
¾ϋ被覆 4がエチレン一ェチルァクリレート共重合体 (Ε Ε Α) とカーボン ブラック (CB) との発堯觀物から形成さ t 発羅抗シート 1 2が高密度ポリ エチレン (HD P E ) とカーボンブラックとの発熱 $1 ^物から形成されてい^で は、 ¾IS被覆部材 4の正 係数特注 Pは第 7図 (A) に示す通り 上昇に伴つ て抵抗値が上昇するようになっており、 発卖 S抗シート 1 2の正温度係数特性 S2 は第 7図 (B) に示す通り、 温度上昇に伴って抵抗値が上昇するようになっている が、 その変ィ匕の割合は 被覆部材 4の正曰 系数特性 Pとは相違する。  ¾ϋCoating 4 is formed from a mixture of ethylene-ethyl acrylate copolymer (Ε Ε Α) and carbon black (CB). Coating sheet 12 is high-density polyethylene (HD PE). In addition to the heat generated by the carbon material and the heat generated by carbon black, the custom-made positive coefficient P of the IS-coated member 4 increases as the resistance increases as shown in Fig. 7 (A). As shown in FIG. 7 (B), the resistance value of the positive temperature coefficient characteristic S2 of the developed S sheet 12 increases as the temperature rises. This is different from the coefficient characteristic P of the covering member 4.
第 7図 (Α) において、 被覆部材 4の立上¾l tpは 6 7 °Cであり、 第 7図 (B) において、 発熱抵抗シート 1 2の立上温度 tsは 1 2 0°Cであり、 電極被覆 i 4の立上 tpは発費繊抗シ一ト 1 2の立上 tsに比べて 5 3 °C高レヽ。 面状 淋 1 1の全体としては、 第 7図 (C) に示す通り、 離上昇に伴って抵 抗値が上昇する猶が示されている。 この特注、 特に、 比抵抗値の増大する は、 m&m i4 (P T C層) の!: 比抵抗値により変ィ匕し、 可変となっている。 なお、 第 7図 (C) のグラフ中、 点線部分は発熱抵抗シート 1 2のみの場合を示す。 従って、 第 態によれば、 それそれ ¾¾33を被覆した 2本の!^被覆 ¾In FIG. 7 (Α), the rising Δl tp of the covering member 4 is 67 ° C. In (B), the rise temperature ts of the heating resistance sheet 12 is 120 ° C., and the rise tp of the electrode coating i 4 is 5 times larger than the rise ts of the cost reduction sheet 12. 3 ° C high. As shown in Fig. 7 (C), the overall resistance of the sheet-like horn 11 indicates that the resistance value will rise as the separation increases. This special order, especially the increase in specific resistance value, is for m & m i4 (PTC layer)! : Variable depending on the specific resistance value. In the graph of FIG. 7 (C), the dotted line indicates the case where only the heating resistor sheet 12 is used. Thus, according to the first aspect, each of them covered two 33! ^ Coating ¾
4が互いに所定間隔離れて面状発舰抗シート 1 2に取り付けら この m@被覆 部材 4が正温度係数特性を有する P T C層であり、 発熱抵抗シート 1 2は、 立上倍 率 Xsが電極被覆部材 4の最^ ϊ上倍率 Xp maxを示す温度 Tp max以下の範囲にお レ、て ¾S被覆部材 4の立上倍率 Xpに比べて小さ t、か又は立上 tsが ¾H被覆部 材 4の立上温度 tpにに比べて高い正温度係数特性を有する構造としたから、 第 1 態と同様に、 発齊 ¾£抗シート 1 2において局所 ¾が発生することがないと ともに、 面状発謝本として要求される正^^係数樹生は 被覆部材 4で担保でき る。 さらに、 面状発維全体 1として、 抵抗の変ィ匕が大きい正 係数特性を有す る部分の割合力 ¾£ し、 全体の抵 経時変化を小さくできる。 よって、 発赛誕抗 シート 1 2を成形する際の が不要とされるので、 製造コストを低くできる。 さらに、 第 2 W態では、 S®被覆 ¾1¾"4の最½:上倍率 ]^を示すThe m @ -covered member 4 is a PTC layer having a positive temperature coefficient characteristic, and the heating resistance sheet 12 has a rising magnification Xs that is equal to the electrode. In the range of not more than the temperature Tpmax indicating the uppermost magnification Xpmax of the covering member 4, the t is smaller than the rising magnification Xp of the S covering member 4 or the rising ts is ¾H covering member 4. Since the structure has a positive temperature coefficient characteristic higher than the rise temperature tp of the sheet, similar to the first embodiment, no local ¾ is generated in the heat generating sheet 12 and the planar state The positive ^^ coefficient tree required for the excellence book can be secured by the covering member 4. Further, as the entire planar fibrous body 1, the ratio of the portion having a large positive coefficient characteristic in which the resistance change is large can be reduced, and the change over time in the whole can be reduced. This eliminates the necessity for forming the birth control sheet 12, thereby reducing manufacturing costs. In addition, in the second W state, the maximum of S® coating ¾1¾ "4: upper magnification] ^
Tp ma 以下の範囲において、 発熱抵抗シート 1 2の立上倍率 Xsを電極被覆部材 4 の立上倍率 Xpに対して 0. 5以下とし、 あるいは、 発 ¾g抗シート 1 2の立上温 度 tsを電極被覆部材 4の立上温度 tsに比べて 5 °C以上高くすれば、 発熱抵抗シ一 ト 1 2の面上の局所発熱を確実に防止することができるとともに、 被覆部材 4 での正 係数特性で^ コントロールが可能となる。 Within the range of Tp ma or less, the rising magnification Xs of the heat generating resistance sheet 12 is set to 0.5 or less with respect to the rising magnification Xp of the electrode covering member 4, or the rising temperature of the heat generating sheet 12 is ts. If the temperature is higher than the rising temperature ts of the electrode covering member 5 by 5 ° C. or more, local heat generation on the surface of the heating resistor sheet 12 can be reliably prevented and the correctness of the covering member 4 can be reduced. ^ Control is possible with coefficient characteristics.
次に、 本発明の第 3実½¾態を第 8図乃至第 1 0図に基づいて説明する。  Next, a third embodiment of the present invention will be described with reference to FIG. 8 to FIG.
第 8図乃至第 1 0図には本発明の第 3実 ί ^態にかかる面状発熱体 2 1が示され ている。 第 8図は面状発熱体 2 1の一部を破断した余¾¾図であり、 第 9図は、 その 平面図であり、 第 1 0図は、 その断面図である。 8 to 10 show a sheet heating element 21 according to a third embodiment of the present invention. FIG. 8 is a marginal view in which a part of the sheet heating element 21 is broken, and FIG. FIG. 10 is a plan view, and FIG. 10 is a sectional view thereof.
これらの図において、 面状発 »2 1は、 編己発證抗シート 1 2と、 編己 ¾S 3を被覆した 2本の編 被覆 ¾¾4と、 これらの発齊 ¾¾抗シート 1 2及び ¾S 被覆部材 4を被覆する糸^! 2 2と、 この絶鶴 2 2の外部から赠概抗シ一ト 1 2及び電極被覆部材 4の両面を覆う熱良^料 2 3とを備え、 発熱抵抗シ一ト 1 2 と ¾ 被覆部材 4とが熱的に Hiになるように発«抗シ一ト 1 2及び ¾被覆部 材 4が間に絶 2 2を介して熱良 料 2 3で接続された構造である。  In these figures, the surface emitting »2 1 is composed of the self-issued security sheet 12, the two knitted coverings ¾¾4 coated with the 己 S 3, and the coated sheet 12 and ¾S coated A thread that covers the member 4 and a heat resistance material 23 that covers both sides of the sheet 13 and the electrode covering member 4 from the outside of the cranes 22 are provided. The heat-resistant sheet 12 and the coating member 4 are connected to each other with a heating material 23 via a gap 22 so that the coating 1 2 and the coating member 4 become thermally Hi. Structure.
熱良 料 2 3は、 発堯 »ΐシート 1 2で発生した熱を効果的に P T C層である ¾被覆 4を錢するもので、 銅、 金、 銀、 アルミ、 鉄、 ステンレス等の鍋 から板状、 シート状に形成さ 絶縁層 2 2とは粘着テープ、 接着剤等で固定され ている。  The heat source 23 is a heat-generating material. It effectively removes the heat generated by the sheet 12, which is a PTC layer. The coating 4 is used to make heat from a pot made of copper, gold, silver, aluminum, iron, stainless steel, etc. The insulating layer 22 formed in a plate shape or a sheet shape is fixed with an adhesive tape, an adhesive or the like.
糸 @ϋϋ 2 2は、 発 シート 1 2に 流を確実に流すものであり、 ポリエチレ ンテレフ夕レート (P E T) やポリエチレン (P E) 等の糸色縁効果の高いフィルム から構成されている。 即ち、 腿シート 1 2と 被覆部材 4とを熱良 料 2 3で直雜続すると、 流は熱良 # 料 2 3に流れて懇滅抗シ一ト 1 2には流 れず、 発誕抗シート 1 2で がされなくなる不都合が生じるので、 発讓抗 シート 1 2及び S¾被覆部材 4と熱良^ 料 2 3との間に絶縁層 2 2を設けること により、 この不都合を回避した。  The yarn @@ 22 ensures that the current flows through the starting sheet 12, and is made of a film having a high thread color margin effect, such as polyethylene terephthalate (PET) or polyethylene (PE). That is, when the thigh sheet 12 and the covering member 4 are directly connected to each other with the heating material 23, the current flows to the heating material 23 and does not flow to the spread sheet 12, but the birth resistance. Since an inconvenience occurs in which the sheet 12 is not removed, the inconvenience was avoided by providing the insulating layer 22 between the heat-releasing sheet 12 and the S¾ covering member 4 and the heat source 23.
従って、 第 3¾»態によれば、 第 2 ¾½¾態と同じ効果を奏することができる 他に、 発齊誕抗シー卜 1 2と P T C層である ¾@被覆 4とが熱的に になる ように発 «抗シート 1 2及び 被覆部材 4を間に絶 ¾jf 2 2を介して熱良 料 2 3で接続したから、 発«抗シート 1 2の熱が Sj 3に直接伝わり、 正 係 数特性による効果を有効に発揮することができる。  Therefore, according to the third embodiment, in addition to achieving the same effects as the second embodiment, it is also possible that the heat generating sheet 12 and the PTC layer ¾ @ coating 4 become thermally. Since the heat-resistant sheet 12 and the covering member 4 are connected to each other with the heating material 23 via the insulated jf 22, the heat of the heat-resistant sheet 12 is directly transmitted to Sj 3, and the coefficient characteristic is increased. The effect by the can be exhibited effectively.
次に、 本発明の第 4¾»態を第 1 1図に基づいて説明する。  Next, a fourth embodiment of the present invention will be described with reference to FIG.
第 4 態は β被覆部材の構成が第 2 mと相違するもので、 他の構成 は第 2 ¾©B態と同じである。 第 11図には本発明の第 4実 SIB態にかかる面状発熱体 31が示されている。 第 11図において、 面状発雖 31は、 編己発籠抗シート 12と、 この発籠 抗シート 12の両端部に設けられ編己 ¾ϋ3を被覆した ¾ϋ被覆部材 34と、 必要 に応じて設けられた Ρ Ε Τフィルム等からなる外装材とを備えて構成されている。 In the fourth mode, the configuration of the β-coated member is different from that of the second mode, and the other configuration is the same as that of the second mode B. FIG. 11 shows a sheet heating element 31 according to the fourth actual SIB mode of the present invention. In FIG. 11, reference 31 is a knitting basket anti-sheet 12, a covering member 34 provided at both ends of the basket knitting anti-sheet 12 and covering the knitting machine 3, and provided as necessary外 装 外 装 外 装 外 装 外 装 外 装 外 装 外 装 Τ Τ 等 Τ.
«¾被覆 34は、 β3の近傍に配置さ iSJgの上昇とともに電気抵抗値が 増大する正^ 係数特性を有する PTC層 34Aと、 この PTC層 34 Aを被覆す る P T C層被覆 4 Bとを備えた構成である。  The ¾ coating 34 includes a PTC layer 34A disposed near β3 and having a positive coefficient characteristic whose electric resistance value increases with an increase in iSJg, and a PTC layer coating 4B that covers the PTC layer 34A. Configuration.
P T C層 34 Aは横一列に導電性単線 3 Aが並んで構成された電極 3を覆うよう に断面 円形に形成されている。  The PTC layer 34A is formed in a circular cross section so as to cover the electrode 3 in which the conductive single wires 3A are arranged side by side in a row.
PT C層被覆部材 34 Bは発腿抗シ一ト 12と使用される樹脂が同じである。 従って、 第 4 »B態によれば、 第 2 ¾¾¾態と同じ効果を奏することができる 他に、 第 4 H¾¾態では、 P T C層被覆腿 34Bと発籠抗シ一ト 2とが同一の 材質であることから、 これらの間の熱 ΐ嬉が容易となり、 Sm:のノ ラッキが減少 する。 しカゝも、 ¾被覆 ¾¾ί4を構成する EEAに比べて Μ生の い材質を PT C層被覆 «34Βに使用することにより、 高温での耐久性、 性能安定性が向上す る。  The resin used for the PTC layer covering member 34B is the same as the resin used for the anti-thigh sheet 12. Therefore, according to the fourth »B mode, the same effect as in the second mode can be obtained. In addition, in the fourth H mode, the PTC layer-coated thigh 34B and the outgoing anti-sheet 2 have the same material. Therefore, the heat during these times becomes easier, and the smack of Sm: decreases. Also, by using a material that is less heat-resistant than the EEA that constitutes the coating 4 for the PTC layer coating 34, durability and performance stability at high temperatures are improved.
次に、 本発明の第 5 態を第 12図に基づいて説明する。  Next, a fifth embodiment of the present invention will be described with reference to FIG.
第 12図には本発明の第 5実 «態にかかる面状発熱体 41が示されている。第 5 ¾©¾態は導電性単線 3Αを PTC層 34Αで個別に被覆した点を除いては、 第 4 と構造が同じである。  FIG. 12 shows a sheet heating element 41 according to a fifth embodiment of the present invention. The fifth embodiment has the same structure as that of the fourth embodiment, except that the conductive single wire 3 is individually covered with the PTC layer 34.
第 12図は面状発熱体 41の断面図である。  FIG. 12 is a cross-sectional view of the sheet heating element 41.
第 12図において、 面状発齊淋 41は、 認 3発腿抗シート 12と、 この発顯 抗シート 12の両端部に設けられ編己¾¾3を被覆した 被覆部材 44と、 必要 に応じて設けられた PETフィルム等からなる外装材とを備えて構成されている。  In FIG. 12, a planar sprout horn 41 is provided, and a thigh anti-seat sheet 12, a covering member 44 provided at both ends of the anti-suction sheet 12 and covering the knitted fabric 3, and if necessary, And a packaging material made of a PET film or the like.
被覆部材 44は 3の近傍に西己置さ; ¾の上昇とともに電気抵抗値が増 大する正 係数特性を有する PTC層 44Aと、 この PTC層 44 Aを被覆する til己 P T C層被覆 5#34 Bとを備えている。 The covering member 44 is placed in the vicinity of 3; a PTC layer 44A having a positive coefficient characteristic in which the electric resistance value increases with an increase in ¾, and covers the PTC layer 44A. til own PTC layer coating 5 # 34B.
P T C層 44 Aの正 係数特性は ΙίΓΪ己 ¾f 被覆部材 4と同一、 あるいは、 相違 するものであり、 4本 1列に並んで配置された 3の導電性単線 3 Aを個別に被 覆するものである。  The positive coefficient characteristic of the PTC layer 44 A is the same as or different from that of the covering member 4, and individually covers three conductive single wires 3 A arranged in four rows and one row. It is.
従って、 第 5¾ffiB態によれば、 第 4¾»態と同じ効果を奏することができる 他に、 PTC層 44Aで を構成する各導電性単線 3 Aを個別に被覆したから、 これらの P T C層 44 Aの周囲をこの P T C層 44 Aより ¾Sの大きい材質を利用 できる PTC層被覆 Sl¾i34Bで覆うことができるので、 面状¾»41自体に圧 力がかかった時の P T C層 44 Aの変形が少なく、 耐圧力性能の向上が図られる。 し^?も、 ¾S 3の各導電性単線 3 Aの位置を保持できるから、 発赛 シート 21 に取り付ける際の 3の性能に与える悪影響を最小限に抑えることができる。 次に、 本発明の第 6実«態を第 13図及び第 14図に基づいて説明する。  Therefore, according to the fifth embodiment, the same effects as those of the fourth embodiment can be obtained. In addition, since each of the conductive single wires 3A constituting the PTC layer 44A is individually coated, these PTC layers 44A Can be covered with a PTC layer coating Sl¾i34B that can use a material with a larger よ り S than the PTC layer 44A.Therefore, the deformation of the PTC layer 44A when pressure is applied to the surface 41 itself is small, The pressure resistance is improved. Also, since the position of each conductive single wire 3A of S3 can be maintained, the adverse effect on the performance of 3 at the time of attaching to the power generation sheet 21 can be minimized. Next, a sixth embodiment of the present invention will be described with reference to FIGS. 13 and 14.
第 13図には本発明の第 6実«態にかかる面状発熱体 51が示されている。第 6 態は導電性単線 3 Aを複数種類の P T C層で被覆した点を除いては、 第 4 ¾¾¾態と構造が同じである。  FIG. 13 shows a sheet heating element 51 according to a sixth embodiment of the present invention. The sixth embodiment has the same structure as the fourth embodiment except that the conductive single wire 3A is covered with a plurality of types of PTC layers.
第 13図は面状発熱体 51の断面図である。  FIG. 13 is a sectional view of the sheet heating element 51.
第 13図において、 面状発騰 51は、 編3発籠抗シート 12と、 この懇縦 抗シート 12の両端部に設けられ編 を被覆した ¾被覆謝54と、 必要 に応じて設けられた P E Tフィルム等からなる外装材とを備えて構成されている。 電極 3は横一列に並べて配置された複数本、 第 13図では 6本の導電性単線 3 A からなる単線群から構成されている。  In FIG. 13, the surface rising 51 is provided with three knitting anti-sheets 12, a knitting cover 54 provided at both ends of the spreading anti-sheet 12 and covering the knitting, and is provided as necessary. And an exterior material made of a PET film or the like. The electrode 3 is composed of a single wire group composed of a plurality of conductive wires 3 A arranged in a horizontal row, and in FIG.
¾被覆部材 54は、 単線群の一部、 具体的には 3本の導電性単線 3 Aを被覆す る第 1 P T C層 54 Aと、 残りの 3本の導電性単線 3 Aを被覆する第 2 P T C層 5 4Bと、 これらの第 1及び第 2PTC層 54A, 54 Bを被覆する PT C層被覆部 材 34 Bとを備えた構成である。  ¾ The covering member 54 is a part of the single wire group, specifically, the first PTC layer 54A that covers the three conductive single wires 3A, and the first PTC layer 54A that covers the remaining three conductive single wires 3A. This configuration includes a 2 PTC layer 54B and a PTC layer covering member 34B that covers the first and second PTC layers 54A and 54B.
第 1 P T C層 54 Aに被覆される導電性単線 3Aと、 第 2PTC層 54Bに被覆 される導電性単線 3 Aとは同時にあるレヽは選択的に通電される構成である。 Conductive single wire 3A covered on first PTC layer 54A and covered on second PTC layer 54B A layer which is at the same time as the conductive single wire 3A to be applied is selectively energized.
第 1 P T C層 54 Aは編 BP T C層 34 Aと同じ正 係数特 I"生を有するもので あり、 第 2PTC層 54Bは、 第 1PTC層 54八とは立上倍率及び が異 なる正温度係数特性を有するものである。  The first PTC layer 54A has the same positive coefficient characteristics as the BPTC layer 34A, and the second PTC layer 54B has a positive temperature coefficient that differs from the first PTC layer 548 in the rise magnification and. It has characteristics.
第 14図には第 1及び第 2PTC層 54A,54Bを使用した^の面状発齊淋 Fig. 14 shows the surface of ^ using the first and second PTC layers 54A and 54B.
51の正温度係数特性が示されている。 The positive temperature coefficient characteristics of 51 are shown.
第 14図において、 ?+3 ま第1?丁〇層54八に被覆された電極3にのみ通 電した^であり、 第 7図 (C)の P + S2と同じであり、 P + SBは第 2PTC層In Figure 14,? +3 or a ^ and conductible only the first? Ding 〇 layer 54 eight electrodes 3 coated on, the same as the P + S 2 of Figure No. 7 (C), P + S B is the 2PTC layer
54 Bに被覆された ¾S3にのみ通電した である。 Only the S3 covered with 54 B was energized.
なお、 第 6¾»態では、 PTC層を第 1及び第 2の 2種類だけでなく、 3種類 以上から構成するものでもよい。  In the sixth embodiment, the PTC layer may be composed of not only the first and second types but also three or more types.
従って、 第 6»¾態によれば、 第 2^©¾態と同じ効果を奏することができる 他に、 複数禾簾の PTC層 54 A, 54Bにそれそれ設けられた 導線 3 Aへ の通電を切り換えることにより、 異なる正^係数特性を選択することができ、 面 状発熱体 51の発熱 の $卿が可能となる。  Therefore, according to the sixth embodiment, the same effect as in the second embodiment can be achieved, and in addition, power is supplied to the conductive wire 3A provided on each of the PTC layers 54A and 54B of a plurality of trees. By switching between them, different positive coefficient characteristics can be selected, and the heat generation of the sheet heating element 51 can be reduced.
次に、 本発明の第 7¾5¾¾態を第 15図及び第 16図に基づいて説明する。 第 15図には本発明の第 7実 態にかかる面状発熱体 61が示されている。 第 Next, the seventh to fifth embodiments of the present invention will be described based on FIG. 15 and FIG. FIG. 15 shows a sheet heating element 61 according to a seventh embodiment of the present invention. No.
7 態は導電性単線 3 Aを上下に複辦 ij配置した点を除レヽては、 第 2 mm と構造が同じである。 In the seventh embodiment, the structure is the same as that of the second mm except that the conductive single wire 3A is vertically arranged in multiple ij.
第 15図は面状発熱体 61の断面図である。  FIG. 15 is a sectional view of the sheet heating element 61.
第 15図において、 面状発難 61は、 編己発籠抗シート 12と、 この発顯 抗シート 12の両端部に設けられ ΙΪΙ己 ¾3を被覆した厚さ^去 Tの ¾被覆部材 4と、 必要に応じて設けられた P E Tフィルム等からなる外装材とを備えて構成さ れている。 In FIG. 15, the planar flaky 61 is composed of a knitting self-antibody sheet 12 and a T coating member 4 having a thickness of T which is provided on both ends of the antibody sheet 12 and covers the ΙΪΙ3. And an exterior material such as a PET film provided as necessary.
3は複数本、 第 15図では、 それそれ 5本の導電性単線 3Aからなる第 1及 び第 2の単線群 31,32から構成さ これらの単線群 31, 32は発妻継抗シ一 ト 12からの距離が 及び D 2と異なるもので、 それそれ発熱抵抗シート 12と平 行に酉^]されている。 3 is composed of a plurality of conductors, and in FIG. 15, each of the conductors is composed of first and second single wire groups 31, 32 each composed of five conductive single wires 3A. In the distance from preparative 12 and D 2 different, it is Rooster ^] thereto thereto heating resistance sheet 12 and the flat row.
これらの単線群 31, 32は同時にあるいは選択的に通電される構成である。 第 1単線群 31のみに通電した ¾^と第 2単線群 32に通電した i ^では、 垂 部である発籠抗シート 12からの単線群 31,32の距離が相違するため、 面状 発熱体 61としての正温度係数特注が異なる。  These single wire groups 31, 32 are configured to be energized simultaneously or selectively. In the case of ¾ ^ in which only the first single wire group 31 was energized and i ^ in which the second single wire group 32 was energized, the distance between the single wire groups 31, 32 from the hanging anti-sheet 12 was different, resulting in planar heat generation. Positive temperature coefficient special order for body 61 is different.
第 16図には第 1及び第 2単線群 31,32に通電した の面状発熱体 61の 正 係数特 f生が示されている。  FIG. 16 shows the positive coefficient characteristic of the sheet heating element 61 when the first and second single wire groups 31, 32 are energized.
第 16図において、 P + Scは第 1単線群 31にのみ通電した であり、 P + SDは第 2単線群 32にのみ通電した ί である。 第 16図において、 P + Scと Ρ + S Dとは温度 Δ tだけ相違する。 In FIG. 16, P + S c is a energized only in the first single-wire group 31, P + S D is a ί was energized to only the second single-wire group 32. In FIG. 16, it differs by a temperature delta t and P + S c and Ρ + S D.
なお、 第 態では、 単線群を第 1及び第 2の 2S だけでなく、 3種類以 上から構成するものでもよい。  Note that, in the first embodiment, the single wire group may include not only the first and second 2Ss but also three or more types.
従って、 第 7¾J ^態によれば、 第 2¾S©B態と同じ効果を奏することができる 他に、 ¾3を複数本の 別導線3八の単線群から構成し、 この単線群を発齊嫩 抗シート 12からの距離が異なりそれそれ発齊 抗シ一ト 12と平行に酉 E^jされた 複数の単線群 31 , 32から構成した力ゝら、 通電する単線群 31,32を切り換える ことにより、 異なる正 係数樹生を選択することができ、 面状発 »61の発熱 の 卿が可能となる。  Therefore, according to the seventh embodiment, the same effect as in the second embodiment SB can be obtained. In addition, ¾3 is composed of a plurality of single conductor groups of the separate conductors 38, and this single conductor group is generated from the joint. The distance from the sheet 12 is different, and it is generated by switching between the power lines composed of a plurality of single wire groups 31 and 32, which are roared in parallel with the anti-sheet 12, and the energized single wire groups 31,32. However, it is possible to select different positive coefficient trees, and it is possible to control the fever of the area generation »61.
以下に各^^態の効果を するために、 ¾例について説明する。  Hereinafter, examples will be described in order to achieve the effects of each of the ^^ modes.
〔麵列 1〕  (麵 Row 1)
難例 1は第 1«¾態に対応するもので、 発龍抗シート 2をアルミエツチン ク"材料から形成した。 アルミエツチング材料は开狱幅 245ιππιχ長さ lmであり、 その抵抗値は 1 K Ω/mである。  Difficult example 1 corresponds to the first condition, in which the heat-resistant sheet 2 is formed from an aluminum etching material. The aluminum etching material has a width 245ιππιχ length lm and a resistance value of 1 KΩ. / m.
^被覆部材 4を 55重量部のエチレン一ェチルァクリレート共重合体 (EE A) CDPDJ6182;日本ュニ力一株式会社製〕 と 45重量部のカーボンブ ラヅク (C B) 〔ダイヤブラック E;三對匕成:[:■式会社製〕の «$脈物から 形成した。 各電極 3は、 それそれ 1 0本の単線 3 Aを互いに交差することなく並列 配置して形成した。 ^ 55 parts by weight of ethylene-ethyl acrylate copolymer (EE A) CDPDJ6182 (manufactured by Nippon Rikiichi Co., Ltd.) and 45 parts by weight of carbon RANK (CB) [Dia Black E; formed by «$ motifs from [: ■ Type Company]. Each electrode 3 was formed by arranging 10 single wires 3A in parallel without crossing each other.
この構造の面状撤淋 1では、 環境 に依存して発熱量が変化し、 ^ シートとして発赛絲 物を使用した«の面状発謝本を同様に良好な正溫渡係数特 †生を示した。 この正 係数特性は、 図 4 ( C) に示されるものと同じである。 こ れは、 シート 2の が tt3までに伝達することにより ¾®被覆 4 の^^が上昇し、 この 重覆部材 4で正 係数特性が機能したためである。 また、 面状発熱体 1の片面を電極 3に沿って断熱材 (発泡スチロール) で覆い、 面上に 2 0°Cの温度差を発生させたが、 従来の面状発熱体に見られた局所発熱は発 生しなかった。  In the surface removal of this structure 1, the calorific value changes depending on the environment, and the other surface emission book using the fired material as the ^ sheet has a similarly good transfer coefficient characteristic. showed that. This positive coefficient characteristic is the same as that shown in Fig. 4 (C). This is because the transmission of the sheet 2 to tt3 causes the ^^ of the coating 4 to rise, and the overlying member 4 functions as a positive coefficient. Also, one side of the sheet heating element 1 was covered with a heat insulating material (styrene foam) along the electrode 3 to generate a temperature difference of 20 ° C on the surface. No fever occurred.
下限温度が一 2 0°Cで上限温度が 7 0 °Cの範囲において熱履歴を 1 5回サイクル (昇温 ·降温速度; 1 °C /画で 1 0分間昇温 ·降温し、 5 0分保持で次の温度へ 移行) 行ったところ、 熱眉による抵抗値の変ィ匕が鍾例 1では一 0. 5 %であつ たのに対して «の面状発,では一 2 0 %であり、 ¾|例 1では の面状 体に比べて熱^ による抵抗値変化が 4 0分の 1以下となつた。  Heat history is cycled 15 times at a lower temperature limit of 120 ° C and an upper temperature limit of 70 ° C (heating / cooling rate: 1 ° C / temperature for 10 minutes at 50 ° C. Then, the temperature changed to the next temperature.) When the resistance value was changed by thermal eyebrows, it was 10.5% in the case of Jonggyo 1, whereas it was 120% in the case of « In Example 1, the change in resistance due to heat was less than one-fourth of that in the sheet body of Example |
〔鎌例 2〕  (Sickle example 2)
»例 2は第 2実 態に対応するもので、 発 «抗シート 1 2を 8 0重量部の 高密度ボリエチレン (HD P E) 〔出光 HD P E 2 3 0 J;出光興産 ¾ ^会社製〕 と 2 0重量部のカーボンブラック (C B) 〔ダイヤブラック Ε;三 匕成工業 ¾ϊζ 会社製〕 との発齊¾«物から形成し、 ¾1S被覆部材 4を 例 1と同一のエチレン 一ェチルァクリレート共重合体 (E E A)及び力一ボンブラック (CB) の発腹 成物から开城した。 各 は、 それそれ 1 0本の単線 3 Aを互いに交差すること なく並列酉己置して形成した。  »Example 2 corresponds to the second situation, in which the anti-sheet 12 and 80 parts by weight of high-density polyethylene (HDPE) [Idemitsu HDPE 230 J; Idemitsu Kosan ¾ ^ company] 20 parts by weight of carbon black (CB) (diamond black; manufactured by San-Daisei Kogyo Co., Ltd.), and 1S-coated member 4 is made of the same ethylene monomer as in Example 1. It was obtained from the exfoliated products of the rate copolymer (EEA) and Ribonbon black (CB). Each was formed by arranging 10 single wires 3 A in parallel without crossing each other.
この構造の面状発 M本 1 1では、 謹例 1と同様の理由から良好な正 係数待 性を示した。 この正 係数特性は、 図 7 ( C) に示されるものと同じである。 また、 面状発熱体 11の片面を電極 3に沿って断熱材 (発泡スチロール) で覆い、 面上に 20°Cの温度差を発生させたが、 従来の面状発熱体に見られた局所発熱は発 生しなかった。 これは、 発»tシート 12で使用した樹脂の が 120°C以上 であり、 100°C以下での大きな 直の立上 (正温度係数特性) がないためであ る。 The planar M book 11 of this structure exhibited good positive coefficient waitability for the same reason as in Example 1. This positive coefficient characteristic is the same as that shown in Fig. 7 (C). In addition, one side of the sheet heating element 11 was covered with a heat insulating material (styrene foam) along the electrode 3 to generate a temperature difference of 20 ° C on the surface. Did not occur. This is because the temperature of the resin used in the heating sheet 12 is 120 ° C. or higher, and there is no large direct rise (positive temperature coefficient characteristic) at 100 ° C. or lower.
同時に、 例 1と同じ条件で熱^ による実験を行ったところ、 熱 による 抵抗値の変ィ匕も の面状^^の 10分の 1以下となった。  At the same time, an experiment using heat under the same conditions as in Example 1 showed that the change in the resistance value due to heat was less than one-tenth of that of the surface.
〔難例 3〕  (Difficulty 3)
^例 3は第 4実 ¾¾態に対応するもので、 PTC層 34 Aを実施例 1の電極被 覆部材 4と同じ構成とし、 PTC層被覆 34 Bを 55重量部の高密度ポリェチ レン (HDPE) と 45重量部のカーボンブラック (CB) とから構成した。 PT C層被覆部材 34 Bは比抵抗値が小さく、 発熱には寄与しない。 実施例 3の他の構 成は^例 2と同一である。  ^ Example 3 corresponds to the fourth embodiment, in which the PTC layer 34A has the same configuration as the electrode covering member 4 of Example 1, and the PTC layer covering 34B is 55 parts by weight of high-density polyethylene (HDPE). ) And 45 parts by weight of carbon black (CB). The PTC layer-coated member 34B has a low specific resistance and does not contribute to heat generation. Other configurations of the third embodiment are the same as those of the second embodiment.
この構造の面状発»31では、 P T C層被覆 ¾¾ί 34 Βと避嫌抗シ一ト 2と が同一の材質であることから、 これらの間の熱 ϋ¾が容易となり、 ϋ±のバラッ キが 20%iffi威した。 また、 «1®被覆部材 4を構成する EEAに比べて HDPEは M生を有することから、 高温での耐久性、 性能安定性が 30°C向上した。  In the planar surface 31 of this structure, since the PTC layer coating {34} and the repellent sheet 2 are made of the same material, the heat between them becomes easy, and the variation of ± 20 is achieved. % iffi dignified. Also, since HDPE has M raw material compared to EEA which constitutes the 1® coated member 4, durability and performance stability at high temperatures are improved by 30 ° C.
〔鎌例 4〕 (Sickle example 4)
m 4は第 5実 態に対応するもので、 個々の導電性単線 3Aを PTC層 4 4 Aで被覆した以外は 例 3と同じ構造である。  m4 corresponds to the fifth embodiment, and has the same structure as that of Example 3 except that each conductive single wire 3A is covered with a PTC layer 44A.
この構造の面状発妻 M本 41では、 耐圧力性能力 s向上する。  With this structure, the pressure resistance capability s is improved in the M-41.
つまり、 例 1, 2では 3に圧力がかかると、 導電性単線 3Aと発卖繊抗 シート 12の距離が容易に変化し、 正 係数特 f生が大きく変化する。  That is, in Examples 1 and 2, when a pressure is applied to 3, the distance between the conductive single wire 3A and the spread sheet 12 easily changes, and the positive coefficient characteristic fluctuates greatly.
これに対して、 ¾SS例 4では、 ££八に比べて が大きぃ110?£を用ぃるこ とで、 導電性単線 3 Aの位置を保持し、 P T C層 44 Aの変形を抑制する。  On the other hand, in Example 4 of SS, the position of the conductive single wire 3 A is maintained and the deformation of the PTC layer 44 A is suppressed by using ぃ 110? Which is larger than ££ 8. .
具 には、 室温にて^例 1の面状発謝本 1の 3力 ¾己置された部分をプレ スにて 10 kg/cm2の圧力を付与すると、 20%の抵抗変化があつたが、 例 4で は、 3%以内の抵抗変化で済んだ。 At room temperature, the three parts of Example 1 were added. When a pressure of 10 kg / cm 2 was applied to the sample, the resistance changed by 20%, but in Example 4, the resistance changed within 3%.
〔細例 5〕 (Example 5)
mm 5は第 6実«態に対—応するもので、 第 I P T C層 54 Aは実施例 3の P TC層 34Aと同じ構成であり、 第 2 PTC層 54 Bは熱可塑性樹脂として直鎖状 β度ポリエチレン (LLDPE) (商品名; FW1650ダウ社製) を用い、 カーボンブラック (CB)組成'製造法は^ S例 1と同じである。  mm 5 corresponds to the sixth embodiment, the IPTC layer 54A has the same configuration as the PTC layer 34A of Example 3, and the second PTC layer 54B has a linear shape as a thermoplastic resin. Using β-degree polyethylene (LLDPE) (trade name; FW1650, manufactured by Dow), the carbon black (CB) composition 'production method is the same as that of Example S.
この構造の面状猶淋 51では、 第 1 P T C層 54 Αに被覆される導電性単線 3 Aと第 2PTC層 54Bに被覆される導電性単線 3 Aとの通電を切り換えることに より、 抵抗特性を 2顧に選択することができ、 発辦驢の 脚が可能となる。 具体的には、 面状発熱体 51の最高温度は、 第 1 P T C層 54 Aで 80 °C程度、 第 2PTC層 54Bで 100°Cである。 特に、 床暖房等では、 必要熱量が季節で変ィ匕 するので、 その調節方法の 1つとして H½例 6は適している。  In the planar shape 51 of this structure, the resistance between the conductive single wire 3A coated on the first PTC layer 54Α and the conductive single wire 3A coated on the second PTC layer 54B is switched to provide a resistance characteristic. Can be selected for two customers, and the legs of the 辦 辦 are possible. Specifically, the maximum temperature of the sheet heating element 51 is about 80 ° C. for the first PTC layer 54A and 100 ° C. for the second PTC layer 54B. In particular, in floor heating, etc., the required amount of heat varies depending on the season, and H½Example 6 is suitable as one of the adjustment methods.
〔難例 6〕  (Difficulty 6)
難例 6は、 第 7¾»態に対応するもので、 発 H誕抗シート 12からの距離 D i及び D2が異なる 2種類の単線群 31, 32を使用する以外は ^例 2と同じ構造 である。 Flame Example 6, which corresponds to the 7¾ »condition, originating H誕抗than the distance D i and D 2 from sheet 12 using two different single-wire groups 31, 32 ^ Example 2 and the same structure It is.
例 6では、 被覆 ¾Ι¾ί4の厚さ h法 Tを Ι.Οππηとし、 を 0.2腿とし、 D2を 0.4ππηとした。 この^、第 16図で示される P + Scと P + SDとの 差 Atは 20°Cである。 In Example 6, the thickness h method T of the coating ¾Ι¾ί4 was set to Ι.Οππη, was set to 0.2, and D 2 was set to 0.4ππη. The difference At between P + Sc and P + SD shown in FIG. 16 is 20 ° C.
この構造の面状発維 61では、 通電する単線群 31, 32を切り換えることで 発赛¾¾を 20°C変えることができる。  In the planar fiber 61 having this structure, the power can be changed by 20 ° C by switching the group of single wires 31 and 32 to be energized.
C比較例 3  C Comparative Example 3
60重量部のエチレン一ェチルァクリレート共重合体 (EEA) CDPD J 61 82 ;日本ュニカー株式会社製〕 と 40重量部のカーボンブラック (CB) 〔ダイ ャブラック E;三對匕成ェ «式会社製〕 との発^ W物から発謝氐抗シートを構 成した。 同様の発 ¾誠物と とを ¾Φ出して断面矢 SBの: S 状 ®i被覆 を 構成し、 この β被覆 と懇誕杭シー卜とをヒートシール等して聽した。 この構造の面状発»に均謝反を装着し、 通電すると、 変化に依存して良好 な正温度係数特性を示した。 60 parts by weight of ethylene-ethyl acrylate copolymer (EEA) CDPD J 6182; manufactured by Nippon Tunica Co., Ltd.] and 40 parts by weight of carbon black (CB) [Diablack E; Competitor) from the product of the ^ ^ Done. The same material and the same product were output to form φ: cross-section arrow SB: S-shaped i coating, and the β coating and the birth pile sheet were listened to by heat sealing or the like. When an equilibrium filter was attached to the planar surface of this structure and energized, it showed good positive temperature coefficient characteristics depending on the change.
しかし、 面状発 の片面を «I®に沿って断, (発泡スチロール) で覆い、 面 上に 2 0°Cの 差を発生させると、 局所発熱は発生し、 良好な発熱が得られない。 また、 熱眉による変化も数十%程度観察された。  However, if one surface of the planar surface is cut along «I® and covered with (Styrofoam) and a difference of 20 ° C is generated on the surface, local heat is generated and good heat cannot be obtained. In addition, changes due to thermal eyebrows were observed at about several tens of percent.
なお、 本発明では、 Ιίί¾各実施の形態構成に限定されるものではな《 本発明の 目的を«できる範囲であれば次に示す変形例を含むものである。  It should be noted that the present invention is not limited to the configuration of each embodiment, and includes the following modifications as long as the object of the present invention can be achieved.
例えば、 編 3各¾»態では、 被覆 を、 複数本の単線 3 Aを 亍にか つ平板状に酉 Ξ ^した と撤漏物とを辦出膨して形成し、 かつ、 断面矩 开狱としたが、 本発明では、 S@被覆 に設けられる ¾gを、 複数の単線を 蹉つて断面円开狱に形成したものや 1本の太 ヽ単線から形成したものでもよく、 さ らには、 面状発齊淋 1 , 1 1 , 2 1を発匿抗シート 2, 1 2 , 2 2自体に 導線の単線を蹉つて形成した 線又は 1本の太い 線を設けた構造のものでも よい。  For example, in each of the three editions, the covering is formed by expanding a plurality of single wires 3A into a flat plate shape and swelling the leaked material, and forming a rectangular cross section. However, in the present invention, the @g provided on the S @ coating may be formed by forming a plurality of single wires into a circular cross section by breaking, or by forming one thick single wire. However, it is also possible to use a structure in which a single wire of a conductive wire is broken or a single thick wire is provided on the anti-sheet 2, 1, 2 or 22 itself. .
また、 電極被覆部材 4は発齊 ¾¾抗シート 2 , 1 2 , 2 2に 2本融着されたが、 電 極被覆 4の本数は 3本以上であってもょ 、。  Also, two electrode covering members 4 were fused to the resistance sheet 2, 12, and 22. However, the number of the electrode covering members 4 may be three or more.
また、 S¾被覆 4の断面職は、 ^ 三角 五角形等の種々の开狱でよ い。  The cross section of the S¾ coating 4 may be various triangles such as a triangle, a pentagon, and the like.
以上、 本発明によれば、 それそれ電極を被覆した複数の電極被覆部材を互いに所 定間隔離れて面状発籠抗シートに取り付け、 ¾被覆 のうち少なくとも離 の近傍を の上昇とともに電気抵抗値が増大する正 係数特性を有する P T C 層とし、 発謝氐抗シートを、 正 係数特 ι·生を有しないか、 あるいは、 立上倍率が P T C層の最大立上倍率を示す 以下の範囲において P T C層に比べて小さいか 又は立上 が? T C層に比べて高い正 ^係数特性を有する構造としたから、 局 所発熱を十分に防止し、 抵抗の経時変化が少なく、 かつ、 低コストで觀できる。 また、 の立上 を発卖¾¾抗シ一トに対して P T C層の比 比抵抗値を変化 させることにより任意に調整でき、 抵抗の立ち上がりまでの ί ^変ィ匕を少なく ΙδΙ十 できるという利点を有する。 産 業 上 の 利 用 可 能性 As described above, according to the present invention, a plurality of electrode covering members each covering an electrode are attached to the sheet-like carving sheet at a predetermined interval from each other. The PTC layer has a positive coefficient property that increases the PTC layer.The PTC layer should be a PTC layer that does not have a positive coefficient characteristic or that has a rising magnification that indicates the maximum rising magnification of the PTC layer. Is it smaller or rising compared to the layer? Since the structure has higher positive ^ coefficient characteristics than the TC layer, In this way, heat generation can be sufficiently prevented, resistance changes with time are small, and it can be viewed at low cost. In addition, the rise of the resistance can be arbitrarily adjusted by changing the specific resistance value of the PTC layer with respect to the resistance sheet. Having. Industrial availability
以上の通り、 本発明では、 例えば、 纖ゃ屋根の β用ヒー夕、 床暖房用ヒー夕、 ある ヽは、 鏡の防曇用ヒ一夕として利用することに適している。  As described above, in the present invention, for example, a heater for beta of a fiber roof, a heater for floor heating, and a certain heater are suitable for use as an anti-fog for mirror.

Claims

請 求 の 範 囲 The scope of the claims
1 . それそれ ¾Sを被覆した複数の 被覆部材が互いに所定間隔離れて面状発熱 抵抗シートに取り付けられた面状発きであって、 編己 ¾¾被覆 »のうち少なく とも の近傍は の上昇とともに電気抵抗値が増大する正温度係数特性を有す る P T C層であり、 編己発齊腿シートは、 編 aeas係数特性を有しないか、 あ る 、は、 立上倍率が編 BP T。層の最 上倍率を示す 以下の範囲において前 記 P T C層に比べて小さいか又は立上温度が編己 P T C層に比べて高い正温度係数 樹生を有することを とする面状発^  1. In each case, a plurality of covering members coated with S are separated from each other by a predetermined distance and are attached to the sheet heating resistance sheet. It is a PTC layer having a positive temperature coefficient characteristic to increase the electric resistance value, and the self-made self-tipped sheet does not have the knitting aeas coefficient characteristic. Indicate the highest magnification of the layer. In the following range, the surface temperature is smaller than that of the PTC layer or has a higher positive temperature coefficient than that of the PTC layer.
2. 請求項 1記載の面状発熱体において、 編 3発赛 亢シートにおける正温度係数 特性の iLii倍率が編己 P T C層の最^ ϊ上倍率を示す温度以下の範囲で P T C層に おける正温度係数特性の立上倍率の 0. 5以下であることを特徴とする面状発 m 2. The sheet heating element according to claim 1, wherein the positive temperature coefficient of the positive temperature coefficient in the three-enhancement-enhancing sheet is within the temperature range at which the iLii magnification of the characteristic is equal to or lower than the temperature indicating the uppermost magnification of the PTC layer. A planar emission m characterized by a temperature coefficient characteristic of 0.5 or less of the starting magnification m
3. 請求項 1記載の面状発熱体において、 編 3発熱 ¾シートにおける正 係数 樹生の立上温度が有 ίίϊ己 P T C層における正温度係数特注の立上温度より 5°C以上高 いことを¾数とする面状発 m 3. In the sheet heating element according to claim 1, 3 heating 編 Positive coefficient in the sheet The rising temperature of the tree is higher than the rising temperature of the custom temperature coefficient in the PTC layer by 5 ° C or more. M surface area
4. 請求項 1力 3に tヽずれか記載の面状発諭にお tヽて、 Ι Ι3Ρ Τ C層は熱可塑 性樹脂及び導電性粒子を有する発熱糸 物から fi¾¾されていることを待数とする面 状発 4. According to the surface condition described in claim 1 or claim 2, the C layer is made of fibrous material having a thermoplastic resin and conductive particles. Departure from waiting area
5 . 請求項 1から 3にいずれか記載の面状発»において、 tiiEP T C層は 料から膨されていることを とする面状発  5. The planar projection according to any one of claims 1 to 3, wherein the tiiEP TC layer is swollen from the material.
6. 請求項 1カら 5にいずれか記載の面状発鮮におレヽて、 編己発籠抗シ一トは 熱可塑性樹脂及び導電性粒子を有する発齊絲誠物から されていることを と する面状 6. In the surface freshening as set forth in any one of claims 1 to 5, the knitting basket anti-sheet is made of a heat-resistant material having a thermoplastic resin and conductive particles. A planar shape with
7. 請求項 1から 6にいずれか記載の面状発謝本において、 編己 ¾ϋ被覆部材は、 ΙΪΙ3«¾の近傍に配置され の上昇とともに電気抵抗値が増大する正 係数特 性を有する P T C層と、 この P T C層を被覆する P T C層被覆部材とを備え、 この P T C層被覆部材と編己発謝氐抗シ一トとは使用される樹脂が同じであることを特 徴とする面状発 7. In the planar test book according to any one of claims 1 to 6, the knitting member is disposed in the vicinity of {3 «} and has a positive coefficient characteristic in which an electric resistance value increases as the resistance increases. And a PTC layer covering member for covering the PTC layer. The PTC layer covering member and the knitting self-resisting sheet are made of the same resin. Departure from the surface
8. 請 貝 7に記載の面状発 において、 iifBmsは複数本の 導線の単線 群から構成さ 編 3P T。層は編己単線をそれそれ個別に被覆したことを赚と する面状  8. In the planar development described in Shellfish 7, iifBms is composed of a single wire group of multiple conductors. The layer is a planar shape with a single wire covered individually.
9. 請求項 1から 8にいずれか記載の面状発難において、 編己 SISは複数本の電 棚導線の単線群から構成さ^ luiap τ。層はそれそれ編 3単線群の一部を被覆 するとともに立上倍率及び立上温度が異なる 2禾 ¾|以上から構成されていることを とする面状発 9. In the planar assault according to any one of claims 1 to 8, the knitting SIS is composed of a single wire group of a plurality of electric shelf conductors ^ luiap τ. Each layer covers a part of the 3 single wire group, and is composed of two or more squares with different rising magnification and rising temperature.
1 0. 請求項 1から 9にいずれかに記載の面状発»において、 編己 βは複数本 の 導線の単線群から構成さ この単線群は編 3発费磁抗シートからの距離 が異なりそれそれ前記発熱抵抗シートと平行に配列された複数の単線群から構成さ れていることを特数とする面状発»«  10 0. In the planar emission according to any one of claims 1 to 9, the knitting β is composed of a single wire group of a plurality of conductors, and the single wire group has different distances from the three-shot magnetic resistance sheet. Each of the sheet-like light sources is characterized by being constituted by a plurality of single wire groups arranged in parallel with the heating resistor sheet.
1 1. 請求項 1から 1 0にいずれか記載の面状発謝本において、 編 3発嫩抗シ一 トは 料から されていることを とする面状発齊淋。  1 1. In the plain text book described in any one of claims 1 to 10, the third sentence anti-sheet is taken from the material.
1 2. 請求項 1から 1 0にいずれか記載の面状発謝本において、 編 3発妻観抗シ一 トは 材料から されていることを とする面状発  1 2. In the planar exposition book described in any one of claims 1 to 10, the three-part wives' opposition sheet is made of a material.
1 3. 請求項 1から 1 2にいずれか記載の面状発謝本において、 前記発熱抵抗シ一 トと t?i己 p τ c層とが熱的に一体になるように itiiB発匿抗シ一ト及ひ 記 P T C 層は間に絶縁層を介して熱良 料で接続されていることを特徴とする面状発熱体。  1 3. The planar emission book according to any one of claims 1 to 12, wherein the heating resistor sheet and the t? I p p c layer are thermally integrated so as to be thermally integrated with the tii layer. A sheet heating element characterized in that the PTC layer is connected to the PTC layer with a heating material via an insulating layer therebetween.
訂正された甩紙. (規則 91) Revised paper. (Rule 91)
PCT/JP1997/000052 1997-01-13 1997-01-13 Planar heating element WO1998031196A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002256616A CA2256616A1 (en) 1997-01-13 1997-01-13 Planar heating element
PCT/JP1997/000052 WO1998031196A1 (en) 1997-01-13 1997-01-13 Planar heating element
EP97900419A EP1009196A1 (en) 1997-01-13 1997-01-13 Planar heating element
AU13982/97A AU1398297A (en) 1997-01-13 1997-01-13 Planar heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000052 WO1998031196A1 (en) 1997-01-13 1997-01-13 Planar heating element

Publications (1)

Publication Number Publication Date
WO1998031196A1 true WO1998031196A1 (en) 1998-07-16

Family

ID=14179917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000052 WO1998031196A1 (en) 1997-01-13 1997-01-13 Planar heating element

Country Status (4)

Country Link
EP (1) EP1009196A1 (en)
AU (1) AU1398297A (en)
CA (1) CA2256616A1 (en)
WO (1) WO1998031196A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142878C5 (en) * 2001-09-03 2007-01-25 W.E.T. Automotive Systems Ag Heating element with stranded contact
FR2843674A1 (en) * 2002-08-13 2004-02-20 Atofina Heated blanket, for localized heating in building construction, has layer of conductive polymer between conductive surfaces
WO2008133562A1 (en) * 2007-04-30 2008-11-06 Intelliohm Ab Heating device
KR100950762B1 (en) * 2009-11-12 2010-04-05 주식회사 에코폴리텍 Heating seat's producing method
EP2346303A1 (en) * 2010-01-14 2011-07-20 Calesco Division/Backer BHV AB Radiator panel for domestic and industrial applications based on heater with single sided FRTP insulation
DE102013105334A1 (en) * 2013-05-24 2014-11-27 Benecke-Kaliko Aktiengesellschaft Electrically conductive connection
GB2566984B (en) * 2017-09-29 2022-04-27 Heat Trace Ltd Electrically heated conduit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437080Y2 (en) * 1974-07-30 1979-11-07
JPS59203390A (en) * 1983-04-30 1984-11-17 松下電工株式会社 Heater
JPH0353486A (en) * 1989-07-19 1991-03-07 Matsushita Electric Works Ltd Heating material and electrode for heating material
JPH08106971A (en) * 1994-10-06 1996-04-23 Idemitsu Kosan Co Ltd Sheet-like heating element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437080Y2 (en) * 1974-07-30 1979-11-07
JPS59203390A (en) * 1983-04-30 1984-11-17 松下電工株式会社 Heater
JPH0353486A (en) * 1989-07-19 1991-03-07 Matsushita Electric Works Ltd Heating material and electrode for heating material
JPH08106971A (en) * 1994-10-06 1996-04-23 Idemitsu Kosan Co Ltd Sheet-like heating element

Also Published As

Publication number Publication date
CA2256616A1 (en) 1998-07-16
AU1398297A (en) 1998-08-03
EP1009196A1 (en) 2000-06-14

Similar Documents

Publication Publication Date Title
US4543474A (en) Layered self-regulating heating article
US4654511A (en) Layered self-regulating heating article
US4177376A (en) Layered self-regulating heating article
US4330703A (en) Layered self-regulating heating article
US5057674A (en) Self limiting electric heating element and method for making such an element
US10136475B2 (en) Cord-shaped heater and sheet-shaped heater
EP0187320A1 (en) Self-regulating heating article having electrodes directly connected to a PTC layer
SK11342000A3 (en) Flat heating element and use of flat heating elements
WO1998031196A1 (en) Planar heating element
CA2081029C (en) Elongated electrical resistance heater
JPH10208851A (en) Heating and heat keeping device
US10858506B2 (en) Conductive heating composition and flexible conductive heating device using the same
JPH10241841A (en) Heating/heat insulating device using heat-accumulating materials
JP2010160954A (en) Surface heater
WO1999044391A1 (en) Heating unit
JP2001267049A (en) Linear heating element, its manufacturing method, floor heating appliance, electric carpet, and warm toilet seat
JP2010257683A (en) Planar heating element, and method of manufacturing the same
JPH0927385A (en) Surface heater element
JP2010020990A (en) Planar heating element
JP3957580B2 (en) Self-temperature control type surface heater
JPS6046789B2 (en) electric heating device
JPH0878143A (en) Surface heating element for electric toilet seat
JP3906321B2 (en) Floor heating device and manufacturing method thereof
JPS6251185A (en) Self-temperature controlling type heat generating body
JP3977143B2 (en) Floor heating system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97197287.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1997900419

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09194035

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2256616

Country of ref document: CA

Ref document number: 2256616

Country of ref document: CA

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1997900419

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997900419

Country of ref document: EP