WO1998019592A1 - Procede et dispositif de surveillance de dialyse - Google Patents

Procede et dispositif de surveillance de dialyse Download PDF

Info

Publication number
WO1998019592A1
WO1998019592A1 PCT/US1997/019869 US9719869W WO9819592A1 WO 1998019592 A1 WO1998019592 A1 WO 1998019592A1 US 9719869 W US9719869 W US 9719869W WO 9819592 A1 WO9819592 A1 WO 9819592A1
Authority
WO
WIPO (PCT)
Prior art keywords
hemodialysis
measuring
blood
concentration
urea
Prior art date
Application number
PCT/US1997/019869
Other languages
English (en)
Inventor
Gabor J. Kemeny
John D. Maynard
Original Assignee
Rio Grande Medical Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rio Grande Medical Technologies, Inc. filed Critical Rio Grande Medical Technologies, Inc.
Publication of WO1998019592A1 publication Critical patent/WO1998019592A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3413Diafiltration
    • A61M1/3417Diafiltration using distinct filters for dialysis and ultra-filtration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • A61M1/361Physical characteristics of the blood, e.g. haematocrit, urea before treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • A61M1/3612Physical characteristics of the blood, e.g. haematocrit, urea after treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • A61M1/3656Monitoring patency or flow at connection sites; Detecting disconnections
    • A61M1/3658Indicating the amount of purified blood recirculating in the fistula or shunt
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means
    • A61M2205/3313Optical measuring means used specific wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate

Definitions

  • the present invention pertains to a hemodialysis monitoring method and apparatus .
  • the monitoring method and device can be used to assess the adequacy of hemodialysis treatment .
  • toxins are eliminated from the patient's blood.
  • the identity of all of the toxins which may adversely effect the quality of life and life expectancy are not known, however, those toxins found in urine are believed to be significant. These toxins include urea, creatinine and others.
  • Kt/V ⁇ 1.2 has been used to estimate the adequacy of dialysis.
  • K is the urea clearance of a particular dialyzer measured in milliliters of blood cleared of urea per minute.
  • the t is the dialysis treatment time in minutes, and V reflects the volume of distribution of urea which is generally approximately equal to total body fluid volume.
  • K is a function of the particular filter used in the dialyzer and blood flow rate.
  • V is generally estimated for each individual based upon the patient's height, weight, sex and the like. Given K and V, the formula can be solved for t, the lowest value of t satisfying the formula being the minimum desirable dialysis treatment time . It can be appreciated that there are various limitations to the adequacy of this formulation. For example, since K is estimated for a given filter product at a particular flow rate, re-use of the filter or variability in the manufacture of the filter can effect the value of K. V also has an approximate value. Consequently, the estimated time t is effected by these inaccuracies .
  • Kt/V is defined as a function of uremic toxin concentrations observed at the beginning and at time t during dialysis.
  • Kt/V In (C 0 /C t ) Where C 0 is the uremic toxin concentration at the beginning of the treatment, and C t is at time t.
  • C 0 is the uremic toxin concentration at the beginning of the treatment
  • C t is at time t.
  • Applicant has devised a non-invasive, on-line, realtime dialysis monitor which can monitor the progress of dialysis via monitoring the concentration of uremic toxin.
  • the uremic toxins concentration of urea and creatinine, besides the clinically important bicarbonate, hematocrit, total protein and albumin can be optically monitored as well as pH.
  • the concentration of urea, creatinine and total protein can be optically monitored as well as similar parameters can be monitored optically in the serum ultrafiltrate, on certain hemodialyzers having separate ultrafiltration means. From these measurements, a concentration profile can be developed during and after dialysis to determine Kt/V, 2 -pool Kt/V and by measuring or estimating the ultrafiltration, the volume corrected Kt/V for a particular patient and treatment. By monitoring the concentration profile of urea during and after dialysis, the urea "re-bound" effect can be taken into account. Re-bound is caused by the non-uniform distribution of urea and other solutes among various body compartments that develops during dialysis and causes reduced solute removal.
  • Figure 1 is a schematic view of a dialysis monitoring device corresponding to the present invention
  • Figure 2 is a view of an optical sensor in accordance with the present invention
  • Figure 3 is an alternate embodiment of an optical sensor in accordance with the present invention.
  • Figure 4 is a view of the optical sensor of Figure 3 in combination with the control circuitry;
  • Figure 5 is a view of a calibration mechanism for the optical sensor;
  • Figure 6 is an infrared spectral plot of a set of blood samples
  • Figure 7 is a plot of results of a test using a sensor in accordance with the present invention.
  • Figure 8 is yet another plot of results of a test using a sensor in accordance with the present invention.
  • Figure 9 is yet another plot of results of a test using a sensor in accordance with the present invention.
  • Figure 10 is yet another plot of results of a test using a sensor in accordance with the present invention.
  • Figure 11 is a chart showing a sample set of adequacy parameters which can be derived based upon the readings obtained from the optical sensors of the device of the present invention
  • Figure 12 is a quasi-schematic drawing of yet another embodiment of the dialysis monitoring device in accordance with the present invention.
  • Figure 13 is a schematic drawing of the apparatus of Figure 12;
  • Figure 14 is a schematic drawing of the apparatus of Figure 12 showing the location of the parameter measurements ;
  • Figure 15 is yet another schematic drawing of the apparatus of Figure 12 showing the location of parameter measurements ;
  • Figure 16a is a plot of urea toxins versus dialysis time
  • Figure 16b is a plot of Q B versus dialysis time
  • Figure 16c is a plot of UR versus dialysis time.
  • FIG. 1 is a schematic view of the preferred embodiment of a dialysis monitoring device 10 of the present invention.
  • Sensor 12 optically monitors ultrafiltrate on-line and in real-time during dialysis.
  • a second sensor 14 (S2) likewise monitors dialysate online, optically in real-time during dialysis.
  • Sensor 16 S3 monitors arterial access blood, on-line, optically and in real-time.
  • One or more of these sensors may not be required in a particular application depending upon the particular blood or dialysate side parameters to be monitored.
  • the sensors preferably operate in the near- infrared.
  • Dialysis monitoring device 10 also includes an ultrafilter 18 and hemodialyzer . These components as well as the sensors are linked together in a system such that material access blood flows from a patient A through sensor 16 and then into ultrafilter 18. Ultrafiltrate is diverted from ultrafilter 18 through line 24 through monitor 12. Blood then passes through line 26 from ultrafilter 18 to hemodialyzer 20. From hemodialyzer 20 dialysate is diverted through sensor 14 by line 28. Dialyzer 20 includes a counter current water input line 27. Venous access blood is then returned to patient A through line 30.
  • Figure 2 shows an optical sensor of the preferred embodiment of the present invention including a light source 32, collimating optics 34, optical modulator 36, filter 38, focusing optics 40, fluid flow through cell 42, reimaging optics 44, detector 46.
  • the blood, dialysate or ultrafiltrate can pass through inlet port 48 and exit through outlet port 50.
  • Figure 3 shows an alternate embodiment of the sensor of Figure 2 which does not include the reimaging optics 44.
  • the detector is placed in close proximity to the flow cell, containing the blood.
  • the light scattered by the blood cells in all direction can be efficiently collected by a larger area detector in such an arrangement.
  • U.S. Patent Application Serial No. 08/512,940 entitled “METHOD FOR NON- INVASIVE BLOOD ANALYTE MEASUREMENT WITH IMPROVED OPTICAL INTERFACE”, filed August 9, 1995 is incorporated herein by reference.
  • Figure 4 shows the sensor of Figure 3 coupled to a controller 52 which is interconnected with optical modulator 36 to control the frequency of the light projected into the fluid flow through cell 42. Controller 52 also processes the signals from detector 46 caused by incident light emanating from fluid flow through cell 6. These signals are processed through a detector pre-amplifier 56 and analog to a digital converter 54 prior to being received and processed by controller 52.
  • the reference cell 58 is moved automatically into the beam as shown in Figure 5, everytime the sample cell 42 is removed.
  • the optical illuminate 60 and detector 46 stay in place while the guide mechanism 62 positions reference cell 58, energized by spring 64. Calibration of the instrument is ongoing while the reference is in the beam.
  • Figure 6 shows a typical set of near- infrared spectra of a set of blood samples containing different amounts of urea, creatinine, total protein and hematocrit. As it is obvious from the spectra, the materials with the different concentrations show very similar absorbance spectral shapes.
  • MLS Multiple least squares
  • R correlation coefficient
  • Figure 7 shows the results of a test using a sensor in accordance with the present invention comparing the known urea concentration in mg/dl of a sample with that obtained by the optical sensor.
  • Figures 8, 9 and 10 show the same relationship for creatinine (mg/dl) , glucose (mg/dl) and hematocrit (%) , respectively.
  • Figure 11 shows a sample set of adequacy parameters which can be derived based upon the readings obtained from the optical sensors. Measurements of uremic toxin concentration can be used to calculate single pool Kt/V (spKt/V) and URR 66, effective Kt/V, for the estimation of (eKt/V) and URR 68. Measurement of the re-bound effect 70 which in turn allows estimation of V 72 and thus the 2-pool Kt/V (dpKt/V) and URR 74.
  • spKt/V single pool Kt/V
  • URR 66 effective Kt/V
  • the monitor is connected to the hemodialyzer via its serial port .
  • the monitor can read all of the relevant dialyzer settings remotely at all times. Among other parameters, the blood flow in the dialyzer (Q B ) , the ultrafiltration target
  • UF ultrafiltration corrected Kt/V and URR 76 can also be calculated.
  • the near-infrared measurement of the spectrum of the blood allows the precise measurement of the red blood cell concentration.
  • the red blood cells (RBC's) are generated relatively slowly in the body, so a change in the concentration of the RBC's is an indication of the blood volume change.
  • the overtones and combination bands of the hemoglobin itself are manifested and detected not just the change of color.
  • the hematocrit level can be used to calculate blood volume change and, in turn, the corrected Kt/V (spKt/V, dpKt/V and eKt/V) and URR 78 can be calculated. All of these calculations can be made by a microprocessor or the like interconnected with the sensor controllers.
  • an optical sensor 80 as described above is placed on the "venous" side of the dialyzer.
  • This optical sensor can monitor the blood returning from the dialyzer to the patient, as shown in Figure 12.
  • Figure 13 is a schematic of the device shown in Figure 12 including a parastolic pump 81.
  • Figures 14-16 show how several clinically relevant parameters can be calculated based upon the sensor readings .
  • the venous side sensor can also be connected to a microprocessor for real-time calculation of these parameters.
  • the venous side sensor could be added to the embodiment shown in Figure 1 to provide the monitoring and calculation abilities of both that embodiment and the one shown in Figure 12.
  • Figure 14 shows a determination of the Recirculation R, where Q B is greater than Q A .
  • vascular access flow Q A can be calculated as follows:
  • recirculation can be calculated directly from measurements of systemic concentration (C s ) , arterial concentration (C A ) , and venous concentration (C v ) . Additionally, recirculation can be estimated by varying the dialyzer pump speed (Q B ) then recirculation occurs and the urea removal rate is reduced due to the presence of recirculation. If no recirculation is present, the urea removal rate will increase due to increased flow through the dialyzer. These characteristic changes can be used to determine the presence and amount of recirculation. In practice, recirculation measurements are made by obtaining systemic, arterial, and venous blood samples.
  • This process typically requires that the dialysis session be stopped momentarily to obtain the above blood samples, and represents a single point in time measurement.
  • the presence of recirculation and the amount of recirculation can be calculated at multiple points in time without interruption of the dialysis session.
  • the calculation or estimation of recirculation requires the use of measured arterial (C A ) and venous concentrations (C v ) in combination with the dialyzer parameters, including pump speed (Q B ) .
  • Figure 16a shows the typical relationship between arterial and venous concentration levels as a function of increasing dialysis time.
  • Figure 16b the pump speed to the dialyzer and subsequent flow through the dialyzer is changed. Three different levels are shown.
  • Figure 16c the influence of these changes can be seen on the urea removal rate .

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Urology & Nephrology (AREA)
  • Emergency Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • External Artificial Organs (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Le dispositif non invasif de surveillance en temps réel de la dialyse de la présente invention permet de surveiller une dialyse en cours. Le procédé consiste à mesurer l'urémie et d'autres paramètres sanguins (16, 80) et à utiliser ces paramètres pour surveiller la progression de la dialyse (18, 20). Ces paramètres peuvent être surveillés de visu et évalués par spectrométrie.
PCT/US1997/019869 1996-11-01 1997-10-31 Procede et dispositif de surveillance de dialyse WO1998019592A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US3011396P 1996-11-01 1996-11-01
US60/030,113 1996-11-01
US96132397A 1997-10-30 1997-10-30
US961,323 1997-10-30

Publications (1)

Publication Number Publication Date
WO1998019592A1 true WO1998019592A1 (fr) 1998-05-14

Family

ID=26705683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/019869 WO1998019592A1 (fr) 1996-11-01 1997-10-31 Procede et dispositif de surveillance de dialyse

Country Status (1)

Country Link
WO (1) WO1998019592A1 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094917A1 (fr) * 2000-06-02 2001-12-13 Hema Metrics, Inc. Systeme et methode de mesure de l'azote ureique sanguin, de l'osmolarite sanguine, de l'hemoglobine plasmatique et de la teneur en eau des tissus.
US6636759B2 (en) 1998-10-29 2003-10-21 Inlight Solutions, Inc. Apparatus and method for determination of the adequacy of dialysis by non-invasive near-infrared spectroscopy
WO2004033003A1 (fr) * 2002-10-04 2004-04-22 Allgeyer Dean O Dispositif et procede permettant la determination qualitative et quantitative de constituants de fluide intraveineux
US6847899B2 (en) 2002-04-26 2005-01-25 Dean Allgeyer, M.D., Inc. Device and method for qualitative and quantitative determination of intravenous fluid components
EP1566190A1 (fr) * 2002-11-14 2005-08-24 Nikkiso Company Limited Appareil de purification du sang
WO2006050970A1 (fr) * 2004-11-12 2006-05-18 Fresenius Medical Care Deutschland Gmbh Procede et dispositif pour epuiser au moins un composant d'un milieu fluide
ES2288327A1 (es) * 2004-05-31 2008-01-01 Gustavo Adolfo Martinez Chavez Cuantificacion y determinacion de urea mediante tecnicas no invasivas y su aplicacion en el tratamiento de hemodialisis.
EP1872812A1 (fr) * 2006-06-27 2008-01-02 Sorin Group Italia S.r.l. Machine de dialyse avec contrôle de la glycémie
WO2008014890A1 (fr) * 2006-08-04 2008-02-07 Nirlus Engineering Ag Procédé de mesure de la concentration en glucose dans le sang pulsatile
WO2009013575A1 (fr) * 2007-06-20 2009-01-29 B. Braun Avitum Ag Procédé pour déterminer le rapport de réduction ou la valeur kt/v d'un traitement de substitution de rein et appareil pour la réalisation du procédé
DE102007053752A1 (de) 2007-11-12 2009-05-20 Fresenius Medical Care Deutschland Gmbh Verfahren zum Ermitteln wenigstens einer Kennzahl den Glukosestoffwechsel eines Patienten betreffend und Vorrichtung hierfür
DE102009040104A1 (de) * 2009-09-04 2011-03-10 B. Braun Avitum Ag Vorrichtung zur extrakorporalen Blutbehandlung
WO2011147425A1 (fr) 2010-05-27 2011-12-01 Tallinn University Of Technology Procédé et dispositif de mesure et de surveillance des concentrations de substances dans un liquide biologique
WO2012000521A1 (fr) 2010-06-28 2012-01-05 Tallinn University Of Technology Procédé et dispositif pour déterminer la teneur en toxines urémiques liées aux protéines et moyennes dans un fluide biologique
WO2012062257A1 (fr) * 2010-09-29 2012-05-18 B. Braun Avitum Ag Profilage de dialysat commandé par contrôle uv
DE102012109858A1 (de) * 2012-10-16 2014-04-17 B. Braun Avitum Ag Dialyseoptimierungsverfahren
DE102012111375A1 (de) * 2012-11-23 2014-06-12 B. Braun Avitum Ag Verfahren und Vorrichtung zur Erkennung einer verminderten Dialyseleistung verursacht durch Verklottung
CN106896082A (zh) * 2017-04-26 2017-06-27 上海健康医学院 一种血透血液中尿素氮肌酐含量在线监测方法及系统
CN106970043A (zh) * 2017-04-26 2017-07-21 上海健康医学院 一种血透透析液中尿素氮含量在线监测方法及系统
CN106990068A (zh) * 2017-04-26 2017-07-28 上海健康医学院 一种血透透析液中尿素氮肌酐含量在线监测方法及系统
WO2019079340A1 (fr) * 2017-10-17 2019-04-25 Fresenius Medical Care Holdings, Inc. Techniques de détection d'une recirculation d'accès
US11007310B2 (en) 2018-12-28 2021-05-18 Fresenius Medical Care Holdings, Inc. Systems and methods for estimating ultrafiltration rates

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427889A (en) * 1979-08-23 1984-01-24 Carl Zeiss Stiftung Method and apparatus for molecular spectroscopy, particularly for the determination of products of metabolism
US5331958A (en) * 1992-03-31 1994-07-26 University Of Manitoba Spectrophotometric blood analysis
US5351686A (en) * 1990-10-06 1994-10-04 In-Line Diagnostics Corporation Disposable extracorporeal conduit for blood constituent monitoring
US5366903A (en) * 1988-12-22 1994-11-22 Radiometer A/S Method of photometric in vitro determination of the content of an analyte in a sample of whole blood
US5681273A (en) * 1991-12-23 1997-10-28 Baxter International Inc. Systems and methods for predicting blood processing parameters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427889A (en) * 1979-08-23 1984-01-24 Carl Zeiss Stiftung Method and apparatus for molecular spectroscopy, particularly for the determination of products of metabolism
US5366903A (en) * 1988-12-22 1994-11-22 Radiometer A/S Method of photometric in vitro determination of the content of an analyte in a sample of whole blood
US5351686A (en) * 1990-10-06 1994-10-04 In-Line Diagnostics Corporation Disposable extracorporeal conduit for blood constituent monitoring
US5681273A (en) * 1991-12-23 1997-10-28 Baxter International Inc. Systems and methods for predicting blood processing parameters
US5331958A (en) * 1992-03-31 1994-07-26 University Of Manitoba Spectrophotometric blood analysis

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636759B2 (en) 1998-10-29 2003-10-21 Inlight Solutions, Inc. Apparatus and method for determination of the adequacy of dialysis by non-invasive near-infrared spectroscopy
WO2001094917A1 (fr) * 2000-06-02 2001-12-13 Hema Metrics, Inc. Systeme et methode de mesure de l'azote ureique sanguin, de l'osmolarite sanguine, de l'hemoglobine plasmatique et de la teneur en eau des tissus.
US6847899B2 (en) 2002-04-26 2005-01-25 Dean Allgeyer, M.D., Inc. Device and method for qualitative and quantitative determination of intravenous fluid components
WO2004033003A1 (fr) * 2002-10-04 2004-04-22 Allgeyer Dean O Dispositif et procede permettant la determination qualitative et quantitative de constituants de fluide intraveineux
EP1566190A1 (fr) * 2002-11-14 2005-08-24 Nikkiso Company Limited Appareil de purification du sang
EP1566190A4 (fr) * 2002-11-14 2008-01-16 Nikkiso Co Ltd Appareil de purification du sang
ES2288327A1 (es) * 2004-05-31 2008-01-01 Gustavo Adolfo Martinez Chavez Cuantificacion y determinacion de urea mediante tecnicas no invasivas y su aplicacion en el tratamiento de hemodialisis.
CN101076364B (zh) * 2004-11-12 2010-06-16 弗雷森纽斯医疗护理德国有限责任公司 用于减少流体介质的至少一个成分的方法和设备
WO2006050970A1 (fr) * 2004-11-12 2006-05-18 Fresenius Medical Care Deutschland Gmbh Procede et dispositif pour epuiser au moins un composant d'un milieu fluide
US9333285B2 (en) 2004-11-12 2016-05-10 Fresenius Medical Care Deustschland Gmbh Method and device for downgrading at least one component of a fluid medium
EP1872812A1 (fr) * 2006-06-27 2008-01-02 Sorin Group Italia S.r.l. Machine de dialyse avec contrôle de la glycémie
RU2453266C2 (ru) * 2006-08-04 2012-06-20 Нирлус Энджиниринг Аг Измерение концентрации глюкозы в пульсирующей крови
JP2009545344A (ja) * 2006-08-04 2009-12-24 ニルラス・エンジニアリング・アクチエンゲゼルシャフト 脈を打つ血液におけるグルコース濃度を測定する方法
WO2008014890A1 (fr) * 2006-08-04 2008-02-07 Nirlus Engineering Ag Procédé de mesure de la concentration en glucose dans le sang pulsatile
US8391939B2 (en) 2006-08-04 2013-03-05 Nirlus Engineering Ag Metering glucose level in pulsing blood
WO2009013575A1 (fr) * 2007-06-20 2009-01-29 B. Braun Avitum Ag Procédé pour déterminer le rapport de réduction ou la valeur kt/v d'un traitement de substitution de rein et appareil pour la réalisation du procédé
US8702979B2 (en) 2007-06-20 2014-04-22 B. Braun Avitum Ag Method for determining the reduction ratio or the Kt/V value of a kidney substitution treatment and apparatus for the realisation of the method
US10226562B2 (en) 2007-11-12 2019-03-12 Fresenius Medical Care Deutschland Gmbh Method for the determination of at least one characteristic figure relating to a patient's glucose metabolism, and apparatus therefor
DE102007053752A1 (de) 2007-11-12 2009-05-20 Fresenius Medical Care Deutschland Gmbh Verfahren zum Ermitteln wenigstens einer Kennzahl den Glukosestoffwechsel eines Patienten betreffend und Vorrichtung hierfür
DE102007053752B4 (de) 2007-11-12 2019-04-04 Fresenius Medical Care Deutschland Gmbh Verfahren zum Ermitteln wenigstens einer Kennzahl den Glukosestoffwechsel eines Patienten betreffend und Vorrichtung hierfür
DE102009040104A1 (de) * 2009-09-04 2011-03-10 B. Braun Avitum Ag Vorrichtung zur extrakorporalen Blutbehandlung
WO2011147425A1 (fr) 2010-05-27 2011-12-01 Tallinn University Of Technology Procédé et dispositif de mesure et de surveillance des concentrations de substances dans un liquide biologique
WO2012000521A1 (fr) 2010-06-28 2012-01-05 Tallinn University Of Technology Procédé et dispositif pour déterminer la teneur en toxines urémiques liées aux protéines et moyennes dans un fluide biologique
CN102985822A (zh) * 2010-06-28 2013-03-20 塔林科技大学 用于确定生物流体中的中分子和蛋白结合尿毒症毒素的含量的方法和装置
AU2011274009B2 (en) * 2010-06-28 2016-06-23 Ou Optofluid Technologies A method and device for determining content of the middle and protein bound uremic toxins in a biological fluid
CN103140248A (zh) * 2010-09-29 2013-06-05 贝朗爱敦股份公司 通过紫外线检查控制透析液走势
WO2012062257A1 (fr) * 2010-09-29 2012-05-18 B. Braun Avitum Ag Profilage de dialysat commandé par contrôle uv
DE102012109858A1 (de) * 2012-10-16 2014-04-17 B. Braun Avitum Ag Dialyseoptimierungsverfahren
DE102012111375A1 (de) * 2012-11-23 2014-06-12 B. Braun Avitum Ag Verfahren und Vorrichtung zur Erkennung einer verminderten Dialyseleistung verursacht durch Verklottung
CN106970043A (zh) * 2017-04-26 2017-07-21 上海健康医学院 一种血透透析液中尿素氮含量在线监测方法及系统
CN106990068A (zh) * 2017-04-26 2017-07-28 上海健康医学院 一种血透透析液中尿素氮肌酐含量在线监测方法及系统
CN106896082A (zh) * 2017-04-26 2017-06-27 上海健康医学院 一种血透血液中尿素氮肌酐含量在线监测方法及系统
CN106970043B (zh) * 2017-04-26 2023-08-11 上海健康医学院 一种血透透析液中尿素氮含量在线监测方法及系统
CN106896082B (zh) * 2017-04-26 2024-02-13 上海健康医学院 一种血透血液中尿素氮肌酐含量在线监测方法及系统
WO2019079340A1 (fr) * 2017-10-17 2019-04-25 Fresenius Medical Care Holdings, Inc. Techniques de détection d'une recirculation d'accès
US11154647B2 (en) 2017-10-17 2021-10-26 Fresenius Medical Care Holdings, Inc. Techniques for detecting access recirculation
US11007310B2 (en) 2018-12-28 2021-05-18 Fresenius Medical Care Holdings, Inc. Systems and methods for estimating ultrafiltration rates
US11738125B2 (en) 2018-12-28 2023-08-29 Fresenius Medical Care Holdings, Inc. Systems and methods for estimating ultrafiltration rates

Similar Documents

Publication Publication Date Title
WO1998019592A1 (fr) Procede et dispositif de surveillance de dialyse
CN112203578B (zh) 用于确定体外血液回路中循环的血液的至少一个参数的传感器和设备
US9423338B2 (en) Apparatus and apparatus control method for the quantitative concentration determination of selected substances filtered out of a patient's body in a fluid
KR100318579B1 (ko) 혈액투석기용혈액투석모니터시스템
US9233199B2 (en) Method of detecting recirculation in an arteriovenous shunt during ongoing hemodialysis and dialysis system
CA2292717C (fr) Procede et dispositif permettant de calculer le rendement d'une dialyse
US6117099A (en) System and method for noninvasive hemodynamic measurements in hemodialysis shunts
US6666840B1 (en) Method for determining waste products in the dialysis liquid in dialysis treatment
US7018353B2 (en) Hematocrit sampling system
US9849225B2 (en) Self calibrating blood chamber
US9265872B2 (en) Device and method for measuring a blood constituent in blood for an extracorporeal blood treating device
US20120228226A1 (en) Kidney substitution treatment machine
KR19990029075A (ko) 혈액투석기용 혈액투석 모니터 시스템
JP2002533170A (ja) 体外血液処理中に血液成分の分布量を算定するための方法およびこの方法を実施するための装置
US9814412B2 (en) Method and device for determining a blood constituent
US20200237991A1 (en) Blood Purification Apparatus
KR100498628B1 (ko) 혈액투석 단락에서의 비침입성 혈액동력학적 측정시스템과 방법
US20220203002A1 (en) Recirculation measurement by means of diffusion equilibrium
Johnson et al. Non-invasive, optical measurement of absolute blood volume in hemodialysis patients
Ravagli et al. A New Method for Continuous Relative Blood Volume and Plasma Sodium Concentration Estimation during Hemodialysis
Nakano et al. Estimation of blood oxygen saturation in the circulation circuit for extracorporeal membrane oxygenation
Ghanifar et al. Optimal wavelength selection in ultraviolet spectroscopy for the estimation of toxin reduction ratio during hemodialysis
CN118831214A (en) Sensor and device for determining at least one parameter of blood circulating in an extracorporeal blood circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998521615

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase