WO1998028789A1 - Semiconductor storage device and method for manufacturing the same - Google Patents

Semiconductor storage device and method for manufacturing the same Download PDF

Info

Publication number
WO1998028789A1
WO1998028789A1 PCT/JP1996/003735 JP9603735W WO9828789A1 WO 1998028789 A1 WO1998028789 A1 WO 1998028789A1 JP 9603735 W JP9603735 W JP 9603735W WO 9828789 A1 WO9828789 A1 WO 9828789A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
electrode
region
film
capacitor
Prior art date
Application number
PCT/JP1996/003735
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiaki Yamanaka
Shinichiro Kimura
Hideyuki Matsuoka
Hideo Sunami
Kiyoo Itoh
Tomonori Sekiguchi
Takeshi Sakata
Masayuki Miyazaki
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1996/003735 priority Critical patent/WO1998028789A1/en
Priority to TW086110894A priority patent/TW351853B/en
Publication of WO1998028789A1 publication Critical patent/WO1998028789A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components

Definitions

  • the present invention relates to a semiconductor memory device, and more particularly to a dynamic random access memory having a three-dimensional structure suitable for high integration.
  • a dynamic random access memory (hereinafter, abbreviated as dynamic RAM) is a unit of a memory cell to which a charge storage capacitor for storing information and a switch transistor for writing and reading the capacitance are connected. It was done. As described above, since one memory cell has a small number of constituent elements, it is widely and generally used as a main storage device of a computer device requiring a large capacity.
  • FIG. 46 shows a partial cross-sectional view of a conventional dynamic RAM * IC.
  • the MISFET of a memory cell group called a memory array includes a gate insulating film 103, a gate electrode 104, and a high-concentration n-type impurity region 105.
  • the gate electrode 104 of this MISFET constitutes a word line.
  • the wiring electrode 107 forms a data line, and is electrically connected to an n-type high-concentration impurity region 105 through an opening provided in a silicon oxide film 106 (interlayer insulating film). It is connected.
  • the n-type high-concentration impurity region 105 is connected to a lower electrode (storage electrode) 112 of a crown-shaped capacitor formed of polycrystalline silicon above the word line and the data line.
  • a capacitor dielectric film 113 is deposited, and on the upper part, a plate electrode 114 is provided.
  • the lower electrode 1 1 and 2 is formed in a cylindrical shape, and the effective area of the capacity is increased by using not only a plane portion but also an inner surface (inner wall) and an outer surface (outer wall) of a vertical portion.
  • the so-called C ⁇ B (Capacitor On Bit) structure in which storage electrodes are provided on data lines (bit lines) maximizes the effective area of capacity.
  • the memory cell can be miniaturized, and the storage capacity of the capacity can be easily increased. be able to.
  • a field oxide film 102 for insulating and isolating elements is grown on a single crystal silicon substrate 101, and a gate oxide film 103 of MISFET is grown.
  • the gate oxide film 103 is formed to a desired thickness by thermally oxidizing the surface of the substrate 101.
  • a polycrystalline silicon film containing impurities at a high concentration is deposited, and the polycrystalline silicon film is patterned. Thereafter, an n-type high-concentration impurity region 105 serving as a source / drain region of the MISFET self-aligned with the gate electrode 104 is formed in the single-crystal silicon substrate 101 by ion implantation. Formed.
  • a silicon oxide film 106 After depositing a silicon oxide film 106, an opening (not shown) is formed in the high-concentration impurity region 105 of the MISFET in the memory cell region. Then, a polycrystalline silicon film and a tungsten silicide film containing impurities at a high concentration are sequentially deposited as wiring electrodes, and these laminated films are patterned.
  • a silicon oxide film 108 After depositing a silicon oxide film 108, an opening is formed on the high concentration n-type impurity region 105 of the source or drain of the MISFET in the memory cell region.
  • a polycrystalline silicon film and a thick silicon oxide film are deposited successively. Then, after these are simultaneously patterned, a polycrystalline silicon film is further deposited, and the polycrystalline silicon film having a flat portion exposed by anisotropic dry etching is etched, thereby forming the silicon oxide film. The polycrystalline silicon film is left on the side wall. Further, by removing the silicon oxide film, a crown-shaped storage electrode 112 is formed.
  • a capacitor dielectric film 113 After depositing a capacitor dielectric film 113, a polycrystalline silicon film to be a plate electrode 114 is deposited and patterned.
  • aluminum wiring is formed as the silicon oxide film 115 of the interlayer insulating film and the metal wiring 119, and the MISFET of the peripheral circuit and the memory cell are manufactured.
  • the adoption of a capacity having three-dimensional storage electrodes has made it possible to increase the storage capacity. As a result, it is possible to secure a sufficient storage capacity for the operation and reliability of the memory cell even with a fine memory cell.
  • the elevation of the memory cell group is relatively high, and the elevation of the peripheral circuit is relatively low, and a large elevation difference is generated between the memory cell group and the peripheral circuit.
  • the difference in elevation between the memory cell group region and the region where the peripheral circuit is formed is significantly different after the formation of the capacitance, for example, the metal wiring 11 from the memory cell group region above the capacitance to the peripheral circuit region 9 and the photolithography process for forming metal wiring in each area becomes extremely difficult. That is, generally, in a reduction projection exposure apparatus used for manufacturing a semiconductor memory device, the resolution and the depth of focus are in inverse proportion. Because of this, If a high-resolution stepper is used to form fine dimensions, the depth of focus becomes shallower, and the necessity to make the element surface flatter has arisen.
  • An object of the present invention is to provide a novel semiconductor memory device manufacturing method capable of forming a fine wiring between a memory cell region with a high density and an increased storage capacity and a peripheral circuit region in one semiconductor substrate.
  • Another object of the present invention is to provide a memory cell having a three-dimensionally structured capacity and a method of manufacturing a dynamic RAM in which fine wiring can be provided above the capacity.
  • Still another object of the present invention is to provide a novel semiconductor memory device suitable for gigabit or more.
  • a lower electrode for capacitance, a dielectric film for capacitance, and an upper electrode for capacitance are sequentially deposited on a second insulating film formed in a memory cell region of a semiconductor substrate.
  • the height at which the three-dimensional capacity is formed is equal to the height of the wiring layer in the peripheral circuit region. There is no difference in elevation, and a flat insulating film can be formed on the upper part of the capacity. For this reason, finer wiring can be formed on the capacity in the memory cell portion and on the common insulating film on the peripheral circuit portion.
  • FIG. 1 relates to a first embodiment of the present invention, and is a partial cross-sectional view showing a semiconductor memory device in which a dynamic RAM is configured.
  • FIG. 2 shows a semiconductor memory device according to the first embodiment of the present invention.
  • FIG. 2 is a plan view showing a part of a memory cell array section of the semiconductor memory device.
  • 3 to 14 relate to the first embodiment of the present invention and are cross-sectional views showing the steps of manufacturing a semiconductor memory device.
  • FIG. 15 relates to the first embodiment of the present invention and is a cross-sectional view showing a capacity power supply section of a semiconductor memory device.
  • FIG. 16 relates to the second embodiment of the present invention and is a cross-sectional view showing a semiconductor memory device having a dynamic RAM.
  • FIGS. 17 to 30 are cross-sectional views illustrating a manufacturing process of the semiconductor memory device having the dynamic RAM according to the third embodiment of the present invention.
  • FIG. 31 relates to a fourth embodiment of the present invention and is a partial cross-sectional view showing a semiconductor memory device having a dynamic RAM.
  • FIGS. 32 to 35 relate to the fourth embodiment of the present invention and are cross-sectional views showing the steps of manufacturing the semiconductor memory device.
  • FIG. 36 relates to a fifth embodiment of the present invention, and is a partial cross-sectional view showing a semiconductor memory device having a dynamic RAM.
  • FIGS. 37 to 41 relate to the fifth embodiment of the present invention and are cross-sectional views showing the steps of manufacturing the semiconductor memory device.
  • FIG. 42 relates to a sixth embodiment of the present invention and is a partial cross-sectional view showing a semiconductor memory device having a dynamic RAM.
  • FIG. 43 relates to a seventh embodiment of the present invention and is a partial cross-sectional view showing a semiconductor memory device having a dynamic RAM.
  • FIG. 44 is a plan view showing a chip layout of an embodiment in a dynamic RAM according to the present invention.
  • FIG. 45 is a plan view showing a chip layout of another embodiment in the dynamic RAM according to the present invention.
  • FIG. 46 is a partial cross-sectional view showing a semiconductor memory device in which a dynamic RAM conceived prior to the present invention is configured.
  • FIG. 1 shows a cross-sectional view of a memory cell and a cross-sectional view of a MISFET portion of a peripheral circuit adjacent thereto on the same drawing.
  • FIG. 2 is a plan view of the memory cell.
  • the cross-sectional view of the memory cell portion in FIG. 1 is a part of the cross section taken along line XX ′ in FIG.
  • MISFETs in a memory cell region (first region) and a peripheral circuit region (second region) have a gate insulating film 3, a gate electrode 4, It consists of high-concentration n-type impurity regions 5 that constitute the source and drain.
  • MISFET only one MISFET is displayed in the peripheral circuit area, but usually, a plurality of MISFETs constitute, for example, an input / output circuit, a decoder circuit, and an address circuit. More specifically, these peripheral circuits are constituted by a CMOS circuit composed of an n-channel MISFET and a p-channel MISFET.
  • a wiring electrode 7 as a data line (bit line) is connected to the high-concentration impurity region 5 of the MISFET in the memory cell.
  • a crown-shaped Stacked Capacitor is provided at the top.
  • the crown-shaped capacitor has a lower electrode (storage electrode) 12 electrically connected to the high-concentration n-type impurity region 5 through a silicon plug 9, a capacitor dielectric film 13, and an upper electrode. (Plate electrode) It has a 14-layer structure.
  • the wiring electrodes 17 in the peripheral circuit region are composed of the silicon oxide film 15, the upper electrode 14 of the capacitor, and the capacitor.
  • Each of the insulating films 13 is formed in a region where it has been removed.
  • the height of the wiring electrode 17 is substantially equal to the height of the memory cell region (specifically, the position where the height of the upper electrode 14 is high).
  • An insulating film (silicon oxide film) 18 is formed on the wiring electrode 17 and the upper part of the capacitor region by a CVD method, and the unevenness of the wiring is flattened.
  • the metal wiring 19 of the road is formed.
  • FIG. 2 is a plan view of a memory cell region in which a plurality of memory cells are arranged to make it easy to understand the positional relationship between adjacent memory cells, and shows a mask pattern.
  • the active region 33 has a T-shaped pattern.
  • the word line 34 (the gate electrode 4 in FIG. 1) crosses a part of the active region 33 in the Y direction
  • the data line 36 (the wiring electrode 7 in FIG. 1) in the X direction. are arranged.
  • the lower electrode 12 of the crown-shaped capacitor is formed in an elliptical cylindrical shape above the word line 34 and the data line 36.
  • the lower electrode 12 of this capacitor is formed with an opening 3 2 above the active region 33 (the high-concentration n-type impurity region 5 in FIG. 1) between the word line 34 and the data line 36. Connected through.
  • the data line 36 is electrically connected via the opening 35.
  • a field oxide film (LOCOS oxide film) 2 is formed on a crystalline silicon substrate 1 using a known selective oxidation method.
  • This field oxide 2 An MISFET is formed on the active region (eg, active region 33 shown in FIG. 2) by a known method.
  • the polarity of the MISFET of the memory cell is n-channel, but may be p-channel.
  • LDD Lightly Doped
  • Drain structure can also be used. Further, in order to use a known self-aligned connection, an insulating film such as a silicon nitride may be formed on a side wall or an upper portion of the gate electrode 4.
  • a silicon oxide film (BPSG) 6 containing boron and phosphorus is deposited by a known chemical vapor deposition method (hereinafter abbreviated as CVD method). Then, annealing is performed at a temperature of about 800 ° C. to smooth the surface of the silicon oxide film 6. It should be noted that the silicon oxide film 6 can be made flat by another method using a non-doped silicon oxide film without using boron (P) or phosphorus (B) added to phosphorus. Specifically, a known CMP method can be considered. Next, a silicon oxide film is formed in the opening 35 by photolithography and dry etching. Then, a conductor layer having a thickness of about 100 nm to become the data line 36 is deposited. Thereafter, the conductor layer is patterned by photolithography and dry etching to form the wiring electrode 7.
  • CVD method chemical vapor deposition method
  • a composite film of a silicide film of a high melting point metal such as tantalum and a polycrystalline silicon film, or a high melting point metal film of tungsten or the like can be preferably used.
  • a high melting point metal such as tungsten
  • reaction with the silicon substrate (silicon semiconductor region) is prevented.
  • a barrier metal film such as titanium nitride in the lower layer for the purpose of stopping.
  • a silicon oxide film (BPSG) 8 containing boron and phosphorus with a thickness of about 20 Onm is deposited by the CVD method. Then, annealing is performed at a temperature of about 800 ° C. to smooth the surface of the silicon oxide film 8. Next, an opening 32 is formed in the silicon oxide films 6 and 8 on the high-concentration n-type impurity region 5 serving as a source or drain of the MISFET by photolithography and dry etching.
  • a polycrystalline silicon film having a thickness of about 200 nm in which an impurity (for example, phosphorus) of the same conductivity type as the high-concentration n-type impurity region 5 is added at a high concentration is deposited by the LPCVD method. Then, the silicon plug 9 is formed by etching back the polycrystalline silicon film by anisotropic dry etching.
  • an impurity for example, phosphorus
  • a silicon plug was directly formed on the high-concentration n-type impurity region 5 (5a).
  • a method using a polycrystalline silicon film pad is conceivable.
  • the gate electrode 4 and the silicon plug 9 can be insulated by self-alignment, which is effective for reducing the memory cell area. That is, at the stage of forming the opening 35 shown in FIG. 4, a self-alignment is also performed on the high-concentration n-type impurity region (5a) using a silicon nitride film (not shown) as a mask. Then, a pad for the storage electrode is formed together with the pad for the data line. Then, an opening 32 is formed in the data line 36 and the silicon oxide film 8, and the silicon comp. Form lug 9.
  • a silicon nitride film 10 having a thickness of about 10 Onm is deposited on the silicon oxide film 8 by the LPCVD method. The reason for depositing the silicon nitride film 10 will be described later.
  • contact holes (CH) are formed in the silicon oxide films 6, 8 and the silicon nitride film 10 on the high-concentration n-type impurity region 5 in the peripheral circuit region.
  • a high-melting point metal such as tungsten with a thickness of about 20 O nm is deposited by a known sputtering method or a CVD method, and then etched back by dry etching to contact the peripheral circuit area.
  • a tungsten metal plug 11 is formed in the hole (CH).
  • the peripheral circuit area is composed of a CMOS circuit, an electrical connection between the high-concentration n-type impurity region and the high-concentration p-type impurity region is required on the circuit.
  • tungsten is used as a wiring material for connection to these impurity regions, interdiffusion of tungsten and silicon may occur between the two regions. Therefore, it is preferable to select titanium nitride (TiN) as a base material for the metal plug 11.
  • a silicon oxide film 20 having a thickness of about 700 nm is deposited at a temperature of about 400 ° C. by a known CVD method using TEOS (tetra 'ethoxy' silane) gas. Thereafter, an opening 25 is formed by selectively removing the silicon oxide film 20 where the lower electrode of the capacitor is to be formed by photolithography and dry etching.
  • TEOS tetra 'ethoxy' silane
  • the silicon oxide film 20 is used as an etching mask. Then, the silicon nitride film 10 exposed at the bottom of the opening 25 is removed by dry etching. Thereafter, the lower electrode 12 is formed along the opening 25. That is, a polycrystalline silicon film (lower electrode 12 in FIG. 7) to which an n-type impurity having a thickness of about 50 nm is added at a high concentration is deposited by a known LPCVD method. At this time, the silicon plug 9 and the polycrystalline silicon film are connected at the bottom of the opening 25. Next, a 500 nm thick silicon oxide film 21 is deposited by a CVD method. Then, the silicon oxide film 21 is etched back by dry etching.
  • the silicon oxide film 21 is buried in the opening 25. Further, by etching the polycrystalline silicon film in the portion of the silicon oxide film 21 exposed by the dry etching by dry etching, the lower electrode 12 of the capacity is formed in the opening 25. The remaining polycrystalline silicon remains.
  • the silicon oxide films 21 and 20 are removed by etching in a hydrofluoric acid aqueous solution to expose the lower electrode 12 of the crown-shaped capacitor. At this time, even if the over-etching is performed, the silicon nitride film 10 serves as an etching stopper, and there is no influence on the MISFET formed in the lower layer.
  • a dielectric film 13 having a higher dielectric constant than the silicon oxide film is deposited.
  • a CVD method having good step coverage is preferable.
  • the equivalent oxide thickness of the dielectric dielectric film is as large as 1 gigabit class. In the capacity dynamic RAM, it is preferable to set it to 3 nm or less.
  • an upper electrode 14 of about 50 nm such as tungsten or titanium nitride is deposited.
  • a polycrystalline silicon film is used for the lower electrode 12, but a refractory metal film such as a tungsten or titanium nitride film may be used.
  • a refractory metal film such as a tungsten or titanium nitride film
  • the influence of the natural oxide film on the surface of the polycrystalline silicon film can be eliminated, and the equivalent oxide film thickness of the capacitor dielectric film can be reduced.
  • a ferroelectric film such as a known high dielectric film and the PZT film may also be used, such as.
  • platinum (Pt) having high oxidation resistance is preferable as an electrode material.
  • a silicon oxide film 15 having a thickness of 70 nm is deposited so as to bury the irregularities of the capacity.
  • deposition method as in the case of the silicon oxide film 20 described above, deposition is performed at a temperature of about 400 ° C. by a known CVD method using TEOS gas. Then, the surface of the silicon oxide film 15 is made substantially flat by polishing using an etchback or CMP (Chemical-Mechanical-Polishing).
  • the silicon oxide film 15 and the upper electrode 14 of the capacitor and the capacitor dielectric film 13 were formed into the pattern of the upper electrode of the capacitor. Etch.
  • the pattern of the upper electrode 14 is, for example, a memory cell array portion (shown by oblique lines) 2 16 shown in FIGS. 44 and 45. Match.
  • the depth at which the silicon oxide film 15 is removed in other words, the thickness of the silicon oxide film is equal to the thickness of the metal layer Ml (wiring electrode 17) to be covered in a step described later. Is set. However, the depth at which the silicon oxide film 15 is removed may be within a range of about 0.3 im deeper than the film thickness of the wiring electrode 17. That is, the silicon oxide film 15 may be deposited to a thickness of about 1 Xm. This difference in film thickness is taken into consideration depending on the processing dimension (line width) of the metal wiring 17. As described above, the memory cell region has a crown-shaped capacity covered with the silicon oxide film 15, and the peripheral circuit region has a dynamic structure not covered with the silicon oxide film 15. A semiconductor body (wafer) is manufactured at the intermediate stage of the block RAM.
  • a metal layer M 1 as a conductive film is deposited to a thickness of about 700 nm (0.1 n) equivalent to that of the silicon oxide film 15 using a well-known sputter. .
  • the deposited metal layer M1 may be broken at a high step formed at the boundary between the memory cell region and the peripheral circuit region.
  • the metal layer Ml is preferably a low-resistance metal such as aluminum (A1), but may be a high-melting metal such as tungsten (W). If necessary, a barrier metal such as a titanium nitride (TiN) film or the like can be formed below the metal wiring 17.
  • the peripheral circuit from which the metal layer M l has been removed and the silicon oxide film 15 has been removed has been removed from the portion of the memory cell region having a high elevation difference.
  • the metal layer M 1 is left in the region.
  • a known CMP method is preferable. Specifically, A 1 2 0 3 and a slurry containing abrasive grains and H 2 0 2 of any oxidizing agent such as, using a polishing Pas head consisting of foamed polyurethane or the like, the metal layer M 1 in the portion of high altitude difference Only selective removal. At this time, the metal layer remaining in the peripheral circuit area having a low elevation difference may be cut off. To prevent this, a strip film using a material whose polishing rate is relatively smaller than the wiring metal may be formed in advance on the metal layer in the peripheral circuit area.
  • a flattening technique using a grindstone in which abrasive grains are combined with a resin instead of the polishing pad and the slurry may be used.
  • the flattening performance of the grindstone is good, so that it is not always necessary to use the stopper film.
  • an etchback combining a photoresist and dry etching can be used as a method of leaving the metal layer M 1 in the peripheral circuit region.
  • This step eliminates the difference in elevation between the memory cell region and the peripheral circuit region, and the surfaces of both regions are kept flat.
  • the metal layer M 1 in the peripheral circuit region is patterned by using photolithography and dry etching to form a metal wiring 17.
  • this step only the metal layer M1 in the remaining peripheral circuit area is patterned, so that fine wiring can be easily added by photolithography using a commonly used reduced projection exposure apparatus.
  • the surface of the silicon oxide film 15 in the memory cell region is photo-etched so that the surface is not damaged by etching. It is advisable to design the pattern so that it is protected by the register.
  • a silicon oxide film 18 having a thickness of about 200 nm is deposited as an interlayer insulating film by a CVD method, and thereafter, a reflow process is performed.
  • a reflow process is performed.
  • the surface of the silicon oxide film 18 in the memory cell region and the peripheral circuit region is almost flattened. That is, the difference in elevation between the surfaces of the silicon oxide film 18 in both regions is reduced.
  • the metal wiring 19 is preferably a low-resistance metal such as aluminum, and as shown in FIG. Therefore, it can be used as a signal line connected to a data line or as a word bus.
  • a well-known Bragg technique or CMP method can be applied to flatten the interlayer insulating film 18.
  • the surface of the polycrystalline silicon film of the capacitor lower electrode 12 concave and convex, the surface area of the storage electrode can be increased, and a larger storage capacity can be obtained.
  • the surface forming method can be achieved by using disilane gas at the time of forming polycrystalline silicon.
  • the dynamic RAM IC of the present invention shown in FIG. 1 is completed.
  • the silicon oxide film 15 in the peripheral circuit region was removed using the formation pattern (register) of the upper electrode 14 of the capacitor as a mask, and the silicon oxide film 15 was removed.
  • a metal layer M 1 is embedded in the region.
  • the metal layer M 1 in the peripheral circuit area is patterned (the first layer). Since the photolithography is performed, the difference in elevation between the memory cell area and the peripheral circuit area can be eliminated without increasing the number of masks. Fine wiring patterning can be performed simultaneously. That is, at the time of exposure, the resolution can be made the same in the memory cell area and the peripheral circuit area, and the problem of causing poor resolution in one of the areas can be solved.
  • the metal wiring 19 is the MIS F of the peripheral circuit region.
  • the silicon oxide films 15 and 18 used in the present embodiment may be insulating films having good flatness other than the silicon oxide films.
  • a spin-on-glass (SOG) film can be considered.
  • the present embodiment relates to a method of supplying power to the capacity in the dynamic RAM of the first embodiment, and the configuration is shown in FIG. Figure 15 shows a cross-sectional view of the connection between the end of the memory cell array and the wiring electrode.
  • openings are provided in the silicon oxide films 15 and 18 on the upper electrode 14 of the capacity, and the metal wiring 19 is connected.
  • the lower electrode 12 of the capacitor is disposed below the upper electrode 14, and the upper electrode 1 is placed in the gap between the crown-shaped lower electrode 12 by adjusting the thickness of the upper electrode 14. Since 4 is embedded, there is no problem if an opening is formed in this portion.
  • the opening for supplying power to the capacitor can be provided above the step of the capacitor, the aspect ratio of the opening can be reduced, and the metal wiring 1 9 can be easily connected to the upper electrode 14 of the capacitor.
  • FIG. 16 is a cross-sectional view of the memory cell region and the peripheral circuit region, similarly to FIG.
  • the silicon oxide film 15 covering the upper electrode 14 of the capacity in the memory cell region is partially removed at a portion where the step of the lower electrode 12 is high.
  • a known method such as etch back can be used.
  • the upper electrode 14 of the capacitor is used as a common plate electrode for the capacitors of a plurality of memory cells, and is almost entirely covered in the memory cell region.
  • a plate electrode 16 serving as a power supply wiring to the capacitor is formed on the exposed upper electrode 14 of the capacitor.
  • an opening (contact hole) CH is formed in the silicon oxide film 18 on the plate electrode 16.
  • a metal wiring 19 (Vp) is formed on the silicon oxide film 18 and is connected to the plate electrode 16 of the capacitor via the opening CH.
  • the opening CH for feeding the capacity can be provided above the step of the capacity, so that the aspect ratio of the opening is reduced. can do. Therefore, the metal wiring 19 (Vp) can be easily connected to the upper electrode 14 of the capacitor.
  • the wiring electrode 7 used for the memory cell data line is used as the first wiring layer of the peripheral circuit region.
  • This embodiment will be described with reference to the process sectional views shown in FIGS.
  • the steps shown in FIGS. 17 to 19 are exactly the same as the steps shown in FIGS. 3 to 5 of the first embodiment except that the wiring electrode 7 is formed in the peripheral circuit region.
  • a silicon oxide film 8 containing boron and phosphorus and having a thickness of about 20 O nm is deposited by a CVD method as shown in FIG.
  • the silicon oxide film 8 is annealed at a temperature of about 800 ° C. to smooth the surface.
  • openings 32 are formed in the silicon oxide films 6 and 8 on the high-concentration n-type impurity region 5 serving as the source or drain of the MISFET by photolithography and dry etching.
  • a polycrystalline silicon film with a thickness of about 200 nm doped with an impurity of the same conductivity type as the high-concentration n-type impurity 5 at a high concentration is deposited by LPCVD. Silicon plug by etching back with anisotropic dry etching Form 9.
  • a silicon nitride sulfide film 10 having a thickness of about 10 Om is deposited by the LPCVD method.
  • the silicon nitride film 10 is formed for the same reason as described in the first embodiment.
  • a silicon oxide film 22 is deposited on the silicon nitride film 10 by a known CVD method using a TEOS gas, and is then formed by photolithography and dry etching.
  • the oxide film 22, silicon nitride film 10 and silicon oxide film 8 are sequentially etched to form an opening (contact hole) CH, and a metal plug 23 is formed in the opening CH by a known method.
  • a metal plug 23 is formed in the opening CH by a known method.
  • a material of the metal plug a high melting point metal material, for example, tungsten is desirable.
  • a silicon nitride sulfide film 24 having a thickness of about 50 Onm is deposited by a known plasma CVD method. Then, an opening 26 is formed by selectively etching the silicon nitride film 24 and the silicon oxide film 22 at a portion where a capacity is to be formed by photolithography and dry etching.
  • a polycrystalline silicon is left in the opening 26 as the lower electrode 12 of the capacitor in the same manner as in the first embodiment.
  • the silicon nitride film 24 is etched by dry etching. Further, the silicon oxide films 21 and 22 in the memory cell region are etched by photolithography and jet etching to form a lower electrode 12 of a crown-shaped capacitor. The lower electrode 12 of the capacitor was left in the opening.
  • a photoresist can be used as an etching mask.
  • Capacitor dielectric film 1 3 consists of T a 2 0 5 in the same manner as in Example 1.
  • the step of forming a flat silicon oxide film 15 by TEOS is the same as that in the first embodiment.
  • the silicon oxide film 15 and the upper electrode 14 of the capacitor and the dielectric film 13 of the capacitor were patterned by photolithography and dry etching. Etch.
  • a metal layer Ml having a thickness of about 700 nm is deposited by using a known sputtering device.
  • the metal layer Ml is left in the peripheral circuit region where the silicon oxide film 15 has been removed. This step employs the same means as in the first embodiment.
  • the metal wiring 17 in the peripheral circuit region is formed by patterning the metal layer Ml using photolithography and dry etching in the same manner as in the first embodiment. .
  • a silicon oxide film 18 having a thickness of about 200 nm is deposited as an interlayer insulating film. Then, after an opening (through hole) CH is formed in the silicon oxide film 18 on the metal wiring 17 in the peripheral circuit region, a metal wiring 19 is formed, and the dynamic RAM of the present embodiment is formed. Complete.
  • the bit lines in the memory cell area and the pattern By using the first-layer wiring electrode 7 of the formed peripheral circuit region as a local wiring, the required area of the peripheral circuit region can be reduced.
  • the depth of the metal plug 23 can be reduced, the production of the metal plug 23 can be facilitated and the yield can be improved.
  • FIG. 31 is a diagram showing a cross-sectional structure of a memory cell region and a peripheral circuit region of a dynamic RAM according to the present embodiment.
  • the lower electrode 27 of the capacitor is made of a thick polycrystalline silicon having a thickness of 500 nm.
  • the embodiment is the same as the manufacturing process of the embodiment 1 shown in FIGS. 10 to 14 except that the structure of the lower electrode 27 of the capacitor is different.
  • the lower electrode (storage electrode) 27 of the capacitor is patterned to have a predetermined film thickness.
  • the upper surface and the side wall of the lower electrode 27 are covered with a capacitor dielectric film 13.
  • an upper electrode (plate electrode) 14 of the capacitor is formed on the dielectric film 13.
  • the silicon oxide film 15 is used to flatten the steps in the capacity.
  • the silicon oxide film 15 in the peripheral circuit region is etched.
  • the mask pattern at the time of this etching is also the pattern of the upper electrode of the capacitor.
  • a metal layer Ml is buried in the peripheral circuit region where the silicon oxide film 14 has been etched.
  • the metal layer Ml is patterned by photolithography and dry etching to form a metal wiring 17.
  • a silicon oxide film 18 is deposited by the CVD method to reduce the level difference between the memory cell area and the peripheral circuit area.
  • a method of supplying a plate potential to the upper electrode in the capacity is not shown, but an opening for supplying power is formed in the relatively thin silicon oxide film 15 located on the thick lower electrode 27. In other words, an opening is formed at a position where the step of the capacitor is high. This makes it possible to reduce the aspect ratio of the opening, thereby facilitating the formation of the opening.
  • the storage capacitance can be increased only by increasing the thickness of the lower electrode 27 in the capacity.
  • the present embodiment is another embodiment of the electrode for the capacitance in the dynamic RAM of the first embodiment, and the configuration is shown in FIG. Fig. 36 shows the memory cell part and its surroundings of the dynamic RAM according to the present embodiment.
  • FIG. 3 is a diagram illustrating a cross-sectional structure of a circuit unit.
  • the lower electrode 28 of the capacitor is made of a 50 nm-thick polycrystalline silicon film embedded in the opening formed in the silicon oxide film 15. Further, the lower electrode 28 is connected to the silicon plug 9 at the bottom of the opening.
  • the capacitance of the storage electrode can be increased by increasing the thickness of the silicon oxide film 15, that is, by increasing the depth of the opening.
  • FIG. 37 first, a field oxide film 2 is selectively formed on a silicon substrate 1 by a known L0C0S technique. Then, MISFET is formed in a region where the field oxide film 2 is not formed (a portion called an active region). Next, a silicon plug 9 and a metal plug 11 are formed. Then, the main surface on the semiconductor substrate on which the Ml SFET is formed with the silicon oxide film 15 is planarized. That is, the altitude difference between the memory cell area and the peripheral circuit area is reduced.
  • an opening 29 is formed by photolithography and dry etching at a position of the silicon oxide film 15 where the capacity electrode is to be formed.
  • the steps so far are exactly the same as in Example 1.
  • a 50-nm-thick polycrystalline silicon film doped with n-type impurities at a high concentration is deposited, and the photoresist and etch-back are combined to form the opening.
  • the polycrystalline silicon film is left in the portion 29 to form the lower electrode 28 of the capacitor.
  • the lower electrode 28 of this capacitor has a silicon capacitor at the bottom of the opening 29. Connected to lug 9.
  • a capacitor dielectric film 13 is deposited, and a titanium nitride film having a thickness of lOO nm is deposited on the dielectric dielectric film 13 as an upper electrode 14 of the capacitor. .
  • the titanium nitride film 14, the capacitor dielectric film 13, and the silicon oxide film 15 were formed by photolithography and dry etching with the upper electrode pattern of the capacitor. Etching.
  • the metal layer Ml made of aluminum is left in the peripheral circuit region as in the first embodiment.
  • a metal wiring 17 is formed by patterning the metal layer Ml.
  • the present embodiment is a further embodiment of the electrode for the capacitance in the dynamic RAM of the first embodiment.
  • the configuration is shown in FIG. FIG. 42 is a diagram showing a cross-sectional structure of a memory cell portion and a peripheral circuit portion of the dynamic RAM according to the present embodiment.
  • the present embodiment is characterized in that the lower electrode 30 of the capacitor is of a fin type.
  • the storage capacity can be increased by increasing the number of fins of the lower electrode 30 of the capacity.
  • FIG. 43 is a diagram showing a cross-sectional structure of a memory cell region and a peripheral circuit region of the dynamic RAM according to the present embodiment.
  • a crown-shaped capacitor composed of a lower electrode 12, a dielectric film 13, and an upper electrode 14 is formed in the memory cell region.
  • the first-layer metal wiring 17 in the peripheral circuit region is formed in a region where the silicon oxide film 15 is removed as in the first embodiment.
  • a silicon oxide film 31 is formed on the metal wiring 17, and the height of the metal wiring 17 and the height of the silicon oxide film 15 deposited on the capacity of the memory cell region are adjusted. I have. That is, the film thickness (total film thickness) of the metal wiring 17 and the silicon oxide film 31 is equal to the film thickness of the silicon oxide film 15. In this embodiment, as in the first embodiment, even if the depth (thickness) of removing the silicon oxide film 15 is within a range of about 0.3 m deeper than the total film thickness. Good.
  • the elevation difference between the memory cell region and the peripheral circuit region can be made substantially equal.
  • dry etching is facilitated, and a fine pattern can be formed.
  • FIG. 44 shows an embodiment of the planar layout of the dynamic RAM chip according to the present invention.
  • a peripheral circuit part 218 is arranged in a cross shape so as to surround the part 216.
  • the MISFET in the memory cell part 216 is of an n-channel type.
  • a CMOS circuit constitutes an input / output circuit / decoder circuit and an address circuit.
  • an interlayer insulating film 2 17 (first or second interlayer insulating film) is formed so as to penetrate the peripheral circuit section 2 18.
  • a bonding pad BP is linearly provided on the main surface of the peripheral circuit portion 218 located at the longitudinal center of the chip 201.
  • FIG. 45 shows another embodiment of the planar layout of the dynamic RAM chip according to the present invention.
  • the dynamic RAM chip shown in Fig. 45 constitutes a large-capacity DRAM of 1 gigabit or more.
  • a plurality of memory cell array portions 2 16 are surrounded by a peripheral circuit portion 2 18 on the outer periphery of the chip and a peripheral circuit portion 2 18 in the X1, X2 and Yl, ⁇ 2 directions.
  • the peripheral circuit section 218 has an interlayer insulating film 217 (second interlayer insulating film) formed so as to penetrate the memory cell array section 216.
  • the MISFET in the memory cell part 216 is of an n-channel type.
  • a CMOS circuit constitutes an input / output circuit, a decoder circuit and an address circuit.
  • the bonding pads BP are arranged in a row (X1 or X2) or two rows (one row) on the peripheral circuit part 218 main surface located in the longitudinal direction X1, X2 direction of the chip 201. 2) is provided linearly.
  • the DRAM chip described in the present embodiment can be used for SOJ (Small Outline J-leaded Package), SOP (Small Outline Package), It can be incorporated into small packages such as TSOP (Thin-SOP) and even CSP (Chip Size Package).
  • the memory cell region is, for example, a single transfer MISFET and a charge storage capacitor (capacitance) as a unit memory cell, and a plurality of memory cells are regularly arranged in one semiconductor chip. It refers to the area where it is located.
  • the memory cell area can be referred to as a memory cell group or a memory array section.
  • the memory cell array also includes a plurality of dummy cells.
  • the peripheral circuit region means a portion arranged around the memory cell region (memory cell array), for example, an addressless decoder, an input / output buffer, and the like.
  • the present invention is applied to a dynamic RAM.
  • a wiring layer of a logic part can be formed at a height where a capacity is formed.
  • the use of a low-resistance metal material such as copper as the wiring layer formed on the memory cell region and the wiring layer formed on the peripheral circuit region enables a higher-speed operation.
  • a low-resistance metal material such as copper
  • the wiring layer formed on the peripheral circuit region enables a higher-speed operation.
  • Is possible half Conductor storage device can also be provided

Abstract

In order to increase the storage capacity of a capacitor, the capacitor is constituted in a tall three-dimensional structure (composed of a lower electrode (12), a capacitor dielectric film (13), and an upper electrode (14)) and, in order to relieve the height difference between the memory cell area in which the capacitor is provided and its peripheral circuit area, an insulating film (15) is desposited on the areas and removed from the peripheral circuit area only and a metallic layer (M1) is only buried in the area from which the insulating film (15) is removed. After the metallic layer (M1) is buried, metallic wiring (17) is formed by patterning the metallic layer (17) by photolithography and dry etching.

Description

明 細 書 半導体記憶装置及びその製造方法 技術分野  Description: Semiconductor storage device and manufacturing method thereof
本発明は半導体記憶装置に関し、 特に高集積化に好適な立体構 造のキャパシ夕を有するダイナミ ック型ランダムアクセスメモリ に関する。  The present invention relates to a semiconductor memory device, and more particularly to a dynamic random access memory having a three-dimensional structure suitable for high integration.
背景技術 Background art
ダイナミ ック型ランダムアクセスメモリ (以下ダイナミ ック R A Mと略す) は、 情報を記憶する電荷蓄積用のキャパシ夕および そのキャパシ夕に書き込み読みだし用のスィ ッチトランジスタを 接続したメモリセルを単位としたものである。 このように一つの メモリセルの構成素子数が少ないことから大容量を必要とするコ ンピュー夕機器の主記憶装置として広く一般に用いられている。  A dynamic random access memory (hereinafter, abbreviated as dynamic RAM) is a unit of a memory cell to which a charge storage capacitor for storing information and a switch transistor for writing and reading the capacitance are connected. It was done. As described above, since one memory cell has a small number of constituent elements, it is widely and generally used as a main storage device of a computer device requiring a large capacity.
このようなダイナミ ック R A Mの記憶容量を増やすためには、 メモリセル面積を微細化しメモリセルの集積度を向上する必要が ある。  In order to increase the storage capacity of such a dynamic RAM, it is necessary to reduce the area of the memory cell and improve the degree of integration of the memory cell.
しかし、 このような過程において、 メモリセル面積の縮小によ りメモリセルの電荷蓄積用のキャパシ夕の有効な面積が低下し、 蓄積容量が低下することによって S / N比の低下や α線照射によ り生ずるメモリセルの情報が反転するといつた所謂ソフ トエラー 現象が顕在化し、 信頼性の大きな問題になっている。  However, in such a process, the effective area of the charge storage capacity of the memory cell decreases due to the reduction of the memory cell area, and the S / N ratio decreases and the α-ray irradiation decreases due to the decrease in the storage capacity. As a result, the so-called soft error phenomenon that occurs when the information of the memory cell is inverted becomes apparent, and this is a major problem in reliability.
このため、 メモリセル占有面積を大きくすることなく大きな蓄 積容量が得られるいくつかのメモリセル構造がこれまでに考案さ れてきた。 その一つに王冠 (クラウン) 型のキャパシ夕の如く容 量電極に垂直面を利用した立体的なキャパシ夕からなる積層 (ス タック ト) 型キャパシ夕を有するメモリセルがある。 この種のメ モリセルは、例えば特開昭 6 2 -4 8 0 6 2号公報および特開昭 6 2 - 1 2 8 1 6 8号公報に記述されている。 For this reason, several memory cell structures have been devised so far that a large storage capacity can be obtained without increasing the memory cell occupation area. One of them is a crown-shaped capacity There is a memory cell having a stacked (stacked) capacity consisting of a three-dimensional capacity using a vertical surface for a quantity electrode. Such a memory cell is described in, for example, Japanese Patent Application Laid-Open Nos. Sho 62-48062 and Sho 62-128681.
従来のダイナミック R AM * I Cの部分断面図を図 4 6 に示す。 同図において、 メモリアレイ と称されるメモリセル群の M I S F E Tはゲ一ト絶縁膜 1 0 3、 ゲート電極 1 0 4、 高濃度 n型不純 物領域 1 0 5で構成されている。 この M I S F E Tのゲー ト電極 1 0 4はワード線を構成している。 配線電極 1 0 7はデ一夕線を 構成し、 一方の n型の高濃度不純物領域 1 0 5上にシリコン酸化 膜 1 0 6 (層間絶縁膜) に設けた開口部を介して電気的に接続さ れている。 一方の n型の高濃度不純物領域 1 0 5には、 ワード線 とデータ線の上部で多結晶シリコンで形成された王冠型キャパシ 夕の下部電極 (蓄積電極) 1 1 2が接続されている。 そして、 こ の下部電極 1 1 2上にはキャパシ夕誘電体膜 1 1 3が堆積されて おり、 その上部にはプレー ト電極 1 1 4が設けられている。  FIG. 46 shows a partial cross-sectional view of a conventional dynamic RAM * IC. In the figure, the MISFET of a memory cell group called a memory array includes a gate insulating film 103, a gate electrode 104, and a high-concentration n-type impurity region 105. The gate electrode 104 of this MISFET constitutes a word line. The wiring electrode 107 forms a data line, and is electrically connected to an n-type high-concentration impurity region 105 through an opening provided in a silicon oxide film 106 (interlayer insulating film). It is connected. On the other hand, the n-type high-concentration impurity region 105 is connected to a lower electrode (storage electrode) 112 of a crown-shaped capacitor formed of polycrystalline silicon above the word line and the data line. On this lower electrode 112, a capacitor dielectric film 113 is deposited, and on the upper part, a plate electrode 114 is provided.
ここで、 上記下部電極 1 1 2は、 筒状になっており、 平面部分 だけでなく垂直部分の内面 (内壁) および外面 (外壁) をも利用 してキャパシ夕の有効面積を増加させている。 また、データ線(ビ ッ ト線) 上に蓄積電極を設けた、 いわゆる C〇 B (Capaci tor On Bi t)構造としたことによって、 キャパシ夕の有効な面積を最大限 に大きくすることができる。 また、 下部電極の垂直部分の長さを 長くすることによって、 即ち筒状の蓄積電極の高さを高くするこ とによってメモリセルの微細化を図るとともに、 容易にキャパシ 夕の蓄積容量を増加することができる。 次に、 本発明者等によって試みられたその製造方法を簡単に説 明する。 Here, the lower electrode 1 1 and 2 is formed in a cylindrical shape, and the effective area of the capacity is increased by using not only a plane portion but also an inner surface (inner wall) and an outer surface (outer wall) of a vertical portion. . In addition, the so-called C〇B (Capacitor On Bit) structure in which storage electrodes are provided on data lines (bit lines) maximizes the effective area of capacity. . In addition, by increasing the length of the vertical portion of the lower electrode, that is, by increasing the height of the cylindrical storage electrode, the memory cell can be miniaturized, and the storage capacity of the capacity can be easily increased. be able to. Next, the manufacturing method attempted by the present inventors will be briefly described.
まず、 単結晶シリ コン基板 1 0 1上に素子間を絶縁分離するた めのフィールド酸化膜 1 0 2 を成長させ、 M I S F E Tのゲー ト 酸化膜 1 0 3を成長させる。 このゲー ト酸化膜 1 0 3は基板 1 0 1表面を熱酸化することによ り所望の厚さに形成される。  First, a field oxide film 102 for insulating and isolating elements is grown on a single crystal silicon substrate 101, and a gate oxide film 103 of MISFET is grown. The gate oxide film 103 is formed to a desired thickness by thermally oxidizing the surface of the substrate 101.
次いで、 ゲー ト電極 1 0 4を形成するために、 不純物を高濃度 に含む多結晶シリ コン膜を堆積し、 その多結晶シリ コン膜をパ夕 一二ングする。 しかる後、 イオン打ち込み法を用いて、 上記ゲー ト電極 1 0 4に自己整合された M I S F E Tのソース、 ドレイン 領域となる n型の高濃度不純物領域 1 0 5 を単結晶シリ コン基板 1 0 1内に形成する。  Next, in order to form the gate electrode 104, a polycrystalline silicon film containing impurities at a high concentration is deposited, and the polycrystalline silicon film is patterned. Thereafter, an n-type high-concentration impurity region 105 serving as a source / drain region of the MISFET self-aligned with the gate electrode 104 is formed in the single-crystal silicon substrate 101 by ion implantation. Formed.
次いで、 シリ コン酸化膜 1 0 6を堆積した後、 メモリセル領域 の M I S F E Tの高濃度不純物領域 1 0 5 に開口部 (図示せず) を形成する。 そして、 配線電極として不純物を高濃度に含む多結 晶シリ コン膜とタングステンシリサイ ド膜を順次堆積し、 これら 積層膜をパ夕一ニングする。  Next, after depositing a silicon oxide film 106, an opening (not shown) is formed in the high-concentration impurity region 105 of the MISFET in the memory cell region. Then, a polycrystalline silicon film and a tungsten silicide film containing impurities at a high concentration are sequentially deposited as wiring electrodes, and these laminated films are patterned.
次いで、 シリ コン酸化膜 1 0 8を堆積した後、 メモリセル領域 の M I S F E Tのソース若しく はドレイ ンの高濃度 n型不純物領 域 1 0 5上に開口部を形成する。 さ らに、 多結晶シリ コン膜と厚 いシリ コン酸化膜を連続して堆積する。 そして、 これらを同時に パターニングした後、 さ らに多結晶シリ コン膜を堆積し、 異方性 の ドライエッチングにより平坦部の露出した多結晶シリ コン膜を エッチングすることで、 上記シリ コン酸化膜の側壁に上記多結晶 シリ コン膜を残存させる。 さ らに、 上記シリ コン酸化膜を除去することによって、 王冠状 の蓄積電極 1 1 2が形成される。 次いで、 キャパシ夕誘電体膜 1 1 3 を堆積した後、 プレー ト電極 1 1 4 となる多結晶シリ コン膜 を堆積しこれをパターニングする。 Next, after depositing a silicon oxide film 108, an opening is formed on the high concentration n-type impurity region 105 of the source or drain of the MISFET in the memory cell region. In addition, a polycrystalline silicon film and a thick silicon oxide film are deposited successively. Then, after these are simultaneously patterned, a polycrystalline silicon film is further deposited, and the polycrystalline silicon film having a flat portion exposed by anisotropic dry etching is etched, thereby forming the silicon oxide film. The polycrystalline silicon film is left on the side wall. Further, by removing the silicon oxide film, a crown-shaped storage electrode 112 is formed. Next, after depositing a capacitor dielectric film 113, a polycrystalline silicon film to be a plate electrode 114 is deposited and patterned.
最後に、 層間絶縁膜のシリ コン酸化膜 1 1 5 と金属配線 1 1 9 としてアルミニウム配線を形成し、 周辺回路の M I S F E Tとメ モリセルが製造される。  Finally, aluminum wiring is formed as the silicon oxide film 115 of the interlayer insulating film and the metal wiring 119, and the MISFET of the peripheral circuit and the memory cell are manufactured.
このように立体的な蓄積電極を有するキャパシ夕の採用により 蓄積容量の増加が可能になった。 この結果、 微細なメモリセルで もメモリセル動作や信頼性の確保に充分な蓄積容量を確保するこ とができる。  Thus, the adoption of a capacity having three-dimensional storage electrodes has made it possible to increase the storage capacity. As a result, it is possible to secure a sufficient storage capacity for the operation and reliability of the memory cell even with a fine memory cell.
しかし、 このような立体構造のキャパシ夕の蓄積容量をさ らに 増加するためには蓄積電極の垂直部分の高さを高くする必要があ る。 このため、 シリ コン基板表面からキャパシ夕の上部までの高 さがミクロンオーダ一にも及ぶことになりかねない。 したがって、 図 4 6 に示すように、 メモリセル群の標高は相対的に高くなり、 周辺回路の標高は相対的に低くなり、 メモリセル群と周辺回路と で大きな標高差が生じる。  However, in order to further increase the storage capacity of such a three-dimensional structure, it is necessary to increase the height of the vertical portion of the storage electrode. For this reason, the height from the surface of the silicon substrate to the upper part of the capacity may be on the order of microns. Therefore, as shown in FIG. 46, the elevation of the memory cell group is relatively high, and the elevation of the peripheral circuit is relatively low, and a large elevation difference is generated between the memory cell group and the peripheral circuit.
このようにキャパシ夕形成後にメモリセル群の領域と周辺回路 が構成された領域との標高差が大きく異なると、 例えばキャパシ 夕上部のメモリセル群の領域から周辺回路の領域につながる金属 配線 1 1 9や、 それぞれの領域内での金属配線を形成するための ホ ト リ ソグラフィ の工程が極めて困難になる。 すなわち、 一般に、 半導体記憶装置の製造に用いられている縮小投影露光装置におい ては、 解像度と焦点深度とは反比例の関係にある。 このため、 微 細な寸法を形成するために高解像度のステツパを用いると焦点深 度が浅くなり、 素子表面をよ り平坦にする必要が生じてく る。 If the difference in elevation between the memory cell group region and the region where the peripheral circuit is formed is significantly different after the formation of the capacitance, for example, the metal wiring 11 from the memory cell group region above the capacitance to the peripheral circuit region 9 and the photolithography process for forming metal wiring in each area becomes extremely difficult. That is, generally, in a reduction projection exposure apparatus used for manufacturing a semiconductor memory device, the resolution and the depth of focus are in inverse proportion. Because of this, If a high-resolution stepper is used to form fine dimensions, the depth of focus becomes shallower, and the necessity to make the element surface flatter has arisen.
このような状況において、 メモリセル群の領域と周辺回路の領 域との標高差が増加することは困難さがよ り増加する方向になる, この結果、 感光の際にそのメモリセル群の領域とその周辺回路の 領域での解像度を同等にすることが困難になり、 何れか一方の領 域で解像不良を起こす。  In such a situation, it becomes more difficult for the elevation difference between the area of the memory cell group and the area of the peripheral circuit to increase. As a result, the area of the memory cell group during exposure is increased. It becomes difficult to equalize the resolution in the area of the peripheral circuit and its peripheral circuits, and a resolution failure occurs in one of the areas.
この問題を解決するために、 多層レジス ト等の技術を用いるこ とが考えられる。 しかしながら、 この種の技術においても、 メモ リセル群の領域と周辺回路の領域のような広い領域間で標高差が 異なるような場合にはこの問題を解決することは困難である。  In order to solve this problem, it is conceivable to use technologies such as multilayer resist. However, even with this type of technology, it is difficult to solve this problem when the altitude difference differs between wide areas such as the memory cell group area and the peripheral circuit area.
上記問題点を解決するために、 製造工程の初期段階でメモリセ ルが形成される領域のシリ コン基板表面を低くする方法が知られ ている。 例えば、 この種の技術は特開昭 6 3 - 2 6 6 8 6 6号公報 に記載されている。 しかしながら、 段差がよ り高くなるとこの技 術の適用すら困難になる。 つまり、 よ り一層の高段差に対応する ためにはシリ コン基板表面により一層の段差を形成しなければな らない。 このような高段差を有するシリ コン基板に対して、 リ ゾ グラフィ による素子形成や配線パターン形成は製造が上述した理 由によって困難になる。  In order to solve the above problems, there is known a method of lowering the silicon substrate surface in a region where a memory cell is formed in an early stage of a manufacturing process. For example, this type of technique is described in Japanese Patent Application Laid-Open No. 63-266686. However, the higher the step, the more difficult it is to apply this technology. That is, in order to cope with an even higher step, a further step must be formed on the silicon substrate surface. For a silicon substrate having such a high step, it is difficult to form an element or a wiring pattern by lithography for the reasons described above.
また、 C M P ( Chem i c a l Mechan i c a l Po l i sh i ng) 技術を用いて層 間絶縁膜を平坦化させ、 メモリセル群と周辺回路部との標高差を 解消する方法が考えられている。 しかしながら、 この場合には、 層間絶縁膜の膜厚が厚く 、 周辺回路部のスルーホールもしく はコ ン夕ク トホールの深さが極めて深くなる。 このため、 このホール で配線が断線するといった新たな問題が生じ、 微細配線の形成が 困難となる。 特に 1ギガビッ トクラスの大容量のダイナミ ック R A Mにおいては、 メモリセル群と周辺回路との微細配線形成が重 要な課題となる。 In addition, a method has been considered in which the interlayer insulating film is flattened using chemical mechanical polishing (CMP) technology to eliminate the difference in elevation between the memory cell group and the peripheral circuit section. However, in this case, the thickness of the interlayer insulating film is large, and the depth of the through hole or the contact hole in the peripheral circuit portion is extremely large. For this reason, this hall This causes new problems such as disconnection of wiring, and makes it difficult to form fine wiring. In particular, in the case of large-capacity dynamic RAMs of 1 gigabit class, formation of fine wiring between memory cells and peripheral circuits is an important issue.
発明の開示 Disclosure of the invention
本発明の目的は、 一つの半導体基体内に、 高密度で、 蓄積容量 の増加を図ったメモリセル領域と、 周辺回路領域との微細配線の 形成を可能にした新規な半導体記憶装置の製造方法を提供するこ とにある。  SUMMARY OF THE INVENTION An object of the present invention is to provide a novel semiconductor memory device manufacturing method capable of forming a fine wiring between a memory cell region with a high density and an increased storage capacity and a peripheral circuit region in one semiconductor substrate. To provide
本発明の他の目的は、 立体構造のキャパシ夕を有するメモリセ ル及びそのキャパシ夕上部に微細な配線を可能にしたダイナミ ツ ク R A Mの製造方法を提供することにある。  Another object of the present invention is to provide a memory cell having a three-dimensionally structured capacity and a method of manufacturing a dynamic RAM in which fine wiring can be provided above the capacity.
本発明のさ らに他の目的は、 ギガビッ ト以上に適した新規な半 導体記憶装置を提供することにある。  Still another object of the present invention is to provide a novel semiconductor memory device suitable for gigabit or more.
本発明の代表的な構成は、 半導体基体のメモリセル領域に形成 された第 2 の絶縁膜上にのキャパシ夕用下部電極、 キャパシ夕用 誘電体膜およびキャパシ夕用の上部電極を順次堆積し、 立体型の キャパシ夕を形成する工程と、 該上部電極上に第 3の絶縁膜を堆 積し、 上記キャパシ夕の凹凸を平坦化する工程と、 少なく とも該 第 3の絶縁膜と上記上部電極と、 上記キャパシ夕誘電体膜を上部 電極と同一のパターンでエッチングし、 メモリセル以外の領域を 除去する工程と、 該除去した領域に配線電極用金属層を埋め込む 工程と、 該配線電極用金属層と上記第 2の絶縁膜とがほぼ同一の レベルになるように平坦化した後、 ホ ト リ ソグラフィ によ り上記 配線電極用金属層を所望のパターンにパターニングする工程とを 含むことを特徴とするものである。 In a typical configuration of the present invention, a lower electrode for capacitance, a dielectric film for capacitance, and an upper electrode for capacitance are sequentially deposited on a second insulating film formed in a memory cell region of a semiconductor substrate. Forming a three-dimensional capacitor, depositing a third insulating film on the upper electrode, and flattening the irregularities of the capacitor; at least the third insulating film and the upper portion; Etching the electrode and the dielectric film with the same pattern as the upper electrode to remove a region other than the memory cell; embedding a wiring electrode metal layer in the removed region; After planarizing the metal layer and the second insulating film so that they are substantially at the same level, patterning the wiring electrode metal layer into a desired pattern by photolithography. It is characterized by including.
本発明によれば、 立体的なキャパシ夕が形成される高さ と周辺 回路領域の配線層の高さが同等になるため、 メモリセル内のキヤ パシ夕によってメモリセル領域と周辺回路領域に大きな標高差が 生じることはなく 、 キャパシ夕上部にも平坦な絶縁膜を形成する ことができる。 このため、 メモリセル部内のキャパシ夕上並びに 周辺回路部上の共通の絶縁膜上にさ らに微細な配線を形成するこ とができる。  According to the present invention, the height at which the three-dimensional capacity is formed is equal to the height of the wiring layer in the peripheral circuit region. There is no difference in elevation, and a flat insulating film can be formed on the upper part of the capacity. For this reason, finer wiring can be formed on the capacity in the memory cell portion and on the common insulating film on the peripheral circuit portion.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の第 1 の実施例に係わるものであり、 ダイナミ ック R A Mが構成された半導体記憶装置を示す部分断面図である, 図 2は、 本発明の第 1 の実施例に係わるものであり、 半導体記 憶装置のメモリセルアレイ部の一部を示す平面図である。  FIG. 1 relates to a first embodiment of the present invention, and is a partial cross-sectional view showing a semiconductor memory device in which a dynamic RAM is configured. FIG. 2 shows a semiconductor memory device according to the first embodiment of the present invention. FIG. 2 is a plan view showing a part of a memory cell array section of the semiconductor memory device.
図 3乃至図 1 4は、 本発明の第 1 の実施例に係わるものであり、 半導体記憶装置の製造工程を示す断面図である。  3 to 14 relate to the first embodiment of the present invention and are cross-sectional views showing the steps of manufacturing a semiconductor memory device.
図 1 5は、 本発明の第 1 の実施例に係わるものであり、 半導体 記憶装置のキャパシ夕給電部を示す断面図である。  FIG. 15 relates to the first embodiment of the present invention and is a cross-sectional view showing a capacity power supply section of a semiconductor memory device.
図 1 6は、 本発明の第 2 の実施例に係わるものであり、 ダイナ ミ ック R A Mが構成された半導体記憶装置を示す断面図である。 図 1 7乃至図 3 0は、 本発明の第 3 の実施例のダイナミ ック R A Mが構成された半導体記憶装置の製造工程を説明するための断 面図である。  FIG. 16 relates to the second embodiment of the present invention and is a cross-sectional view showing a semiconductor memory device having a dynamic RAM. FIGS. 17 to 30 are cross-sectional views illustrating a manufacturing process of the semiconductor memory device having the dynamic RAM according to the third embodiment of the present invention.
図 3 1 は、 本発明の第 4の実施例に係わるものであり、 ダイナ ミ ック R A Mが構成された半導体記憶装置を示す部分断面図であ る。 図 3 2乃至図 3 5は、 本発明の第 4の実施例に係わるものであ り、 半導体記憶装置の製造工程を示す断面図である。 FIG. 31 relates to a fourth embodiment of the present invention and is a partial cross-sectional view showing a semiconductor memory device having a dynamic RAM. FIGS. 32 to 35 relate to the fourth embodiment of the present invention and are cross-sectional views showing the steps of manufacturing the semiconductor memory device.
図 3 6は、 本発明の第 5の実施例に係わるものであり、 ダイナ ミック R AMが構成された半導体記憶装置を示す部分断面図であ る。  FIG. 36 relates to a fifth embodiment of the present invention, and is a partial cross-sectional view showing a semiconductor memory device having a dynamic RAM.
図 3 7乃至図 4 1は、 本発明の第 5の実施例に係わるものであ り、 半導体記憶装置の製造工程を示す断面図である。  FIGS. 37 to 41 relate to the fifth embodiment of the present invention and are cross-sectional views showing the steps of manufacturing the semiconductor memory device.
図 4 2は、 本発明の第 6の実施例に係わるものであり、 ダイナ ミック R AMが構成された半導体記憶装置を示す部分断面図であ る。  FIG. 42 relates to a sixth embodiment of the present invention and is a partial cross-sectional view showing a semiconductor memory device having a dynamic RAM.
図 4 3は、 本発明の第 7の実施例に係わるものであり、 ダイナ ミック R AMが構成された半導体記憶装置を示す部分断面図であ る。  FIG. 43 relates to a seventh embodiment of the present invention and is a partial cross-sectional view showing a semiconductor memory device having a dynamic RAM.
図 4 4は、 本発明に係わるダイナミック R A Mにおける一実施 形態のチップレイアウ トを示す平面図である。  FIG. 44 is a plan view showing a chip layout of an embodiment in a dynamic RAM according to the present invention.
図 4 5は、 本発明に係わるダイナミック R AMにおける他の実 施形態のチップレイァゥ 卜を示す平面図である。  FIG. 45 is a plan view showing a chip layout of another embodiment in the dynamic RAM according to the present invention.
図 4 6は、 本発明に先立って考えられたダイナミック R AMが 構成された半導体記憶装置を示す部分断面図である。  FIG. 46 is a partial cross-sectional view showing a semiconductor memory device in which a dynamic RAM conceived prior to the present invention is configured.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例により図面を用いてさらに詳細に説明す る。  Hereinafter, the present invention will be described in more detail by way of examples with reference to the drawings.
<実施例 1 >  <Example 1>
図 1乃至図 1 3を用いて本発明によるダイナミック R AMの一 実施例を説明する。 まず、 図 1 と図 2を用いて本発明によるダイナミック R AMの 構成を説明する。 One embodiment of the dynamic RAM according to the present invention will be described with reference to FIGS. First, the configuration of a dynamic RAM according to the present invention will be described with reference to FIGS.
図 1 は、 メモリセルの断面図並びにそれに隣接する周辺回路の M I S F E T部の断面図を同一図面上に示す。 図 2は、 メモリセ ルの平面図である。 ここで、 図 1 のメモリセル部分の断面図は図 2における X— X ' 線における断面の一部である。  FIG. 1 shows a cross-sectional view of a memory cell and a cross-sectional view of a MISFET portion of a peripheral circuit adjacent thereto on the same drawing. FIG. 2 is a plan view of the memory cell. Here, the cross-sectional view of the memory cell portion in FIG. 1 is a part of the cross section taken along line XX ′ in FIG.
図 1 において、 一つの半導体基体 1 には、 メモリセル領域 (第 1領域) および周辺回路領域 (第 2領域) の M I S F E Tは、 そ れぞれゲ一ト絶縁膜 3、 ゲ一ト電極 4、 ソース · ドレインを構成 する高濃度 n型不純物領域 5からなつている。  In FIG. 1, MISFETs in a memory cell region (first region) and a peripheral circuit region (second region) have a gate insulating film 3, a gate electrode 4, It consists of high-concentration n-type impurity regions 5 that constitute the source and drain.
なお、 図 1 において、 周辺回路領域は一つの M I S F E Tが開 示されているにとどまるが、 通常は複数の M I S F E Tによって、 例えば入出力回路やデコーダ回路およびア ドレス回路が構成され る。 これらの周辺回路は、 より具体的には nチャンネル M I S F E Tと pチャンネル M I S F E Tとからなる C MO S回路とによ つて構成されている。  In FIG. 1, only one MISFET is displayed in the peripheral circuit area, but usually, a plurality of MISFETs constitute, for example, an input / output circuit, a decoder circuit, and an address circuit. More specifically, these peripheral circuits are constituted by a CMOS circuit composed of an n-channel MISFET and a p-channel MISFET.
メモリセル内の M I S F E Tの高濃度不純物領域 5 にはデ一夕 線 (ビッ ト線) としての配線電極 7が接続されている。 さらに、 その上部には王冠(クラウン)型のスタック トキャパシ夕 (Stacked Capac i tor)が設けられている。 この王冠型のキャパシ夕は、 シリ コンプラグ 9を介して高濃度 n型不純物領域 5に電気的に接続さ れた下部電極 (蓄積電極) 1 2、 キャパシ夕誘電体膜 1 3、 なら びに上部電極 (プレー ト電極) 1 4の積層構造からなる。  A wiring electrode 7 as a data line (bit line) is connected to the high-concentration impurity region 5 of the MISFET in the memory cell. In addition, a crown-shaped Stacked Capacitor is provided at the top. The crown-shaped capacitor has a lower electrode (storage electrode) 12 electrically connected to the high-concentration n-type impurity region 5 through a silicon plug 9, a capacitor dielectric film 13, and an upper electrode. (Plate electrode) It has a 14-layer structure.
一方、 周辺回路領域内の配線電極 1 7は、 図 1 に示すように、 シリコン酸化膜 1 5、 キャパシ夕の上部電極 1 4ならびにキャパ シ夕絶縁膜 1 3のそれぞれが除去された領域に形成されている。 本発明によれば、 この配線電極 1 7の高さとメモリセル領域の高 さ (具体的には上部電極 1 4の高さの高い位置) とはほぼ等しく されている。 そして、 配線電極 1 7やキャパシタ領域上部には絶 縁膜 (シリコン酸化膜) 1 8が C V D法により形成され、 配線の 凹凸が平坦化されており、 該シリコン酸化膜 1 8を介して周辺回 路の金属配線 1 9が形成されている。 On the other hand, as shown in FIG. 1, the wiring electrodes 17 in the peripheral circuit region are composed of the silicon oxide film 15, the upper electrode 14 of the capacitor, and the capacitor. Each of the insulating films 13 is formed in a region where it has been removed. According to the present invention, the height of the wiring electrode 17 is substantially equal to the height of the memory cell region (specifically, the position where the height of the upper electrode 14 is high). An insulating film (silicon oxide film) 18 is formed on the wiring electrode 17 and the upper part of the capacitor region by a CVD method, and the unevenness of the wiring is flattened. The metal wiring 19 of the road is formed.
図 2は、 隣接するメモリセルの位置関係をわかりやすくするた めに複数個のメモリセルを配したメモリセル領域内の平面図であ り、 マスクのパターンを示している。 同図において、 活性領域 3 3は T字形のパターンを有している。 そして、 ワード線 3 4 (図 1 におけるゲート電極 4 ) が上記活性領域 3 3 の一部を横切るよ うに Y方向に、 デ一夕線 3 6 (図 1 における配線電極 7 ) が X方向 にそれぞれ配されている。  FIG. 2 is a plan view of a memory cell region in which a plurality of memory cells are arranged to make it easy to understand the positional relationship between adjacent memory cells, and shows a mask pattern. In the figure, the active region 33 has a T-shaped pattern. Then, the word line 34 (the gate electrode 4 in FIG. 1) crosses a part of the active region 33 in the Y direction, and the data line 36 (the wiring electrode 7 in FIG. 1) in the X direction. Are arranged.
王冠型のキャパシ夕の下部電極 1 2は、 これらワー ド線 3 4 と データ線 3 6の上部に、 楕円筒状に形成されている。 そして、 こ のキャパシ夕の下部電極 1 2は、 これらのワード線 3 4 とデータ 線 3 6の隙間の活性領域 3 3 (図 1 における高濃度 n型不純物領 域 5 ) 上に開口部 3 2を介して接続されている。 また、 データ線 3 6は開口部 3 5を介して電気的に接続されている。  The lower electrode 12 of the crown-shaped capacitor is formed in an elliptical cylindrical shape above the word line 34 and the data line 36. The lower electrode 12 of this capacitor is formed with an opening 3 2 above the active region 33 (the high-concentration n-type impurity region 5 in FIG. 1) between the word line 34 and the data line 36. Connected through. The data line 36 is electrically connected via the opening 35.
次に、 図 3乃至図 1 4に示す製造工程の断面図を用いて、 図 1 に示したダイナミック R A Mの製造方法をさらに詳しく説明する, まず、 図 3に示すように、 ( 1 0 0 ) 結晶面のシリコン基板 1 上に公知の選択酸化法を用いてフィールド酸化膜 (L O C O S酸 化膜) 2を形成する。 このフィールド酸化膜 2によって区画され た活性領域 (例えば、 図 2 に示した活性領域 3 3 ) 上に、 公知の 方法により M I S F E Tを形成する。 Next, a method of manufacturing the dynamic RAM shown in FIG. 1 will be described in more detail with reference to the cross-sectional views of the manufacturing steps shown in FIGS. 3 to 14. First, as shown in FIG. A field oxide film (LOCOS oxide film) 2 is formed on a crystalline silicon substrate 1 using a known selective oxidation method. This field oxide 2 An MISFET is formed on the active region (eg, active region 33 shown in FIG. 2) by a known method.
なお、 ここではメモリセルの M I S F E Tの極性は nチャネル を用いているが、 pチャネルでもよい。 また、 ホッ トキャ リ アに よる素子劣化を低減するために、 公知の L D D (Lightly Doped Here, the polarity of the MISFET of the memory cell is n-channel, but may be p-channel. In addition, in order to reduce device deterioration due to hot carriers, a well-known LDD (Lightly Doped
Drain ) 構造を用いることもできる。 さ らには、 公知の自己整合コ ン夕ク トを用いるために、 ゲー ト電極 4の側壁や上部にシリ コン ナイ トライ ド等のような絶縁膜を形成してもよい。 Drain) structure can also be used. Further, in order to use a known self-aligned connection, an insulating film such as a silicon nitride may be formed on a side wall or an upper portion of the gate electrode 4.
図 4に示すように、 ボロンとリ ンを含んだシリ コン酸化膜 ( B P S G) 6 を公知の化学気相成長法 (以下、 C V D法と略す) に より堆積する。 そして、 8 0 0 °C程度の温度でァニールを施すこ とにより、 このシリ コン酸化膜 6表面をなだらかにする。 なお、 シリ コン酸化膜 6はボロンやリ ンを添加したもの (B P S G) を 用いないで、 ノ ン ドープのシリ コン酸化膜を用い他の方法で平坦 にすることもできる。 具体的には、 公知の C M P法が考えられる。 次いで、 ホ ト リ ソグラフィ と ドライエッチングにより開口部 3 5をシリ コン酸化膜を形成する。 そして、 データ線 3 6 となる厚 さ 1 0 0 n m程度の導体層を堆積する。 しかる後、 ホ ト リ ソグラ フィ と ドライエッチングによりその導体層をパターニングするこ とにより、 配線電極 7 を形成する。  As shown in FIG. 4, a silicon oxide film (BPSG) 6 containing boron and phosphorus is deposited by a known chemical vapor deposition method (hereinafter abbreviated as CVD method). Then, annealing is performed at a temperature of about 800 ° C. to smooth the surface of the silicon oxide film 6. It should be noted that the silicon oxide film 6 can be made flat by another method using a non-doped silicon oxide film without using boron (P) or phosphorus (B) added to phosphorus. Specifically, a known CMP method can be considered. Next, a silicon oxide film is formed in the opening 35 by photolithography and dry etching. Then, a conductor layer having a thickness of about 100 nm to become the data line 36 is deposited. Thereafter, the conductor layer is patterned by photolithography and dry etching to form the wiring electrode 7.
なお、 この配線電極 7の材料としては、 好ましく はタンダステ ン等の高融点金属のシリサイ ド膜と多結晶シリ コ ン膜の複合膜、 もしく はタングステン等の高融点金属膜を用いることができる。 また、 図には示していないが、 タングステン等の高融点金属を用 いる場合は、 シリ コン基板 (シリ コン半導体領域) との反応を防 止する目的でチタンナイ トライ ド等のバリヤメタル膜を下層に設 けることが好ましい。 さ らに、 図には示していないが、 シリ コン 酸化膜 6 の下層には不純物拡散防止のためのノ ンドープのシリ コ ン酸化膜を設けておく ことが望ましい。 As a material of the wiring electrode 7, a composite film of a silicide film of a high melting point metal such as tantalum and a polycrystalline silicon film, or a high melting point metal film of tungsten or the like can be preferably used. . Although not shown in the figure, when a high melting point metal such as tungsten is used, reaction with the silicon substrate (silicon semiconductor region) is prevented. It is preferable to provide a barrier metal film such as titanium nitride in the lower layer for the purpose of stopping. Further, although not shown in the figure, it is desirable to provide a non-doped silicon oxide film below the silicon oxide film 6 to prevent impurity diffusion.
図 5 に示すように、 厚さ 2 0 O n m程度のボロンとリ ンを含ん だシリ コン酸化膜 (B P S G) 8 を C V D法により堆積する。 そ して、 8 0 0 °C程度の温度でァニールを施すことによりそのシリ コン酸化膜 8 の表面をなだらかにする。 次いで、 M I S F E Tの ソースもしく はドレイ ンとなる高濃度 n型不純物領域 5上のシリ コン酸化膜 6、 8 に開口部 3 2 をホ ト リ ソグラフィ と ドライエツ チングにより形成する。 高濃度 n型不純物領域 5 と同一導電型の 不純物 (例えば、 リ ン) を高濃度に添加した 2 0 0 n m程度の厚 さの多結晶シリ コン膜を L P C V D法によ り に堆積する。 そして、 異方性の ドライエッチングで、 その多結晶シリ コン膜をエッチバ ックすることにより シリ コンプラグ 9 を形成する。  As shown in Fig. 5, a silicon oxide film (BPSG) 8 containing boron and phosphorus with a thickness of about 20 Onm is deposited by the CVD method. Then, annealing is performed at a temperature of about 800 ° C. to smooth the surface of the silicon oxide film 8. Next, an opening 32 is formed in the silicon oxide films 6 and 8 on the high-concentration n-type impurity region 5 serving as a source or drain of the MISFET by photolithography and dry etching. A polycrystalline silicon film having a thickness of about 200 nm in which an impurity (for example, phosphorus) of the same conductivity type as the high-concentration n-type impurity region 5 is added at a high concentration is deposited by the LPCVD method. Then, the silicon plug 9 is formed by etching back the polycrystalline silicon film by anisotropic dry etching.
なお、 ここではデータ線 (配線電極 7 ) を形成した後、 高濃度 n型不純物領域 5 ( 5 a ) 上に直接シリ コンプラグを形成した。 しかし、 他の方法として多結晶シリ コン膜のパッ ドを用いる方法 が考えられる。 この方法によれば、 ゲー ト電極 4 とシリ コンブラ グ 9 を自己整合で絶縁することもでき、 メモリセル面積の縮小に 効果的である。 すなわち、 図 4に示した開口部 3 5形成の段階で、 高濃度 n型不純物領域( 5 a )上にもシリ コンナイ トライ ド膜(図 示せず) をマスクとした自己整合によ り形成し、 そしてデータ線 のパッ ドとともに蓄積電極のパッ ドを形成する。 そして、 デ一夕 線 3 6及びシリ コン酸化膜 8 に開口部 3 2 を形成し、 シリ コンプ ラグ 9 を形成する。 Here, after forming the data line (wiring electrode 7), a silicon plug was directly formed on the high-concentration n-type impurity region 5 (5a). However, as another method, a method using a polycrystalline silicon film pad is conceivable. According to this method, the gate electrode 4 and the silicon plug 9 can be insulated by self-alignment, which is effective for reducing the memory cell area. That is, at the stage of forming the opening 35 shown in FIG. 4, a self-alignment is also performed on the high-concentration n-type impurity region (5a) using a silicon nitride film (not shown) as a mask. Then, a pad for the storage electrode is formed together with the pad for the data line. Then, an opening 32 is formed in the data line 36 and the silicon oxide film 8, and the silicon comp. Form lug 9.
図 6 に示すように、 厚さ 1 0 O n m程度のシリ コンナイ トライ ド膜 1 0 を L P C V D法によりシリ コン酸化膜 8上に堆積する。 このシリ コンナイ トライ ド膜 1 0 を堆積した理由は後で述べる。 引き続き、 周辺回路領域の高濃度 n型不純物領域 5上のシリ コ ン酸化膜 6 、 8ならびにシリ コンナイ トライ ド膜 1 0 にコンタク トホール ( C H) を形成する。 次いで、 厚さ 2 0 O n m程度の夕 ングステン等の高融点金属を、 公知のスパッ夕法もしく は C V D 法を用いて堆積し、 そして ドライエッチングによりエッチバック することにより、 周辺回路領域のコンタク トホール ( C H) 内に タングステンの金属プラグ 1 1 を形成する。  As shown in FIG. 6, a silicon nitride film 10 having a thickness of about 10 Onm is deposited on the silicon oxide film 8 by the LPCVD method. The reason for depositing the silicon nitride film 10 will be described later. Subsequently, contact holes (CH) are formed in the silicon oxide films 6, 8 and the silicon nitride film 10 on the high-concentration n-type impurity region 5 in the peripheral circuit region. Next, a high-melting point metal such as tungsten with a thickness of about 20 O nm is deposited by a known sputtering method or a CVD method, and then etched back by dry etching to contact the peripheral circuit area. A tungsten metal plug 11 is formed in the hole (CH).
なお、 周辺回路領域では C MO S回路で構成されているため、 回路上、 高濃度 n型不純物領域と高濃度 p型不純物領域との電気 的な接続が必要となる。 これらの不純物領域との接続のための配 線材料としてタングステンを使用した場合、 両領域間でタンダス テン · シリ コンの相互拡散が生じることがある。 したがって、 上 記金属プラグ 1 1 の下地材料としては、 チタンナイ トライ ド (T i N) の選択が好ましい。  Since the peripheral circuit area is composed of a CMOS circuit, an electrical connection between the high-concentration n-type impurity region and the high-concentration p-type impurity region is required on the circuit. When tungsten is used as a wiring material for connection to these impurity regions, interdiffusion of tungsten and silicon may occur between the two regions. Therefore, it is preferable to select titanium nitride (TiN) as a base material for the metal plug 11.
次いで、 厚さ 7 0 0 n m程度のシリ コン酸化膜 2 0 を公知の T E O S (テ トラ ' エトキシ ' シラン) ガスを用いた C V D法によ り 4 0 0 °C程度の温度で堆積する。 しかる後、 ホ ト リ ソグラフィ と ドライエッチングによりキャパシ夕の下部電極が形成されるべ き部分のシリ コン酸化膜 2 0 を選択的に除去することによ り、 開 口部 2 5 を形成する。  Next, a silicon oxide film 20 having a thickness of about 700 nm is deposited at a temperature of about 400 ° C. by a known CVD method using TEOS (tetra 'ethoxy' silane) gas. Thereafter, an opening 25 is formed by selectively removing the silicon oxide film 20 where the lower electrode of the capacitor is to be formed by photolithography and dry etching.
図 7 に示すように、 シリ コン酸化膜 2 0 をエッチングのマスク として、 上記開口部 2 5 の底部に露出したシリ コンナイ トライ ド 膜 1 0 を ドライエッチングして除去する。 しかる後、 下部電極 1 2が開口部 2 5 に沿って形成される。 すなわち、 厚さ 5 0 n m程 度の n型の不純物が高濃度に添加された多結晶シリ コン膜 (図 7 の下部電極 1 2 ) を公知の L P C V D法により堆積する。 この際、 開口部 2 5底部でシリ コンプラグ 9 と多結晶シリ コン膜が接続さ れる。 次いで、 厚さ 5 0 0 n mのシリ コン酸化膜 2 1 を C V D法 により堆積する。 そして、 該シリ コン酸化膜 2 1 を ドライエッチ ングによりエッチバックする。 この手段により、 開口部 2 5 内に 該シリ コン酸化膜 2 1 を埋設する。 さ らに、 上記シリ コン酸化膜 2 1 の ドライエッチングで露出した部分の多結晶シリ コン膜を ド ライエッチングによりエッチングすることで、 上記開口部 2 5 内 にキャパシ夕の下部電極 1 2 のための多結晶シリ コンを残存させ る。 As shown in Fig. 7, the silicon oxide film 20 is used as an etching mask. Then, the silicon nitride film 10 exposed at the bottom of the opening 25 is removed by dry etching. Thereafter, the lower electrode 12 is formed along the opening 25. That is, a polycrystalline silicon film (lower electrode 12 in FIG. 7) to which an n-type impurity having a thickness of about 50 nm is added at a high concentration is deposited by a known LPCVD method. At this time, the silicon plug 9 and the polycrystalline silicon film are connected at the bottom of the opening 25. Next, a 500 nm thick silicon oxide film 21 is deposited by a CVD method. Then, the silicon oxide film 21 is etched back by dry etching. By this means, the silicon oxide film 21 is buried in the opening 25. Further, by etching the polycrystalline silicon film in the portion of the silicon oxide film 21 exposed by the dry etching by dry etching, the lower electrode 12 of the capacity is formed in the opening 25. The remaining polycrystalline silicon remains.
図 8 に示すように、 フッ酸水溶液中でエッチングすることで上 記シリ コン酸化膜 2 1 、 2 0 を除去し、 王冠型キャパシ夕の下部 電極 1 2 を露出させる。 この際、 オーバ一エッチングしてもシリ コンナイ トライ ド膜 1 0がエッチングス トッパとなり、 下層に形 成された M I S F E Tへの影響はない。  As shown in FIG. 8, the silicon oxide films 21 and 20 are removed by etching in a hydrofluoric acid aqueous solution to expose the lower electrode 12 of the crown-shaped capacitor. At this time, even if the over-etching is performed, the silicon nitride film 10 serves as an etching stopper, and there is no influence on the MISFET formed in the lower layer.
図 9 に示すように、 楕円筒状の上記下部電極 (キャパシタ蓄積 電極) 1 2 の内面および外面に沿ってキャパシタ誘電体膜を被覆 するために、 五酸化夕ンタル (T a 25 ) 膜等のシリ コン酸化膜 より比誘電率の大きなキャパシ夕誘電体膜 1 3 を堆積する。 堆積 方法としては、 段差被覆性の良い C V D法が好ましい。 さ らに、 キャパシ夕誘電体膜の酸化膜換算膜厚は 1 ギガビッ トクラスの大 容量ダイナミ ック R AMでは 3 n m以下にすることが好ましい。 そして、 5 0 n m程度のタングステンやチタンナイ トライ ドなど の上部電極 1 4を堆積する。 なお、 ここでは下部電極 1 2に多結 晶シリ コン膜を用いたが、 タングステンやチタンナイ トライ ド膜 の様な高融点金属膜を用いることもできる。 この場合は、 多結晶 シリ コン膜表面の自然酸化膜の影響を排除することができキャパ シタ誘電体膜の酸化膜換算膜厚を薄くできる。 また、 キャパシ夕 誘電体膜の材料としてはシリ コンナイ トライ ド ( S i 3 N 4 ) とシ リ コン酸化膜の複合膜の他に、 S r T i 03膜や ( B a、 S r ) T i 〇 3膜 (B S T膜) のような公知の高誘電体膜や P Z T膜の ような強誘電体膜を用いることもできる。 このような高誘電体膜 を用いる場合は、 電極材料として耐酸化性の高い白金 ( P t ) が 好ましい。 As shown in FIG. 9, in order to cover the capacitor dielectric film along the inner surface and the outer surface of the elliptical tubular of the lower electrode (capacitor storage electrode) 1 2 pentoxide evening tantalum (T a 25) film A dielectric film 13 having a higher dielectric constant than the silicon oxide film is deposited. As a deposition method, a CVD method having good step coverage is preferable. Furthermore, the equivalent oxide thickness of the dielectric dielectric film is as large as 1 gigabit class. In the capacity dynamic RAM, it is preferable to set it to 3 nm or less. Then, an upper electrode 14 of about 50 nm such as tungsten or titanium nitride is deposited. Here, a polycrystalline silicon film is used for the lower electrode 12, but a refractory metal film such as a tungsten or titanium nitride film may be used. In this case, the influence of the natural oxide film on the surface of the polycrystalline silicon film can be eliminated, and the equivalent oxide film thickness of the capacitor dielectric film can be reduced. In addition to the composite film of silicon nitride (Si 3 N 4 ) and silicon oxide film, the Sr Ti O 3 film and (Ba, S r) T i 〇 3 film (BST film) a ferroelectric film such as a known high dielectric film and the PZT film may also be used, such as. When such a high dielectric film is used, platinum (Pt) having high oxidation resistance is preferable as an electrode material.
図 1 0に示すように、 厚さ 7 0 O n mのシリ コン酸化膜 1 5を キャパシ夕の凹凸が埋め込まれるように堆積する。 堆積方法とし ては先のシリ コン酸化膜 2 0 と同様に、 公知の T E O Sガスを用 いた C VD法により 4 0 0 °C程度の温度で堆積する。 そして、 ェ ツチバック若しく は C M P (Chemical-Mechanical-Pol ishing) を用 いて研磨することにより、 そのシリ コン酸化膜 1 5の表面をほぼ 平坦にする。  As shown in FIG. 10, a silicon oxide film 15 having a thickness of 70 nm is deposited so as to bury the irregularities of the capacity. As the deposition method, as in the case of the silicon oxide film 20 described above, deposition is performed at a temperature of about 400 ° C. by a known CVD method using TEOS gas. Then, the surface of the silicon oxide film 15 is made substantially flat by polishing using an etchback or CMP (Chemical-Mechanical-Polishing).
図 1 1 に示すように、 ホ ト リ ソグラフィ と ドライエッチングに より、 上記シリ コン酸化膜 1 5 とキャパシ夕の上部電極 1 4、 キ ャパシタ誘電体膜 1 3をキャパシ夕の上部電極のパターンにエツ チングする。 この上部電極 1 4のパターンは、 例えば、 図 4 4お よび図 4 5 に示したメモリセルアレー部 (斜線図示) 2 1 6 とほ ぼ一致する。 As shown in Fig. 11, by photolithography and dry etching, the silicon oxide film 15 and the upper electrode 14 of the capacitor and the capacitor dielectric film 13 were formed into the pattern of the upper electrode of the capacitor. Etch. The pattern of the upper electrode 14 is, for example, a memory cell array portion (shown by oblique lines) 2 16 shown in FIGS. 44 and 45. Match.
なお、 上記シリ コン酸化膜 1 5 を除去する深さ、 言い換えると そのシリ コン酸化膜の厚さは、 後述する工程で被覆される金属層 M l (配線電極 1 7 ) の膜厚と同等に設定される。 しかし、 その シリ コン酸化膜 1 5 を除去する深さは上記配線電極 1 7 の膜厚よ り 0 . 3 i m深い程度の範囲内であってもよい。 すなわち、 上記シ リコン酸化膜 1 5は 1 X m程度の厚さまで堆積してもよい。 この膜 厚差は、 金属配線 1 7の加工寸法 (線幅) によって考慮される。 以上のようにして、 メモリセル領域にはシリ コン酸化膜 1 5 に よって被覆された王冠型のキャパシ夕を有し、 周辺回路領域には、 上記シリ コン酸化膜 1 5が被覆されていないダイナミ ック R A M の中間段階の半導体本体 (ウェハ) が製造される。  The depth at which the silicon oxide film 15 is removed, in other words, the thickness of the silicon oxide film is equal to the thickness of the metal layer Ml (wiring electrode 17) to be covered in a step described later. Is set. However, the depth at which the silicon oxide film 15 is removed may be within a range of about 0.3 im deeper than the film thickness of the wiring electrode 17. That is, the silicon oxide film 15 may be deposited to a thickness of about 1 Xm. This difference in film thickness is taken into consideration depending on the processing dimension (line width) of the metal wiring 17. As described above, the memory cell region has a crown-shaped capacity covered with the silicon oxide film 15, and the peripheral circuit region has a dynamic structure not covered with the silicon oxide film 15. A semiconductor body (wafer) is manufactured at the intermediate stage of the block RAM.
図 1 2に示すように、 上記シリコン酸化膜 1 5 と同等の厚さ 7 0 0 n m ( 0 . Ί n ) 程度に、 導電膜としての金属層 M 1 を公知の スパッ夕を用いて堆積する。 この際、 メモリセル領域と周辺回路領 域の境界にできた高段差部分で、 堆積した金属層 M 1が断線しても 構わない。 ここでのシリコン酸化膜 1 5 と金属層 M l との膜厚を同 等 (もしくはほぼ同等) に設定することで、 次の工程 (図 1 3 ) で、 メモリセル領域と周辺回路領域との標高差が低減される。  As shown in FIG. 12, a metal layer M 1 as a conductive film is deposited to a thickness of about 700 nm (0.1 n) equivalent to that of the silicon oxide film 15 using a well-known sputter. . At this time, the deposited metal layer M1 may be broken at a high step formed at the boundary between the memory cell region and the peripheral circuit region. By setting the thicknesses of the silicon oxide film 15 and the metal layer Ml to be equal (or almost equal) here, in the next step (FIG. 13), the difference between the memory cell region and the peripheral circuit region is reduced. The elevation difference is reduced.
なお、 金属層 M l は、 アルミニウム(A1)などの低抵抗金属が好ま しいが、 夕ングステン(W)などの高融点金属を用いることもできる。 また、 必要に応じて、 チタンナイ トライ ド (TiN)膜等のようなバリ ァメタルを金属配線 1 7の下層に形成しておく こともできる。  The metal layer Ml is preferably a low-resistance metal such as aluminum (A1), but may be a high-melting metal such as tungsten (W). If necessary, a barrier metal such as a titanium nitride (TiN) film or the like can be formed below the metal wiring 17.
図 1 3 に示すように、 メモリセル領域の標高差の高い部分の上 記金属層 M l を除去し、 シリコン酸化膜 1 5が除去された周辺回路 領域に金属層 M 1 を残存させる。 As shown in FIG. 13, the peripheral circuit from which the metal layer M l has been removed and the silicon oxide film 15 has been removed has been removed from the portion of the memory cell region having a high elevation difference. The metal layer M 1 is left in the region.
周辺回路領域に金属層 M 1 を残存させる方法としては, 公知の C M P法が望ましい。 具体的には、 A 1 2 0 3などの砥粒と H 2 0 2な どの酸化剤を含むスラリーと、 発砲ポリウレタン等からなる研磨パ ッ ドを用い、 標高差の高い部分の金属層 M 1 のみを選択的に除去す る。 その際に、 標高差の低い周辺回路領域に残存させる金属層も削 れてしまう可能性がある。 これを防止するために、 研磨レートが配 線金属と比べ相対的に小さい材料を用いたス トツバ膜を周辺回路領 域の金属層上にあらかじめ形成しても良い。 公知ではないが、 出願 人が開発した技術として、 研磨パッ ドとスラリーの替わりに砥粒を 樹脂で結合した砥石を用いる平坦化技術を用いても良い。 この場合 は、 砥石の平坦化性能が良いため、 必ずしも前記ス トツバ膜を用い る必要がない。 あるいは、 周辺回路領域の金属層 M 1 を残存させる 方法として、 ホトレジス トと ドライエッチングを組み合わせたエツ チバックを用いることもできる。 As a method for leaving the metal layer M 1 in the peripheral circuit region, a known CMP method is preferable. Specifically, A 1 2 0 3 and a slurry containing abrasive grains and H 2 0 2 of any oxidizing agent such as, using a polishing Pas head consisting of foamed polyurethane or the like, the metal layer M 1 in the portion of high altitude difference Only selective removal. At this time, the metal layer remaining in the peripheral circuit area having a low elevation difference may be cut off. To prevent this, a strip film using a material whose polishing rate is relatively smaller than the wiring metal may be formed in advance on the metal layer in the peripheral circuit area. Although not known, as a technique developed by the applicant, a flattening technique using a grindstone in which abrasive grains are combined with a resin instead of the polishing pad and the slurry may be used. In this case, the flattening performance of the grindstone is good, so that it is not always necessary to use the stopper film. Alternatively, as a method of leaving the metal layer M 1 in the peripheral circuit region, an etchback combining a photoresist and dry etching can be used.
この工程により、 メモリセル領域と周辺回路領域との標高差がな くなり、 これら両領域の表面は平坦化を保たれる。  This step eliminates the difference in elevation between the memory cell region and the peripheral circuit region, and the surfaces of both regions are kept flat.
図 1 4に示すように、周辺回路領域の金属層 M 1 をホ ト リ ソグラ フィ と ドライエッチングを用いてパターニングし、 金属配線 1 7 を形成する。 この工程では残された周辺回路領域の金属層 M 1 の みをパターン加工するものであるから、 一般に使用されている縮 小投影露光装置を用いたホ ト リ ソグラフィ技術による微細配線加 ェが容易となる。  As shown in FIG. 14, the metal layer M 1 in the peripheral circuit region is patterned by using photolithography and dry etching to form a metal wiring 17. In this step, only the metal layer M1 in the remaining peripheral circuit area is patterned, so that fine wiring can be easily added by photolithography using a commonly used reduced projection exposure apparatus. Becomes
なお、 この工程において、 メモリセル領域のシリ コン酸化膜 1 5表面がエッチングダメージを受けないように、 その表面をホ ト レジス トで保護されるようにパターンを設計しておく とよい。 In this step, the surface of the silicon oxide film 15 in the memory cell region is photo-etched so that the surface is not damaged by etching. It is advisable to design the pattern so that it is protected by the register.
次いで、 層間絶縁膜として厚さ 2 0 0 n m程度のシリ コン酸化 膜 1 8 を C V D法により堆積し、 しかる後、 リ フロー処理を施す。 この結果、 図 1 に示すように、 メモリセル領域および周辺回路領 域におけるシリ コン酸化膜 1 8の表面はほぼ平坦化される。 つま り、 両領域におけるシリ コン酸化膜 1 8 の表面の標高差が緩和さ れることになる。  Next, a silicon oxide film 18 having a thickness of about 200 nm is deposited as an interlayer insulating film by a CVD method, and thereafter, a reflow process is performed. As a result, as shown in FIG. 1, the surface of the silicon oxide film 18 in the memory cell region and the peripheral circuit region is almost flattened. That is, the difference in elevation between the surfaces of the silicon oxide film 18 in both regions is reduced.
そして、 図 1 に示すように、 周辺回路領域の金属配線 1 7上の シリ コン酸化膜 1 8 にスルーホールを形成した後、 公知の縮小投 影露光装置を用いたホ ト リ ソグラフィ技術によって、 周辺回路領 域からメモリセル領域に延びる金属配線 1 9 をパターン形成する < なお、 金属配線 1 9 はアルミニウムなどの低抵抗金属が好まし く、 図 1 に示すように、 メモリセル領域内の配線として用いるこ とができるため、 デ一夕線に接続する信号線や、 ワー ド母線とし て用いることができる。  Then, as shown in FIG. 1, after a through hole is formed in the silicon oxide film 18 on the metal wiring 17 in the peripheral circuit region, photolithography using a known reduction projection exposure apparatus is performed. Pattern the metal wiring 19 extending from the peripheral circuit area to the memory cell area. <The metal wiring 19 is preferably a low-resistance metal such as aluminum, and as shown in FIG. Therefore, it can be used as a signal line connected to a data line or as a word bus.
また、 金属配線 1 9 を形成するに先立って、 上記層間絶縁膜 1 8の平坦化のために公知のブラグ技術や C M P法を適用すること もできる。  Prior to the formation of the metal wiring 19, a well-known Bragg technique or CMP method can be applied to flatten the interlayer insulating film 18.
さ らに、 キャパシタ下部電極 1 2の多結晶シリ コン膜表面を凹 凸形状にすることで蓄積電極の表面積を増加させ、 より大きな蓄 積容量が得られるようにすることもできる。 その表面形成法とし ては、 多結晶シリ コン形成時にジシランガスが用いられることに より達成できる。  Furthermore, by making the surface of the polycrystalline silicon film of the capacitor lower electrode 12 concave and convex, the surface area of the storage electrode can be increased, and a larger storage capacity can be obtained. The surface forming method can be achieved by using disilane gas at the time of forming polycrystalline silicon.
以上の製造工程により図 1 に示した本発明のダイナミ ック R A M · I Cが完成する。 本実施例によれば、 キャパシ夕の上部電極 1 4の形成パターン (レジス ト) をマスクにして、 周辺回路領域のシリ コン酸化膜 1 5 を除去し、 該シリコン酸化膜 1 5が除去された領域に金属層 M 1 を埋め込む。 そして、 メモリセル領域と周辺回路領域の標高差 を緩和 (つまり、 キャパシ夕形成後に半導体ウェハ主面を平坦化) した上で、 周辺回路領域の金属層 M 1 をパ夕一ニング (第 1層目 の金属配線 1 7 の形成) するホ ト リ ソグラフィ を施すため、 マス ク枚数の増加なしにメモリセル領域と周辺回路領域の標高差が解 消でき、 メモリセル領域上および周辺回路領域上での微細な配線 パターニングが同時に行える。 つまり、 感光の際に、 メモリセル 領域と周辺回路領域での解像度を同じくすることができ、 何れか 一方の領域で解像不良を起こすというような問題は解消される。 Through the above manufacturing steps, the dynamic RAM IC of the present invention shown in FIG. 1 is completed. According to the present embodiment, the silicon oxide film 15 in the peripheral circuit region was removed using the formation pattern (register) of the upper electrode 14 of the capacitor as a mask, and the silicon oxide film 15 was removed. A metal layer M 1 is embedded in the region. Then, after reducing the elevation difference between the memory cell area and the peripheral circuit area (that is, flattening the main surface of the semiconductor wafer after forming the capacity), the metal layer M 1 in the peripheral circuit area is patterned (the first layer). Since the photolithography is performed, the difference in elevation between the memory cell area and the peripheral circuit area can be eliminated without increasing the number of masks. Fine wiring patterning can be performed simultaneously. That is, at the time of exposure, the resolution can be made the same in the memory cell area and the peripheral circuit area, and the problem of causing poor resolution in one of the areas can be solved.
この結果、 高集積で蓄積容量の大きな、 安定動作可能なダイナ ミ ック R A Mを提供することができる。  As a result, it is possible to provide a highly integrated dynamic RAM having a large storage capacity and capable of stable operation.
なお、 本実施例では、 金属配線 1 9 は周辺回路領域の M I S F Note that, in this embodiment, the metal wiring 19 is the MIS F of the peripheral circuit region.
E Tのソースもしく はドレイ ンに接続された信号線であるが、 一 定の電位を供給するための電源線であってもよい。 It is a signal line connected to the source or drain of ET, but may be a power supply line for supplying a constant potential.
また、 本実施例で用いたシリ コン酸化膜 1 5、 1 8 は、 シリ コ ン酸化膜以外の平坦性のよい絶縁膜であってもよい。 具体的には スピン · オン · ガラス ( S O G ) 膜が考えられる。  Further, the silicon oxide films 15 and 18 used in the present embodiment may be insulating films having good flatness other than the silicon oxide films. Specifically, a spin-on-glass (SOG) film can be considered.
<実施例 2 >  <Example 2>
本実施例は、 実施例 1 のダイナミ ック R A Mにおけるキャパシ 夕への給電方法に関するものであり、 その構成を図 1 5 に示す。 図 1 5 はメモリセルアレー端部における配線電極との接続部の断 面図を示す。 図 1 5において、 キャパシ夕の上部電極 1 4上のシリコン酸化 膜 1 5 、 1 8 には開口部 (コンタク トホール) が設けられ、 金属 配線 1 9が接続されている。 ここで、 上部電極 1 4の下層にはキ ャパシ夕の下部電極 1 2が配置されており、 上部電極 1 4の膜厚 を調整することによって王冠状の下部電極 1 2の隙間に上部電極 1 4が埋め込まれるために、 この部分に開口部を形成しても問題 ない。 The present embodiment relates to a method of supplying power to the capacity in the dynamic RAM of the first embodiment, and the configuration is shown in FIG. Figure 15 shows a cross-sectional view of the connection between the end of the memory cell array and the wiring electrode. In FIG. 15, openings (contact holes) are provided in the silicon oxide films 15 and 18 on the upper electrode 14 of the capacity, and the metal wiring 19 is connected. The lower electrode 12 of the capacitor is disposed below the upper electrode 14, and the upper electrode 1 is placed in the gap between the crown-shaped lower electrode 12 by adjusting the thickness of the upper electrode 14. Since 4 is embedded, there is no problem if an opening is formed in this portion.
本実施例によれば、 キャパシ夕の給電のための開口部をキャパ シ夕の段差の上部に設けることができるため、 開口部のァスぺク ト比を小さくすることができ、 金属配線 1 9 を容易にキャパシ夕 の上部電極 1 4に接続することができる。  According to the present embodiment, since the opening for supplying power to the capacitor can be provided above the step of the capacitor, the aspect ratio of the opening can be reduced, and the metal wiring 1 9 can be easily connected to the upper electrode 14 of the capacitor.
ぐ実施例 3 > Example 3>
本実施例は、 実施例 1 におけるキャパシ夕への給電方法の別の 手段に関するものであり、 その構成を図 1 6 に示す。 図 1 6は、 図 1 と同様に、 メモリセル領域と周辺回路領域の断面図を示す。  This embodiment relates to another means of supplying power to the capacity in the first embodiment, and the configuration is shown in FIG. FIG. 16 is a cross-sectional view of the memory cell region and the peripheral circuit region, similarly to FIG.
図 1 6において、 メモリセル領域におけるキャパシ夕の上部電 極 1 4を被覆するシリコン酸化膜 1 5は、 下部電極 1 2の段差が 高い部分で一部除去されている。 除去する方法としては、 エッチ バックなどの公知の方法を用いることができる。 なお、 キヤパシ 夕の上部電極 1 4は複数のメモリセルのキャパシタに対して共通 プレート電極としてメモリセル領域上のほぼ全域に覆われる。 キャパシ夕の上部電極 1 4が露出した上部には、 キャパシ夕へ の給電用配線となるプレー ト電極 1 6が形成されている。 そして、 メモリセル領域の端部において、 そのプレー ト電極 1 6上のシリ コン酸化膜 1 8には開口部 (コンタク トホール) C Hが形成され ている。 そしてさ らに、 金属配線 1 9 ( V p ) がシリ コン酸化膜 1 8上に形成され、 開口部 C Hを介してキャパシ夕のプレー ト電 極 1 6 に接続されている。 In FIG. 16, the silicon oxide film 15 covering the upper electrode 14 of the capacity in the memory cell region is partially removed at a portion where the step of the lower electrode 12 is high. As a removing method, a known method such as etch back can be used. The upper electrode 14 of the capacitor is used as a common plate electrode for the capacitors of a plurality of memory cells, and is almost entirely covered in the memory cell region. A plate electrode 16 serving as a power supply wiring to the capacitor is formed on the exposed upper electrode 14 of the capacitor. At the end of the memory cell region, an opening (contact hole) CH is formed in the silicon oxide film 18 on the plate electrode 16. ing. Further, a metal wiring 19 (Vp) is formed on the silicon oxide film 18 and is connected to the plate electrode 16 of the capacitor via the opening CH.
本実施例によれば、 図 1 6 に示すように、 キャパシ夕の給電の ための開口部 C Hは、 キャパシ夕の段差の上部に設けることがで きるため、 開口部のアスペク ト比を小さ くすることができる。 こ のため、 金属配線 1 9 ( V p ) を容易にキャパシ夕の上部電極 1 4に接続することができる。  According to the present embodiment, as shown in FIG. 16, the opening CH for feeding the capacity can be provided above the step of the capacity, so that the aspect ratio of the opening is reduced. can do. Therefore, the metal wiring 19 (Vp) can be easily connected to the upper electrode 14 of the capacitor.
ぐ実施例 4 > Example 4>
ここで述べる実施例は、 ダイナミ ック R A Mにおいて、 メモ リセルのデ一夕線に用いた配線電極 7 を周辺回路領域の第 1 層目 の配線層として用いるものである。 本実施例を図 1 7乃至図 3 0 に示した工程断面図を用いて説明する。 なお、 図 1 7乃至 1 9 に 示す工程は、 周辺回路領域に配線電極 7 を形成する以外は実施例 1 の図 3乃至図 5 に示した工程と全く 同様である。  In the embodiment described here, in the dynamic RAM, the wiring electrode 7 used for the memory cell data line is used as the first wiring layer of the peripheral circuit region. This embodiment will be described with reference to the process sectional views shown in FIGS. The steps shown in FIGS. 17 to 19 are exactly the same as the steps shown in FIGS. 3 to 5 of the first embodiment except that the wiring electrode 7 is formed in the peripheral circuit region.
図 1 8 に示す配線電極 Ί を形成した後、 図 1 9 に示すように、 厚さ 2 0 O n m程度のボロンとリ ンを含んだシリ コン酸化膜 8 を C V D法により堆積する。 このシリ コン酸化膜 8 を 8 0 0 °C程度 の温度でァニールを施すことにより表面をなだらかにする。 次い で、 M I S F E Tのソースもしく はド レイ ンとなる高濃度 n型不 純物領域 5上のシリ コン酸化膜 6 、 8 に開口部 3 2 をホ ト リ ソグ ラフィ と ドライエッチングにより形成する。 高濃度 n型不純物 5 と同一導電型の不純物を高濃度に添加した 2 0 0 n m程度の厚さ の多結晶シリ コン膜を L P C V D法により に堆積する。 異方性の ドライエッチングでエッチバックすることにより シリ コンプラグ 9 を形成する。 After the wiring electrodes Ί shown in FIG. 18 are formed, a silicon oxide film 8 containing boron and phosphorus and having a thickness of about 20 O nm is deposited by a CVD method as shown in FIG. The silicon oxide film 8 is annealed at a temperature of about 800 ° C. to smooth the surface. Next, openings 32 are formed in the silicon oxide films 6 and 8 on the high-concentration n-type impurity region 5 serving as the source or drain of the MISFET by photolithography and dry etching. . A polycrystalline silicon film with a thickness of about 200 nm doped with an impurity of the same conductivity type as the high-concentration n-type impurity 5 at a high concentration is deposited by LPCVD. Silicon plug by etching back with anisotropic dry etching Form 9.
図 2 0 に示すように、 厚さ 1 0 O n m程度のシリ コンナイ トラ ィ ド膜 1 0 を L P C V D法により堆積する。 このシリ コンナイ ト ライ ド膜 1 0は実施例 1 で述べた理由と同様の理由によ り形成さ れる。 さ らに、 このシリ コンナイ トライ ド膜 1 0上にシリ コン酸 化膜 2 2 を公知の T E O Sガスを用いた C V D法により堆積する, そして、 ホ ト リ ソグラフィ と ドライエッチングを用いてシリ コ ン酸化膜 2 2、 シリ コンナイ トライ ド膜 1 0及びシリ コン酸化膜 8 を順次エッチングし、 開口部 (コンタク トホール) C Hを形成 した後、 該開口部 C Hに公知の方法により、 金属プラグ 2 3 を形 成する。 金属プラグの材料としては高融点金属材料、 例えばタン グステンが望ましい。  As shown in FIG. 20, a silicon nitride sulfide film 10 having a thickness of about 10 Om is deposited by the LPCVD method. The silicon nitride film 10 is formed for the same reason as described in the first embodiment. Further, a silicon oxide film 22 is deposited on the silicon nitride film 10 by a known CVD method using a TEOS gas, and is then formed by photolithography and dry etching. The oxide film 22, silicon nitride film 10 and silicon oxide film 8 are sequentially etched to form an opening (contact hole) CH, and a metal plug 23 is formed in the opening CH by a known method. Form. As a material of the metal plug, a high melting point metal material, for example, tungsten is desirable.
図 2 1 に示すように、 厚さ 5 0 O n m程度のシリ コンナイ トラ ィ ド膜 2 4 を公知のプラズマ C V D法によ り堆積する。 そして、 ホ ト リ ソグラフィ と ドライエッチングによ りキャパシ夕が形成さ れるべき部分のシリ コンナイ トライ ド膜 2 4およびシリ コン酸化 膜 2 2 を選択エッチングすることにより開口部 2 6 を形成する。  As shown in FIG. 21, a silicon nitride sulfide film 24 having a thickness of about 50 Onm is deposited by a known plasma CVD method. Then, an opening 26 is formed by selectively etching the silicon nitride film 24 and the silicon oxide film 22 at a portion where a capacity is to be formed by photolithography and dry etching.
図 2 2 に示すように、 実施例 1 と同様の方法により、 上記開口 部 2 6内にキャパシ夕の下部電極 1 2 として多結晶シリ コンを残 存させる。  As shown in FIG. 22, a polycrystalline silicon is left in the opening 26 as the lower electrode 12 of the capacitor in the same manner as in the first embodiment.
図 2 3 に示すように、 ドライエッチングにより、 上記シリ コン ナイ トライ ド膜 2 4をエッチングする。 さ らに、 ホ ト リ ソグラフ ィ とゥエツ トエッチングにより、 メモリセル領域のシリ コン酸化 膜 2 1 、 2 2 をエッチングし、 王冠型キャパシ夕の下部電極 1 2 を形成する。 なお、 開口部にキャパシ夕の下部電極 1 2 を残存さ せるためのエッチングマスク としてシリ コン酸化膜 2 1 のほかに, ホ トレジス 卜を用いることもできる。 As shown in FIG. 23, the silicon nitride film 24 is etched by dry etching. Further, the silicon oxide films 21 and 22 in the memory cell region are etched by photolithography and jet etching to form a lower electrode 12 of a crown-shaped capacitor. The lower electrode 12 of the capacitor was left in the opening. In addition to the silicon oxide film 21, a photoresist can be used as an etching mask.
図 2 4に示すように、 キャパシタ誘電体膜 1 3 とキャパシ夕上 部電極 1 4を堆積する。 キャパシタ誘電体膜 1 3 は実施例 1 と同 様に T a 2 0 5より成る。 As shown in FIG. 24, a capacitor dielectric film 13 and a capacitor upper electrode 14 are deposited. Capacitor dielectric film 1 3 consists of T a 2 0 5 in the same manner as in Example 1.
図 2 5 に示すように、 T E O Sによる平坦なシリ コン酸化膜 1 5 を形成する工程は実施例 1 と同様にする。  As shown in FIG. 25, the step of forming a flat silicon oxide film 15 by TEOS is the same as that in the first embodiment.
図 2 6 に示すように、 ホ ト リ ソグラフィ と ドライエッチングに より、 上記シリ コン酸化膜 1 5 とキャパシ夕の上部電極 1 4、 キ ャパシ夕誘電体膜 1 3 をキャパシ夕の上部電極のパターンにエツ チングする。  As shown in Fig. 26, the silicon oxide film 15 and the upper electrode 14 of the capacitor and the dielectric film 13 of the capacitor were patterned by photolithography and dry etching. Etch.
図 2 7 に示すように、 厚さ 7 0 0 n m程度の金属層 M l を公知 のスパッ夕を用いて堆積する。  As shown in FIG. 27, a metal layer Ml having a thickness of about 700 nm is deposited by using a known sputtering device.
図 2 8 に示すように、 シリ コン酸化膜 1 5が除去された周辺回 路領域に金属層 M l を残存させる。 この工程は実施例 1 と同様の 手段が採用される。  As shown in FIG. 28, the metal layer Ml is left in the peripheral circuit region where the silicon oxide film 15 has been removed. This step employs the same means as in the first embodiment.
図 2 9 に示すように、 実施例 1 と同様にして、 金属層 M l をホ ト リ ソグラフィ と ドライエッチングを用いてパタ一ニングするこ とにより、 周辺回路領域の金属配線 1 7 を形成する。  As shown in FIG. 29, the metal wiring 17 in the peripheral circuit region is formed by patterning the metal layer Ml using photolithography and dry etching in the same manner as in the first embodiment. .
図 3 0 に示すように、 層間絶縁膜として厚さ 2 0 0 n m程度の シリ コン酸化膜 1 8 を堆積する。 そして、 周辺回路領域の金属配 線 1 7上のシリ コン酸化膜 1 8 に開口部 (スル一ホール) C Hを 形成した後、 金属配線 1 9 を形成して本実施例のダイナミ ック R A Mが完成する。  As shown in FIG. 30, a silicon oxide film 18 having a thickness of about 200 nm is deposited as an interlayer insulating film. Then, after an opening (through hole) CH is formed in the silicon oxide film 18 on the metal wiring 17 in the peripheral circuit region, a metal wiring 19 is formed, and the dynamic RAM of the present embodiment is formed. Complete.
本実施例によれば、 メモリセル領域内のビッ ト線とパターン形 成された周辺回路領域の第 1 層目の配線電極 7 をローカルな配線 として用いることにより、 周辺回路領域の所要面積を小さ くする ことができる。 According to this embodiment, the bit lines in the memory cell area and the pattern By using the first-layer wiring electrode 7 of the formed peripheral circuit region as a local wiring, the required area of the peripheral circuit region can be reduced.
さらに、 金属プラグ 2 3の深さを浅くすることができるため、 金属プラグ 2 3 の製造を容易にして歩留まり を向上することがで さる。  Further, since the depth of the metal plug 23 can be reduced, the production of the metal plug 23 can be facilitated and the yield can be improved.
<実施例 5 >  <Example 5>
本実施例は、 実施例 1 のダイナミ ック R A Mにおいて、 特にキ ャパシ夕の電極に特徴があり、 その構成を図 3 1 に示す。 図 3 1 は本実施例によるダイナミ ック R A Mのメモリセル領域と周辺回 路領域の断面構造を示す図である。  The present embodiment is characterized in particular by the electrodes of the capacitor in the dynamic RAM of the first embodiment, and the configuration is shown in FIG. FIG. 31 is a diagram showing a cross-sectional structure of a memory cell region and a peripheral circuit region of a dynamic RAM according to the present embodiment.
同図において、 キャパシ夕の下部電極 2 7 は膜厚が 5 0 0 n m の厚い多結晶シリ コンからなる。 このように下部電極 2 7 の膜厚 を厚くすることによって、 下部電極 2 7 のの側壁部分の面積が増 加し、 メモリセル面積を増加しないでキャパシ夕の蓄積容量を増 加させることができる。  In the figure, the lower electrode 27 of the capacitor is made of a thick polycrystalline silicon having a thickness of 500 nm. By increasing the thickness of the lower electrode 27 in this manner, the area of the side wall portion of the lower electrode 27 is increased, and the storage capacity of the capacity can be increased without increasing the memory cell area. .
次に、 本実施例の製造工程を図 3 2乃至図 3 5 を参照して説明 する。 なお、 実施例はキャパシ夕の下部電極 2 7 の構造が異なる だけで、 実施例 1 における図 1 0乃至図 1 4に示した製造工程と 同様である。  Next, the manufacturing process of this embodiment will be described with reference to FIGS. The embodiment is the same as the manufacturing process of the embodiment 1 shown in FIGS. 10 to 14 except that the structure of the lower electrode 27 of the capacitor is different.
まず、 図 3 2 に示すように、 キャパシ夕の下部電極 (蓄積電極) 2 7 を所定の膜厚を有してパターン加工する。 その下部電極 2 7の 上面部および側壁部にキャパシタ誘電体膜 1 3 を被覆する。 続いて, そのキャパシ夕誘電体膜 1 3上にキャパシ夕の上部電極 (プレート 電極) 1 4を形成する。 キャパシ夕の上部電極 1 4 を形成した後、 シリ コン酸化膜 1 5でキャパシ夕の段差を平坦化する。 First, as shown in FIG. 32, the lower electrode (storage electrode) 27 of the capacitor is patterned to have a predetermined film thickness. The upper surface and the side wall of the lower electrode 27 are covered with a capacitor dielectric film 13. Subsequently, an upper electrode (plate electrode) 14 of the capacitor is formed on the dielectric film 13. After forming the upper electrode 14 of the capacitor, The silicon oxide film 15 is used to flatten the steps in the capacity.
図 3 3 に示すように、 周辺回路領域におけるシリ コン酸化膜 1 5がエッチされる。 このエッチング時のマスクパターンはキャパ シタの上部電極のパターンでもある。 そして、 シリ コン酸化膜 1 4がエッチされた周辺回路領域に金属層 M l を埋設する。  As shown in FIG. 33, the silicon oxide film 15 in the peripheral circuit region is etched. The mask pattern at the time of this etching is also the pattern of the upper electrode of the capacitor. Then, a metal layer Ml is buried in the peripheral circuit region where the silicon oxide film 14 has been etched.
図 3 4に示すように、 該金属層 M l をホ ト リ ソグラフィ と ドラ ィエッチングによりパターニングし、 金属配線 1 7 を形成する。  As shown in FIG. 34, the metal layer Ml is patterned by photolithography and dry etching to form a metal wiring 17.
図 3 5 に示すように、 シリ コン酸化膜 1 8 を C V D法により堆 積し、 メモリセル領域と周辺回路領域の段差を緩和させる。  As shown in Figure 35, a silicon oxide film 18 is deposited by the CVD method to reduce the level difference between the memory cell area and the peripheral circuit area.
キャパシ夕の上部電極へのプレー ト電位給電方法は、 図示して いないが、 厚膜の下部電極 2 7上に位置した比較的薄いシリ コン 酸化膜 1 5 の部分に給電のための開口部を形成する、 すなわち、 キャパシタ段差の高い位置に開口部を形成する。 これにより、 開 口部のァスぺク ト比を小さくすることができるため、 開口部形成 を容易にすることができる。  A method of supplying a plate potential to the upper electrode in the capacity is not shown, but an opening for supplying power is formed in the relatively thin silicon oxide film 15 located on the thick lower electrode 27. In other words, an opening is formed at a position where the step of the capacitor is high. This makes it possible to reduce the aspect ratio of the opening, thereby facilitating the formation of the opening.
本実施例によれば、 キャパシ夕の下部電極 2 7 の厚さを増すだ けで、 蓄積容量が増加できる。  According to the present embodiment, the storage capacitance can be increased only by increasing the thickness of the lower electrode 27 in the capacity.
また、 キャパシ夕の下部電極 2 7 の厚さを増すことによ りキヤ パシ夕の高さを高く しても、 メモリセル領域と周辺回路領域の標 高差が大きくならないために、 メモリセル領域や周辺回路領域の 上部に微細な配線電極パターンを形成することが可能になる。 ぐ実施例 6 >  Even if the height of the capacitor electrode is increased by increasing the thickness of the lower electrode 27 of the capacitor, the difference in elevation between the memory cell area and the peripheral circuit area does not increase. And a fine wiring electrode pattern can be formed on the upper part of the peripheral circuit region. Example 6>
本実施例は、 実施例 1 のダイナミ ック R A Mにおいて、 キャパ シ夕の電極の他の実施形態にあり、 その構成を図 3 6 に示す。 図 3 6は本実施例によるダイナミ ック R A Mのメモリセル部と周辺 回路部の断面構造を示す図である。 The present embodiment is another embodiment of the electrode for the capacitance in the dynamic RAM of the first embodiment, and the configuration is shown in FIG. Fig. 36 shows the memory cell part and its surroundings of the dynamic RAM according to the present embodiment. FIG. 3 is a diagram illustrating a cross-sectional structure of a circuit unit.
図 3 6 において、 キャパシ夕の下部電極 2 8 は、 シリ コン酸化 膜 1 5 に形成された開口部に埋め込まれた厚さ 5 0 n mの多結晶 シリ コン膜からなる。 さ らに、 該下部電極 2 8は上記開口部の底 部でシリ コンプラグ 9 に接続されている。  In FIG. 36, the lower electrode 28 of the capacitor is made of a 50 nm-thick polycrystalline silicon film embedded in the opening formed in the silicon oxide film 15. Further, the lower electrode 28 is connected to the silicon plug 9 at the bottom of the opening.
この実施例のように、 シリ コン酸化膜 1 5 の膜厚を厚くするこ とによって、 すなわち開口部の深さを増すことによってキャパシ 夕の蓄積電極の容量を増加させることができる。  As in this embodiment, the capacitance of the storage electrode can be increased by increasing the thickness of the silicon oxide film 15, that is, by increasing the depth of the opening.
本実施例の製造工程を図 3 7乃至図 4 1 を参照して説明する。 図 3 7 において、 まず、 シリ コン基板 1 にフィールド酸化膜 2 を公知の L 0 C 0 S技術によ り選択的に形成する。 そして、 その フィールド酸化膜 2が形成されていない領域 (活性領域と称され る部分) に M I S F E Tを形成する。 次に、 シリ コンプラグ 9 と 金属プラグ 1 1 を形成する。 そして、 シリ コン酸化膜 1 5で M l S F E Tが形成された半導体基板上主面を平坦化する。 すなわち、 メモリセル領域と周辺回路領域との標高差を小さくする。  The manufacturing process of this embodiment will be described with reference to FIGS. 37 to 41. In FIG. 37, first, a field oxide film 2 is selectively formed on a silicon substrate 1 by a known L0C0S technique. Then, MISFET is formed in a region where the field oxide film 2 is not formed (a portion called an active region). Next, a silicon plug 9 and a metal plug 11 are formed. Then, the main surface on the semiconductor substrate on which the Ml SFET is formed with the silicon oxide film 15 is planarized. That is, the altitude difference between the memory cell area and the peripheral circuit area is reduced.
図 3 7 に示すように、 上記シリ コン酸化膜 1 5 のキャパシ夕電 極が形成される位置にホ ト リ ソグラフィ と ドライエッチングによ り開口部 2 9 を形成する。 ここまでの工程は実施例 1 と全く 同様 である。  As shown in FIG. 37, an opening 29 is formed by photolithography and dry etching at a position of the silicon oxide film 15 where the capacity electrode is to be formed. The steps so far are exactly the same as in Example 1.
図 3 8 に示すように、 厚さ 5 0 n mの n型の不純物が高濃度に 添加された多結晶シリ コン膜を堆積し、 そして、 ホ ト レジス トと エッチバックを組み合わせることにより、 上記開口部 2 9 に多結 晶シリ コン膜を残存させ、 キャパシ夕の下部電極 2 8 を形成する。 このキャパシ夕の下部電極 2 8 は開口部 2 9 の底部でシリ コンプ ラグ 9 と接続される。 As shown in Figure 38, a 50-nm-thick polycrystalline silicon film doped with n-type impurities at a high concentration is deposited, and the photoresist and etch-back are combined to form the opening. The polycrystalline silicon film is left in the portion 29 to form the lower electrode 28 of the capacitor. The lower electrode 28 of this capacitor has a silicon capacitor at the bottom of the opening 29. Connected to lug 9.
図 3 9 に示すように、 キャパシ夕誘電体膜 1 3 を堆積し、 その キャパシ夕誘電体膜 1 3上にキャパシ夕の上部電極 1 4 として厚 さ l O O n mのチタンナイ トライ ド膜を堆積する。 そして、 実施 例 1 と同様に、 ホト リ ソグラフィ と ドライエッチングによ りキヤ パシ夕の上部電極のパターンで上記チタンナイ トライ ド膜 1 4 、 キャパシ夕誘電体膜 1 3ならびにシリ コン酸化膜 1 5 をエツチン グする。  As shown in FIG. 39, a capacitor dielectric film 13 is deposited, and a titanium nitride film having a thickness of lOO nm is deposited on the dielectric dielectric film 13 as an upper electrode 14 of the capacitor. . Then, as in the first embodiment, the titanium nitride film 14, the capacitor dielectric film 13, and the silicon oxide film 15 were formed by photolithography and dry etching with the upper electrode pattern of the capacitor. Etching.
図 4 0 に示すように、 実施例 1 と同様にして、 アルミニウムか らなる金属層 M l を周辺回路領域に残す。  As shown in FIG. 40, the metal layer Ml made of aluminum is left in the peripheral circuit region as in the first embodiment.
そして、 図 4 1 に示すように、 金属層 M l をパターニングする ことにより金属配線 1 7 を形成する。  Then, as shown in FIG. 41, a metal wiring 17 is formed by patterning the metal layer Ml.
<実施例 7 > <Example 7>
本実施例は、 実施例 1 のダイナミ ック R A Mにおいて、 キャパ シ夕の電極のさらなる実施形態であり、 」 その構成を図 4 2 に示 す。 図 4 2 は、 本実施例によるダイナミ ック R A Mのメモリセル 部と周辺回路部の断面構造を示す図である。 本実施例によれば、 特にキャパシ夕の下部電極 3 0がフィ ン型であることに特徴があ る。  The present embodiment is a further embodiment of the electrode for the capacitance in the dynamic RAM of the first embodiment. "The configuration is shown in FIG. FIG. 42 is a diagram showing a cross-sectional structure of a memory cell portion and a peripheral circuit portion of the dynamic RAM according to the present embodiment. The present embodiment is characterized in that the lower electrode 30 of the capacitor is of a fin type.
本実施例のように、 キャパシ夕の下部電極 3 0のフィ ンの枚数 を増加させたことによって蓄積容量が増加できる。  As in the present embodiment, the storage capacity can be increased by increasing the number of fins of the lower electrode 30 of the capacity.
また、 フィ ン枚数の増加にともなって、 キャパシ夕の高さが高 くなつてもメモリセル領域と周辺回路領域の標高差が大きくなら ないために、 メモリセル領域や周辺回路領域の上部に微細な配線 電極パターンを形成することが可能になる。 <実施例 8 > Also, with the increase in the number of fins, the height difference between the memory cell area and the peripheral circuit area does not increase even if the height of the capacity increases, so that a fine pattern is formed above the memory cell area and the peripheral circuit area. It is possible to form a simple wiring electrode pattern. <Example 8>
本実施例は、 実施例 1 のダイナミ ック R A Mにおいて、 周辺回 路領域の配線電極の他の実施形態であり、 その構成を図 4 3 に示 す。 図 4 3 は、 本実施例によるダイナミ ック R A Mのメモリセル 領域と周辺回路領域の断面構造を示す図である。  This embodiment is another embodiment of the wiring electrodes in the peripheral circuit region in the dynamic RAM of the first embodiment, and the configuration is shown in FIG. FIG. 43 is a diagram showing a cross-sectional structure of a memory cell region and a peripheral circuit region of the dynamic RAM according to the present embodiment.
同図において、 メモリセル領域には下部電極 1 2 とキャパシ夕 誘電体膜 1 3 、 ならびに上部電極 1 4からなる王冠型のキャパシ 夕が形成されている。 そして、 周辺回路領域の第 1層目の金属配 線 1 7 は、 実施例 1 と同様にシリ コン酸化膜 1 5が除去された領 域に形成されている。 該金属配線 1 7上にはシリ コン酸化膜 3 1 が形成され、 該金属配線 1 7 の高さとメモリセル領域のキャパシ 夕上に堆積されたシリ コン酸化膜 1 5 の高さを調整している。 す なわち、 該金属配線 1 7 とシリ コン酸化膜 3 1 とを合わせた膜厚 (トータル膜厚) とシリ コン酸化膜 1 5 の膜厚とを同等にしてい る。 なお、 本実施例でも、 実施例 1 と同様に、 シリ コン酸化膜 1 5 を除去する深さ (厚さ) は上記トータル膜厚よ り 0 . 3 m深 い程度の範囲内であつてもよい。  In the figure, a crown-shaped capacitor composed of a lower electrode 12, a dielectric film 13, and an upper electrode 14 is formed in the memory cell region. Then, the first-layer metal wiring 17 in the peripheral circuit region is formed in a region where the silicon oxide film 15 is removed as in the first embodiment. A silicon oxide film 31 is formed on the metal wiring 17, and the height of the metal wiring 17 and the height of the silicon oxide film 15 deposited on the capacity of the memory cell region are adjusted. I have. That is, the film thickness (total film thickness) of the metal wiring 17 and the silicon oxide film 31 is equal to the film thickness of the silicon oxide film 15. In this embodiment, as in the first embodiment, even if the depth (thickness) of removing the silicon oxide film 15 is within a range of about 0.3 m deeper than the total film thickness. Good.
本実施例によれば、 金属配線 1 7 の膜厚が薄くてもメモリセル 領域と周辺回路領域の標高差をほぼ等しくすることができる。 そ して、 本実施例のよう に金属配線 1 7 の膜厚を薄くすることによ つて、 ドライエッチングを容易にし、 微細なパターン形成が可能 になる。  According to this embodiment, even if the thickness of the metal wiring 17 is small, the elevation difference between the memory cell region and the peripheral circuit region can be made substantially equal. By reducing the thickness of the metal wiring 17 as in this embodiment, dry etching is facilitated, and a fine pattern can be formed.
<実施例 9 > <Example 9>
本発明におけるダイナミック R A Mチップの平面レイアウ トの一 実施例を図 4 4に示す。 図 4 4において、 4つのメモリセルアレー 部 2 1 6を囲むように周辺回路部 2 1 8が十文字配置されている。 このメモリセルァレ一部 2 1 6内の M I S F E Tは、 nチャネル型 よりなる。 そして、 周辺回路部 2 1 8内は C MO S回路で入出力回 路ゃデコーダ回路およびア ドレス回路を構成している。 このメモ リセルアレー部 2 1 6には周辺回路部 2 1 8をく り貫いた形で層間 絶縁膜 2 1 7 (第 1ないしは第 2の層間絶縁膜) が形成されている ものである。 そしてさらに、 チップ 2 0 1の長手方向中央に位置し た周辺回路部 2 1 8主面上にはボンディングパッ ド B Pが直線的に 設けられている。 FIG. 44 shows an embodiment of the planar layout of the dynamic RAM chip according to the present invention. In Figure 44, four memory cell arrays A peripheral circuit part 218 is arranged in a cross shape so as to surround the part 216. The MISFET in the memory cell part 216 is of an n-channel type. In the peripheral circuit section 218, a CMOS circuit constitutes an input / output circuit / decoder circuit and an address circuit. In the memory cell array section 2 16, an interlayer insulating film 2 17 (first or second interlayer insulating film) is formed so as to penetrate the peripheral circuit section 2 18. Further, a bonding pad BP is linearly provided on the main surface of the peripheral circuit portion 218 located at the longitudinal center of the chip 201.
また、 本発明におけるダイナミック RAMチップの平面レイァゥ トの他の実施例を図 4 5に示す。 図 4 5に示したダイナミック RA Mチップは 1ギガビッ ト以上の大容量の D RAMを構成している。 図 4 5において、 複数のメモリセルァレ一部 2 1 6はチップ外周 の周辺回路部 2 1 8および X 1、 X 2方向および Y l、 Υ 2方向の 周辺回路部 2 1 8で囲まれている。 そして、 この周辺回路部 2 1 8 にはメモリセルアレー部 2 1 6をく り貫いた形で層間絶縁膜 2 1 7 (第 2の層間絶縁膜) が形成されているものである。 このメモリセ ルァレ一部 2 1 6内の M I S F E Tは、 nチャネル型よりなる。 そ して、周辺回路部 2 1 8内は CMO S回路で入出力回路やデコーダ 回路およびアドレス回路を構成している。  FIG. 45 shows another embodiment of the planar layout of the dynamic RAM chip according to the present invention. The dynamic RAM chip shown in Fig. 45 constitutes a large-capacity DRAM of 1 gigabit or more. In FIG. 45, a plurality of memory cell array portions 2 16 are surrounded by a peripheral circuit portion 2 18 on the outer periphery of the chip and a peripheral circuit portion 2 18 in the X1, X2 and Yl, Υ2 directions. The peripheral circuit section 218 has an interlayer insulating film 217 (second interlayer insulating film) formed so as to penetrate the memory cell array section 216. The MISFET in the memory cell part 216 is of an n-channel type. In the peripheral circuit section 218, a CMOS circuit constitutes an input / output circuit, a decoder circuit and an address circuit.
なお、 チップ 2 0 1の長手方向 X 1、 X 2方向に位置した周辺回 路部 2 1 8主面にボンディングパッ ド B Pがー列 ( X 1 または X 2 ) もしくは二列 ( 1ぉょび 2 ) に直線的に設けられている。 さらに本実施例で説明した D R AMチップは、 SOJ (Small Outline J-leaded Package) や SOP (Small Outline Package) 、 TSOP ( Thin-SOP) さらには CSP ( Chip Size Package) などのサ ィズの小さぃパッケージに組み込むことができる。 In addition, the bonding pads BP are arranged in a row (X1 or X2) or two rows (one row) on the peripheral circuit part 218 main surface located in the longitudinal direction X1, X2 direction of the chip 201. 2) is provided linearly. Further, the DRAM chip described in the present embodiment can be used for SOJ (Small Outline J-leaded Package), SOP (Small Outline Package), It can be incorporated into small packages such as TSOP (Thin-SOP) and even CSP (Chip Size Package).
上記の種々の実施例において、 メモリセル領域とは、 例えば、 一 つの転送 M I S F E Tと電荷蓄積容量素子 (キャパシ夕) とを単位 メモリセルとし、 そのメモリセルが一つの半導体チップに規則的に 複数個配置されている領域を言う。 ここでは、 メモリセル領域をメ モリセル群あるいはメモリアレイ部として呼ぶこともできる。 そし て、 このメモリセルアレー部には複数のダミーセルも含む。  In the above various embodiments, the memory cell region is, for example, a single transfer MISFET and a charge storage capacitor (capacitance) as a unit memory cell, and a plurality of memory cells are regularly arranged in one semiconductor chip. It refers to the area where it is located. Here, the memory cell area can be referred to as a memory cell group or a memory array section. The memory cell array also includes a plurality of dummy cells.
一方、 周辺回路領域とは、 上記メモリセル領域 (メモリセルァレ ィ) 周辺に配置された、 例えばアドレレスデコーダ一、 入出力バッ ファ等を構成した部分を言う。  On the other hand, the peripheral circuit region means a portion arranged around the memory cell region (memory cell array), for example, an addressless decoder, an input / output buffer, and the like.
以上述べてきたように、 ダイナミック R A Mセルの様にメモリセ ル内に高さの高い立体構造のキャパシ夕を形成したことによって、 メモリセル領域と周辺回路領域に大きな標高差が生じても、 それぞ れの領域およびそれぞれの領域をまたがる領域に微細な配線を形成 することができる。 このため、 ソフ トエラ一耐性の高い、 高信頼で 高集積な半導体記憶装置を形成することができる。  As described above, even if a large height difference occurs between the memory cell area and the peripheral circuit area due to the formation of a tall three-dimensional structure in the memory cell like a dynamic RAM cell, Fine wiring can be formed in these regions and in a region straddling each region. For this reason, a highly reliable and highly integrated semiconductor memory device having high soft-error tolerance can be formed.
産業上の利用可能性 Industrial applicability
以上説明した実施例では、 本発明をダイナミ ック R A Mに適用し たものである。 しかしながら、 本発明をメモリ とロジックが混在し たオンチップ L S I に適用することによって、 キャパシ夕が形成さ れている高さにロジック部の配線層を形成することができる。  In the embodiment described above, the present invention is applied to a dynamic RAM. However, by applying the present invention to an on-chip LSI in which a memory and a logic are mixed, a wiring layer of a logic part can be formed at a height where a capacity is formed.
さらに、 本発明によれば、 メモリセル領域のキャパシ夕上に形成 する配線層および周辺回路領域上の配線層として、 銅のような低抵 抗の金属材料を用いることにより、 より一層、 高速動作が可能な半 導体記憶装置を提供することもできる Further, according to the present invention, the use of a low-resistance metal material such as copper as the wiring layer formed on the memory cell region and the wiring layer formed on the peripheral circuit region enables a higher-speed operation. Is possible half Conductor storage device can also be provided

Claims

B冃 求 の 範 囲 B 冃 Range of request
1 . 半導体基体主面のメモリセルが形成されるべき領域と周辺回 路が形成されるべき領域に複数の M I S F E Tをそれぞれ形成す る工程と、 1. a step of forming a plurality of MISFETs in a region where a memory cell is to be formed and a region where a peripheral circuit is to be formed on a main surface of a semiconductor substrate;
該 M I S F E T上に第 1 の絶縁膜を堆積する工程と、  Depositing a first insulating film on the MISFET,
該第 1 の絶縁膜上に第 1 の導電膜からなる第 1 の配線電極を形 成する工程と、  Forming a first wiring electrode made of a first conductive film on the first insulating film;
上記第 1 の配線電極上に第 2 の絶縁膜を堆積する工程と、 メモリセル領域の該第 2の絶縁膜上にキャパシ夕を形成するェ 程と、  Depositing a second insulating film on the first wiring electrode, forming a capacity on the second insulating film in the memory cell region,
キャパシ夕が形成されたメモリセル領域、 および周辺回路領域 上に第 3の絶縁膜を堆積し、 該第 3 の絶縁膜の表面をほぼ平坦に する工程と、  Depositing a third insulating film on the memory cell region where the capacity is formed and on the peripheral circuit region, and making the surface of the third insulating film substantially flat;
周辺回路領域上の上記第 3の絶縁膜を選択的に除去する工程と 上記第 3 の絶縁膜が残されたメモリセル領域上、 および上記第 3の絶縁膜が除去された周辺回路領域上に第 2の導電膜を堆積す る工程と、  A step of selectively removing the third insulating film on the peripheral circuit region; a step of selectively removing the third insulating film on the memory cell region where the third insulating film is left; and a step of removing the third insulating film on the peripheral circuit region from which the third insulating film is removed. Depositing a second conductive film;
メモリセル領域上に堆積された上記第 2 の導電膜を除去するェ 程と、  Removing the second conductive film deposited on the memory cell region;
残存した第 2の導電膜をパターニングして第 2 の配線電極を形 成する工程と、  Patterning the remaining second conductive film to form a second wiring electrode;
から成ることを特徴とする半導体記憶装置の製造方法。  A method for manufacturing a semiconductor memory device, comprising:
2 . 上記第 3 の絶縁膜を除去する深さは、 上記第 2の配線電極の 膜厚と同等かもしく は上記第 2 の配線電極の膜厚より 0 . 3 m 深い程度の範囲内であることを特徴とする請求の範囲第 1 項記載 の半導体記憶装置の製造方法。 2. The depth at which the third insulating film is removed may be equal to the thickness of the second wiring electrode or may be 0.3 m greater than the thickness of the second wiring electrode. 3. The method according to claim 1, wherein the depth is within a deep range.
3 . 上記第 3の絶縁膜を除去する工程において、 上記キャパシ夕 の上部電極をエッチングのマスクにしてエッチングすることを特 徴とする請求の範囲第 1項記載の半導体装置の製造方法。  3. The method for manufacturing a semiconductor device according to claim 1, wherein in the step of removing the third insulating film, etching is performed using the upper electrode of the capacitor as an etching mask.
4 . 上記第 2 の配線電極上には、 該配線電極の高さを調整するた めの第 4の絶縁膜が形成されていることを特徴とする請求の範囲 第 1項記載の半導体記憶装置の製造方法。  4. The semiconductor memory device according to claim 1, wherein a fourth insulating film for adjusting a height of the wiring electrode is formed on the second wiring electrode. Manufacturing method.
5 . 上記立体型キャパシ夕の上部電極への給電するためのコン夕 ク トホールは、 下部電極が配されている位置に開口されているこ とを特徴とする請求の範囲第 1項記載の半導体装置の製造方法。 5. The semiconductor according to claim 1, wherein the contact hole for supplying power to the upper electrode of the three-dimensional capacity is opened at a position where the lower electrode is arranged. Device manufacturing method.
6 . 上記第 2 の絶縁膜を除去する深さは, 上記第 2 の配線電極の 膜厚と上記第 4の絶縁膜の膜厚を合わせた膜厚と同等かもしく は 上記第 2 の配線電極の膜厚と上記第 4の絶縁膜の膜厚を合わせた 膜厚より 0 . 3 ΠΙ深い程度の範囲内であることを特徴とする請 求の範囲第 3項記載の半導体記憶装置の製造方法。 6. The depth at which the second insulating film is removed may be equal to the sum of the thickness of the second wiring electrode and the thickness of the fourth insulating film, or may be equal to the thickness of the second wiring electrode. 4. The method for manufacturing a semiconductor memory device according to claim 3, wherein the thickness is within a range of about 0.3% deeper than a total thickness of the fourth insulating film and the thickness of the fourth insulating film. .
7 . 上記第 2の導電膜を除去する工程において、 A 1 2 O 3などの砥 粒と H 2 0 2などの酸化剤を含むスラリーと、 発砲ポリウレタン等か らなる研磨パッ ドを用いた研磨手段を用いることを特徴とする請求 の範囲第 1項記載の半導体記憶装置の製造方法。 7. In the step of removing the second conductive film, using a slurry containing an oxidizing agent, such as abrasive grains and H 2 0 2 such as A 1 2 O 3, the polyurethane foam or the like or Ranaru polishing pad polishing 2. The method for manufacturing a semiconductor memory device according to claim 1, wherein means is used.
8 . 上記、 第 2の導電膜を除去する工程において、 砥粉を樹脂で 結合した砥石を用いた研磨手段を用いることを特徴とする請求の範 囲第 1項記載の半導体記憶装置の製造方法。  8. The method for manufacturing a semiconductor memory device according to claim 1, wherein in the step of removing the second conductive film, polishing means using a grindstone in which abrasive powder is combined with a resin is used.
9 . 半導体基体主面のメモリセルのための第 1領域と周辺回路の ための第 2領域に M I S F E Tをそれぞれ形成する工程、 上記第 1領域の M I S F E T上にビッ ト線を形成する工程、 上記ビッ ト線上に第 1 の絶縁膜を介してキャパシ夕蓄積電極を 形成する工程、 9. forming MISFETs in a first area for memory cells and a second area for peripheral circuits on the main surface of the semiconductor substrate, respectively; Forming a bit line on the MISFET in the first region, forming a capacitance storage electrode on the bit line via a first insulating film,
上記キャパシ夕蓄積電極上にキャパシタ誘電体膜を形成するェ 程、  Forming the capacitor dielectric film on the capacitance storage electrode,
上記キャパシ夕誘電体膜上にキャパシ夕プレー ト電極を形成す る工程、  Forming a capacitor plate electrode on the capacitor dielectric film;
上記第 2領域上および上記キャパシ夕プレー ト電極が形成され た第 1領域上に第 2絶縁膜を堆積する工程、  Depositing a second insulating film on the second region and on the first region where the capacitance plate electrode is formed;
上記第 2領域上の第 2絶縁膜を除去する工程、  Removing the second insulating film on the second region,
上記第 2領域上に所望パターンの第 1金属配線を形成する工程. 上記第 1領域上の第 1絶縁膜および上記第 1 金属配線を覆うよ うに第 3絶縁膜を被覆し、 平坦化処理を施す工程、  Forming a first metal wiring having a desired pattern on the second region. Covering a first insulating film on the first region and a third insulating film so as to cover the first metal wiring; Applying process,
上記第 3絶縁膜上に所望パターンの第 2金属配線を形成するェ 程、  Forming a second metal wiring having a desired pattern on the third insulating film;
とから成ることを特徴とする半導体記憶装置の製造方法。  And a method of manufacturing a semiconductor memory device.
1 0 . 上記キャパシタ蓄積電極は、 王冠型構造にパターン加工し て成ることを特徴とする請求の範囲第 9項記載の半導体記憶装置の 製造方法。  10. The method for manufacturing a semiconductor memory device according to claim 9, wherein said capacitor storage electrode is formed by patterning into a crown-shaped structure.
1 1 . 上記王冠型構造のキャパシ夕蓄積電極は、 楕円型筒状を成し、 該筒内面および外面に上記キャパシ夕誘電体膜を被覆し、 上記キヤ パシタ誘電体膜上にキャパシ夕プレート電極を形成したことを特徴 とする請求の範囲第 1 0項記載の半導体記憶装置の製造方法。  The crown-shaped capacitor storage electrode has an elliptical cylindrical shape, the inner and outer surfaces of which are covered with the above-described capacitor dielectric film, and the capacitor electrode plate is formed on the capacitor dielectric film. 10. The method for manufacturing a semiconductor memory device according to claim 10, wherein:
1 2 . 上記キャパシタ蓄積電極は、 フィ ン型構造にパターン加工し て成ることを特徴とする請求の範囲第 9項記載の半導体記憶装置の 製造方法。 12. The semiconductor memory device according to claim 9, wherein said capacitor storage electrode is formed by patterning into a fin-type structure. Production method.
1 3. 上記キャパシ夕蓄積電極は、 所定の膜厚を有してパターン加 ェされ、 該キャパシ夕蓄積電極の上面部および側壁部に上記キャパ シ夕誘電体膜を被覆し、 上記キャパシ夕誘電体膜上にキャパシ夕プ レート電極を形成したことを特徴とする請求の範囲第 9項記載の半 導体記憶装置の製造方法。  1 3. The above-mentioned capacitance storage electrode is patterned with a predetermined thickness, and the upper surface and the side wall of the capacitance storage electrode are covered with the above-mentioned capacitance dielectric film. 10. The method of manufacturing a semiconductor memory device according to claim 9, wherein a capacitor plate electrode is formed on the body film.
1 4. 半導体基体主面の区画されたメモリセル領域主面上に設けら れたビッ ト線と、 該ビッ ト線上部に位置して蓄積電極、 誘電体膜お よびプレート電極で構成された積層型の複数のキャパシ夕と、 該キ ャパシ夕のプレート電極を覆うように選択的に設けられた第 1絶縁 膜と、 半導体基体主面の区画された周辺回路領域主面上に設けられ た複数の配線電極と、 該第 1絶縁膜および該複数の配線電極を覆う 第 2絶縁膜と、 該第 2絶縁膜上にパターン形成された金属配線とか ら成ることを特徴とする半導体記憶装置。  1 4. A bit line provided on the main surface of the memory cell area defined by the main surface of the semiconductor substrate, and a storage electrode, a dielectric film, and a plate electrode located above the bit line. A plurality of stacked capacitors, a first insulating film selectively provided so as to cover the plate electrodes of the capacitors, and provided on a main surface of a peripheral circuit region defined by the main surface of the semiconductor substrate A semiconductor memory device comprising: a plurality of wiring electrodes; a second insulating film covering the first insulating film and the plurality of wiring electrodes; and a metal wiring patterned on the second insulating film.
1 5. 上記周辺回路領域は pチャネル M I S F E Tおよび nチヤネ ル M I S F E Tからなる CMO S回路が形成されていることを特徴 とする請求の範囲 1 4項記載の半導体記憶装置。  15. The semiconductor memory device according to claim 14, wherein said peripheral circuit region is formed with a CMOS circuit comprising a p-channel MISFET and an n-channel MISFET.
1 6. 上記 pチャネル M I S F E Tの不純物領域と上記 nチャネル M I S F E Tの不純物領域とは、 それぞれの不純物領域に形成され たチタンナイ トライ ドよりなる金属プラグを介して電気的接続され ていることを特徴とする請求の範囲 1 4項記載の半導体記憶装置。 1 6. The impurity region of the p-channel MISFET and the impurity region of the n-channel MISFET are electrically connected via a metal plug made of titanium nitride formed in each impurity region. 15. The semiconductor memory device according to claim 14.
1 7. 上記蓄積電極は、 王冠型構造にパターン加工して成ることを 特徴とする請求の範囲第 1 4項記載の半導体記憶装置。 17. The semiconductor memory device according to claim 14, wherein said storage electrode is formed by patterning into a crown-shaped structure.
1 8. 上記王冠型構造の蓄積電極は、 楕円型筒状を成し、 該筒内面 および外面に上記誘電体膜が被覆され、 上記誘電体膜上に上記プレ ― 卜電極が形成されていることを特徴とする請求の範囲第 1 7項記 載の半導体記憶装置。 1 8. The storage electrode having the crown-shaped structure has an elliptical cylindrical shape, and the dielectric film is coated on the inner surface and the outer surface of the cylinder, and the pre-press is formed on the dielectric film. The semiconductor memory device according to claim 17, wherein a semiconductor electrode is formed.
1 9 . 上記キャパシタ蓄積電極は、 フィ ン型構造にパターン加工さ れて成ることを特徴とする請求の範囲第 1 4項記載の半導体記憶装 置。  19. The semiconductor memory device according to claim 14, wherein said capacitor storage electrode is patterned into a fin-type structure.
2 0 . 上記金属配線は銅よりなる金属材料が用いられていることを 特徴とする請求の範囲第 1 4項記載の半導体記憶装置。  20. The semiconductor memory device according to claim 14, wherein said metal wiring is made of a metal material made of copper.
PCT/JP1996/003735 1996-12-20 1996-12-20 Semiconductor storage device and method for manufacturing the same WO1998028789A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1996/003735 WO1998028789A1 (en) 1996-12-20 1996-12-20 Semiconductor storage device and method for manufacturing the same
TW086110894A TW351853B (en) 1996-12-20 1997-07-30 Method and apparatus for making semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/003735 WO1998028789A1 (en) 1996-12-20 1996-12-20 Semiconductor storage device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO1998028789A1 true WO1998028789A1 (en) 1998-07-02

Family

ID=14154260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003735 WO1998028789A1 (en) 1996-12-20 1996-12-20 Semiconductor storage device and method for manufacturing the same

Country Status (2)

Country Link
TW (1) TW351853B (en)
WO (1) WO1998028789A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9076678B2 (en) 2011-07-14 2015-07-07 Ps4 Luxco S.A.R.L. Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162763A (en) * 1988-12-15 1990-06-22 Fujitsu Ltd Semiconductor device
JPH07142597A (en) * 1993-11-12 1995-06-02 Mitsubishi Electric Corp Semiconductor memory device and manufacture thereof
JPH07508136A (en) * 1992-06-30 1995-09-07 シーメンス アクチエンゲゼルシヤフト Manufacturing method of deep dish capacitor
JPH0855968A (en) * 1994-08-10 1996-02-27 Hitachi Ltd Method of manufacturing semiconductor integrated circuit device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162763A (en) * 1988-12-15 1990-06-22 Fujitsu Ltd Semiconductor device
JPH07508136A (en) * 1992-06-30 1995-09-07 シーメンス アクチエンゲゼルシヤフト Manufacturing method of deep dish capacitor
JPH07142597A (en) * 1993-11-12 1995-06-02 Mitsubishi Electric Corp Semiconductor memory device and manufacture thereof
JPH0855968A (en) * 1994-08-10 1996-02-27 Hitachi Ltd Method of manufacturing semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9076678B2 (en) 2011-07-14 2015-07-07 Ps4 Luxco S.A.R.L. Semiconductor device

Also Published As

Publication number Publication date
TW351853B (en) 1999-02-01

Similar Documents

Publication Publication Date Title
KR100375428B1 (en) Semiconductor storage device and process for manufacturing the same
US8766356B2 (en) Semiconductor devices having bit line insulating capping patterns and multiple conductive patterns thereon
US6710387B2 (en) Semiconductor device and method for fabricating the same
US7087956B2 (en) Semiconductor device and it&#39;s manufacturing method
US8324055B2 (en) Methods of manufacturing buried wiring type substrate and semiconductor device incorporating buried wiring type substrate
US7936012B2 (en) Recessed channel transistors that include pad structures
JPH11186518A (en) Semiconductor integrated circuit device and its manufacture
US9209192B2 (en) Semiconductor device and method of fabricating the same
WO1998028795A1 (en) Semiconductor memory device and method for manufacturing the same
US6661048B2 (en) Semiconductor memory device having self-aligned wiring conductor
JP2001057411A (en) Semiconductor integrated circuit device and manufacture thereof
US6489197B2 (en) Semiconductor memory device and method of fabricating the same
US7141471B2 (en) Method of producing semiconductor integrated circuit device and semiconductor integrated circuit device
JP3752795B2 (en) Manufacturing method of semiconductor memory device
JPH1079478A (en) Dynamic ram device and its manufacture
JPH10144878A (en) Semiconductor integrated circuit device and fabrication thereof
US6683339B2 (en) Semiconductor memory device having metal contact structure
KR100195214B1 (en) Semiconductor device and its fabrication method
JP2004311706A (en) Semiconductor device and its manufacturing method
WO1998028789A1 (en) Semiconductor storage device and method for manufacturing the same
JP3779386B2 (en) Manufacturing method of semiconductor integrated circuit
JP4214162B2 (en) Semiconductor memory device and manufacturing method thereof
JPH0982664A (en) Manufacture of semiconductor device
US20240032287A1 (en) Semiconductor device
JPH11354750A (en) Semiconductor device and its fabrication

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase