US3864150A - Reusable mandrel for structures having zero draft or re-entrant geometries - Google Patents

Reusable mandrel for structures having zero draft or re-entrant geometries Download PDF

Info

Publication number
US3864150A
US3864150A US30149572A US3864150A US 3864150 A US3864150 A US 3864150A US 30149572 A US30149572 A US 30149572A US 3864150 A US3864150 A US 3864150A
Authority
US
United States
Prior art keywords
mandrel
alloy
deposited
layer
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Robert J Baird
Jr Thomas G Everett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair ST Technology Inc
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Priority to US30149572 priority Critical patent/US3864150A/en
Application granted granted Critical
Publication of US3864150A publication Critical patent/US3864150A/en
Assigned to MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MORGAN BANK ( DELAWARE ) AS COLLATERAL ( AGENTS ) SEE RECORD FOR THE REMAINING ASSIGNEES. reassignment MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MORGAN BANK ( DELAWARE ) AS COLLATERAL ( AGENTS ) SEE RECORD FOR THE REMAINING ASSIGNEES. MORTGAGE (SEE DOCUMENT FOR DETAILS). Assignors: STP CORPORATION, A CORP. OF DE.,, UNION CARBIDE AGRICULTURAL PRODUCTS CO., INC., A CORP. OF PA.,, UNION CARBIDE CORPORATION, A CORP.,, UNION CARBIDE EUROPE S.A., A SWISS CORP.
Assigned to UNION CARBIDE CORPORATION, reassignment UNION CARBIDE CORPORATION, RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN BANK (DELAWARE) AS COLLATERAL AGENT
Assigned to UNION CARBIDE COATINGS SERVICE TECHNOLOGY CORPORATION reassignment UNION CARBIDE COATINGS SERVICE TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: UNION CARBIDE COATINGS SERVICE CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/101Permanent cores
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • C23C4/185Separation of the coating from the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]

Definitions

  • ABSTRACT A mandrel, and process therefor, consisting of a high melting temperature base material, such as aluminum, having an undercoating of a low melting temperature metallic alloy and an overcoating of a polyimide material.
  • the undercoated metallic alloy is removed at an elevated temperature thereby facilitating the removal of the base mandrel 7 Claims, 1 Drawing Figure se NREL POLYIMIDE oura LAYE PAIENIED 71.864. 150
  • the mandrel consists essentially of a high-melting-point base mandrel, such as aluminum, having a low-meltingpoint metallic alloy undercoat and a polyimide overcoat.
  • Another technique employed by the casting industry is to prepare low-melting-point mandrels for use in the fabrication of high-melting-point structures.
  • the cast unit upon completion can be heated to a temperature below that of the structure but above that of the mandrel so that the latter can be removed in the liquid phase.
  • This type mandrel in addition tohaving the disadvantage of being non-reusable, is also limited to casting applications that do not exceed the melting point of the mandrel and to the casting of only high-meltingpoint structures.
  • the primary purpose of this invention is to overcome the limitation inherent in conventional type mandrels by providing a new removable type mandrel that will be admirably suited for use in the casting and plasmadeposition of various structures having as low as zero draft or re-entrant geometries.
  • a mandrel is composed by coating a low-melting-point metallic alloy on a high-melting-point base mandrel and then overcoating the alloy with a polyimide layer.
  • the undercoated alloy layer has to be sufficiently thick so that after a structure is coated or sprayed onto or into the mandrel, the assembly can be heated to the melting point of the alloy so that it can be removed in the liquid state leaving a space between the structure and the mandrel sufficient to allow the mandrel to be easily removed.
  • the base mandrel can be cast or otherwise fabricated using a high-melting-point material selected from at least one of the groups consisting of aluminum, brass. steel, and copper.
  • the metallic alloy coating should have a lowmelting point with reference to the base mandrel, and also with reference to the structure to be cast or plasma deposited.
  • the thickness of this metallic alloy coating is variable and depends on the configuration, material and size of the structure being cast. Generally a thickness between about l/16 inch and about 1 inch is sufficient with a thickness about l/8 inch being preferable for general applications.
  • Metallic alloys having a melting point below 300C. are generally suitable for this application. However, the selected base mandrel material and structure material dictate the limitations on the characteristics required of this metallic alloy coating. Metallic alloys such as bismuth, lead, tin, cadmium, indium, and antimony in any and all proportions are suitable for use in this invention.
  • the primary purpose for applying an overcoat on the alloy layer is to substantially eliminate any reaction between the structure to be cast or plasma deposited and the alloy layer. Therefore this overcoating need only be applied to the portion of the coated mandrel that the structure will contact.
  • this outer layer must have a higher melting point than the alloy, be easily separable from the cast or plasma deposited structure and be non-reactive with the deposited structure.
  • the exact thickness of this outer coating is not critical but a layer of between about 0.002 inch and about 0.010 inch is deemed sufficient for most applications.
  • Polyimide coatings are admirably suited for this overcoat layer. Polyimides are a relatively recently developed type of polymer with especially good resistance to heat deterioration.
  • a typical example of a polyimide is that derived from pyromellitic dianhydride and an aromatic diamine and having the following basic structure unit: [(CO) C,,H (CO) NC,,H OC.,H,]n.
  • the actual polymer however, has a more complex structure due to cross linking.
  • the preferred method for implementing this inven tion is to initially fabricate a base mandrel from a highmelting-point material such as aluminum.
  • the contour of a male or female type mandrel in addition to substantially conforming to the configuration of the desired structure, has to be produced with radial dimensions smaller or larger, respectively, than the structure so as to allow for a dual coating buildup.
  • a A to V2 inch dimension discrepancy is adequate for this purpose.
  • An alloy having a melting point below about 700C, preferably about 250C, is then deposited on the mandrel by any conventional technique such as by spraying.
  • this coated layer is somewhat variable and depends primarily on the complexity of the structure desired, that is, the draft angle or any other re-entrant geometries such structure has.
  • the purpose of this layer is to provide a certain dimensional buildup on the mandrel which can then be easily removed in a liquid state at an elevated temperature after the desired structure is cast or plasmadeposited thereon. The space created between the mandrel and the structure by such alloy removal, will then be sufficient to allow the mandrel to be manipulated and then easily removed thereby leaving a free standing body.
  • a metallic alloy layer of between about l/16 inch and about 1 inch is usually sufficient for most complex structures.
  • At least one locking type groove or projection may be designed into the base mandrel so as to prevent the base mandrel fromsliding out of, or therwise being removed from, the coated metallic alloy layer prior to the latter being removed in the liquid state.
  • the metallic alloy layer will usually require a machining operation to conform its surface to the contour of the desired structure to be produced.
  • complex curvilinear structures can be fabricated using this mandreling technique.
  • an outer layer of a neutral type plastic composition having a curing temperature below the melting temperature of the alloy coating, is deposited by any conventional technique on the metallic alloy layer.
  • This outer layer need only be applied to that portion ofthe metallic coated mandrel that will be contacted'by the structure to be cast or plasma-sprayed thereon.
  • This outer coating need only be between about 0.002 inch and about 0.010 inch thick. and be capable of being easily removed from the structures formed.
  • a 0.005 inch layer of DuPont Pyralin" Type 5081 polyimide (15.2 percent gravimetric solids, 50 -70 poises viscosity) will be sufficient to prevent chemical and/or physical interaction between an alloy such as 4 percent Bismuth, 55.5 percent Lead, 40.5 percent Tin (commercially available as Cerro 400-1 alloy) and a plasma-deposited material such' as beryllium.
  • the cured polyimide coating can be given a moderate grit blast to roughen the surface. A moderate roughening of the surface may be described as one of 120-200 micro inch RMS surface roughness.
  • the fully cured dual coated mandrel is then ready for use in casting or plasma-deposition application.
  • the unit is placed in a heated environment where the temperature is elevated above the melting point of the alloy undercoat.
  • the liquid state alloy then flows from the unit leaving a space between the mandrel and the film adhering structure thereby allowing the mandrel to be easily withdrawn.
  • the neutral type polyimide film can then be peeled from the structure leaving a free standing body.
  • EXAMPLE 1 An aluminum base mandrel as shown in the drawing was coated with a 4 percent Bismuth, 55.5 percent Lead, 40.5 percent Tin alloy (commercially available as Cerro Type 400-1 alloy) having a melting point range of 170C. to 198C. The coated mandrel was machine finished leaving a smooth alloy layer of about 174 inch thick on the aluminum base. The surface of the coated mandrel was overcoated with a DuPont "Pyralin" Type 5081 polyimide precursor solution, 15.2 percent Gravimetric Solids, 50-70 poises viscosity, (commercially available as DuPont Pyralin 5081 polyimide) using an air brush spraying technique.
  • a layer of approximately 0.001 inch thick was applied and then the N-Methyl Pyrrolidone and xylene solvent in the coating was extracted by oven heating the coated mandrel to approximately C. for 15 minutes. This procedure was repeated until a 0.004 inch layer was built up whereupon the coated mandrel was cured at an elevated temperature of C. for 16 hours.
  • the coated cured mandrel was then given a light grit blast of aluminum oxide to roughen the surface thereof so as to provide a better adhering surface for a plasma deposition of beryllium.
  • the roughened surface coated mandrel as shown in the drawing was plasma-sprayed with beryllium using the following:
  • Powder Lot Beryllium (commercially available as Brush V-1684-P) Powder Size 325 Tyler mesh size and finer Non'transl'er-Arc Torch Union Carbide's AT9 model Electrode Gas 60 CFH Argon Powder Carrier (ins 80 CFH Argon and 40 CFH Argon 15% Hydrogen Shield Not used Current 19. amps.
  • EXAMPLE 11 A 13 UNC threaded rod, measuring /2 inch in diameter and 24 inches long, was coated with a 1.0 inch layer of Cerro Alloy 400-1 as in Example 1, for a length of 19 inches. The surface of the Cerro layer was machined to a smooth finish yielding a final rod diameter of 1.92 inches. The smooth surface was then coated with a 0.005 inch multilayer of DuPont Pyralin 5081 polyimide precursor solution, as described in Example 1, and followed thereafter by a light vapor blast of aluminum oxide to roughen the surface so as to make the surface amenable for a plasma-deposition of beryllium.
  • the polyimide coated surface was plasma-sprayed with beryllium using the following:
  • Powder Lot Beryllium powder (commerically available as Brush V-2484) Powder Size 325 Tyler Mesh size and finer Arc Torch Union Carbide's Model AT9 Electrode Gas 60 CFH Argon Powder Carrier Gas 80 CFH Argon and 40 CFH Argon Hydrogen Shield Not used Current 180-200 amps.
  • said base mandrel is selected from at least one of the group consisting of aluminum, brass, steel and copper.
  • said metallic alloy is selected from (at least one of the groups consisting of) an alloy from the group consisting of alloys of bismuth, lead, tin, cadmium, indium and antimony.
  • step a) the following step is added: ⁇ 5
  • said metallic alloy has a melting temperature below about 700C, and a thickness between about l/l6 inch and l inchl 6.
  • said polyimide coated layer is between about 0.002 and abou 0.010 inch thick.
  • mand el is for use in producing plasma-sprayed beryllium bodies) wherein beryllium is plasma-sprayed on said olyimide coated layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

A mandrel, and process therefor, consisting of a high melting temperature base material, such as aluminum, having an undercoating of a low melting temperature metallic alloy and an overcoating of a polyimide material. In casting or plasma deposition applications, the undercoated metallic alloy is removed at an elevated temperature thereby facilitating the removal of the base mandrel.

Description

ilrted atet 1191 1111 aaearso Baird et a1. 1 1 Feb. 4, 1975 41 REUSABLE MANDREL FOR STRUCTURES 156] Rererenees Cited HAVING ZERO DRAFT 0R RE-ENTRANT ED STATES PATENTS GEOMETRIES 3,717,914 2/1973 Baird et al. 29/195 inventors: Robert J. Baird, Indianapolis, Ind;
Thomas G. Everett, Jr., Flanders,
Assignee: Union Carbide Corporation, New
York, NY.
Filed: Oct. 27, 1972 Appl. No.: 301,495
Related U.S. Application Data Division of Ser. No. 156,191, June 24, 1971, Pat. No. 3,717,914.
U.S. Cl. 117/71 M, 117/49, 117/50, 117/51 Int. Cl. C23c l/06, C23c l/lO Field of Search 117/71 M, 50,51; 164/46, 164/132; 29/195 P, 191; 249/62 Primary Examiner-Thomas 1. Herbert Jr Attorney, Agent, or Firm-Dominic l. Terminello [57] ABSTRACT A mandrel, and process therefor, consisting of a high melting temperature base material, such as aluminum, having an undercoating of a low melting temperature metallic alloy and an overcoating of a polyimide material. ln casting or plasma deposition applications, the undercoated metallic alloy is removed at an elevated temperature thereby facilitating the removal of the base mandrel 7 Claims, 1 Drawing Figure se NREL POLYIMIDE oura LAYE PAIENIED 71.864. 150
POLYIMIDE OUTER LAYER REUSABLE MANDREL FOR STRUCTURES HAVING ZERO DRAFT OR RE-ENTRANT GEOMETRIES This is a division of application Ser. No. 156,191 filed June 24, 1971, now US. Pat. No. 3,717,914.
FIELD OF THE INVENTION This invention relates to reusable mandrels, and the process therefor, for use in producing plasmadeposited consolidated bodies or castings having zero degree draft or reentrant geometries. Specifically, the mandrel consists essentially of a high-melting-point base mandrel, such as aluminum, having a low-meltingpoint metallic alloy undercoat and a polyimide overcoat.
DESCRIPTION OF PRIOR ART Cast structures and component parts having various complex configurations are presently being fabricated with the aid of mandrels. Simple hollow configurations having a draft or taper angle of at least 2 can be easily cast with removable and reusable mandrels. However, the fabrication of complex configurations having zero draft or re-entrant geometries presents a problem to the casting industry. Multisegmented'mandrels, which can be removed in pieces after a particular structure is cast, have been employed with some success in certain applications. A drawback to this technique, however, is that a misalignment of any of the segments of the mandrel during casting will be reflected in the fabrication of a distorted structure.
Another technique employed by the casting industry is to prepare low-melting-point mandrels for use in the fabrication of high-melting-point structures. The cast unit, upon completion can be heated to a temperature below that of the structure but above that of the mandrel so that the latter can be removed in the liquid phase. This type mandrel in addition tohaving the disadvantage of being non-reusable, is also limited to casting applications that do not exceed the melting point of the mandrel and to the casting of only high-meltingpoint structures.
Recently mandrels have been successfully employed in the fabrication of plasma consolidated free-standing shapes having draft or taper angles sufficient to allow removal of the mandrels without effecting such shapes. However, mandrels can not be successfully used when the desired plasma-consolidated shapes have either zero draft or re-entrant geometries. Thus, this limitation of mandrel usage to the fabrication of relatively simple tapered shapes has forced industry to resort to complex and costly techniques to produce shapes or structures having zero draft angles or re-entrant geometries.
The primary purpose of this invention is to overcome the limitation inherent in conventional type mandrels by providing a new removable type mandrel that will be admirably suited for use in the casting and plasmadeposition of various structures having as low as zero draft or re-entrant geometries.
SUMMARY OF THE INVENTION Broadly stated, this invention relates to a mandreling technique admirably suited for the production of various shaped structures. Specifically, a mandrel is composed by coating a low-melting-point metallic alloy on a high-melting-point base mandrel and then overcoating the alloy with a polyimide layer. The undercoated alloy layer has to be sufficiently thick so that after a structure is coated or sprayed onto or into the mandrel, the assembly can be heated to the melting point of the alloy so that it can be removed in the liquid state leaving a space between the structure and the mandrel sufficient to allow the mandrel to be easily removed.
The base mandrel can be cast or otherwise fabricated using a high-melting-point material selected from at least one of the groups consisting of aluminum, brass. steel, and copper. The material selected in addition to having a melting point higher than that of the metallic alloy to be coated thereon, shall be sufficiently strong so as to be reusable and should also be substantially non-reactive with the particular alloy coating selected. Likewise, the metallic alloy coating should have a lowmelting point with reference to the base mandrel, and also with reference to the structure to be cast or plasma deposited. The thickness of this metallic alloy coating is variable and depends on the configuration, material and size of the structure being cast. Generally a thickness between about l/16 inch and about 1 inch is sufficient with a thickness about l/8 inch being preferable for general applications. Metallic alloys having a melting point below 300C. are generally suitable for this application. However, the selected base mandrel material and structure material dictate the limitations on the characteristics required of this metallic alloy coating. Metallic alloys such as bismuth, lead, tin, cadmium, indium, and antimony in any and all proportions are suitable for use in this invention.
The primary purpose for applying an overcoat on the alloy layer is to substantially eliminate any reaction between the structure to be cast or plasma deposited and the alloy layer. Therefore this overcoating need only be applied to the portion of the coated mandrel that the structure will contact. In addition to preventing any reaction, this outer layer must have a higher melting point than the alloy, be easily separable from the cast or plasma deposited structure and be non-reactive with the deposited structure. The exact thickness of this outer coating is not critical but a layer of between about 0.002 inch and about 0.010 inch is deemed sufficient for most applications. Polyimide coatings are admirably suited for this overcoat layer. Polyimides are a relatively recently developed type of polymer with especially good resistance to heat deterioration. A typical example of a polyimide is that derived from pyromellitic dianhydride and an aromatic diamine and having the following basic structure unit: [(CO) C,,H (CO) NC,,H OC.,H,]n. The actual polymer, however, has a more complex structure due to cross linking.
The preferred method for implementing this inven tion is to initially fabricate a base mandrel from a highmelting-point material such as aluminum. The contour of a male or female type mandrel, in addition to substantially conforming to the configuration of the desired structure, has to be produced with radial dimensions smaller or larger, respectively, than the structure so as to allow for a dual coating buildup. Usually a A to V2 inch dimension discrepancy is adequate for this purpose.
An alloy having a melting point below about 700C, preferably about 250C, is then deposited on the mandrel by any conventional technique such as by spraying.
' brushing, casting, painting or the like. The thickness of this coated layer is somewhat variable and depends primarily on the complexity of the structure desired, that is, the draft angle or any other re-entrant geometries such structure has. The purpose of this layer is to provide a certain dimensional buildup on the mandrel which can then be easily removed in a liquid state at an elevated temperature after the desired structure is cast or plasmadeposited thereon. The space created between the mandrel and the structure by such alloy removal, will then be sufficient to allow the mandrel to be manipulated and then easily removed thereby leaving a free standing body. A metallic alloy layer of between about l/16 inch and about 1 inch is usually sufficient for most complex structures.
To provide good securement of the metallic alloy to the base mandrel, at least one locking type groove or projection may be designed into the base mandrel so as to prevent the base mandrel fromsliding out of, or therwise being removed from, the coated metallic alloy layer prior to the latter being removed in the liquid state. When this securement means is employed, the metallic alloy layer will usually require a machining operation to conform its surface to the contour of the desired structure to be produced. Thus, complex curvilinear structures can be fabricated using this mandreling technique.
Although this simple alloy coating would suffice in some applications, an interaction generally occurs between this low melting alloycoating and the deposited structure thereby greatly limiting its utility. To prevent this detrimental interaction, an outer layer of a neutral type plastic composition, having a curing temperature below the melting temperature of the alloy coating, is deposited by any conventional technique on the metallic alloy layer. This outer layer need only be applied to that portion ofthe metallic coated mandrel that will be contacted'by the structure to be cast or plasma-sprayed thereon. This outer coating need only be between about 0.002 inch and about 0.010 inch thick. and be capable of being easily removed from the structures formed. For example, a 0.005 inch layer of DuPont Pyralin" Type 5081 polyimide (15.2 percent gravimetric solids, 50 -70 poises viscosity) will be sufficient to prevent chemical and/or physical interaction between an alloy such as 4 percent Bismuth, 55.5 percent Lead, 40.5 percent Tin (commercially available as Cerro 400-1 alloy) and a plasma-deposited material such' as beryllium. To improve the adhesion of plasma deposited materials on a polyimide coated mandrel, the cured polyimide coating can be given a moderate grit blast to roughen the surface. A moderate roughening of the surface may be described as one of 120-200 micro inch RMS surface roughness.
The fully cured dual coated mandrel is then ready for use in casting or plasma-deposition application. Once the selected material is deposited on the mandrel by conventional techniques to produce the desired structure, the unit is placed in a heated environment where the temperature is elevated above the melting point of the alloy undercoat. The liquid state alloy then flows from the unit leaving a space between the mandrel and the film adhering structure thereby allowing the mandrel to be easily withdrawn. The neutral type polyimide film can then be peeled from the structure leaving a free standing body.
The following examples will serve to illustrate the mandreling technique according to this invention:
EXAMPLE 1 An aluminum base mandrel as shown in the drawing was coated with a 4 percent Bismuth, 55.5 percent Lead, 40.5 percent Tin alloy (commercially available as Cerro Type 400-1 alloy) having a melting point range of 170C. to 198C. The coated mandrel was machine finished leaving a smooth alloy layer of about 174 inch thick on the aluminum base. The surface of the coated mandrel was overcoated with a DuPont "Pyralin" Type 5081 polyimide precursor solution, 15.2 percent Gravimetric Solids, 50-70 poises viscosity, (commercially available as DuPont Pyralin 5081 polyimide) using an air brush spraying technique. A layer of approximately 0.001 inch thick was applied and then the N-Methyl Pyrrolidone and xylene solvent in the coating was extracted by oven heating the coated mandrel to approximately C. for 15 minutes. This procedure was repeated until a 0.004 inch layer was built up whereupon the coated mandrel was cured at an elevated temperature of C. for 16 hours.
The coated cured mandrel was then given a light grit blast of aluminum oxide to roughen the surface thereof so as to provide a better adhering surface for a plasma deposition of beryllium.
The roughened surface coated mandrel as shown in the drawing was plasma-sprayed with beryllium using the following:
Powder Lot Beryllium (commercially available as Brush V-1684-P) Powder Size 325 Tyler mesh size and finer Non'transl'er-Arc Torch Union Carbide's AT9 model Electrode Gas 60 CFH Argon Powder Carrier (ins 80 CFH Argon and 40 CFH Argon 15% Hydrogen Shield Not used Current 19. amps.
Voltage 58 volts Torch Pressure 31 P516 Dispenser Pressure 36 P510 Coating Time 9 minutes Coating Thickness 0.035 0.045"
Torch Standoff 1 inch to 1% inches Powder Feed Rate 13 grams per minute After the plasma deposition of beryllium, the coated mandrel was placed in an oven and heated to 210C. whereupon the Cerro Alloy melted and flowed from between the base mandrel and the polyimide filmcoated beryllium structure leaving a space which enabled the mandrel to be easily removed. The polyimide film was then peeled from the structure leaving a free standing beryllium body having a contour identical to the mandrel shown in the drawing.
EXAMPLE 11 A 13 UNC threaded rod, measuring /2 inch in diameter and 24 inches long, was coated with a 1.0 inch layer of Cerro Alloy 400-1 as in Example 1, for a length of 19 inches. The surface of the Cerro layer was machined to a smooth finish yielding a final rod diameter of 1.92 inches. The smooth surface was then coated with a 0.005 inch multilayer of DuPont Pyralin 5081 polyimide precursor solution, as described in Example 1, and followed thereafter by a light vapor blast of aluminum oxide to roughen the surface so as to make the surface amenable for a plasma-deposition of beryllium.
The polyimide coated surface was plasma-sprayed with beryllium using the following:
Powder Lot Beryllium powder (commerically available as Brush V-2484) Powder Size 325 Tyler Mesh size and finer Arc Torch Union Carbide's Model AT9 Electrode Gas 60 CFH Argon Powder Carrier Gas 80 CFH Argon and 40 CFH Argon Hydrogen Shield Not used Current 180-200 amps.
Voltage 58-62 volts Torch Pressure 32-35 PSIG Dispenser Pressure 37-39 PSlG Coating Time 60 minutes Coating Thickness .179 inch Torch Standoff lA inches Powder Feed Rate l2.8 grants per minute After the plasma deposition of beryllium, the coated mandrel was placed in an oven and heated to 210C. whereupon the Cerro Alloy melted and flowed from between the base mandrel and the polyimide filmcoated beryllium structure leaving a space which enabled the mandrel to be easily removed. The polyimide film was then peeled from the structure leaving a free standing beryllium body having a contour identical to the machined Cerro Alloy coated mandrel.
What is claimed is:
1. a process for fabricating reusable mandrels designed for use in producing free-standing bodies comprising the steps:
a. preparing a base mandrel of a material having a melting temperature above at least 650C and substantially conforming in shape to a desired body to be deposited thereon and being dimensionally different than said body by a radial distance sufficient to allow for a dual coating build up on said mandrel(;), said body having zero draft angles or reentrant geometries;
b. depositing a metallic alloy on the surface of the mandrel to substantially conform to the shape of said mandrel, said alloy having a melting temperature below 700C and lower than the melting temperature of said base mandrel and said base mandrel material being substantially nonreactive with said metallic alloy; and
c. depositing and then curing at least one polyimide layer on said alloy deposited base mandrel to produce an overall coating that substantially conforms to the shape of the alloy coated base mandrel and that will essentially prevent any reaction between said alloy layer and the material of the body to be deposited thereon, said polyimide layer having a higher melting point than said alloy and being nonreactive with and easily separable from the material of the body to be deposited.
2. The process as in claim 1 wherein said base mandrel is selected from at least one of the group consisting of aluminum, brass, steel and copper.
3. The process as in claim 2 wherein said metallic alloy is selected from (at least one of the groups consisting of) an alloy from the group consisting of alloys of bismuth, lead, tin, cadmium, indium and antimony.
4. The process as in claim 3 wherein after step a) the following step is added: \5
b. machining said alloy deposited ba e mandrel to conform to the contour of a body to b produced thereon.
5. The process of claim 3 wherein said metallic alloy has a melting temperature below about 700C, and a thickness between about l/l6 inch and l inchl 6. The process of claim 3 wherein said polyimide coated layer is between about 0.002 and abou 0.010 inch thick.
7. The process of claim 6 wherein said mand el is for use in producing plasma-sprayed beryllium bodies) wherein beryllium is plasma-sprayed on said olyimide coated layer.
. UNITED STATES PATE OFFICE CERTIFICATE 0F Patent No. 864, 150 Issue Date February 4, 1975 Inventor) R. J. Baird and T. G. Everett, Jr.
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 4, line 10; "174" should be 1/4 Column 5, line 36; should be deleted.
Column 6, line 21; "(at least one of the groups consisting of)" should be deleted.
Column 6, line 35; "(wherein said mandrel is for use in producing plasma-sprayed beryllium bodies)" should be deleted.
Eigncd and Scaled this fourth Day Of November 1975 {SEAL} Arrest:
. RUTH C. MASON C. MARSHALL DANN 4' 183N718 ff (nmmissimwr nflarems and Trademarks

Claims (7)

1. A PROCESS FOR FABRICATING REUSABLE MANDRELS DESIGNED FOR USE IN PRODUCING FREE-STANDING BODIES COMPRISING THE STEPS: A. PREPARING A BASE MANDREL OF A MATERIAL HAVING A MELTING TEMPERATURE ABOVE AT LEAST 650*C AND SUBSTANTIALLY CONFORMING IN SHAPE TO A DESIRED BODY TO BE DEPOSITED THEREON AND BEING DIMENSIONALLY DIFFERENT THAN SAID BODY BY A RADICAL DISTANCE SUFFICIENT TO ALLOW FOR A DUAL COATING BUILD UP ON SAID MANDREL(;), SAID BODY HAVING ZERO DRAFT ANGLES OR RE-ENTRANT GEOMETRIES; B. DEPOSITING A METALLIC ALLOY ON THE SURFACE OF THE MANDREL TO SUBSTANTIALLY CONFORM TO THE SHAPE OF SAID MANDREL, SAID ALLOY HAVING A MELTING TEMPERATURE BELOW 700*C AND LOWER THAN THE MELTING TEMPERATURE OF SAID BASE MANDREL AND SAID BASE MANDREL MATERIAL BEING SUBSTANTIALLY NONREACTIVE WITH SAID METALLIC ALLOY; AND C. DEPOSITING AND THEN CURING AT LEAST ONE POLYIMIDE LAYER ON SAID ALLOY DEPOSITED BASE MANDREL TO PRODUCE AN OVERALL COATING THAT SUBSTANTIALLY CONFORMS TO THE SHAPE OF THE ALLOY COATED BASE MANDREL AND THAT WILL ESSENTIALLY PREVENT ANY REACTION BETWEEN SAID ALLOY LAYER AND THE MATERIAL OF THE BODY TO BE DEPOSITED THEREON, SAID POLYIMIDE LAYER HAVING A HIGHER MELTING POINT THAN SAID ALLOY AND BEING NON-REACTIVE WITH AND EASILY SEPARABLE FROM THE MATERIAL OF THE BODY TO BE DEPOSITED.
2. The process as in claim 1 wherein said base mandrel is selected from at least one of the group consisting of aluminum, brass, steel and copper.
3. The process as in claim 2 wherein said metallic alloy is selected from (at least one of the groups consisting of) an alloy from the group consisting of alloys of bismuth, lead, tin, cadmium, indium and antimony.
4. The process as in claim 3 wherein after step a) the following step is added: b. machining said alloy deposited base mandrel to conform to the contour of a body to be produced thereon.
5. The process of claim 3 wherein said metallic alloy has a melting temperature below about 700*C. and a thickness between about 1/16 inch and 1 inch.
6. The process of claim 3 wherein said polyimide coated layer is between about 0.002 and about 0.010 inch thick.
7. The process of claim 6 (wherein said mandrel is for use in producing plasma-sprayed beryllium bodies) wherein beryllium is plasma-sprayed on said polyimide coated layer.
US30149572 1971-06-24 1972-10-27 Reusable mandrel for structures having zero draft or re-entrant geometries Expired - Lifetime US3864150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US30149572 US3864150A (en) 1971-06-24 1972-10-27 Reusable mandrel for structures having zero draft or re-entrant geometries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15619171A 1971-06-24 1971-06-24
US30149572 US3864150A (en) 1971-06-24 1972-10-27 Reusable mandrel for structures having zero draft or re-entrant geometries

Publications (1)

Publication Number Publication Date
US3864150A true US3864150A (en) 1975-02-04

Family

ID=26852950

Family Applications (1)

Application Number Title Priority Date Filing Date
US30149572 Expired - Lifetime US3864150A (en) 1971-06-24 1972-10-27 Reusable mandrel for structures having zero draft or re-entrant geometries

Country Status (1)

Country Link
US (1) US3864150A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813266A (en) * 1995-10-31 1998-09-29 Greenville Tool & Die Company Method of forming and piercing a tube
US6197253B1 (en) 1998-12-21 2001-03-06 Allen Broomfield Lead-free and cadmium-free white metal casting alloy
US20070205537A1 (en) * 2006-03-03 2007-09-06 Phelps Dodge High Performance Conductors Mandrel for thermoplastic tubing manufacture and method relating thereto

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717914A (en) * 1971-06-24 1973-02-27 Union Carbide Corp Reusable mandrel for structures having zero draft or re-entrant geometries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717914A (en) * 1971-06-24 1973-02-27 Union Carbide Corp Reusable mandrel for structures having zero draft or re-entrant geometries

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813266A (en) * 1995-10-31 1998-09-29 Greenville Tool & Die Company Method of forming and piercing a tube
US5974846A (en) * 1995-10-31 1999-11-02 Greenville Tool & Die Company Method of forming and piercing a tube
US6197253B1 (en) 1998-12-21 2001-03-06 Allen Broomfield Lead-free and cadmium-free white metal casting alloy
US20070205537A1 (en) * 2006-03-03 2007-09-06 Phelps Dodge High Performance Conductors Mandrel for thermoplastic tubing manufacture and method relating thereto

Similar Documents

Publication Publication Date Title
JP7089662B2 (en) Composite molding system and method of laminated molding and surface coating
US3075066A (en) Article of manufacture and method of making same
US3717914A (en) Reusable mandrel for structures having zero draft or re-entrant geometries
US3207358A (en) Water storage tanks and methods of making the same
US20210348290A1 (en) Method of Manufacturing Aircraft Engine Parts Utilizing Reusable And Reconfigurable Smart Memory Polymer Mandrel
US3467583A (en) Process for making a hollow body with protective inner layer for high-temperature applications
US5079974A (en) Sprayed metal dies
US3864150A (en) Reusable mandrel for structures having zero draft or re-entrant geometries
US3248788A (en) Application of flame-sprayed linings on the inside diameter of tubes
US4664758A (en) Electroforming process
US4517247A (en) Fluororesin formed body and method for producing the same
US3294880A (en) Continuous method of manufacturing ablative and refractory materials
US3922386A (en) Process for the manufacture of small heat-generating printed circuits
US4147201A (en) Method of manufacturing of a metallurgical mold
US4537742A (en) Method for controlling dimensions of RSPD articles
MXPA06003754A (en) Method for making an infused composite.
EP0238293A1 (en) A process of preparing an aluminium material coated with fluorin resin
EP0305142A1 (en) Method of forming an article of desired geometry
US4579632A (en) Electro-formed structures
CN112663098B (en) Viscous conductive foil for rapid demoulding of electroforming core mould and rapid demoulding method
US3082516A (en) Fabrication of metal shapes
JPH0370595B2 (en)
JPH065376Y2 (en) Mold for molding glass products
US3446393A (en) Storage container for pressurized fluids
JPS61206604A (en) Manufacture of ceramic pipe

Legal Events

Date Code Title Description
AS Assignment

Owner name: MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MOR

Free format text: MORTGAGE;ASSIGNORS:UNION CARBIDE CORPORATION, A CORP.,;STP CORPORATION, A CORP. OF DE.,;UNION CARBIDE AGRICULTURAL PRODUCTS CO., INC., A CORP. OF PA.,;AND OTHERS;REEL/FRAME:004547/0001

Effective date: 19860106

AS Assignment

Owner name: UNION CARBIDE CORPORATION,

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MORGAN BANK (DELAWARE) AS COLLATERAL AGENT;REEL/FRAME:004665/0131

Effective date: 19860925

AS Assignment

Owner name: UNION CARBIDE COATINGS SERVICE TECHNOLOGY CORPORAT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNION CARBIDE COATINGS SERVICE CORPORATION;REEL/FRAME:005240/0883

Effective date: 19900102