明細書 半導電性樹脂組成物 <技術分野〉 Description Semiconductive resin composition <Technical field>
本発明は、 半導電性樹脂組成物に関 し、 さ らに詳し く は、 適度な 体積抵抗率を有し、 体積抵抗率の分布が均一でバラツキが小さ く 、 高電圧を繰り返し印加して も体積抵抗率の変化が少な く 、 体積抵抗 率の湿度依存性が小さ く 、 しかもフ ィ ッ シ ュ アイ の少ない半導電性 樹脂組成物に関する。 The present invention relates to a semiconductive resin composition, and more particularly, to a semiconductive resin composition having an appropriate volume resistivity, a uniform distribution of the volume resistivity, a small variation, and a high voltage repeatedly applied. Also, the present invention relates to a semiconductive resin composition having a small change in volume resistivity, a small dependency of volume resistivity on humidity, and a small amount of fisheye.
本発明の半導電性樹脂組成物は、 電子写真方式の画像形成装置に おける帯電ロ ール、 転写ロール、 現像ロ ール、 帯電ベル ト、 除電べ ル トなどの少な く と も表面層を形成する材料と して好適である。 ま た、 本発明の半導電性樹脂組成物は、 半導電性、 静電気防止性、 塵 埃吸着防止性などを活かした用途、 例えば、 電子部品包装用フ ィ ル ム、 壁紙、 0 A機器外装材などと して好適である。 The semiconductive resin composition of the present invention has at least a surface layer such as a charge roll, a transfer roll, a development roll, a charge belt, and a charge removal belt in an electrophotographic image forming apparatus. It is suitable as a material to be formed. Further, the semiconductive resin composition of the present invention can be used for applications utilizing semiconductivity, antistatic properties, dust absorption preventing properties, etc., for example, films for packaging electronic parts, wallpapers, 0A equipment exteriors. It is suitable as a material.
<背景技術 > <Background technology>
電気 · 電子機器の分野において、 静電気を精密に制御する こ とが でき る樹脂材料が求められている。 例えば、 電子写真方式の複写機 ゃフ ァ ク シ ミ リ 、 レーザ一 ビ一ムプ リ ンタ 一な どの画像形成装置に おいては、 帯電、 露光、 現像、 転写、 定着、 除電の各工程を経て、 画像が形成されている。 これら各工程では、 静電気を精密に制御す る こ とが必要であ る。 In the field of electrical and electronic equipment, resin materials capable of precisely controlling static electricity are required. For example, in an image forming apparatus such as an electrophotographic copying machine, a facsimile machine, a laser beam printer, etc., the charging, exposure, development, transfer, fixing, and static elimination steps are performed. An image is formed. In each of these steps, it is necessary to precisely control static electricity.
電子写真方式の画像形成装置においては、 一般に、 ①感光体 ドラ ム表面を均一かつ一様に帯電する工程、 ②露光によ り感光体 ドラ ム
表面に静電潜像 (静電荷像) を形成する工程、 ③現像剤 ( トナー) によ つて静電潜像を可視像 ( ト ナー像) に現像する工程、 ④感光体 ドラ ム上の トナ—を転写材 (例えば、 転写紙) 上に転写する工程、 ⑤転写材上の トナーを加圧加熱して融着する定着工程、 及び⑥感光 体 ドラ ム上に残留する トナーを清掃する ク リ 一ニ ング工程などの各 工程によ っ て、 画像が形成されている。 In an electrophotographic image forming apparatus, generally, (1) a step of uniformly and uniformly charging the surface of a photoconductor drum, and (2) a photoconductor drum by exposure. A process of forming an electrostatic latent image (electrostatic image) on the surface, ③ a process of developing the electrostatic latent image into a visible image (toner image) with a developer (toner), ④ a photoreceptor drum A step of transferring toner onto a transfer material (for example, transfer paper), a fixing step of fusing the toner on the transfer material by applying pressure and heating, and a step of cleaning toner remaining on the photoconductor drum. An image is formed by each step such as a cleaning step.
こ のよ う な画像形成装置に装着されている帯電ロ ール (ま たはべ ル ト) 、 現像ロール、 ト ナー層厚規制ブレー ド、 転写ロ ール (ま た はベル ト) などには、 その表面層が半導電性である こ と、 具体的に は、 1 0 5 〜 1 0 U Q m程度の体積抵抗率を有するこ とが要求されて いる。 例えば、 帯電ロールを用いた帯電方式では、 電圧を印加した 帯電口一ルを感光体 ドラムに接触させる こ とによ り、 感光体 ドラ ム 表面に直接電荷を与えて、 一様かつ均一に帯電させている。 現像口— ルを用いた現像方式では、 現像ロールと トナー供給ロールとの間の 摩擦力によ り、 トナーを現像ロールの表面に帯電状態で付着させ、 これを ト ナ一層厚規制ブレ一 ドで一様にな ら した後、 感光体 ドラム 表面の静電潜像に対して電気吸引力によ り飛翔させて現像している。 転写口—ルを用いる転写方式では、 転写口ールに トナーと逆極性の 電圧を印加して電界を発生させ、 該電界の静電気力によ って感光体 上の トナーを転写材上に転写させている。 The charging roll (or belt), developing roll, toner layer thickness regulation blade, transfer roll (or belt), etc. installed in such an image forming apparatus. includes this the surface layer is a semi-conductive, in particular, the this with 1 0 5 ~ 1 0 U Q m approximately of the volume resistivity is required. For example, in a charging method using a charging roll, a charge is applied directly to the surface of the photoconductor drum by bringing the charging port to which a voltage is applied into contact with the photoconductor drum, so that the surface is uniformly and uniformly charged. Let me. In a developing method using a developing roller, the frictional force between the developing roll and the toner supply roll causes the toner to adhere to the surface of the developing roll in a charged state, and the toner is regulated in a toner layer thickness regulating blade. Then, the electrostatic latent image on the surface of the photoreceptor drum is developed by flying with an electric attraction force. In the transfer method using a transfer port, an electric field is generated by applying a voltage having a polarity opposite to that of the toner to the transfer port, and the toner on the photoreceptor is transferred onto the transfer material by the electrostatic force of the electric field. Let me.
したがっ て、 画像形成装置における帯電ロ ール等の各部材には、 適度の範囲内の低い体積抵抗率を有する半導電性である こ とが要求 される。 その体積抵抗率は、 分布が均一である こ とが必要であ り、 場所的に体積抵抗率が異なる と、 高品質の画像を得る こ とができな い。 例えば、 帯電ロ ールの体積抵抗率の分布が均一でなければ、 感 光体 ドラ ム表面を一様かつ均一に帯電させる こ とができず、 画像の
品質が低下する。 また、 これ らの部材には、 高電圧が繰り返し印加 されるが、 それによ つて体積抵抗率が大き く 変動する と、 安定して 高品質の画像を得る こ とができない。 湿度や温度の変化によって、 こ れ らの部材の体積抵抗率が大き く 変動する と、 やはり安定して高 品質の画像を得る こ とができない。 温度の変化に対しては、 装置を ウ ォ ー ミ ングする こ とによ り対処する こ とが可能であるが、 通常の 使用環境下では、 湿度の変化に対処する こ とは難しい。 Therefore, each member such as a charging roll in an image forming apparatus is required to be semiconductive having a low volume resistivity within an appropriate range. The volume resistivity needs to be uniform in distribution, and if the volume resistivity is different in place, a high-quality image cannot be obtained. For example, if the distribution of the volume resistivity of the charging roll is not uniform, the photosensitive drum surface cannot be charged uniformly and uniformly, and the Quality degrades. In addition, a high voltage is repeatedly applied to these members, and if the volume resistivity fluctuates significantly, high-quality images cannot be stably obtained. If the volume resistivity of these members fluctuates significantly due to changes in humidity or temperature, it is still impossible to obtain high quality images stably. It is possible to cope with changes in temperature by warming the equipment, but it is difficult to cope with changes in humidity under normal operating conditions.
また、 高分子材料から形成されている 0 A機器の外装材ゃ部品な どは、 塵埃や トナーなどを吸引 して、 外観を損ねたり、 故障の原因 にな っ ている。 I C や L S I な どの電子部品を包装する ためのフ ィ ルムゃ容器には、 静電気防止性が求め られている。 塵埃の吸着防止 性や静電気防止性を付与する には、 高分子材料やその成形品の電気 抵抗率を下げる方法が有効である。 In addition, the exterior materials and parts of the 0A equipment made of polymer materials absorb dust and toner, etc., causing damage to the appearance and failure. Film containers for packaging electronic components such as IC and LSI are required to have antistatic properties. In order to provide dust-prevention and anti-static properties, it is effective to reduce the electrical resistivity of polymer materials and their molded products.
従来よ り、 高分子材料やその成形品の電気抵抗率を下げる方法と しては、 ( 1 ) 成形品の表面に有機系帯電防止剤を塗布する方法、 ( 2 ) 高分子材料に有機系帯電防止剤を練り込む方法、 ( 3 ) 高分 子材料にカ ーボンブラ ッ クや金属粉などの導電性フ イ ラ一を練り込 む方法、 及び ( 4 ) 高分子材料に電解質を練り込む方法が知られて いる o Conventionally, methods for lowering the electrical resistivity of a polymer material or its molded article include (1) a method of applying an organic antistatic agent to the surface of the molded article, and (2) a method of applying an organic (3) kneading a conductive filler such as carbon black or metal powder into a polymer material, and (4) kneading an electrolyte into a polymer material Is known o
しかしながら、 ( 1 ) の方法は、 成形品表面を拭いた り洗浄した りする こ と によ っ て、 帯電防止剤が容易に脱落するため、 長期間の 帯電防止効果が期待できない。 ( 2 ) の方法では、 有機系帯電防止 剤と して、 界面活性剤や親水性樹脂を用いている。 界面活性剤を用 いる方法では、 成形品表面から界面活性剤をブ リ ー ドアウ ト させる こ とによ り、 帯電防止性を付与する機構を採用 しているため、 温度 や湿度などの環境の変化によ っ て、 電気抵抗率や帯電防止性が大き
く 変化する。 親水性樹脂を用いる方法では、 所望の帯電防止効果を 得るには、 親水性樹脂を多量に配合する必要があるため、 高分子材 料本来の良好な物性を維持する こ とが困難であったり、 また、 電気 抵抗率や帯電防止性の湿度依存性が大きいとい う問題がある。 However, the method (1) cannot expect a long-term antistatic effect because the antistatic agent easily falls off by wiping or cleaning the molded product surface. In the method (2), a surfactant or a hydrophilic resin is used as the organic antistatic agent. The method using a surfactant employs a mechanism that imparts antistatic properties by blowing out the surfactant from the surface of the molded product. Changes in electrical resistivity and antistatic properties It changes. In a method using a hydrophilic resin, a large amount of the hydrophilic resin must be blended in order to obtain a desired antistatic effect, so that it is difficult to maintain the original good physical properties of the polymer material. In addition, there is a problem that the electrical resistivity and the antistatic property are largely dependent on humidity.
前記 ( 3 ) の方法は、 多 く の分野で採用されている。 例えば、 帯 電ロ ールは、 高分子材料に導電性フ ィ ラーを練り込んだ半導電性高 分子複合材料 (組成物) を芯金上に被覆して形成されている。 しか しながら、 高分子材料中に導電性フ イ ラ一を分散させて半導電性と した複合材料は、 一般に、 体積抵抗率の分布が極めて不均一で、 そ のバラツキは、 多 く の場合、 数桁に上る ものであ り、 実用性能上問 題があった。 しかも、 高分子材料中に導電性フ イ ラ一を分散させた 複合材料は、 一般に耐電圧が充分ではな く 、 高電圧を繰り返し印加 する用途には必ずし も適さない。 また、 導電性フ イ ラ一を用いて必 要と される半導電性の水準を達成するには、 その充填量を多 く する 必要があ り、 そのため、 高分子複合材料の成形加工性や機械的強度 が低下した り、 あるいは硬度が高く な りすぎた りする という問題が 生じる。 導電性フ イ ラ—を分散させた高分子複合材料は、 多く の場 合、 導電性力 一ボンブラ ッ ク な どの導電性フ ィ ラ 一によ っ て着色し ているため、 例えば、 0 A機器の外装材ゃ壁紙などの用途に適用す るには不適当である。 The method (3) has been adopted in many fields. For example, a charging roll is formed by coating a core metal with a semiconductive high molecular composite material (composition) obtained by kneading a conductive filler into a polymer material. However, composite materials in which a conductive filler is dispersed in a polymer material to be semiconductive generally have a very non-uniform volume resistivity distribution, and the variation is often large. However, this is several orders of magnitude, and there is a problem in practical performance. In addition, a composite material in which a conductive filler is dispersed in a polymer material generally does not have a sufficient withstand voltage, and is not necessarily suitable for applications in which a high voltage is repeatedly applied. In addition, in order to achieve the required level of semi-conductivity using a conductive filler, it is necessary to increase the filling amount thereof. The problem is that the mechanical strength is reduced or the hardness is too high. In many cases, a polymer composite material in which a conductive filler is dispersed is colored by a conductive filler such as a conductive black. It is unsuitable for use in applications such as device exterior materials and wallpaper.
前記 ( 4 ) の方法では、 高分子材料に塩化リ チゥムゃ塩化力 リ ゥ ムな どのアル力 リ金属塩 (電解質) を練り込み、 L i +や Κ τなどの金 属イオンによ り電気抵抗率を低下させている (特公昭 6 3 - 1 4 0 1 7 号公報) 。 し力、し、 この方法でアルカ リ金属塩と して使用 している 無機金属塩は、 樹脂との親和性に乏しいため、 凝集物などによる フ ィ ッ シ ュアイが発生し易いという 問題があった。 こ の凝集物を樹脂
に溶解させるために、 混練温度を上げたり、 混練時間を長く した り する と、 樹脂または無機金属塩が分解して、 実用的な機械物性や外 観を損なう ので、 解決にはな らなかった。 L i 塩のよ う な潮解性の ある金属塩の場合、 多量に充填する と、 高分子複合材料が吸湿性を 持つよ う にな るため、 湿度の変化によ っ て体積抵抗率が大き く 変化 した り、 プリ — ドアウ ト した金属塩の潮解物によ り成形品の表面が ベとつ く という問題がある。 The (4) In the method of, chloride Li Chiumu Ya chloride force in a polymer material Li ©-time of any Al force Li metal salt (electrolyte) kneading the, by Ri electricity to the metallic ions such as L i + and Κ τ The resistivity is reduced (Japanese Patent Publication No. 63-140177). The inorganic metal salt used as the alkali metal salt in this method has a problem that the fishy eye due to agglomerates or the like is liable to be generated due to poor affinity for the resin. Was. This aggregate is converted to resin Increasing the kneading temperature or increasing the kneading time in order to dissolve it into the solution did not solve the problem because the resin or inorganic metal salt would decompose and impaired the practical mechanical properties and appearance. . In the case of a deliquescent metal salt such as Li salt, if filled in a large amount, the polymer composite material becomes hygroscopic, and the volume resistivity increases due to changes in humidity. There is a problem that the surface of the molded article becomes sticky due to the deliquescence of the metal salt that has been changed or pre-doped out.
一方、 ポ リ フ ツイヒ ビニ リ デ ン ( P V D F ) な どのフ ッ素樹脂は、 耐熱性、 耐候性、 耐薬品性、 耐溶剤性、 耐オゾ ン性、 耐汚染性、 非 粘着性などに優れている。 電子写真方式の画像形成装置において、 帯電口一ルゃ現像ロ ールな どの ト ナー と接触する部材は、 ト ナーが 融着してフ ィ ルム化する現象 (フ ィ ル ミ ング現象) が起こ りやすい が、 フ ッ素樹脂からなる部材は、 こ の現象が起こ り に く い。 したが つて、 フ ッ素樹脂は、 電子写真方式の画像形成装置において、 例え ば、 帯電ロ ールや帯電ベル ト 、 現像ロ ール、 転写ロールな どの用途 に好適である と期待されている。 On the other hand, fluoroplastics such as polyolefin vinylidene (PVDF) have excellent heat resistance, weather resistance, chemical resistance, solvent resistance, ozone resistance, stain resistance, and non-adhesive properties. ing. In an electrophotographic image forming apparatus, a member that comes into contact with a toner such as a charging port or a developing roll has a phenomenon that the toner fuses and forms a film (filming phenomenon). This phenomenon is unlikely to occur in a member made of fluororesin, although it is likely to occur. Therefore, fluororesins are expected to be suitable for use in electrophotographic image forming apparatuses, for example, for charging rolls, charging belts, developing rolls, transfer rolls, and the like. .
と こ ろが、 P V D F な どの フ ッ素樹脂は、 他の多 く の高分子材料 と同様、 電気抵抗率が大き く 、 半導電性ではない。 フ ッ素樹脂は、 摩擦によって容易に帯電する。 フ ッ素樹脂製部材は、 塵埃や トナー などを吸引 して、 外観を損ねた り、 故障の原因と もなる。 従来、 フ ッ素樹脂は、 非粘着性で トナー離型性に優れている こ とから、 画像 形成装置において、 定着ロ ール (加熱口 —ル) の表面層に使用され ているが、 帯電口一ルな どの帯電部材と して使用する には、 多 く の 解決すべき問題があつた。 However, fluororesins such as PVDF, like many polymer materials, have high electrical resistivity and are not semiconductive. Fluorine resin is easily charged by friction. Fluororesin members absorb dust and toner, etc., and can damage the appearance or cause a failure. Conventionally, fluororesin has been used for the surface layer of the fixing roll (heating port) in image forming equipment because it is non-adhesive and has excellent toner release properties. There were many problems to be solved when used as a charging member such as a mouthpiece.
P V D Fなどのフ ッ素樹脂の電気抵抗率を下げて半導電性にする には、 前記の如き ( 1 ) 〜 ( 4 ) の方法の適用が考え られる。 しか
しながら、 フ ッ素樹脂にこれらの従来法を適用するには、 前記した よ う な問題がある こ とに加えて、 次のよう な問題点がある。 In order to reduce the electric resistivity of a fluororesin such as PVDF to make it semiconductive, the above-mentioned methods (1) to (4) can be applied. Only However, applying these conventional methods to fluororesin has the following problems in addition to the above-mentioned problems.
フ ッ素樹脂は、 非粘着性に優れているため、 フ ッ素樹脂成形品に 前記 ( 1 ) の方法によ り有機系帯電防止剤を塗布しても、 容易に脱 落して しま う。 前記 ( 2 ) の方法によ り、 フ ッ素樹脂に界面活性剤 を練り込んで複合材料にする と、 界面活性剤がブリ ー ドアウ トする ため、 フ ッ素樹脂の長所である耐汚染性が損なわれ、 また、 フ ッ素 樹脂成形品と接触する他の部材を汚染したり、 トナーの帯電特性に 悪影響を及ぼす。 フ ッ素樹脂に親水性樹脂を練り込む方法は、 親水 性樹脂を多量に配合しなければ電気抵抗率を充分に下げる こ とがで きないので、 耐ォゾン性ゃ耐溶剤性が低下する。 Since fluororesin has excellent non-adhesiveness, even if an organic antistatic agent is applied to the fluororesin molded article by the method (1), the fluororesin easily falls off. According to the method (2), when a surfactant is kneaded into a fluororesin to form a composite material, the surfactant bleeds out, which is an advantage of the fluororesin. And damages other members that come into contact with the fluororesin molded product, and adversely affects the charging characteristics of the toner. In the method of kneading a hydrophilic resin into a fluororesin, the electric resistivity cannot be sufficiently reduced unless a large amount of the hydrophilic resin is added, so that the ozone resistance and the solvent resistance decrease.
前記 ( 3 ) の方法によ り 、 フ ッ素樹脂に導電性フ ィ ラ ーを分散さ せた複合材料は、 フ ッ素樹脂の表面エネルギーが小さいため、 高電 圧の印加によ っ て導電性フ ィ ラーが樹脂中を容易に移動し、 その結 果、 体積抵抗率が変動し、 かつ、 その分布のバラ ツキがひどく なつ て しま う という問題がある。 According to the method (3), the composite material in which the conductive filler is dispersed in the fluororesin has a small surface energy of the fluororesin, so that the composite material can be formed by applying a high voltage. There is a problem that the conductive filler moves easily in the resin, and as a result, the volume resistivity fluctuates, and the distribution of the distribution becomes severe.
前記 ( 4 ) の方法は、 例えば、 P V D Fがイ オ ンの良導体である ことが古く から知られていること (例えば、 特開昭 5 1 一 3 2 3 3 0 号公報、 特開昭 5 1 — 1 1 0 6 5 8号公報、 特開昭 5 1 — 1 1 1 3 3 7 号公報、 特開昭 5 4 - 1 2 7 8 7 2号公報) か らみて、 フ ッ素樹脂 に半導電性を付与するのに有効であるこ とが期待される。 ところが、 塩化リ チウムゃ塩化力 リ ゥムなどの無機金属塩をフ ッ素樹脂に練り 込んだ樹脂組成物を帯電ロールやベル トなどの帯電部材と して用い る と、 高電圧を繰り返し印加する こ とによって、 体積抵抗率が上昇 して しま う という不都合があった。 この現象は、 高電圧の印加によ つて、 L i τや K +などの金属ィオンが徐々に負極側に移動してしまい、
帯電部材内の金属イ オ ンが偏在して しま う こ とによる ものと推定さ れる。 According to the method (4), for example, it has long been known that PVDF is a good conductor of ion (for example, Japanese Patent Application Laid-Open Nos. — Japanese Patent Application Laid-Open No. 110658/1994, Japanese Patent Application Laid-Open No. 51-111133 / Japanese Patent Application Laid-Open No. 54-127,772) It is expected to be effective for imparting conductivity. However, when a resin composition obtained by kneading an inorganic metal salt such as lithium chloride or chlorinated lime with a fluororesin is used as a charging member such as a charging roll or belt, a high voltage is repeatedly applied. Doing so has the disadvantage of increasing the volume resistivity. This phenomenon occurs when a high voltage is applied, and metal ions such as L i τ and K + gradually move to the negative electrode side. It is presumed that this is due to uneven distribution of metal ions in the charging member.
従来、 金属塩の添加量を低減させ、 かつ、 体積抵抗率を低く する 方法と して、 P V D Fに過塩素酸リ チウムと第三成分と して低分子 量の有機溶媒を添加する方法が提案されている (特開昭 6 1 — 7 2 0 6 1 号公報、 特開昭 6 1 — 1 6 2 5 4 5号公報) 。 しかし、 この方法は、 成形品の外観や機械的強度を満足させる こ とができず、 特に表面の ベとつきは、 有機溶媒のブリ ー ドアウ トによ り さ らに悪化する。 Conventionally, a method of adding lithium perchlorate and a low molecular weight organic solvent as a third component to PVDF has been proposed as a method of reducing the amount of metal salt added and lowering the volume resistivity. (Japanese Unexamined Patent Publication No. Sho 61-72061, Japanese Unexamined Patent Publication No. Sho 61-62545). However, this method cannot satisfy the appearance and the mechanical strength of the molded product, and the stickiness of the surface is further deteriorated by the bleed out of the organic solvent.
また、 第三成分と して、 ポ リ アルキレ ンォキシ ドゃェピハロ ヒ ド リ ン重合体などの吸湿性のィォ ン良溶媒性樹脂を添加する方法が提 案されている (特開平 7 - 2 4 7 3 9 7号公報、 特開平 8 - 1 6 5 3 9 5 号公報、 特開平 8 — 1 7 6 3 8 9号公報) 。 しかし、 この方法は、 吸湿性樹脂を添加するため、 体積抵抗率の湿度依存性が大き く 、 ま た、 耐汚染性ゃ耐オゾン性の悪化を招 く 。 Also, a method has been proposed in which as a third component, a hygroscopic ion good solvent solvent resin such as a polyalkylenoxy dopehalohydrin polymer is added (Japanese Unexamined Patent Publication No. Hei 7-2). No. 4,739,977, Japanese Unexamined Patent Application Publication No. H8-165,955, and Japanese Unexamined Patent Application Publication No. H8-176,839). However, in this method, since a hygroscopic resin is added, the volume resistivity is largely dependent on humidity, and the pollution resistance and the ozone resistance are deteriorated.
<発明の開示 > <Disclosure of Invention>
本発明の目的は、 1 0 5〜 1 Ο ^ Ω πι程度の適度の体積抵抗率を有 し、 かつ、 体積抵抗率の分布が均一でバラツキが小さ く 、 フ イ ツ シ ュアイの少ない半導電性樹脂組成物を提供する こ とにある。 An object of the present invention, 1 0 5 have a ~ 1 Omicron ^ Omega moderate volume resistivity of about Paiiota, and distribution of the volume resistivity uniform dispersion is rather small, less off Lee Tsu Shi Yuai semiconductive An object of the present invention is to provide a conductive resin composition.
本発明の他の目的は、 1 0 5〜 1 0 η Ω m程度の体積抵抗率を有し、 体積抵抗率のバラツキが小さ く 、 高電圧を繰り返し印加しても体積 抵抗率の変化が少な く 、 体積抵抗率の湿度依存性が小さ く 、 しかも フ ィ ッ シュアイの少ない半導電性樹脂組成物を提供することにある。 本発明者らは、 前記従来技術の問題点を克服するために鋭意研究 した結果、 1 K H z 、 2 3 °Cで測定した比誘電率が 2 . 5以上の熱 可塑性樹脂に、 電解質と して、 パ一フルォロアルキルスルホ ン酸セ
シゥムなどのパー フルォロアルキル基含有セ シ ウ ム塩を配合したと こ ろ、 従来の塩化リ チウムゃ塩化力 リ ゥムなどの無機金属塩を配合 した場合と比較して、 前記諸特性が顕著に優れた半導電性樹脂組成 物の得られる こ とを見いだした。 Another object of the present invention, 1 0 5 to 1 has a 0 eta Omega m about a volume resistivity rather small variations in volume resistivity, change of the volume resistivity even after repeated application of a high voltage low Another object of the present invention is to provide a semiconductive resin composition having a small humidity dependence of the volume resistivity and having a small fisheye. The inventors of the present invention have conducted intensive studies to overcome the problems of the prior art, and found that a thermoplastic resin having a relative dielectric constant of 2.5 or more measured at 1 KHz and 23 ° C was used as an electrolyte. Perfluoroalkyl sulfonate When a perfluoroalkyl group-containing cesium salt such as lime is blended, the above-mentioned characteristics are remarkable as compared with the case where a conventional inorganic metal salt such as lithium chloride and chlorinated lime is blended. It has been found that an excellent semiconductive resin composition can be obtained.
本発明において使用するパー フルォロアルキル基含有セ シ ウ ム塩 は、 l k H z 、 2 3 °Cで測定した比誘電率が 2 . 5以上の熱可塑性 樹脂に溶けて、 該樹脂のガラス転移温度以上の温度でイオン伝導性 を示す化合物 (電解質) である。 パ—フルォロアルキル基含有セシ ゥム塩は、 前記熱可塑性樹脂に添加する と、 均一に分散し、 該樹脂 中でその少な く と も一部が陽イオンと陰イ オ ンに電離している も の と推定される。 The perfluoroalkyl group-containing cesium salt used in the present invention is dissolved in a thermoplastic resin having a relative dielectric constant of 2.5 or more measured at lk Hz and 23 ° C., and has a glass transition temperature of the resin or higher. It is a compound (electrolyte) that exhibits ionic conductivity at a temperature of. When the perfluoroalkyl group-containing cesium salt is added to the thermoplastic resin, it is dispersed uniformly, and at least a part of the cesium salt is ionized into cations and anions in the resin. It is estimated that
パー フルォロ アルキル基含有セ シ ウ ム塩を所定の割合で配合した 本発明の樹脂組成物は、 ①半導電性領域の体積抵抗率を有し、 ②体 積抵抗率の分布が均一でバラツキが小さ く 、 ③高電圧を繰り返し印 加しても体積抵抗率の変化が少な く 、 ④体積抵抗率の湿度依存性が 小さ く 、 ⑤フ ィ ッ シュアイが少な く 、 ⑥ブリ ー ドアゥ 卜が少ないと いう特徴を有している。 The resin composition of the present invention in which a perfluoroalkyl group-containing cesium salt is blended in a predetermined ratio has the following features: (1) has a volume resistivity in a semiconductive region, and (2) has a uniform and uniform distribution of volume resistivity. Small, ③ little change in volume resistivity even after repeated application of high voltage, ④ little humidity dependency of volume resistivity, ⑤ few fish eyes, 少 な い little door-to-door It has the following characteristics.
ノ、。一フルォロアルキル基含有セシウム塩の添加によ り もたらされ る これ らの特徴は、 予期し得ない顕著な ものであ っ て、 特定の比誘 電率を有する熱可塑性樹脂とパー フルォロアルキル基含有セ シ ゥ ム 塩との組み合わせによる顕著な作用効果を明瞭に示している。 No ,. These characteristics brought about by the addition of the fluorinated alkyl group-containing cesium salt are unexpected and remarkable, and the thermoplastic resin having a specific specific dielectric constant and the perfluoroalkyl group-containing cesium salt are used. The remarkable effects of the combination with shim salts are clearly shown.
本発明は、 比誘電率が 2 . 5以上の熱可塑性樹脂に半導電性を付 与するのに有効であるが、 その中でも フ ッ素樹脂、 さ らにフ ッ素樹 脂の中でも ビニ リ デン系樹脂を用いた場合に特に効果的である。 本 発明は、 これらの知見に基づいて完成するに至ったものである。 The present invention is effective for imparting semiconductivity to a thermoplastic resin having a relative dielectric constant of 2.5 or more. Among them, a fluororesin and a vinylidene among the fluororesins are particularly preferable. It is particularly effective when a resin is used. The present invention has been completed based on these findings.
かく して、 本発明によれば、 1 K H z 、 2 3 °Cで測定した比誘電
率が 2. 5以上の熱可塑性樹脂 1 0 0重量部に対して、 パー フ ルォ 口 アルキル基含有セ シ ウ ム塩 0. 0 1 〜 5重量部を含有する半導電 性樹脂組成物が提供される。 <発明を実施するための最良の形態〉 Thus, according to the present invention, the relative dielectric constant measured at 1 KHz and 23 ° C. A semiconductive resin composition containing 0.01 to 5 parts by weight of a perfluoroalkyl-containing cesium salt per 100 parts by weight of a thermoplastic resin having a ratio of 2.5 or more is provided. Is done. <Best mode for carrying out the invention>
(熱可塑性樹脂) (Thermoplastic resin)
本発明で使用する熱可塑性樹脂と しては、 l k H z、 2 3 での 比誘電率が 2. 5以上、 好ま し く は 3以上、 よ り好ま し く は 4以上 のものである。 比誘電率が 2. 5より も小さい熱可塑性樹脂は、 パー フルォロアルキル基含有セ シ ウ ム塩との相溶性が悪く 、 該樹脂中に 該セシウム塩を溶解させる こ とが困難であ り、 ひいては、 適度の体 積抵抗率を有し、 かつ、 体積抵抗率のバラツキが小さい半導電性樹 脂組成物を得る こ とが困難である。 The thermoplastic resin used in the present invention has a relative dielectric constant at lk Hz, 23 of 2.5 or more, preferably 3 or more, more preferably 4 or more. A thermoplastic resin having a relative dielectric constant of less than 2.5 has poor compatibility with a perfluoroalkyl group-containing cesium salt, making it difficult to dissolve the cesium salt in the resin. However, it is difficult to obtain a semiconductive resin composition having an appropriate volume resistivity and having a small variation in volume resistivity.
l k H z、 2 3 °Cでの比誘電率が 2. 5以上の熱可塑性樹脂と し ては、 フ ッ素樹脂、 ポ リ ア ミ ド樹脂、 塩化ビニル樹脂、 ポ リ カーボ ネ一 卜樹脂、 ポ リ エステル樹脂 (ポ リ エチ レ ンテ レ フ タ レー ト等) などが挙げられる。 こ れ らの中でも フ ッ素樹脂がよ り好ま しい。 As the thermoplastic resin having a relative dielectric constant of 2.5 or more at lk Hz and 23 ° C, there are fluorocarbon resin, polyamide resin, vinyl chloride resin, and polycarbonate resin. And polyester resins (polyethylene terephthalate, etc.). Of these, fluorine resin is more preferred.
l k H z、 2 3 °Cでの比誘電率が 2. 5以上のフ ッ素樹脂と して は、 例えば、 フ ッィ匕ビ二 リ デン樹脂、 フ ツイ匕ビニル樹脂、 エチ レ ン —テ ト ラ フルォロエチ レ ン共重合体 ( E T F E ) 、 ポ リ ク ロ 口 ト リ フルォ ロエチ レ ン ( P C T F E ) 、 エチ レ ン 一 ク ロ 口 ト リ フルォ ロ エチ レ ン ( E C T F E ) な どが挙げられる。 こ れ らの フ ッ素樹脂の 中でも、 成形加工性や半導電性付与効果の顕著性の点で、 フ ッ化ビ 二 リ デン樹脂が特に好ま しい。 Examples of the fluororesin having a relative dielectric constant of 2.5 or more at 23.degree. C. at lk Hz include, for example, Fidani vinylidene resin, Futidani vinyl resin, and ethylene — Examples include tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), and ethylene monocyclotrifluoroethylene (ECTFE). . Among these fluororesins, vinylidene fluoride resins are particularly preferred in view of the remarkable effects of the moldability and semiconductivity.
フ ッ化ビニリ デン樹脂と しては、 ポリ フ ッ化ビニリデン ( P V D F ) 、 フ ッ 化ビ二 リ デン一へキサフルォ ロ プロ ピ レ ン共重合体、 フ ツイ匕 ビ
ニ リ デンー テ ト ラ フルォ ロエチ レ ン共重合体、 フ ツイ匕ビニ リ デン ー テ ト ラ フルォ ロエチ レ ン一へキサフルォ ロ プロ ピ レ ン共重合体等が 挙げられる。 これらのフ ツイ匕ビニ リ デン樹脂は、 それぞれ単独で、 あるいは 2種以上を組み合わせて使用する こ とができ る。 Examples of the vinylidene fluoride resin include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, and fluorine resin. Nitridentate tetrafluoroethylene copolymer, futsudani vinylidenetetrafluoroethylene copolymer, and hexafluoropropylene copolymer. These Fusidani vinylidene resins can be used alone or in combination of two or more.
フ ッ化ビニ リ デン樹脂の中でも、 耐汚染性、 耐オゾン性、 耐溶剤 性の観点からは、 フ ツイ匕ビニ リ デンのホモポ リ マーである P V D F が好ま しい。 柔軟性や引き裂き強度な どの観点からは、 フ ッ化ビニ リ デンを主体とする フ ツイ匕ビニ リ デンコポ リ を単独で、 あるい は P V D F とプレン ド して使用する こ とが好ま しい。 接着性を向上 させる 目的で、 官能基を導入したフ ッ化ビニ リ デンコポ リ マー も好 適に使用される。 フ ッ化ビニ リ デン樹脂は、 それ以外のフ ッ素樹脂 とブレ ン ド して用いて もよい。 また、 フ ッ化ビニ リ デン樹脂の耐汚 染性、 耐オゾン性、 耐薬品性などをそれほど低下させない範囲で、 フ ッ素樹脂以外の熱可塑性樹脂をブレ ン ド して も よい。 Among vinylidene fluoride resins, from the viewpoints of stain resistance, ozone resistance and solvent resistance, PVDF which is a homopolymer of polyvinylidene fluoride is preferred. From the viewpoints of flexibility and tear strength, it is preferable to use fusidani vinylidene polymer mainly composed of vinylidene fluoride alone or blended with PVDF. For the purpose of improving the adhesiveness, vinylidene fluoride having a functional group introduced is also preferably used. The vinylidene fluoride resin may be used by blending it with another fluorine resin. Further, a thermoplastic resin other than the fluorocarbon resin may be blended as long as the contamination resistance, ozone resistance and chemical resistance of the vinylidene fluoride resin are not significantly reduced.
(パ一 フルォ ロ アルキル基含有セ シ ウ ム塩) (Perfluoroalkyl group-containing cesium salt)
本発明では、 フ ッ素樹脂などの前記所定の比誘電率を有する熱可 塑性樹脂の電気抵抗 (体積抵抗率) を低減して半導電性とするため に、 電解質と して、 パー フルォ ロ アルキル基含有セ シ ウ ム塩を配合 する。 In the present invention, in order to reduce the electrical resistance (volume resistivity) of the thermoplastic resin having the predetermined relative dielectric constant, such as a fluororesin, to make it semiconductive, the electrolyte is made of perfluoro. Contains cesium salt containing alkyl group.
本発明で使用するパ一 フルォ ロ アルキル基含有セ シ ウ ム塩は、 分 子中にパ一 フルォロアルキル基とセ シ ウ ムを含有する化合物であつ て、 電解質と しての性質を示す有機塩である。 パ一 フルォロアルキ ル基含有セシウム塩と しては、 例えば、 パ一フルォロアルキルスル ホ ン酸セ シ ウ ム、 0— フルォ ロ アルキル力ノレボ ン酸セ シ ウ ム、 一 フルォロアルキルリ ン酸セシウムを挙げる こ とができ る。 The perfluoroalkyl group-containing cesium salt used in the present invention is a compound containing a perfluoroalkyl group and cesium in a molecule, and is an organic salt exhibiting properties as an electrolyte. It is. Examples of the cesium salt containing a perfluoroalkyl group include cesium perfluoroalkyl sulfonate, 0 -fluoroalkyl cesium oleate, and monofluoroalkyl carbonyl. Cesium phosphate can be mentioned.
パ一 フルォロアルキル基含有セ シ ウ ム塩と しては、 炭素原子数が
通常 5 2 0、 好ま し く は 5 L 5、 よ り好ま し く は 5 1 0 のパ一 フルォ ロ アルキル基を含有する ものが望ま しい。 、。一 フルォロアル キル基の炭素原子数が少なすぎる と、 パ—フルォロアルキル基含有 セ シ ウ ム塩がブリ ー ドアゥ ト しゃす く な り、 多すぎる と導電性付与 効果が小さ く な る。 こ れ らのパー フルォ ロ アルキル基含有セ シ ウ ム 塩は、 それぞれ単独で、 あるいは 2種以上を組み合わせて使用する こ とができ る。 導電性付与効果とブ リ ー ドア ゥ 卜抑制とのバラ ンス を取るために、 分子量の異なる 2種以上のパ一 フルォロアルキル基 含有セ シ ウ ム塩を組み合わせて用いる こ と もできる。 こ れ らのパ一 フルォ ロ アルキル基含有セ シ ウ ム塩は、 1 k H z 2 3 °Cでの比誘 電率が 2 . 5以上の熱可塑性樹脂との相溶性に優れ、 体積抵抗率の 低減効果も良好であり、 しかも該樹脂を着色させる こ とがない。 こ れ らの フルォ ロ アルキル基含有セ シ ウ ム塩の中で も、 パー フ ル ォ ロ アルキルスルホ ン酸セ シ ウ ムが特に好ま しい。 As a fluorinated alkyl group-containing cesium salt, the number of carbon atoms is Usually, a compound containing a 5,200, preferably 5L5, more preferably 510, perfluoroalkyl group is desirable. ,. (I) If the number of carbon atoms in the fluoroalkyl group is too small, the perfluoroalkyl group-containing cesium salt becomes brittle, and if it is too large, the effect of imparting conductivity is reduced. These perfluoroalkyl group-containing cesium salts can be used alone or in combination of two or more. In order to balance the effect of imparting conductivity with the suppression of bleeding out, two or more kinds of cesium salts containing a perfluoroalkyl group having different molecular weights may be used in combination. These perfluoroalkyl group-containing cesium salts have excellent compatibility with thermoplastic resins having a specific dielectric constant of 2.5 or more at 1 kHz 23 ° C, and have a high volume resistivity. The effect of reducing the rate is good, and the resin is not colored. Among these fluoroalkyl group-containing cesium salts, cesium perfluoroalkylsulfonate is particularly preferred.
パ—フルォロアルキル基含有セ シ ウ ム塩の配合割合は、 前記熱可 塑性樹脂 1 0 0重量部に対して、 0 . 0 1 5重量部、 好ま し く は 0 . 0 5 1 重量部、 よ り好ま し く は 0 . 1 0 . 5重量部の範囲 である。 パーフルォロアルキル基含有セ シウ ム塩の配合割合が小さ すぎる と、 体積抵抗率の低減効果が小さ く 、 大きすぎる と、 セ シ ゥ ム含有電解質がブ リ ー ドアゥ ト した り 、 成形品が白濁する こ とがあ る。 フ ッ化ビニ リ デ ン樹脂な どの フ ッ 素樹脂の場合、 °— フルォ ロ ァルキル基含有セシゥム塩の配合割合が大きすぎる と、 凝集物の析 出が激し く な り、 樹脂の種類と加工条件によ っては、 分解や着色が 起こ る こ とがあ る。 パー フ ルォ ロ アルキル基含有セ シ ウ ム塩がパ一 フルォ ロ アルキルスルホ ン酸セ シ ウ ムであ る場合、 通常、 0 . 1 0 . 5重量部程度の配合割合でも、 充分な作用効果を得る こ とがで
き る。 The mixing ratio of the perfluoroalkyl group-containing cesium salt is 0.015 parts by weight, preferably 0.051 parts by weight, based on 100 parts by weight of the thermoplastic resin. More preferably, it is in the range of 0.10.5 parts by weight. If the mixing ratio of the perfluoroalkyl group-containing cesium salt is too small, the effect of reducing the volume resistivity is small, and if it is too large, the cesium-containing electrolyte may bleed out or be molded. May become cloudy. In the case of a fluororesin such as vinylidene fluoride resin, if the mixing ratio of the fluoridyl group-containing cesium salt is too large, the precipitation of agglomerates increases, and the type of the resin and Decomposition or coloring may occur depending on the processing conditions. When the perfluoroalkyl group-containing cesium salt is cesium perfluoroalkylsulfonate, a sufficient action and effect can be obtained even with a mixing ratio of about 0.10.5 parts by weight. Can get Wear.
(他の添加物) (Other additives)
本発明の半導電性樹脂組成物には、 必要に応じて、 各種添加剤を 配合する こ とができ る。 Various additives can be added to the semiconductive resin composition of the present invention as needed.
添加剤と しては、 例えば、 タルク、 マイ 力、 シ リ カ、 アル ミ ナ、 酸化チタ ン、 酸化亜鉛、 酸化鉄、 水酸化アルミ ニゥ ム、 水酸化マグ ネ シ ゥ ム、 黒鉛、 有機金属塩、 酸化金属などの粉末状フ ィ ラー ; ガ ラ ス繊維な どの繊維フ イ ラ 一 ; 等が挙げられる。 こ れらの フ イ ラ 一 は、 本発明の目的を妨げない範囲内で使用される。 Examples of additives include talc, myric, silica, alumina, titanium oxide, zinc oxide, iron oxide, aluminum hydroxide, magnesium hydroxide, graphite, and organic metals. Powdered fillers such as salts and metal oxides; fiber fillers such as glass fibers; and the like. These fillers are used within a range not to impair the purpose of the present invention.
また、 酸化防止剤、 滑剤、 可塑剤、 有機顔料、 無機顔料、 紫外線 吸収剤、 界面活性剤、 無機酸、 有機酸、 p H調製剤、 架橋剤、 カ ツ プリ ング剤などの汎用の添加剤を、 本発明の目的を妨げない範囲内 で使用する こ とができ る。 General-purpose additives such as antioxidants, lubricants, plasticizers, organic pigments, inorganic pigments, ultraviolet absorbers, surfactants, inorganic acids, organic acids, pH adjusters, cross-linking agents, and cutting agents Can be used as long as the object of the present invention is not hindered.
(半導電性樹脂組成物) (Semiconductive resin composition)
本発明の半導電性樹脂組成物は、 1 Κ Η ζ、 2 3 °Cで測定した比 誘電率が 2 . 5以上の熱可塑性樹脂中にパー フルォロアルキル基含 有セ シ ウ ム塩を均一に分散させる こ とによ り得る こ とができ る。 熱 可塑性樹脂中にパ— フルォロアルキル基含有セシウム塩が均一に分 散している こ とは、 所望の半導電性領域の体積抵抗率を有する樹脂 組成物が得られているか否かで判断する こ とができ る。 The semiconductive resin composition of the present invention can be obtained by uniformly dispersing a perfluoroalkyl group-containing cesium salt in a thermoplastic resin having a relative dielectric constant of 2.5 or more measured at 130 ° C. and 23 ° C. It can be obtained by dispersing. The fact that the perfluoroalkyl group-containing cesium salt is uniformly dispersed in the thermoplastic resin is determined by whether or not a resin composition having a desired volume resistivity of the semiconductive region is obtained. It can be.
本発明によれば、 体積抵抗率が、 通常 1 0 J〜 1 0 U Q m、 好ま し く は 1 0 '〜 1 0 U Q m、 よ り好ま し く は 1 0 o〜 l 0 U Q mの範囲内 の半導電性樹脂組成物を得る こ とができ る。 According to the present invention, the volume resistivity is typically between 10 J and 10 U Qm, preferably between 10 'and 10 U Qm, and more preferably between 10 o and 10 U Q It is possible to obtain a semiconductive resin composition in the range of m.
各成分の混合方法は、 特に限定されない。 具体的な混合方法と し て好適な ものは、 例えば、 パーフルォロアルキル基含有セ シ ウ ム塩 を水と水溶性溶剤との混合溶媒に溶解させ、 そ こ に樹脂粉末を加え
て、 ミ キサーなどの混合機で混合した後、 乾燥 (場合によ っては、 減圧乾燥) し、 得られた乾燥物を溶融押出 してペレ ツ ト化する方法 がある。 The method of mixing the components is not particularly limited. As a preferable mixing method, for example, a perfluoroalkyl group-containing cesium salt is dissolved in a mixed solvent of water and a water-soluble solvent, and a resin powder is added thereto. Then, after mixing with a mixer such as a mixer, there is a method of drying (in some cases, drying under reduced pressure), and melt-extruding the obtained dried product to form a pellet.
例えば、 熱可塑性樹脂と してフ ッ化ビニ リ デン樹脂を用いる場合 には、 ァセ 卜 ンを 5体積%程度の割合で添加した温水に、 パ一フル ォロアルキル基含有セ シ ウ ム塩を溶解させ、 そ こ に樹脂粉末を加え て混合した後、 乾燥し、 次いで、 乾燥物を溶融押出法によってペレ ッ ト化する方法が挙げられる。 パー フルォロアルキル基含有セ シ ゥ ム塩がパ一 フルォ ロ アルキルスルホ ン酸セ シウ ムの場合は、 水に溶 解させる こ とな く 、 直接樹脂と ドライ ブレ ン ド しても同様の効果が 得られるが、 その場合、 でき るだけ均一混合しやすいよ う に、 パ一 フルォロアルキルスルホン酸セ シ ウ ムを微粉末状に粉砕してから樹 脂と混合する こ とが好ま しい。 For example, when a vinylidene fluoride resin is used as the thermoplastic resin, a cesium salt containing a perfluoroalkyl group is added to warm water containing about 5% by volume of acetone. Dissolving, adding a resin powder to the mixture, mixing, drying, and then pelletizing the dried product by a melt extrusion method. When the perfluoroalkyl group-containing cesium salt is cesium perfluoroalkylsulfonate, the same effect can be obtained by dissolving in water and directly by dry blending with the resin. In this case, it is preferable to pulverize cesium perfluoroalkylsulfonate into a fine powder and then mix it with the resin in order to make the mixing as uniform as possible.
半導電性樹脂組成物の成形には、 溶融押出法、 射出成形法、 溶液 流延法、 塗布法などの各種成形法を適用する こ とができ る。 高濃度 のパ一 フルォロアルキル基含有セ シウ ム塩を含むマス タ 一 ,く ツ チの ペ レ ツ トを作成し、 成形時に必要に応じて樹脂で希釈してから加工 する こ と も可能である。 Various molding methods such as a melt extrusion method, an injection molding method, a solution casting method, and a coating method can be applied to the molding of the semiconductive resin composition. It is also possible to prepare a master pellet containing a high concentration of cesium salt containing a fluoroalkyl group and dilute it with resin as required during molding before processing. .
本発明の半導電性樹脂組成物を シー ト ま たは シーム レスベル 卜 に 押出成形する場合は、 連続押出成形法が好ま し く採用される。 シ一 卜の望ま しい連続押出成形法と しては、 1軸または 2軸スク リ ュ 一 押出機と T型ダイ スを用い、 溶融状態の樹脂組成物を リ ッ プから直 下に押出 し、 冷却 ドラム上にエア一ナイ フ等によ り密着させつつ冷 却固化する方法を挙げる こ とができ る。 特にフ ッ化ビニ リ デン樹脂 を使用する場合には、 冷却温度を 0 〜 1 0 0 °Cの範囲内に制御する こ とが望ま しい。 シーム レ スベル ト の望ま しい連続溶融押出成形法
と しては、 1 軸ま たは 2軸のス ク リ ュ 一押出機と スパイ ラ ル環状ダ イ スを用い、 ダイ スの リ ッ プから直下に押出 し、 内部冷却マン ドレ ル方式によ っ て内径を制御しながら引き取る方法を挙げる こ とがで き る。 When extruding the semiconductive resin composition of the present invention into a sheet or a seamless belt, a continuous extrusion method is preferably employed. A desirable continuous extrusion molding method for a sheet is to extrude a molten resin composition directly from a lip using a single-screw or twin-screw extruder and a T-die. In addition, a method of cooling and solidifying while adhering to the cooling drum with an air knife or the like can be cited. In particular, when using vinylidene fluoride resin, it is desirable to control the cooling temperature within the range of 0 to 100 ° C. Desired continuous melt extrusion of seamless belt For this purpose, a single-screw or two-screw screw extruder and a spiral ring die are used to extrude directly from the die lip to the internal cooling mandrel system. Thus, it is possible to cite a method of taking out while controlling the inner diameter.
本発明の半導電性樹脂組成物を用いて帯電ロ ールな どの ロ ール状 成形品を成形するには、 予め半導電性樹脂組成物をチューブ状に成 形してから、 芯金上に直接または他の層 (例えば、 他の樹脂層ゃェ ラス トマー層、 プライマ一層など) を介して被覆する方法、 あるい は、 半導電性樹脂組成物を芯金上に直接または他の層を介して塗布 法によ り被覆する方法などが採用される。 In order to form a roll-shaped molded product such as a charging roll using the semiconductive resin composition of the present invention, the semiconductive resin composition is formed into a tube in advance, and then the cored metal is formed. Coating directly or through another layer (for example, another resin layer, a elastomer layer, a primer layer, etc.), or applying the semiconductive resin composition directly on the core metal or another layer. For example, a method of coating by a coating method via a coating method is employed.
また、 フ ィ ルム、 シ一 卜、 チューブ、 糸状物、 その他の各種成形 品などは、 本発明の半導電性樹脂組成物に、 射出成形、 押出成形な どの一般の溶融成形法を適用する こ とによ り得る こ とができ る。 本発明の半導電性樹脂組成物は、 静電気防止性、 帯電防止性、 除 電性、 半導電性などが必要と される各種用途分野に適用する こ とが でき る。 本発明の半導電性樹脂組成物は、 単体で使用 して もよ く 、 また、 必要に応じて他の樹脂やエラ ス トマ一、 金属などと複合させ て使用する こ とができ る。 例えば、 本発明の半導電性樹脂組成物か らなる層と、 他の樹脂層とを複合化して積層シ一 卜 とする こ とがで き る。 各種成形品の全てを本発明の半導電性樹脂組成物で成形して もよいが、 成形品の表面に半導電性を付与するには、 その表面層の みを本発明の半導電性樹脂組成物で形成してもよい。 Films, sheets, tubes, filaments, and other various molded articles can be obtained by applying a common melt molding method such as injection molding or extrusion molding to the semiconductive resin composition of the present invention. Can be obtained by: The semiconductive resin composition of the present invention can be applied to various application fields requiring antistatic properties, antistatic properties, static elimination properties, semiconductivity, and the like. The semiconductive resin composition of the present invention may be used alone, or may be used in combination with another resin, an elastomer, a metal, or the like, if necessary. For example, a layer made of the semiconductive resin composition of the present invention and another resin layer can be combined to form a laminated sheet. Although all of the various molded articles may be molded with the semiconductive resin composition of the present invention, to impart semiconductivity to the surface of the molded article, only the surface layer of the semiconductive resin of the present invention is used. It may be formed of a composition.
<実施例 > <Example>
以下に実施例及び比較例を挙げて、 本発明についてよ り具体的に 説明する。
なお、 物性の測定法は、 次のとおり である。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. The methods for measuring physical properties are as follows.
( 1 ) 厚み (1) Thickness
成形物の厚みは、 ダイ ヤルゲージ厚み計 (小野測器社製、 商品名 「 D G — 9 1 1 」 ) を用いて測定 した。 The thickness of the molded product was measured using a dial gauge thickness gauge (trade name “DG-911” manufactured by Ono Sokki Co., Ltd.).
( 2 ) 体積抵抗率 (2) Volume resistivity
体積抵抗率は、 J I S K 6 9 1 1 に準拠して測定した。 よ り具 体的には、 リ ング状電極を有する レ ジ シテ ィ ビテ ィ セル 〔 ヒ ュ 一 レ ッ トパッカ— ド (株) 製、 商品名 「H P 1 6 0 0 8 B」 〕 に荷重 7 k g f でサンプルを挟み、 内側の電極と対向電極との間に 1 k Vの電圧を 厚み方向に 1 分間印加したと き の体積抵抗率を測定した。 内側の電 極の外径は 2 6 . 0 m m、 外側の対向電極の内径は 3 8 . 0 m m , 対向電極の外径は 4 0 . 0 m mであ る。 体積抵抗率は、 ヒ ュ — レ ツ トパ ッ カ ー ド (株) 製の測定装置 (商品名 「 H P 4 3 3 9 Aハイ レ ジスタ ンスメ ータ」 ) で求めた。 サンプルは、 測定前に室温 2 3 °C、 湿度 5 0 %の雰囲気下に 1 日間以上放置した後、 こ の環境下で測定 した。 The volume resistivity was measured according to JIS K6911. More specifically, a load is applied to a resinity cell having a ring-shaped electrode (HP 16008B, manufactured by Hulett Packard Co., Ltd.). The sample was sandwiched by kgf, and the volume resistivity was measured when a voltage of 1 kV was applied between the inner electrode and the counter electrode for 1 minute in the thickness direction. The outer diameter of the inner electrode is 26.0 mm, the inner diameter of the outer counter electrode is 38.0 mm, and the outer diameter of the counter electrode is 40.0 mm. The volume resistivity was determined with a measuring device (trade name “HP433A high resistance meter”) manufactured by Hulett Packard Co., Ltd. The sample was left in an atmosphere at a room temperature of 23 ° C and a humidity of 50% for at least one day before measurement, and then measured in this environment.
( 3 ) 平均値の算出 (3) Average value calculation
上記した厚み及び体積抵抗率の測定は、 任意に選んだ 2 0枚のシー 卜状サ ンプルについて測定 し、 厚みについては、 その算術平均値を 求め、 体積抵抗率については、 その最大値、 最小値、 及び算術平均 値を求めた。 The above thickness and volume resistivity measurements were made on 20 sheets of arbitrarily selected sheet-like samples, and the arithmetic mean value was obtained for the thickness, and the maximum and minimum values were obtained for the volume resistivity. The values and the arithmetic mean were determined.
( 4 ) 繰り返し電圧印加時の体積抵抗率 (4) Volume resistivity under repeated voltage application
上記の体積抵抗率の測定方法と同様に して測定した。 ただし、 電 圧 1 0 0 Vの電圧印加時間 1 0秒間と非電印加時間 1 0秒間のサイ クルを一回と して、 繰り返し 3 0 0 回まで行い、 各回の電圧印加時 の体積抵抗率を測定した。 電圧の印加と非印加は、 パー ソ ナルコ ン
ピュー夕で制御した。 The measurement was performed in the same manner as the above-described method of measuring the volume resistivity. However, the cycle of voltage application time of 100 V for 10 seconds and non-voltage application time of 100 seconds is one cycle, and the cycle is repeated up to 300 times, and the volume resistivity at each voltage application Was measured. The application and non-application of the voltage are controlled by a personal computer. Pew evening controlled.
( 5 ) 体積抵抗率の湿度依存性 (5) Humidity dependence of volume resistivity
サンプルを、 3 0 % 5 0 % 7 0 %及び 9 0 %の各相対湿度で 2 3 °Cの恒温恒湿槽 〔ナガノ化学機械製作所 (株) 製、 商品名 「L H 3 0 一 1 3 M」 〕 中に 2 4時間放置後、 前述の方法によ り体積抵抗率を 測定した。 ただし、 内側電極と対向電極との間には、 1 k Vではな く 1 0 Vの電圧を厚み方向に 1 分間印加した。 The sample was placed in a thermo-hygrostat at 23 ° C at a relative humidity of 30%, 50%, 70% and 90% [LH301-M, manufactured by Nagano Chemical Machinery Co., Ltd. ]] For 24 hours, and the volume resistivity was measured by the method described above. However, a voltage of 10 V instead of 1 kV was applied between the inner electrode and the counter electrode for 1 minute in the thickness direction.
( 6 ) ブ リ ー ドア ウ ト (6) Bleed out
サ ンプルを温度 2 3 °C、 相対湿度 5 0 %の環境下に 3 0 日間放置 した後、 目視と手触り によ り、 添加物のブリ ー ドアウ トの有無を確 認した。 The samples were left for 30 days in an environment at a temperature of 23 ° C and a relative humidity of 50%, and then visually inspected and touched to check for the presence of additive bleed-out.
( 7 ) フ ィ ッ シ ュ アイ (7) Fish eye
体積抵抗率の測定に供する シー ト状サンプルについて、 フ イ ツ シ ュアイの有無を目視で観察した。 The sheet-like sample used for measuring the volume resistivity was visually inspected for the presence or absence of fisheye.
[実施例 1 ] [Example 1]
°— フルォ ロォ ク タ ンスルホ ン酸力 リ ゥ ム 〔大日本ィ ンキ化学ェ 業 (株) 製、 商品名 「F 1 1 0」 ; C8F17S 03K〕 5 3. 8 gを 700 c c のァセ ト ン Z水 (混合比 = 7 0 c c / 6 3 0 c c ) 混合液に 5 0 °C で溶解し、 溶液 Aと した。 一方、 塩化セ シウム 〔和光純薬 (株) 製〕 2 0 gを 3 0 0 c c の水 ( 5 0 °C) に溶解し、 溶液 B と した。 溶液 Aと溶液 Bを混合攪拌して、 白色の沈殿物を析出させた。 濾過によ り、 この沈殿物から水溶性成分を取り除いた後、 3 0 0 0 c c の純 水で洗浄、 濾過し、 次いで、 9 0 °Cで減圧乾燥して、 パ— フルォロ オク タ ンスルホ ン酸セシウム 〔C 8F 17S 03C s〕 約 5 0 gを得た。 表 1 に示す組成比となるよ う に、 一フルォ ロオ ク タ ンスルホ ン 酸セ シ ウ ム (以下、 「 P F S C s 」 と略記) を約 9 0 °Cの熱水に溶
解した後、 4 0〜 5 0 °Cの温度にまで徐冷し、 次いで、 アセ ト ン濃 度が 5体積%となる量のアセ ト ンを加えた。 こ の溶液中に、 ポ リ フ ツイ匕ビニ リ デン ( P V D F ) 〔呉羽化学工業 (株) 製、 商品名 「 # 8 5 0」 ; l k H z 、 2 3 °Cでの比誘電率ど ' = 1 0 . 0 〕 の粉末 を投入した。 混合機 〔川田製作所 (株) 製、 商品名 「スーパ— ミ キ サー」 〕 を用いて、 回転数 1 0 0 0 r p mで約 5分間攪拌混合した。 樹脂と溶剤との混合比は、 樹脂粉末 1 0 0 g当たり、 4 0〜 5 0 °C の温水 1 2 0 c c とアセ ト ン 1 0 c c と した。 ° - Furuo Roo click data Nsuruho phosphate force Li ©-time; the [Dainippon I Nki chemical E Industry Co., Ltd. under the trade name "F 1 1 0" C 8 F 17 S 0 3 K] 5 3. 8 g The solution A was dissolved in a mixture of 700 cc of Aceton Z water (mixing ratio = 70 cc / 630 cc) at 50 ° C to obtain a solution A. On the other hand, 20 g of cesium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 300 cc of water (50 ° C.) to obtain a solution B. Solution A and solution B were mixed and stirred to precipitate a white precipitate. After removing water-soluble components from the precipitate by filtration, the precipitate was washed with 300 cc of pure water, filtered, and then dried under reduced pressure at 90 ° C to obtain perfluorooctane sulfonate. cesium [C 8 F 17 S 0 3 C s ] to obtain about 5 0 g. Dissolve cesium monofluorooctanesulfonate (hereinafter abbreviated as “PFSC s”) in hot water at about 90 ° C so that the composition ratio shown in Table 1 is obtained. After unraveling, the mixture was gradually cooled to a temperature of 40 to 50 ° C., and then, an amount of acetone having an acetate concentration of 5% by volume was added. In this solution, Porifutsu-Dani Vinylidene (PVDF) [produced by Kureha Chemical Industry Co., Ltd., product name "# 850"; = 10.0]. Using a mixer [trade name “Super Mixer” manufactured by Kawada Manufacturing Co., Ltd.], the mixture was stirred and mixed at a rotation speed of 100 rpm for about 5 minutes. The mixing ratio of the resin to the solvent was 120 cc of warm water at 40 to 50 ° C and 10 cc of acetate per 100 g of the resin powder.
得られた混合物を 1 0 0 °Cで 2 4時間、 オーブン内で乾燥し、 次 いで、 9 0 °Cで 5時間減圧乾燥した後、 1 軸ス ク リ ユ ー押出機 〔プ ラ技研 (株) 製〕 を用いて、 ダイ ス温度 2 3 0 で、 直径約 3 m m 程度にペレ ツ トイ匕した。 The obtained mixture was dried in an oven at 100 ° C. for 24 hours, and then dried under reduced pressure at 90 ° C. for 5 hours. Then, a single-screw screw extruder [Pula Giken ( And a diameter of about 3 mm at a die temperature of 230.
このよ う にペレ ツ ト化した原料を 1 軸スク リ ュー押出機 〔ブラ技 研 (株) 製〕 を用いて、 リ ツ プ外径 (直径) 5 0 m m 0、 リ ッ プク リ アラ ンス 1 m m、 ダイ ス温度 2 3 0 °Cのスパイ ラル環状ダイ スに 供給し、 該ダイ スの リ ッ プから直下に環状の溶融フ ィ ルム状に押 し 出 した。 押 し出 した環状の溶融フ ィ ルムの内径を内径サイ ジ ンダリ ング ( 4 0 °C ) によ っ て制御しつつ、 該溶融フ ィ ルムをニッ プロ一 ルで直下に引き取った。 得られた環状フ ィ ルムを流れ軸方向と直角 に約 4 0 0 m m長さの寸法に輪切り に切断した後、 切り開いてシ一 ト状と した。 得られたシ一 卜の厚みは、 1 5 0 〃 mであった。 Using a single screw extruder (manufactured by Bragiken Co., Ltd.), the pelletized raw material is used to prepare a lip outer diameter (diameter) of 50 mm0 and a lip clearance. It was supplied to a spiral annular die having a diameter of 1 mm and a die temperature of 230 ° C., and was extruded from the lip of the die into an annular molten film immediately below. While controlling the inner diameter of the extruded annular molten film by inner diameter siding (40 ° C.), the molten film was pulled down directly under a nipple. The obtained annular film was cut into a piece having a length of about 400 mm at a right angle to the flow axis direction, and then cut into a sheet. The thickness of the obtained sheet was 150 μm.
このよ う に して得られたシ一 卜を用いてサンプルを調製し、 体積 抵抗率等の測定を行った。 結果を表 1 に示す。 A sample was prepared using the sheet thus obtained, and the volume resistivity and the like were measured. Table 1 shows the results.
[実施例 2 〜 3 ] [Examples 2 and 3]
実施例 1 において、 P F S C s の配合割合を表 1 に示すよ う にそ れぞれ変更 したこ と以外は、 実施例 1 と同様に行った。 結果を表 1
に示す。 Example 1 was repeated in the same manner as in Example 1 except that the mixing ratio of PFSCs was changed as shown in Table 1. Table 1 shows the results Shown in
[実施例 4 ] [Example 4]
実施例 1 において、 P V D Fに代えて、 フ ツイ匕ビニ リ デン—へキ サフルォロプロ ピ レ ン共重合体 (以下、 「V D F P」 と略記) 〔呉 羽化学工業 (株) 製、 商品名 「 # 2 3 0 0」 ; 1 Κ Η ζ、 2 3 で の比誘電率 £ ' = 9. 8〕 を使用 し、 かつ、 P F S C s の配合割合 を表 1 に示すよ う に変えたこ と以外は、 実施例 1 と同様に行った。 結果を表 1 に示す。 In Example 1, in place of PVDF, Futizani vinylidene-hexafluoropropylene copolymer (hereinafter abbreviated as “VDFP”) [manufactured by Kureha Chemical Industry Co., Ltd .; 3 0 0 ”; 1 Κ Η, the relative permittivity at 23 = £ '= 9.8], and the mixing ratio of PFSC s was changed as shown in Table 1. Performed as in Example 1. Table 1 shows the results.
[比較例 1 〜 3 ] [Comparative Examples 1 to 3]
実施例 1 において、 P F S C s に代えて、 無機金属塩である塩化 セ シ ウ ム ( C s C 1 ) 、 塩化リ チ ウ ム ( L i C 1 ) ま たは塩化カ リ ゥム ( K C 1 ) を表 1 に示す各配合割合で使用 したこ と以外は、 実 施例 1 と同様に行っ た。 結果を表 1 に示す。 In Example 1, PFSCs was replaced by inorganic metal salts such as cesium chloride (CsC1), lithium chloride (LiC1) or potassium chloride (KC1). ) Was used in the same manner as in Example 1 except that each of the compounding ratios shown in Table 1 was used. Table 1 shows the results.
[比較例 4〜 6 ] [Comparative Examples 4 to 6]
実施例 1 において、 P F S C s に代えて、 ノ、0— フルォ ロオ ク タ ン スルホン酸力リゥム 〔大日本ィンキ化学工業 (株) 製、 商品名 「F 1 1 0」 ; C 8F 1?S 03K] (以下、 「P F S K」 と略記) またはパー フルォロ オク タ ンスルホ ン酸リ チ ウ ム 〔大日本イ ンキ化学工業 (株) 製、 商 品名 「F 1 1 6」 ; C8F 17S O。L i 〕 (以下、 「P F S L i 」 と略 記) を表 1 に示す各配合割合で使用 したこ と以外は、 実施例 1 と同 様に行った。 結果を表 1 に示す。
o o cn m In Example 1, in place of the PFSC s, Roh, 0 - Furuo Roo click data down sulfonic acid force Riumu [Dainippon Inki Chemical Industry Co., Ltd. under the trade name "F 1 1 0";? C 8 F 1 S 0 3 K] (hereinafter, "PFSK" for short) or per Furuoro Okuda Nsuruho Nsanri Ji U beam [Dainippon Lee Nki chemical Co., Ltd., trade name "F 1 1 6"; C 8 F 17 SO. L i] (hereinafter, abbreviated as “PFSL i”) was used in the same manner as in Example 1 except that each mixing ratio shown in Table 1 was used. Table 1 shows the results. oo cn m
口 π 体積抵抗率 Mouth π Volume resistivity
[Ω m] フイ ツ [Ω m]
CO a シュアィ 平均値 最大値 最小値 a/ b の有無 種類 部数 種類 部数 CO a Sure average value Maximum value Minimum value Presence of a / b Type Copies Type Copies
vl 斗 (a) ( vb) (比) vl doo (a) (vb) (ratio)
実施例 1 \ Ur 1 An Example 1 \ Ur 1 An
丄 r Γ Οし S U.DU 1.5 x 109 C v 1 Λ9 1丄 . n1! X 1 l Πi9 2.5 無し rr ¾ii 実施例 2 Γ V Ur 丄 1 ππ rr し S 2.0 x 109 5. X lU 1.0 X 丄 u 2.8 無しU r Γ S S S U.DU 1.5 x 10 9 Cv 1 Λ9 1 丄. N1! X 1 l Π i9 2.5 None rr ¾ii Example 2 Γ V Ur 丄 1 ππ rr S 2.0 x 10 9 5. X lU 1.0 X 丄 u 2.8 None
| M | M
1 l 1 Π 1 l 1 Π
v_/ I 0 o m 2.8 x 109 . nyJ v_ / I 0 om 2.8 x 10 9 .nyJ
rr 実施例 3 V _L inn y in9 1 * Q y m9 2.6 無しrr Example 3 V _L inn y in 9 1 * Q ym 9 2.6 None
1 実施例 4 VDFP 100 PFSCs 0.30 4.8 x 109 1.2 x 1010 3.7 x 109 3.3 無し1 Example 4 VDFP 100 PFSCs 0.30 4.8 x 10 9 1.2 x 10 10 3.7 x 10 9 3.3 None
\\
i 比較例 1 PVDF 10加0 CsCl 0.10 1.5 x 1010 2.0 x 1010 9.2 x 109 2.2 有りi Comparative example 1 PVDF 10 addition 0 CsCl 0.10 1.5 x 10 10 2.0 x 10 10 9.2 x 10 9 2.2 Yes
> \ ' > \ '
/ 比較例 2 PVDF 100 LiCl 0.10 1.1 x 1010 3.8 x 1010 8.7 x 109 4.4 有り/ Comparative Example 2 PVDF 100 LiCl 0.10 1.1 x 10 10 3.8 x 10 10 8.7 x 10 9 4.4 Yes
i μπ 比較例 3 PVDF 100 KC1 0.10 4.4 x 1010 9.4 x 1010 3.4 x 1010 2.8 有り o i μπ Comparative example 3 PVDF 100 KC1 0.10 4.4 x 10 10 9.4 x 10 10 3.4 x 10 10 2.8 Yes o
比較例 4 PVDF 100 PFSK 0.10 1.8 x 1010 3.3 x 1010 1.4 x 1010 2.4 無し T cv Comparative Example 4 PVDF 100 PFSK 0.10 1.8 x 10 10 3.3 x 10 10 1.4 x 10 10 2.4 None T cv
比較例 5 PVDF 100 PFSK 0.30 1.1 x 1010 2.5 x 1010 8.1 x 109 3.1 無し a H 比較例 6 PVDF 100 PFSLi 0.30 1.3 x 1010 2.2 x 1010 9.3 x 109 2.4 Comparative Example 5 PVDF 100 PFSK 0.30 1.1 x 10 10 2.5 x 10 10 8.1 x 10 9 3.1 None a H Comparative Example 6 PVDF 100 PFSLi 0.30 1.3 x 10 10 2.2 x 10 10 9.3 x 10 9 2.4
鰣 無し a 鰣 None a
菜 Greens
V 體 V body
、
,
重合体 〔呉羽化学工業 (株) 製、 商品名 「 # 2 3 0 0」 、 比誘電率 ε ' = 9. 8 Polymer [Kureha Chemical Industry Co., Ltd., product name "# 2300", relative permittivity ε '= 9.8
( 3 ) P F S C s 、。一 フルォ ロオ ク タ ンスルホ ン酸セ シ ウ ム (3) PFSCSs. C-Fluorooctane sulphonate
( 4 ) P F S K : 一 フルォ ロオ ク タ ンスルホ ン酸カ リ ウ ム 〔大日 本イ ンキ化学工業 (株) 製、 商品名 「 F 1 1 0」 〕 (4) PFSK: Fluorooctane sulphonic acid [trade name "F110" manufactured by Dainippon Inki Chemical Industry Co., Ltd.]
( 5 ) P F S L i — フルォロオ ク タ ンスルホ ン酸リ チウ ム 〔大 日本イ ンキ化学工業 (株) 製、 商品名 「 F 1 1 6」 〕 (5) PFSLi—Fluorooctanesulfonate [F1116, manufactured by Dainippon Ink & Chemicals, Inc.]
表 1 の結果から明らかなよ う に、 一 フノレオ ロ アノレキノレスノレホ ン 酸セシ ウ ム塩を使用する と、 適度な体積抵抗率を有し、 かつ、 体積 抵抗率の分布が均一でバラ ッキが小さい半導電性樹脂組成物の得ら れる こ とが分かる (実施例 1 4 ) 。 しかも、 実施例 1 4 の半導 電性樹脂組成物は フ ィ ッ シ ュアイがな く 、 添加物のプリ — ドアゥ 卜 も見られなかった。 As is evident from the results in Table 1, the use of cesium monofluorene anolequinolenoslenofonate has an appropriate volume resistivity and a uniform and uniform distribution of volume resistivity. It can be seen that a semiconductive resin composition having a small stick can be obtained (Example 14). In addition, the semiconductive resin composition of Example 14 had no fisheye and no additive pre-drain.
これに対して、 無機金属塩の塩化セ シ ウ ムを使用する と、 体積抵 抗率の分布が均一でバラ ツキが小さい半導電性樹脂組成物が得られ る ものの、 体積抵抗率の低減効果が小さ く 、 かつ、 フ ィ ッ シ ュ アイ が見られる (比較例 1 ) 。 塩化リ チウム (比較例 2 ) を使用すると、 体積抵抗率の分布のバラ ツキが大きい樹脂組成物が得られ、 また、 塩化力 リ ゥム (比較例 3 ) を使用する と、 体積抵抗率の低減効果が 小さい。 しかも、 こ れ らの無機金属塩 ( L i C 1 K C 1 ) を配合 した樹脂組成物 (比較例 2 3 ) は、 いずれも フ ィ ッ シ ュアイが見 られた。 さ らに、 塩化リ チウムを配合した樹脂組成物 (比較例 2 ) では、 ブ リ ー ドア ウ ト が確認さ れた。 In contrast, when cesium chloride, an inorganic metal salt, is used, a semiconductive resin composition having a uniform volume resistivity distribution and a small variation can be obtained, but the effect of reducing the volume resistivity is obtained. And the fish eyes are observed (Comparative Example 1). When lithium chloride (Comparative Example 2) is used, a resin composition having a large variation in volume resistivity distribution can be obtained, and when chloride chloride (Comparative Example 3) is used, the volume resistivity can be reduced. Small reduction effect. In addition, fishy eyes were observed in all of the resin compositions (Comparative Example 23) containing these inorganic metal salts (LiC1KC1). Further, in the resin composition containing lithium chloride (Comparative Example 2), bleed out was confirmed.
また、 パ一 フルォロアルキル基を含有する有機金属塩である もの の、 カ リ ウ ム塩 (比較例 4 5 ) や リ チ ウ ム塩 (比較例 6 ) を使用 する と、 体積抵抗率の低減効果が小さい。
[実施例 5、 及び比較例 7 〜 1 0 ] In addition, although an organic metal salt containing a perfluoroalkyl group, the use of a potassium salt (Comparative Example 45) or a lithium salt (Comparative Example 6) can reduce the volume resistivity. Is small. [Example 5, and Comparative Examples 7 to 10]
実施例 1 と同様に して、 表 2 に示す各成分と組成比を有するサ ン プルを調製した。 各サンプルについて、 繰り返し電圧印加時の体積 抵抗率を測定し、 かつ、 サイ クル 1 回目の体積抵抗率に対する 3 0 0 回目の体積抵抗率の比を算出 した。 結果を表 2 に示す。
In the same manner as in Example 1, samples having the components and composition ratios shown in Table 2 were prepared. For each sample, the volume resistivity during repeated voltage application was measured, and the ratio of the volume resistivity in the 300th cycle to the volume resistivity in the first cycle was calculated. Table 2 shows the results.
IN: t IN: t
o J1 o o J1 o
表 2 体積抵抗率の電圧印加回数依存性 フッ素樹脂 Table 2 Dependence of volume resistivity on the number of times of voltage application Fluororesin
[Ω m] [Ω m]
電圧印加回数 Voltage application times
部数 種 sfe 部数 Copies Type sfe Copies
1 5 10 100 実施例 5 PVDF 100 PFSCs 0.30 3.41 X 109 3.45 X 109 3.49 X 109 3.54 X 109 比較例 7 PVDF 100 CsCl 0.30 5.18 X 109 5.25 X 109 5.30 X 109 5.67 X 109 比較例 8 PVDF 100 LiCl 0.30 5.83 X 109 8.10 X 109 9.48 X 109 1.55 X 1010 比較例 9 PVDF 100 KC1 0.30 2.31 X 1010 2.73 X 1010 2.84 X 1010 2.90 X 1010 比較例 10 PVDF 100 PFSK 0.30 2.10 X 1010 2.14 X 1010 2.18 X 1010 2.34 X 1010
1 5 10 100 Example 5 PVDF 100 PFSCs 0.30 3.41 X 10 9 3.45 X 10 9 3.49 X 10 9 3.54 X 10 9 Comparative Example 7 PVDF 100 CsCl 0.30 5.18 X 10 9 5.25 X 10 9 5.30 X 10 9 5.67 X 10 9 Comparative Example 8 PVDF 100 LiCl 0.30 5.83 X 10 9 8.10 X 10 9 9.48 X 10 9 1.55 X 10 10 Comparative Example 9 PVDF 100 KC1 0.30 2.31 X 10 10 2.73 X 10 10 2.84 X 10 10 2.90 X 10 10 Comparative Example 10 PVDF 100 PFSK 0.30 2.10 X 10 10 2.14 X 10 10 2.18 X 10 10 2.34 X 10 10
(脚注) (Footnote)
( 1 ) P V D F : ポ リ フ ッ化ビニ リ デン 〔呉羽化学工業 (株) 製、 商品名 「 # 8 5 0」 、 比誘電率 = 1 0. 0〕 (1) PVDF: vinylidene fluoride [Kureha Chemical Industry Co., Ltd., product name "# 850", relative permittivity = 10.0]
( 2 ) P F S C s 。一 フルォ ロオ ク タ ンスルホ ン酸セ シ ウ ム (2) PFSCS. C-Fluorooctane sulphonate
( 3 ) P F S K : 、。一 フルォ ロオ ク タ ンスルホ ン酸カ リ ウ ム 〔大日 本ィ ンキ化学工業 (株) 製、 商品名 「 F 1 1 0」 〕 (3) PFSK: (I) Fluorooctane sulfonate [F1110, manufactured by Dainippon Ink & Chemicals, Inc.]
表 2の結果から明らかなよ う に、 パ一 フルォロアルキル基含有セ シゥム塩を使用する と、 高電圧を繰り返し印加 しても、 体積抵抗率 の変化が少ない半導電性樹脂組成物の得られる こ とが分かる (実施 例 5 ) As is evident from the results in Table 2, when a perfluoroalkyl group-containing cesium salt is used, a semiconductive resin composition having a small change in volume resistivity even when a high voltage is repeatedly applied can be obtained. (Example 5)
これに対して、 無機金属塩の塩化セ シ ウ ムを使用する と、 高電圧 を繰り返し印加して も、 体積抵抗率の変化が比較的少ない半導電性 樹脂組成物の得られる ものの、 フ ィ ッ シ ュ アイ が見られる (比較例 7 ) 。 無機金属塩の塩化リ チウム (比較例 8 ) または塩化力 リ ゥム On the other hand, when cesium chloride, an inorganic metal salt, is used, a semiconductive resin composition having a relatively small change in volume resistivity can be obtained even when a high voltage is repeatedly applied. A ash eye was observed (Comparative Example 7). Inorganic metal salt lithium chloride (Comparative Example 8) or chloride
(比較例 9 ) を使用する と、 体積抵抗率の電圧印加回数依存性が大 き く 、 し力、 も フ ィ ッ シ ュ アイ が見られる。 — フノレオ ロ アノレキル基 を含有する有機金属塩である ものの、 カ リ ウム塩を使用する と、 体 積抵抗率の電圧印加回数依存性が大き く 、 体積抵抗率の低減効果も 小さい (比較例 1 0 ) 。 When (Comparative Example 9) was used, the dependency of the volume resistivity on the number of times of voltage application was large, and fish force was also observed in the holding force. — Although it is an organometallic salt containing a phenolic group, the use of a potassium salt has a large dependence of the volume resistivity on the number of times of voltage application and a small effect of reducing the volume resistivity (Comparative Example 1) 0).
[実施例 6、 及び比較例 1 1 〜 1 2 ] [Example 6, and Comparative Examples 11 to 12]
実施例 1 と同様に して、 表 3 に示す各成分と組成比を有するサ ン プルを調製した。 各サンプルについて、 体積抵抗率の湿度依存性を 測定した。 結果を表 3 に示す。
In the same manner as in Example 1, samples having the components and the composition ratios shown in Table 3 were prepared. The humidity dependency of the volume resistivity was measured for each sample. Table 3 shows the results.
(脚注) (Footnote)
( 1 ) P V D F : ポ リ フ ッ化ビニ リ デ ン 〔呉羽化学工業 (株) 製、 商品名 「 # 8 5 0」 、 比誘電率 ε ' = 1 0. 0〕 (1) PVDF : Polyvinylidene fluoride [Kureha Chemical Industry Co., Ltd., product name "# 850", relative permittivity ε '= 10.0]
( 2 ) P F S C s : ノ、。一 フ ルォ ロ オ ク タ ン スノレホ ン酸セ シ ウ ム 表 3 の結果から明らかなよ う に、 パ一 フ ルォロアルキル基含有セ シ ゥ ム塩を使用する と、 体積抵抗率の温度依存性の小さな半導電性
樹脂組成物が得られる (実施例 6 ) 。 こ れに対して、 無機金属塩の 塩化セ シ ウ ム (比較例 1 1 ) を使用する と、 体積抵抗率の湿度依存 性はやや大き く 、 塩化リ チウ ム (比較例 1 2 ) を使用する と、 湿度 が上がるにつれて、 体積抵抗率が急激に変動する。 (2) PFSC s: No. C-Fluorooctane Snorrephonate As is evident from the results in Table 3, the use of perfluoroalkyl group-containing cesium salts results in the temperature dependence of volume resistivity. Small semi-conductive A resin composition is obtained (Example 6). On the other hand, when the inorganic metal salt cesium chloride (Comparative Example 11) was used, the humidity dependency of the volume resistivity was rather large, and lithium chloride (Comparative Example 12) was used. Then, as the humidity increases, the volume resistivity fluctuates rapidly.
<産業上の利用可能性〉 <Industrial applicability>
本発明によれば、 1 0 3〜 1 0 1 1 Ω m程度の適度の体積抵抗率を有 し、 体積抵抗率の分布が均一でバラッキが小さ く 、 しかもフ イ ツ シ ュ アイ のない半導電性樹脂組成物を提供する こ とができ る。 According to the present invention, 1 0 3 ~ 1 0 1 1 Ω have a moderate volume resistivity of the order of m, the distribution of the volume resistivity uniform Barakki is rather small, yet off Lee Tsu push from the eye without half It is possible to provide a conductive resin composition.
本発明の半導電性樹脂組成物は、 従来技術の導電性フ イ ラ一を混 合する方法と較べる と、 機械的強度に も優れる。 また、 ビニ リ デン 樹脂に代表される フ ッ素樹脂を用いた半導電性樹脂組成物は、 耐ォ ゾ ン性、 耐汚染性、 成形性などに優れており、 かつ、 前記諸特性に も優れている。 The semiconductive resin composition of the present invention is superior in mechanical strength as compared with a conventional method of mixing a conductive filler. Further, a semiconductive resin composition using a fluororesin represented by vinylidene resin has excellent zoning resistance, stain resistance, moldability, and the like, and also has the above-mentioned characteristics. Are better.
したがって、 電子写真方式の画像形成装置における帯電ロ ール、 転写ロ ール、 現像ロ ール、 帯電ベル ト 、 除電ベル ト な どの少な く と も表面層を形成する材料と して好適である。 また、 本発明の半導電 性樹脂組成物は、 半導電性、 静電気防止性、 塵埃吸着防止性などを 活かした用途、 例えば、 電子部品包装用フ ィ ルム、 壁紙、 O A機器 外装材、 粉体塗装材の搬送チュ—ブなどと して好適である。
Therefore, it is suitable as a material for forming at least a surface layer such as a charging roll, a transfer roll, a developing roll, a charging belt, and a discharging belt in an electrophotographic image forming apparatus. . Further, the semiconductive resin composition of the present invention can be used for applications utilizing semiconductive properties, antistatic properties, dust absorption preventing properties, and the like, for example, films for packaging electronic parts, wallpapers, OA equipment exterior materials, and powders. It is suitable as a tube for transporting a coating material.