WO1998025713A2 - Method of forming and piercing a tube - Google Patents
Method of forming and piercing a tube Download PDFInfo
- Publication number
- WO1998025713A2 WO1998025713A2 PCT/US1997/011952 US9711952W WO9825713A2 WO 1998025713 A2 WO1998025713 A2 WO 1998025713A2 US 9711952 W US9711952 W US 9711952W WO 9825713 A2 WO9825713 A2 WO 9825713A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tube
- change
- state material
- solid
- die
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/033—Deforming tubular bodies
- B21D26/035—Deforming tubular bodies including an additional treatment performed by fluid pressure, e.g. perforating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
- B21D22/025—Stamping using rigid devices or tools for tubular articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/033—Deforming tubular bodies
- B21D26/041—Means for controlling fluid parameters, e.g. pressure or temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/033—Deforming tubular bodies
- B21D26/045—Closing or sealing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D28/00—Shaping by press-cutting; Perforating
- B21D28/24—Perforating, i.e. punching holes
- B21D28/28—Perforating, i.e. punching holes in tubes or other hollow bodies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49805—Shaping by direct application of fluent pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/04—Processes
- Y10T83/0596—Cutting wall of hollow work
Definitions
- the present invention relates to forming and piercing tubular materials, and more particularly to cold forming and piercing tubular materials to produce structural members.
- Tube hydroforming is a known method of cold forming metal tubes to create structural members, for example, for the automotive industry.
- a tube is partially deformed by stamping it in a die. Then, internal hydraulic pressure exceeding the yield strength of the tube wall is applied to force the tube to expand and to conform to the die cavity — much like blowing up a balloon.
- hydroforming methods include U.S. Patents Nos.
- Hydroforming processes offer several advantages over conventional die- stamping processes for cold forming metal tubes. These advantages include reduced variation in the finished pieces, reduced number of steps needed to produce the finished pieces, improved structural integrity of the finished pieces, and eliminated need to join separately pressed parts by welding.
- hydroforming has the disadvantage of requiring expensive and specialized die machinery to handle the extreme pressures to which the tube must be exposed. In particular, hydroforming requires additional machinery external to the die, such as pumps and intensifiers, to boost the internal hydraulic pressure of the tube.
- Patent No. 4,829,803 issued May 16, 1989 to Cudini, entitled “Method of Forming Box- Like Frame Members” discloses a step of hydraulically pressurizing the internal space of a tube prior to closing the die, to allow better control of the deformation of the tube wall during die closure.
- the pressure to which the tube is initially pressurized typically about 300 p.s.i.g., is selected to be less than the yield limit of the tube wall, but high enough so that during die closure (i.e., stamping), as the upper and lower die sections compress the tube, the tube walls are forced evenly toward the corners of the die cavity.
- the hydraulic pressure within the tube causes the tube wall to overcome the frictional forces tending to resist the tube wall's transverse slippage over the surface of the upper and lower die sections.
- the internal pressure is selected so that the tube wall slides over the surface of the die sections and avoids being pinched between the upper and lower die sections as they mate.
- a pressure relief valve is positioned in one end of the tube, set to release the liquid at a pressure below the yield limit of the tube.
- the '803 process requires a final hydroforming step of applying internal pressure to exceed the yield limit of the tube wall, and to expand the tube to conform to the die cavity.
- the '803 process does not escape the disadvantages of the hydroforming process. Rather, the '803 process adds an initial pressurization step to the hydroforming process, thereby slowing the tube forming process and increasing the cost of hydroforming.
- the tube In utilizing the '618 process, if the cross-sectional perimeter of the preformed tube is, in some areas of the tube, less than the cross-sectional perimeter of the die cavity, then the tube must be expanded into the small radiused corners of the die cavity by subsequent hydroforming. However, if the cross-sectional perimeter of the die cavity is approximately equal to the cross-sectional perimeter of the preformed tube, then the tube will conform to the die cavity without subsequent hy ⁇ lroforming if the internal tube pressure prior to die stamping is near, yet less than, the internal burst pressure of the tube. (See Col. 18, Ins. 7-33.) The '618 process has several disadvantages.
- the requirement that the tube be internally pressurized prior to die stamping adds a step that increases the complexity of the tube forming process, and increases the amount of equipment needed to complete the process. Further, subjecting the tube to high pressures prior to stamping requires a step that slows the forming process and therefore increases the cost of tube forming. Also, pressurizing a tube prior to stamping it decreases the safety of the stamping operation.
- a final disadvantage of the '618 process is the limitation that the internal pressure of the tube during the die stamping step remain below the yield strength (i.e. , burst pressure) of the tube wall. This limitation ultimately requires an additional hydroforming step to expand the tube if the cross-sectional perimeter of the die cavity is greater than the preformed tube circumference.
- the express purpose of the tube-bending application is to prevent the distortion of the tube cross-section while bending the tube.
- the use of a liquid metal fill when bending pipe or tubes presents the disadvantageous necessities: cleaning and oiling the tube interior prior to filling the tube with the liquid metal, cleaning the tube interior - frequently by chemical means - after draining the melted metal filling, preventing the metal filling from oxidizing when melting it, and preventing the metal filling from reacting with or sticking to the tube material.
- These additional steps are labor intensive and therefore expensive. Holes are typically made in formed metal sheet by a punch process. To allow a clean pierce and prevent distortion of the metal area surrounding the hole, a "die button" is used to back up the metal sheet while the punch pierces the metal sheet.
- bent tubes it is difficult to provide a back-up during the punch process.
- the geometry of the bent tube may prevent access to the tube interior in order to provide back up.
- back-up of a punch operation is difficult if the formed tube has more than one bend along its axis or if the area to be punched is a substantial distance (e.g. , more than about 12 inches) from the tube end.
- bending a tube having holes can unacceptably distort the holes.
- High-pressure liquid in the interior of a tube can provide support when piercing the tube.
- this method requires additional expense and equipment to boost the internal hydraulic pressure of the tube.
- Baird et al entitled "Reusable Mandrel for Structures Having Zero Draft or Re-Entrant Geometries” issued February 4, 1975.
- a solid-filled tube is die-stamped to cold form the tube to a non-cylindrical shape. More specifically, the process includes the following steps. First, a tube is filled with a liquid change-of-state material having a melting point lower than the melting point of the tube. Second, the liquid change-of-state material is frozen to form a solid-filled tube. Third, the solid-filled tube is sealed. Fourth, the solid-filled tube is stamped in a die to form a stamped member. Finally, the change-of-state material within the stamped member is melted and drained from the formed, stamped member.
- the change-of-state material comprises water.
- a portion of the change-of-state material within the solid-filled tube is released during the stamping step.
- a bulk member is inserted in the tube prior to freezing the change-of-state material within the tube.
- a hole is formed in a tube by punching a solid-filled tube. More specifically, the method requires the following steps: First, a tube is filled with a liquid change-of-state material having a melting point lower than the melting point of the tube. Second, the liquid change-of-state material is frozen to form a solid-filled tube. Third, the solid-filled tube is pierced to create a pierced tube defining a hole. Finally, the change-of-state material is melted and drained from the pierced tube. The pierced solid-filled tube has less deformation surrounding the hole formed by the pierce than a comparative tube pierced without a change-of-state solid filling.
- a tube is punched in an outwardly bulged area to define a hole. More specifically, the method requires the following steps: First, a tube is formed to have an outwardly bulged area. Second, the formed tube is pierced in the outwardly bulged area to define a hole. Simultaneously to the piercing step, the outwardly bulged area is depressed. The outwardly bulged area is substantially flattened. Further, the pierced tube has less deformation surrounding the hole than a comparative tube pierced without having first formed an outwardly bulged area.
- the method further includes compressing the outwardly bulged area subsequent to the simultaneous depressing and piercing steps.
- the present invention eliminates the need to elevate the internal pressure of the tube prior to die stamping the tube. Further, the invention does not require hydroforming; that is, it does not require an additional step of elevating the internal pressure of the tube after die stamping in order to conform the walls of the stamped tube to the walls of the die cavity.
- the method of the present invention permits cold forming a tube with a minimal number of process steps, while retaining the previously discussed advantages of hydroforming, and avoiding the previously discussed disadvantages of a pre-forming pressurization step or a post-stamping hydroforming step. Further, the method of the present invention allows an extremely fast production rate of cold-formed metal tubes. Also, the method of the present invention does not require a specialized die or press— the method can be used with standard mechanical or hydraulic dies or presses that have a sufficient size and tonnage capacity.
- the method of the present invention can use water as a change-of-state fill material, thus avoiding the disadvantages attendant to the use of metallic alloys as change- of-state fill materials, as previously discussed in association with the unrelated field of pipe bending.
- the present invention provides an effective method for piercing a tube to form a hole while minimizing the amount of deformation surrounding the hole. The method can be used to pierce a tube in locations along the tube for which back-up is difficult to provide with conventional punch processes.
- FIG. 1 is a perspective view of a prior art stamping method showing conventional die in an open position
- Fig. 2 is a perspective view of the die of Fig. 1 in a closed position
- Fig. 2a is a cross-sectional view of a prior art method wherein a tube is pierced by a punch to form a hole
- Fig. 3 is a side view of a tube submerged in liquid
- Fig. 4 is a side view of a liquid-filled sealed tube submerged in liquid;
- Fig. 4a is a side, cross-sectional view of the cap and relief valve of Fig. 4;
- Fig. 5 is a perspective view of a liquid-filled sealed tube placed in an open die;
- Fig. 6 is a perspective view of the die of Fig. 5 in a closed position;
- Fig. 7a is a sectional view taken along line VII- VII in Fig. 6 showing a stamped member filled with a solid change-of-state material;
- Fig. 7b is a sectional view taken along line VH-VII in Fig. 6 showing the solid-filled stamped member containing a bulk member;
- Fig. 8 is an end, cross-sectional view of a tube formed from an alternative die cavity configuration, juxtaposed with a cross-sectional view of a preformed tube;
- Fig. 9 is an end, cross- sectional view of a tube formed from another alternative die cavity configuration, juxtaposed with a cross-sectional view of a preformed tube;
- Fig. 10 is a perspective view of an alternative die in the open position showing an alternative die section configuration
- Fig. 11 is a perspective view of a stamped member filled with a solid change- of-state material
- Fig. 12 is a sectional view taken along line X ⁇ -XII of Fig. 11 with the stamped member in the forming press and showing punches;
- Fig. 13 is a sectional view similar to Fig. 12 showing the punches piercing the tube wall;
- Fig. 14 is a perspective view of a pierced, stamped member formed according to the method of the present invention
- Fig. 15 is a cross-sectional view of a tube formed having an outwardly bulged area within a forming press
- Fig. 16 is a cross-sectional view similar to Fig. 15 showing the outwardly bulged area partially pierced and depressed;
- Fig. 17 is a cross- sectional view similar to Fig. 16 showing the outwardly bulged area pierced and flattened.
- Fig. 1 shows a perspective view of a conventional die with lower and upper die sections 2 and 3.
- Tube 4 is placed between lower and upper die sections 2 and 3 prior to stamping or mating of the dies.
- Tube 4 does not contain any liquid or solid in the tube interior 6.
- Fig. 2 shows the configuration of tube 4 once lower and upper die sections 2 and 3 are mated and tube 4 is stamped. Rather than conforming to the die cavity 8 formed by the mating of die sections 2 and 3, the tube wall 10 collapses and fails to conform to the shape of the interior walls 12 of die sections 2.
- a conventional hy ⁇ oforming process is used, in which the pressure within tube interior 6 is increased beyond the yield strength of the material of tube 4, and tube 4 is forced to conform to the die cavity 8.
- Fig. 2a shows tube 4 pierced by a punch 110 to form slug 112 and define hole 114.
- piercing includes lancing, punching, or equivalent methods of creating a hole; and "hole” includes any type of hole created by piercing, such as a pierced- and-extruded hole or a lanced-tab hole.
- the interior 6 of the prior art tube does not contain any solid. Because tube wall 10 is not backed up during the punch process, tube wall 10 deforms in the area 116 surrounding hole 114. This forms an unacceptable, poorly defined, deformed hole 114. ⁇ . Present Invention
- A. Die-Stamping a Solid-Filled Tube In a first embodiment of the present invention a solid-filled tube is die-stamped to cold form the tube to a non-cylindrical shape. The process includes the following steps: First, a tube is filled with a liquid change-of-state material. Second, the liquid change-of- state material is frozen to form a solid-filled tube. Third, the solid-filled tube is sealed. Fourth, the solid-filled tube is stamped in a die to form a stamped member. Finally, the change-of-state material within the stamped member is melted and drained from the formed, stamped member. These steps will be discussed in more detail in the above-listed order. 1.
- a tube is filled with a change-of-state material in liquid state at approximately atmospheric pressure prior to stamping the tube in a die.
- the change-of-state material can be either metallic or non-metallic and either solid or liquid at room temperature.
- the change-of-state material must have a melting point that is lower than the melting point of the tube material.
- the change-of-state material expands slightly to help prevent the formation of voids or air spaces in the interior of the tube as the change-of-state material changes from liquid to solid, as discussed in more detail below.
- a preferred non-metallic change-of-state material is water, because it is inexpensive and readily available. If desired, additives such as lubricants, bactericides, or rust preventatives can be added to the water, as is known in the art.
- Other nonmetallic change- of-state materials include waxes and thermoplastics.
- Suitable metallic change-of-state materials include lead-bismuth alloys such as those manufactured by the Cerro Metal Products Company of Bellefonte, Pennsylvania sold under the trademarks CERRO ALLOYS, CERROBEND, CERROBASE, CERROSAFE, or CERROCAST. These alloys are described in CERRO ALLOY Physical Data* Applications and Bending Thin-Walled Tubing, Moldings and Extruded Shapes published by Cerro Metal Products Company, both of which are incorporated herein by reference.
- Fig. 3 shows a preferred method for filling a tube with a change-of-state material that is normally in the liquid state at room-temperature, such as water.
- Tube 4 has open ends 14 and 16, and a given interior volume (not shown).
- Tube 4 is submerged in a tub or basin 18 containing liquid change-of-state material 20.
- Open end 16 is elevated relative to open end 14, so that as the air that is in the interior volume of the tube exits through elevated open end 16, the interior volume of tube 4 fdls with liquid change-of-state material 20 entering through open end 14.
- the liquid change-of-state material 20 gravity flows gently into tube 4 through open end 16, which is elevated relative to a closed end (not shown). This filling arrangement helps to avoid forming air locks in the interior of the tube.
- a bulk member (shown as 136 in Fig. 7b) can be inserted in the interior of the tube 4 in order to reduce the amount of change-of-state material needed to fill the interior.
- the insertion of bulk member 136 into the interior reduces the amount of change- of-state material required to fill the tube, and thus lowers the amount of liquid that is subsequently frozen.
- Bulk member 136 is made of a flexible material that can be formed to be inserted into tube 4 while withstanding the temperatures and compressive forces during subsequent processing, and which is compatible with change-of-state material 20.
- Bulk member 136 can be made in wire, braid, or cable form.
- bulk member 136 is positioned in the central position of the interior of tube 4.
- the change-of-state material within tube 4 is frozen prior to die stamping. If the change-of-state material 20 within tube 4 is of the type that expands upon freezing, then preferably it will expand outside of tube 4 through the open, uncapped end of the tube 4. In that case, tube 4 is placed in a vertical position while the change-of-state material solidifies.
- the solid change-of-state material that expands outside the open end of the tube 4 can be cut or sheared so that it is flush with the end of tube 4, prior to attachment of cap 22 to form sealed tube 30, as discussed below.
- the change-of-state material is normally a liquid at room temperature
- the liquid-filled tube is placed in a freezer until the liquid freezes.
- the liquid is completely frozen so that no voids or pockets of liquid or air remain.
- the temperature can be lowered to well below the 32 °F freezing point to assure that the liquid is completely frozen, and to allow for some warming during subsequent processing without melting the ice.
- the tube filled with liquid change-of-state material can be quenched by lowering it into a cold- water tank (not shown) to cool the change-of-state material and quicken the freezing process.
- the quenching process may be desirable to impart a fine-grained crystalline structure of high ductility to the change-of-state material, as is known in the art.
- the filled tube can be sealed full of liquid change-of- state material prior to freezing.
- One method of sealing tube 4 which is full of change-of- state material 20 that is normally hquid at room temperature, is by attaching caps 22 and 24 to the ends of tube 4 while the tube remains submerged, thus enclosing hquid change-of-state material 20 within tube 4.
- the caps must be attached to form a seal that can withstand the elevated pressures to which the tube can be subjected later in the process.
- O-ring 24 is positioned within interior groove 23, preferably with some preload stress upon it, as is known in the art. O-ring 24 forms a seal between cap 22 and tube 4 to prevent the change-of-state material 20 within the interior of tube 4 from escaping during subsequent processing.
- o-ring 24 is 3/16 inch in diameter, and is made of a hard rubber, for example 90-durometer nitrile rubber.
- "backups" or nylon washers are used in conjunction with o-ring 24, as is known in the art.
- caps to seal tube 4 is the preferred sealing method
- other methods known in the art for sealing tubes can be used.
- the ends of the tube can be pinched and welded shut.
- die sections can engage the tube ends to seal the tube.
- relief valve 28 is attached to cap 22. After attachment of caps 22 and 24 to tube 4 and closure of relief valve 28, the interior of tube 4 is completely sealed or enclosed to form sealed tube 30, which is full of change-of-state material 20 at approximately atmospheric pressure. 4. Stamping the Solid-Filled Tube
- sealed tube 30 which has an interior volume filled with solid change-of-state material at approximately atmospheric pressure, is shown positioned in lower die section 32 prior to the closure or mating of upper die section 34 with lower die section 32.
- Fig. 5 shows a die that has an upper and a lower die section
- the method of the present invention can be used with a die that contains more than two die sections, for example a die that also contains sidewall die sections, or with die sections that close horizontally rather than vertically.
- Gas springs (not shown) can be built into the die mold along .with cam steels (not shown) to give added control during the cold forming process.
- Fig. 6 shows lower die section 32 and upper die section 34 in a closed or mated position, resulting in the die stamping of the sealed tube to form stamped member 35, which has a given exterior configuration and a given interior volume (not shown).
- the die stamping of the tube that is, the stamping operation, can occur in one stamping step, or may require multiple stamping steps to completely form stamped member 35.
- cap 24 (not shown) and pressure relief valve 28 (and thus indirectly cap 22) are held in place by die sections (not shown), to prevent caps 22 and 24 from moving or sliding off the end of the tube when the pressure within the tube increases during the stamping operation.
- Fig. 7a shows a cross section of the closed die of Fig. 6. Die sections 32 and
- the sealed tube 34 are mated to form die cavity 36, which has a given interior configuration.
- the sealed tube (not shown) has a circumference that is within about 95 to about 105 percent of the circumference of the die cavity 36, more preferably approximately equal to the circumference of the die cavity 36.
- the circumference of the sealed tube (not shown) prior to stamping can be as little as about 70 percent of the circumference of the die cavity 36 (i.e. , the cross-sectional perimeter of the interior of the die cavity 36 formed by the mating of lower die section 32 and upper die section 34).
- Fig. 7b shows an alternative aspect of the present invention in which bulk member 136 is inserted in the interior 36 of tube 4 prior to freezing (solidifying) change-of- state material 20 and stamping it to form stamped tube 35, as previously discussed in Section ⁇ .A.l.
- Fig. 8 shows a cross-sectional view of stamped member 37, which has been stamped in a die cavity having a five-sided polygonal cross- sectioiial shape, juxtaposed with the cross-section of tube 4.
- tube 4 is shown having a cylindrical shape or exterior configuration prior to stamping, typically tubes provided for stamping have a cross-section in the shape of a multi-sided polygon that approaches a circular shape, rather than an actual circular cross-sectional shape.
- Fig. 9 shows a cross-sectional view of stamped member 39, which has been stamped in a die cavity having an alternative five-sided polygonal cross- sectional shape. Stamped member 39 is also shown juxtaposed with a cross-section of tube 4.
- the compressive forces generated as the die closes to form stamped member 35 also act to compress the solid change-of-state material 20 within the interior of the sealed tube as it changes shape. As the solid change-of-state material 20 resists -compression, it forces the tube walls 10 outwardly toward the interior surface of the die cavity 36. Once die sections 32 and 34 have fully closed around the sealed tube, the tube walls 10 substantially conform to the interior walls of the die cavity 36, and the exterior configuration of stamped member 35 substantially conforms to the interior configuration of die cavity 36. "Substantially conforms" in this context means, for example, that the stamped tube basically reflects the shape of the die-cavity mold configuration, preferably with minimal deviation from the die-cavity mold configuration.
- the volume of change-of-state material 20 in excess of the interior volume of the final stamped member 35 is released from the tube interior during the stamping process.
- This release is accomplished by use of pressure relief valve 28, shown in detail in Fig. 4a.
- the pressure relief valve 28 releases change-of-state material from within the sealed tube as the pressure rises above the relief pressure setting during mating of the upper and lower die sections. For example, when the change-of-state material is water, a fine "snow" or crystalline powder of ice is released.
- the relief pressure setting is determined by trial and error; the optimum relief valve setting is the lowest one that allows the tube to expand into the die corners while stamping, so that minimal energy is needed to stamp the tube. For most configurations, the pressure within the tube rises to a pressure that causes the tube walls to exceed their yield strength.
- the pressure relief setting is about 20,000 p.s.i.g.
- pressure relief valve 28 is attached directly to cap 22 by means of bolt 41. When cap 22 is used with pressure relief valve 28, cap 22 is constructed to define outlet port 45 and equalization port 47.
- Relief valve 28 shown in Fig. 4a in the closed position, has ball 49 resting against exit port 45, thus preventing the hquid 38 within tube 4 from passing through exit port 45.
- Positioner 51 holds ball 49 in place against outlet port 45.
- Springs 53 press against the interior of relief valve casing 55 and positioner 51 , to force positioner 51 against ball 49.
- the relief-pressure setting can be varied by adjusting the number and compression of the spring washers. Sixteen spring washers are sufficient for a relief- pressure setting of 20,000 p.s.i.g.
- Relief valve casing 55 defines vent ports 57 and 59.
- the path between equalization port 47 and vent port 59 is blocked by piston 61, as shown in Fig. 4a, and thus piston 61 is in the closed position.
- spring 63 presses against piston 61 to hold piston 61 in the open position (not shown), so that change-of-state material 20 can pass around piston 61 and through vent port 59.
- cap 22 is attached to tube 4 while both are submerged in liquid change-of-state material, then the resistance against cap attachment caused by the compression of the hquid change-of-state material 20 within tube 4 can be eliminated.
- While the present invention works with only one pressure relief valve (i.e., pressure relief valve 28 attached to cap 22), for safety reasons a back-up or reserve pressure relief Valve (not shown), set to release pressure at a higher setting than relief valve 28, may also be used.
- the reserve pressure relief valve may be attached to the cap at the opposite end of the tube (i.e., cap 24), similar to the manner in which relief valve 28 is attached to cap 22.
- Cold forming a non-lubricated tube using the method of the present invention requires that the pressure relief valve be set high enough so that the compression reaches a minimum level within the interior of the tube.
- the exterior of a tube is lubricated to decrease the resistance of the tube walls to conforming to the interior walls of the die cavity.
- the formed tube piece is to be used as a structural component of an automobile, manufacturer specifications usually permit only water-soluble lubricants to be used to lubricate the tube. If the tube is submerged in water as the change-of-state material, any water-soluble lubricants may be dissolved.
- the relief pressure setting should preferably be set to allow the compression within the sealed tube to rise to at least about 20,000 p.s.i.g. Otherwise, without tube lubrication, the walls of the sealed tube may not completely conform to the internal walls of the die cavity.
- Fig. 10 shows an extended aspect of the present invention, in which the cross- sectional area of the die cavity, formed when upper die section 42 and lower die section 44 mate, varies along the length of the die cavity.
- the circumferential expansion of sealed tube 30 may be as high as about 30 to 40 percent of its original circumference, depending upon the wall thickness and material strength of tube 30.
- the volume of change-of-state material that exceeds the interior volume of the final stamped member can be released from the interior of the tube during the stamping process through the use of pressure relief valve 28.
- stamp member 35 which has a non-cylindrical (e.g., polygonal cross-sectional) shape
- the die is opened to release the stamped member 35.
- the caps 22 and 24 are removed.
- Change-of-state material 20 is melted and drained from the stamped tube 35. If the change-of-state material is normally a hquid at room temperamre, such as water, then the change-of-state material will melt as it seeks equilibrium with ambient conditions. If the change-of-state material is normally a solid a room temperature, then it can be heated to melt and drain. This can be accomplished, for example, by immersing the stamped tube containing the solid change-of-state material in a hot water tank.
- the resulting melted hquid can be recovered and subsequently recycled for use filling subsequent tubes prior to freezing in order to provide an energy-efficient mode of operation.
- the stamped member 35 is to have holes punched, then the solid change-of-state material can be retained within stamped member 35 during this subsequent processing, as described below.
- a hole is formed in a tube by die punching a solid-filled tube.
- the method requires the following steps: First, a tube is filled with a hquid change-of-state material, which is frozen to form a solid-filled tube.
- the solid-filled tube is pierced.
- the change-of-state material is melted and drained from the pierced tube.
- a tube is filled with a liquid change-of-state material, which is subsequently sohdified as previously described in Sections JH.A.1&2.
- the tube can be stamped to form stamped tube 120, as previously described.
- the caps have been removed from the ends of the stamped tube 120, the solid change-of-state material 20 has not been melted or drained.
- Fig. 12 shows a cross-section of the solid-filled, stamped member 120 prior to having holes formed in wall 10.
- the holes are pierced in the solid-filled, stamped tube 120 using conventional punch machinery. For example, if a lanced-tab hole is to be formed, then a punch having the configuration of punch 122 is used. If a pierced-and- extruded hole is to be formed, then a punch having the configuration of punch 124 is used.
- a punch having the configuration of punch 126 is used.
- Punches and their configurations are known in the art. Referring to Fig. 13, punches 122, 124, and 126 pierce wall 10 of stamped member 120 to create holes 128. As these punches pierce wall 10, the solid change-of-state material 20 supports or "backs-up" wall 10. Therefore, while wall 10 can have some deformation in the area 130 surrounding wall 128, the amount of deformation is less than the amount of deformation in a comparable tube that is not solid-filled prior to piercing. As an illustration, the deformation in area 130 surrounding hole 128 of pierced solid-filled member 120 is less than the deformation in area 116 (Fig.
- pierce-and-extrude punch 124 is designed to create a fixed amount of deformation or "draw" surrounding the hole, as is known in the art.
- this pierce-and-extrude hole follows the design of the punch much more readily when made in a tube having a solid- filling according to the present invention.
- hole 128 is to be formed near the end of tube 120, there is no need to seal the ends of the tube, because the solid change-of-state material 20 within the tube 120 will perform a back-up or "mandril" function without being pushed out the end of the tube.
- the hole 128 is to be formed near the end of a tube or stamped member 120, then preferably the end of the solid-filled tube is sealed by caps 22 or 24 or otherwise sealed, for example by supporting blocks 132 and 134.
- a tube is punched in an outwardly bulged area to define a hole.
- the method requires the following steps: First, a tube is formed to have an outwardly bulged area. Second, the formed tube is pierced in the outwardly bulged area to define a hole. Simultaneously to the piercing step, the outwardly bulged area is depressed. The outwardly bulged area in the resulting pierced tube is substantially flattened.
- tube 140 has an outwardly bulged area 142 made up of wall portion 143.
- Wall portion 143 only extends throughout — that is, corresponds to — outwardly bulged area 142.
- Tube 140 can be formed to have outwardly bulged area 142 using the forming methods previously described or other methods known in the art. The extent to which outwardly bulged area 142 protrudes from tube 140 is determined by trial and error, and depends on factors such as the type and thickness of tube material to be punched, the configuration of the tube and hole, and the type and size of the punch.
- outwardly bulged area 142 has a diameter about 3 times the diameter of the pierced hole and extends outwardly at its peak about 75 percent of the distance that a bulge inwardly extends if the tube is pierced without having an outwardly bulged area.
- Tube 140 is held in place by supporting blocks 132 and 134.
- Outwardly bulged area 142 is centered beneath punch 144, which has cutting portion 150 and flat portion 152. 2. Piercing the Outwardly Bulged Area
- the cutting portion 150 of punch 144 descends to contact outwardly bulged area 142.
- cutting portion 150 simultaneously depresses wall portion 143 of outwardly bulged area 142, forcing wall portion 143 toward the interior 154 of tube 140.
- Cutting portion 150 continues to descend to simultaneously depress and pierce wall portion 143, until cutting portion 150 substantially flattens outwardly bulged area 142 and creates hole 148.
- substantially flattens can include curved-wall configurations, for example, by comparing the amount of inward or outward bulge surrounding hole 148 relative to the curvature of the area immediately surrounding the formerly outwardly bulged area.
- Supporting blocks 132 and 134 support wall 10 in its pre-pierced configuration in areas other than wall portion 143.
- pierced tube 146 defines hole 148 created by cutting portion 150 of punch 144.
- the area 156 surrounding hole 148 has less deformation than a comparable tube pierced without having first formed outwardly bulged area 142 (Fig. 15).
- compare pierced tube 146 of Fig. 17 formed according to the present invention - with tube 4 of Fig. 2a, which was pierced without first having formed an outwardly bulged area.
- a compressing step subsequent to the simultaneous piercing and depressing steps — substantially flattens the outwardly bulged area.
- punch 144 after the cutting portion 150 of punch 144 has pierced tube wall 143, punch 144 extends to the bottom of its stroke to contact flat portion 152 of punch 144 with area 156 surrounding hole 148. This contact further compresses tube wall
- the outwardly bulged area 142 of tube 140 can be pierced and depressed while filled with hquid or solid, as previously described. Preferably, however, tube 140 is simultaneously pierced and depressed while "empty” — that is, outwardly bulged area 142 of tube 140 is pierced and depressed without a liquid or solid filling. This provides the advantage of creating pierced tube 146 without the additional steps and expense of filling and/or sealing the tube to contain a hquid or solid.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Punching Or Piercing (AREA)
- Making Paper Articles (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA 2274470 CA2274470C (en) | 1996-12-11 | 1997-07-09 | Method of forming and piercing a tube |
JP52662098A JP3382955B2 (en) | 1996-12-11 | 1997-07-09 | Tube forming and perforating method |
DE69708913T DE69708913T2 (en) | 1996-12-11 | 1997-07-09 | METHOD FOR SHAPING AND PUNCHING A PIPE |
EP19970934900 EP0944446B1 (en) | 1996-12-11 | 1997-07-09 | Method of forming and piercing a tube |
AT97934900T ATE209979T1 (en) | 1996-12-11 | 1997-07-09 | METHOD FOR SHAPING AND PUNCHING A TUBE |
AU37958/97A AU3795897A (en) | 1996-12-11 | 1997-07-09 | Method of forming and piercing a tube |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/763,826 | 1996-12-11 | ||
US08/763,826 US5813266A (en) | 1995-10-31 | 1996-12-11 | Method of forming and piercing a tube |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1998025713A2 true WO1998025713A2 (en) | 1998-06-18 |
WO1998025713A3 WO1998025713A3 (en) | 1998-07-23 |
Family
ID=25068919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1997/011952 WO1998025713A2 (en) | 1996-12-11 | 1997-07-09 | Method of forming and piercing a tube |
Country Status (8)
Country | Link |
---|---|
US (2) | US5813266A (en) |
EP (1) | EP0944446B1 (en) |
JP (1) | JP3382955B2 (en) |
AT (1) | ATE209979T1 (en) |
AU (1) | AU3795897A (en) |
CA (1) | CA2274470C (en) |
DE (1) | DE69708913T2 (en) |
WO (1) | WO1998025713A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6698939B2 (en) * | 1998-09-10 | 2004-03-02 | Mold Research Institute Co., Ltd. | Method for processing an insert pipe for use in injection molding |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19719426B4 (en) * | 1997-05-12 | 2005-06-16 | Dr. Meleghy Hydroforming Gmbh & Co. Kg | Method and device for producing a hollow body |
US5884516A (en) * | 1998-01-28 | 1999-03-23 | Tseng; Shao-Chien | Three dimensional cold forging method for shaping a hollow article and the apparatus for the method |
US6769178B1 (en) * | 1998-02-18 | 2004-08-03 | Dana Corporation | Method of manufacturing a vehicle frame assembly including hydroformed side rails having integrally formed mounting areas |
US6098437A (en) * | 1998-03-20 | 2000-08-08 | The Budd Company | Hydroformed control arm |
DE19813012C2 (en) * | 1998-03-25 | 2002-08-01 | Daimler Chrysler Ag | Process for producing a hollow body from a tubular blank by hydroforming |
US6032501A (en) * | 1999-02-09 | 2000-03-07 | The Budd Company | Method of hydroforming multi-lateral members from round tubes |
DE10014619B4 (en) * | 1999-03-26 | 2007-07-05 | Nissan Motor Co., Ltd., Yokohama | A method and apparatus for forming a tubular workpiece into a shaped hollow product using tube hydroforming |
US6209372B1 (en) | 1999-09-20 | 2001-04-03 | The Budd Company | Internal hydroformed reinforcements |
US6257035B1 (en) * | 1999-12-15 | 2001-07-10 | Ti Corporate Services Limited | Compressive hydroforming |
DE10004159C2 (en) * | 2000-02-01 | 2001-12-06 | Bosch Gmbh Robert | Nozzle assembly for gas burners |
JP2001246430A (en) * | 2000-03-02 | 2001-09-11 | Somic Ishikawa Inc | Holed cylindrical body and its working method |
US6279365B1 (en) * | 2000-06-12 | 2001-08-28 | Shao-Chien Tseng | Cold forging forming method for three-dimensional hollow article |
US6305204B1 (en) | 2000-07-13 | 2001-10-23 | The Boeing Company | Bulge forming machine |
DE10065033C1 (en) * | 2000-12-23 | 2002-07-11 | Daimler Chrysler Ag | Method for producing a circumferentially closed hollow profile and a device for carrying it out |
US6305201B1 (en) * | 2001-04-09 | 2001-10-23 | General Motors Corporation | Method and apparatus for forming unobstructed holes in hollow hydroformed metal parts |
US6912884B2 (en) * | 2001-06-25 | 2005-07-05 | Mohamed T. Gharib | Hydroforming process and apparatus for the same |
US6701764B2 (en) * | 2001-09-27 | 2004-03-09 | Siemens Westinghouse Power Corporation | Method of expanding an intermediate portion of a tube using an outward radial force |
US6591648B1 (en) | 2002-06-24 | 2003-07-15 | Greenville Tool & Die Company | Method of stamping and piercing a tube |
US6658908B1 (en) * | 2002-08-20 | 2003-12-09 | General Motors Corporation | Punch for piercing and sealing hydroformed parts |
CA2505095C (en) * | 2002-11-12 | 2012-09-11 | Magna International Inc. | Method of forming hydroformed member with opening |
NL1021932C2 (en) * | 2002-11-15 | 2004-06-11 | Corus Technology B V | Method for forming a separator plate for a fuel cell, and separator plate. |
DE10350151B4 (en) * | 2003-10-28 | 2005-10-13 | Daimlerchrysler Ag | Tool and hydroforming of a hollow profile and method for forming a hollow profile |
SE526316C2 (en) * | 2003-12-09 | 2005-08-23 | Nexplo Bofors Ab | Method and apparatus for producing driver knots for high-charge and high-progressive charges |
DE10359834B3 (en) * | 2003-12-19 | 2004-09-16 | Daimlerchrysler Ag | Device for removing a hollow profile molded in a high pressure deformation process has sealing elements arranged on an inner wall |
US7178240B2 (en) * | 2004-12-17 | 2007-02-20 | Chan Shen Lo | Method for molding bicycle tube |
US8459077B2 (en) * | 2005-02-15 | 2013-06-11 | Nsk Ltd. | Manufacturing method for metal member with through hole |
US7780745B2 (en) * | 2005-10-10 | 2010-08-24 | Silverman Martin S | Conformal lithium polymer battery |
US20080060199A1 (en) * | 2006-07-25 | 2008-03-13 | Christopher Alfred Fuller | Method of manufacturing a manifold |
US7204113B1 (en) * | 2006-09-29 | 2007-04-17 | Gm Global Technology Operations, Inc. | Punch for hydroforming die |
JP5339774B2 (en) * | 2008-05-20 | 2013-11-13 | 日本発條株式会社 | Frame structure of vehicle seat back and vehicle seat back having the structure |
US8631671B2 (en) * | 2011-04-14 | 2014-01-21 | GM Global Technology Operations LLC | Internal mandrel and method |
JP2014069207A (en) * | 2012-09-28 | 2014-04-21 | Mitsubishi Heavy Ind Ltd | Apparatus and method for expanding pipe diameter |
WO2014092910A1 (en) * | 2012-12-12 | 2014-06-19 | Edwards Lifesciences Corporation | Vascular access system and method |
PL3127785T3 (en) * | 2014-04-01 | 2019-09-30 | Shenzhen Zhilun Driving Technology for Electric Vehicle Co., Ltd. | Electric vehicle frame system |
US9822908B2 (en) * | 2015-12-10 | 2017-11-21 | Ford Global Technologies, Llc | Hydroform tube and method of forming |
DE102017205850A1 (en) * | 2017-04-06 | 2018-10-11 | Bayerische Motoren Werke Aktiengesellschaft | forming tool |
DE102018213189A1 (en) * | 2018-08-07 | 2020-02-13 | Carl Zeiss Smt Gmbh | Process for bending hydroformed cooling devices and curved, hydroformed cooling devices |
US10888932B1 (en) | 2019-06-18 | 2021-01-12 | Honeywell Federal Manufacturing & Technologies, Llc | Assembly and method for microdrilling a tube |
NO20230374A1 (en) * | 2023-04-03 | 2024-10-04 | Norsk Hydro As | Method and apparatus for calibrating a metal profile blank |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1693011A (en) * | 1925-09-28 | 1928-11-27 | Mcevoy Wireless Well Strainer | Method of perforating casings |
GB838550A (en) * | 1957-04-04 | 1960-06-22 | Armstrong Siddeley Motors Ltd | Method of making tubes of truncated-wedge-cross-section |
US3546917A (en) * | 1968-09-30 | 1970-12-15 | T O Paine | Technique of elbow bending small jacketed transfer lines |
JPS57142724A (en) * | 1981-02-26 | 1982-09-03 | Hashimoto Forming Co Ltd | Formation for metallic pipe |
JPS6064733A (en) * | 1983-09-20 | 1985-04-13 | Suzuki Motor Co Ltd | Bending method of pipe |
US4829803A (en) * | 1987-05-06 | 1989-05-16 | Ti Corporate Services Limited | Method of forming box-like frame members |
WO1994020234A1 (en) * | 1993-03-03 | 1994-09-15 | Lotus Cars Limited | Method of forming tubular members |
EP0758565A1 (en) * | 1995-08-16 | 1997-02-19 | Schäfer Hydroforming GmbH & Co. | Process and apparatus for realising perforations through double walls of structural members by the internal pressure forming method and a herewith manufactured transversal oscillating lever |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US203842A (en) * | 1878-05-21 | Improvement in the methods of bending plumbers traps | ||
US567518A (en) * | 1896-09-08 | simmons | ||
US3105537A (en) * | 1960-12-08 | 1963-10-01 | Crutcher Rolfs Cummings Inc | Bending pipe |
US3739615A (en) * | 1971-06-01 | 1973-06-19 | R Tressel | Method of making wrinkle-free thin-walled coiled tubing |
US3864150A (en) * | 1971-06-24 | 1975-02-04 | Union Carbide Corp | Reusable mandrel for structures having zero draft or re-entrant geometries |
US4564226A (en) * | 1981-11-02 | 1986-01-14 | Explosive Research Ltd. | System and method for increasing wall thickness on end of pipe on which thread is to be fabricated |
BE892976A (en) * | 1982-04-27 | 1982-10-27 | Herstal Sa | Working thin walled tubular metal profiles - using low m.pt. metal or alloy filler to prevent faults |
US4754535A (en) * | 1986-05-02 | 1988-07-05 | Tizzi Valtiero | Method and machine for the embellishment of precoined metal strip, utilizing continuous stock or discrete lengths |
US4744237A (en) * | 1987-05-06 | 1988-05-17 | Ti Automotive Division Of Ti Canada Inc. | Method of forming box-like frame members |
US5353618A (en) * | 1989-08-24 | 1994-10-11 | Armco Steel Company, L.P. | Apparatus and method for forming a tubular frame member |
US5481892A (en) * | 1989-08-24 | 1996-01-09 | Roper; Ralph E. | Apparatus and method for forming a tubular member |
US4989482A (en) * | 1989-11-17 | 1991-02-05 | Ti Corporate Services Limited | Method and apparatus for punching a hole in sheet material |
US5070717A (en) * | 1991-01-22 | 1991-12-10 | General Motors Corporation | Method of forming a tubular member with flange |
US5333775A (en) * | 1993-04-16 | 1994-08-02 | General Motors Corporation | Hydroforming of compound tubes |
US5339667A (en) * | 1993-04-19 | 1994-08-23 | General Motors Corporation | Method for pinch free tube forming |
US5363544A (en) * | 1993-05-20 | 1994-11-15 | Benteler Industries, Inc. | Multi-stage dual wall hydroforming |
DE4322063C2 (en) * | 1993-07-02 | 1999-07-15 | Schaefer Hydroforming Gmbh | Method and device for cutting out a section of a wall of a hollow body produced by the hydroforming process |
US5415021A (en) * | 1993-10-29 | 1995-05-16 | Folmer; Carroll W. | Apparatus for high pressure hydraulic forming of sheet metal blanks, flat patterns, and piping |
US5471857A (en) * | 1994-03-07 | 1995-12-05 | Mascotech Tubular Products, Inc. | Process for hydroforming a vehicle manifold |
US5431326A (en) * | 1994-09-07 | 1995-07-11 | General Motors Corporation | Method of forming a tubular member with separate flange |
DE19504120A1 (en) * | 1995-02-08 | 1996-08-14 | Buerkert Werke Gmbh & Co | Method of manufacturing a valve housing |
DE19532860A1 (en) * | 1995-09-06 | 1997-03-13 | Behr Gmbh & Co | Method and tool for producing a one-piece manifold |
US5630334A (en) * | 1995-10-31 | 1997-05-20 | Greenville Tool & Die Company | Liquid impact tool forming mold |
US5557961A (en) * | 1995-11-13 | 1996-09-24 | General Motors Corporation | Hydroformed structural member with varied wall thickness |
US5666840A (en) * | 1996-06-13 | 1997-09-16 | General Motors Corporation | Method for piercing two aligned holes in a hydroformed tube |
US5816089A (en) * | 1996-11-26 | 1998-10-06 | Dana Corporation | Hydroforming apparatus having in-die hole piercing capabilities and a slug ejection system using hydroforming fluid |
-
1996
- 1996-12-11 US US08/763,826 patent/US5813266A/en not_active Expired - Fee Related
-
1997
- 1997-07-09 EP EP19970934900 patent/EP0944446B1/en not_active Expired - Lifetime
- 1997-07-09 AT AT97934900T patent/ATE209979T1/en not_active IP Right Cessation
- 1997-07-09 CA CA 2274470 patent/CA2274470C/en not_active Expired - Fee Related
- 1997-07-09 JP JP52662098A patent/JP3382955B2/en not_active Expired - Fee Related
- 1997-07-09 DE DE69708913T patent/DE69708913T2/en not_active Expired - Fee Related
- 1997-07-09 AU AU37958/97A patent/AU3795897A/en not_active Abandoned
- 1997-07-09 WO PCT/US1997/011952 patent/WO1998025713A2/en active IP Right Grant
-
1998
- 1998-07-20 US US09/119,508 patent/US5974846A/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1693011A (en) * | 1925-09-28 | 1928-11-27 | Mcevoy Wireless Well Strainer | Method of perforating casings |
GB838550A (en) * | 1957-04-04 | 1960-06-22 | Armstrong Siddeley Motors Ltd | Method of making tubes of truncated-wedge-cross-section |
US3546917A (en) * | 1968-09-30 | 1970-12-15 | T O Paine | Technique of elbow bending small jacketed transfer lines |
JPS57142724A (en) * | 1981-02-26 | 1982-09-03 | Hashimoto Forming Co Ltd | Formation for metallic pipe |
JPS6064733A (en) * | 1983-09-20 | 1985-04-13 | Suzuki Motor Co Ltd | Bending method of pipe |
US4829803A (en) * | 1987-05-06 | 1989-05-16 | Ti Corporate Services Limited | Method of forming box-like frame members |
WO1994020234A1 (en) * | 1993-03-03 | 1994-09-15 | Lotus Cars Limited | Method of forming tubular members |
EP0758565A1 (en) * | 1995-08-16 | 1997-02-19 | Schäfer Hydroforming GmbH & Co. | Process and apparatus for realising perforations through double walls of structural members by the internal pressure forming method and a herewith manufactured transversal oscillating lever |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6698939B2 (en) * | 1998-09-10 | 2004-03-02 | Mold Research Institute Co., Ltd. | Method for processing an insert pipe for use in injection molding |
Also Published As
Publication number | Publication date |
---|---|
CA2274470A1 (en) | 1998-06-18 |
US5974846A (en) | 1999-11-02 |
EP0944446A2 (en) | 1999-09-29 |
DE69708913D1 (en) | 2002-01-17 |
US5813266A (en) | 1998-09-29 |
WO1998025713A3 (en) | 1998-07-23 |
JP2000505730A (en) | 2000-05-16 |
JP3382955B2 (en) | 2003-03-04 |
DE69708913T2 (en) | 2002-06-13 |
EP0944446B1 (en) | 2001-12-05 |
CA2274470C (en) | 2002-09-10 |
AU3795897A (en) | 1998-07-03 |
ATE209979T1 (en) | 2001-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5974846A (en) | Method of forming and piercing a tube | |
US5481892A (en) | Apparatus and method for forming a tubular member | |
CA2452168C (en) | Method of stamping and piercing a tube | |
JP4477227B2 (en) | Method and apparatus for hydraulic forming without bending of bent tubular part | |
US5070717A (en) | Method of forming a tubular member with flange | |
JP4846949B2 (en) | Compression hydroforming | |
JPH06292929A (en) | Device and method for forming tubular frame member and for hydraulic punching thereof | |
JP2002523239A (en) | Method of manufacturing tubular member | |
EP1274523B1 (en) | Hydroforming flush system | |
EP1210189A1 (en) | Reinforced hydroformed members and methods of making the same | |
US5630334A (en) | Liquid impact tool forming mold | |
KR20020086547A (en) | Tubular assembly having hydroformed interconnecting member and method for making same | |
WO2000000309A1 (en) | Device and method for expansion forming | |
CN100475376C (en) | Method for forming pipe fitting | |
US7096700B2 (en) | Method for performing a hydroforming operation | |
KR100899740B1 (en) | Hydroformed part, hydroforming method, and mold used for the hydroforming method | |
JP4713182B2 (en) | Hydropiercing method, apparatus used therefor, and hydropiercing processed product | |
JP2004074281A (en) | Closed forging method, closed forging device and forged product | |
JPS6340610B2 (en) | ||
JP2002282955A (en) | Method and device for tubular expansion forming of tubular body end part | |
EP1162014B1 (en) | Pressure controlled fluid pressure extrusion method | |
WO1994020234A1 (en) | Method of forming tubular members | |
US6164108A (en) | Hydro compression tube forming die apparatus and method for making the same | |
WO2007045098A1 (en) | Multipart punch for hydro piercing | |
EP0700323B1 (en) | Radial extrusion process combined with inside tube ironing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2274470 Country of ref document: CA Ref country code: CA Ref document number: 2274470 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997934900 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1997934900 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 1997934900 Country of ref document: EP |