WO1998019065A1 - Internal combustion engine gas flow control system - Google Patents

Internal combustion engine gas flow control system Download PDF

Info

Publication number
WO1998019065A1
WO1998019065A1 PCT/DE1997/002161 DE9702161W WO9819065A1 WO 1998019065 A1 WO1998019065 A1 WO 1998019065A1 DE 9702161 W DE9702161 W DE 9702161W WO 9819065 A1 WO9819065 A1 WO 9819065A1
Authority
WO
WIPO (PCT)
Prior art keywords
throttle valve
channel
throttle
gas
gas flow
Prior art date
Application number
PCT/DE1997/002161
Other languages
German (de)
French (fr)
Inventor
Karl Gmelin
Thomas Bursitzky
Johannes Meiwes
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO1998019065A1 publication Critical patent/WO1998019065A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10032Plenum chambers specially shaped or arranged connecting duct between carburettor or air inlet duct and the plenum chamber; specially positioned carburettors or throttle bodies with respect to the plenum chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1035Details of the valve housing
    • F02D9/1055Details of the valve housing having a fluid by-pass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/08Thermoplastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a gas routing system of an internal combustion engine according to the preamble of claim 1.
  • a gas stream is usually supplied to the combustion chamber or combustion chambers via a channel.
  • the channel has a relatively large cross-section, so that a large gas flow can be supplied to the combustion chamber or combustion chambers without excessive flow losses if required.
  • an adjustable throttling device with which the gas flow is controlled.
  • the throttle element is adjusted using an actuator.
  • the throttle element is usually a throttle valve.
  • the gas stream is flowing air, which, depending on the type of internal combustion engine, is supplied with fuel in the course of the channel or the fuel is injected directly into the combustion chamber or into the combustion chambers.
  • Combustion chamber inflowing gas flow is quite small. Because this is particularly true in the idle range of the internal combustion engine Problems with the mixture formation and thus with the course of combustion in the combustion chamber can lead to a secondary gas flow into the combustion chamber or into the combustion chambers via a secondary duct. Because the cross section of the secondary duct is quite small, the secondary gas flow in the secondary duct has a high flow velocity in the region of the inlet duct into the combustion chamber even with a relatively small secondary gas flow, which improves the mixture formation and thus the combustion process in the combustion chamber or in the combustion chambers.
  • the gas routing system of an internal combustion engine designed according to the invention with the characterizing features of claim 1 has the advantage that the manufacturing effort is significantly reduced.
  • the throttle element is designed in the form of a throttle valve and the secondary duct inlet of the secondary duct is additionally controlled by a flat side of the throttle valve, this offers the advantage that the free cross-section in the secondary duct is evident or closable even with a slight adjustment of the throttle valve.
  • the manufacturing outlay is advantageously also reduced, and the assignment of the throttle valve to the secondary duct inlet is easily possible.
  • Throttle valve closes the channel, the free cross-section of the channel is changed only slightly by slightly adjusting the throttle valve, then this has considerable advantages in assigning the throttle valve to the secondary channel inlet.
  • FIG. 1 shows a schematic representation of a gas routing system designed according to the invention and FIGS. 2, 3 and 4 show details of differently designed exemplary embodiments.
  • the gas routing system of an internal combustion engine designed according to the invention can be used in any internal combustion engine in which a combustion chamber is provided via a channel a main channel gas stream and a secondary gas stream is to be supplied via a secondary channel.
  • the internal combustion engine can have only one combustion chamber.
  • the internal combustion engine can also comprise several combustion chambers.
  • the channel can be divided into several individual channels before reaching the combustion chambers.
  • the channel with the adjustable throttle element can be designed such that the adjustable throttle element controls the gas flow for all combustion chambers of the internal combustion engine.
  • the gas routing system can also be designed such that, for example, each combustion chamber of the internal combustion engine is assigned a separate channel with a separate throttle element.
  • At least one of these throttling elements then also serves to adjust the secondary gas flow in the secondary duct.
  • each of the adjustable throttle elements serves to control the main duct gas flow in the duct and also to control the secondary gas flow in the secondary duct.
  • the internal combustion engine has four combustion chambers and the throttle element controls the gas flow, the main channel gas flow and the secondary gas flow for the four combustion chambers.
  • FIG. 1 shows a preferred selected embodiment in symbolic form.
  • FIG. 1 schematically shows an internal combustion engine 2 and a gas routing system 4 belonging to the internal combustion engine 2.
  • the gas routing system 4 comprises a channel 8, a throttle element 10 and a secondary duct 12.
  • the duct 8 comprises a duct inlet side 14, the throttle element 10, a connection 15 and a collector 16. Viewed in the direction of flow, the parts of the duct 8 mentioned come in the order in which they were named.
  • the individual channels 18, 18 ′, 18 ′′, 18 ′′ ′′ are designed, for example, as oscillating tubes in order to be able to achieve the greatest possible full load output in the internal combustion engine 2.
  • Internal combustion engine 2 can, for example, be designed such that a fuel injection valve is located in the area of the channel inlet side 14 in front of the throttle element 10, or the internal combustion engine 2 can be constructed such that at the end of each of the individual channels 18, 18 ', 18' ', 18' ' 'one each
  • Fuel injection valve is arranged, which injects the fuel either upstream of the inlet valve into the individual channels 18, 18 ', 18' ', 18' '' or behind the inlet valves directly into the combustion chambers 6, 6 ', 6' ', 6' ''.
  • the secondary duct 12 comprises a secondary duct inlet 20, a secondary duct guide 22, a so-called turbulence collector 24, a first turbulence air supply 26, a second Turbulence air supply 26 ', a third turbulence air supply 26''and a fourth turbulence air supply 26'''.
  • the secondary duct 12 branches off from the duct 8 in the region of the throttle element 10.
  • the secondary duct 12 begins with the secondary duct inlet 20.
  • a gas stream 30 flows through the gas routing system 4.
  • the gas stream 30 is shown symbolically in the drawing with an arrow provided with the reference symbol 30.
  • Gas stream 30 is typically flowing air.
  • the gas stream 30 can also be a fuel-air mixture, depending on whether one looks at the gas stream upstream or downstream of the fuel injection valve, where fuel is added to the flowing air.
  • the throttle element 10 In the area of the throttle element 10, the
  • Gas stream 30 into a main channel gas stream 31 and into a secondary gas stream 32 The main channel gas stream 31 flows through the connection 15, through the collector 16 and through the individual channels 18, 18 ', 18' ', 18' '' into the combustion chambers 6, 6 ', 6 '', 6 '' '.
  • the secondary gas stream 32 flows through the
  • the throttle body 10 shown symbolically preferably comprises a throttle valve connector 34.
  • the throttle valve connector 34 has a tubular wall 36 and a throttle valve channel on the inside of the wall 36 34c.
  • a throttle valve 40 which is symbolically shown in FIG. 1 and is pivotably mounted with the aid of a throttle valve shaft 38.
  • Throttle valve 40 can be adjusted with a mechanically and / or electrically operating actuator 42, which is also shown symbolically.
  • the actuator 42 comprises, for example, an electric motor with which the throttle valve shaft 38 and the throttle valve 40 fastened to the throttle valve shaft 38 can be adjusted via a gear, not shown.
  • the actuator 42 can adjust the throttle valve 40 so that the free cross section for the main channel gas flow 31 is completely or almost completely closed.
  • the throttle valve 40 can also be adjusted so that the air or the fuel-air mixture can flow largely unthrottled through the throttle valve duct 34c of the throttle valve connector 34 into the collector 16. By adjusting the throttle valve 40, the main duct gas flow 31 flowing through the duct 8 can be controlled.
  • the secondary duct inlet 20 is formed, for example, by a plurality of cross bores leading through the wall 36 of the throttle valve connector 34 into the throttle valve duct 34c.
  • the transverse bores are arranged, for example, such that when the throttle valve duct 34c of the duct 8 is closed by the throttle valve 40, the transverse bores of the secondary duct inlet 20 are also closed.
  • the transverse bores of the secondary duct inlet 20 can be closed by the peripheral surface of the disk-like throttle valve 40.
  • Throttle valve 40 both the main channel gas flow 31 flowing through the channel 8 and the secondary gas flow 32 flowing through the secondary channel 12 can be controlled.
  • the control of the gas flow 30 or the main channel gas flow 31 and the secondary gas flow 32 is possible together with the adjustable throttle element 10.
  • transverse bores of the secondary duct inlet 20 leading through the wall 36 cannot be made arbitrarily large in the exemplary embodiment shown symbolically in FIG. 1, in particular because the throttle valve 40 is not arbitrarily thick, and because these transverse bores are not arranged over the entire circumference of the throttle valve duct 34c In the exemplary embodiment shown in FIG. 1, only a relatively small secondary gas flow 32 can be led through the secondary channel 12. Because the secondary gas stream 32 is often intended to be larger than is possible in the exemplary embodiment shown in FIG. 1, exemplary embodiments are shown in the following figures in which the control of a larger secondary gas stream 32 is also possible.
  • FIG. 2 shows, with a changed scale, a modified, particularly advantageous, preferably selected one
  • the throttle valve 40 has the shape of a flat, flat, approximately round disk.
  • the throttle valve 40 has a first side surface 40a facing the channel inlet side 14 and a second second surface 40b facing the connection 15 or the combustion chambers 6, 6 ', 6' ', 6' ''.
  • the throttle valve 40 has a circumferential surface 40c between the two side surfaces 40a, 40b.
  • the secondary channel inlet 20 is essentially one
  • Bypass tube 44 formed.
  • the throttle valve connector 34 with the wall 36 is an injection molded part.
  • Auxiliary duct guide 22 is cast as a cavity in wall 36 of throttle valve connector 34.
  • Throttle valve connector 34 is provided with a transverse mounting hole 46 leading from the outside through the wall 36 into the channel inlet side 14. To the outside, the mounting hole 46 is closed with a plug 46a. The mounting hole 46 connects the
  • the bypass tube 44 is inserted into the mounting hole 46 on the side of the wall 36 facing the duct inlet side 14, and is fixed and sealed therein.
  • the bypass tube 44 has one of the side surfaces 40a of the throttle valve 40 facing end 48.
  • the bypass tube 44 is bent so that the end 48 extends approximately parallel to the longitudinal axis of the throttle valve connector 34 in the direction of the throttle valve 40.
  • An end piece 50 is fitted into the end 48 of the bypass tube 44, sealed and fixed with respect to the bypass tube 44.
  • the end piece 50 of the secondary duct inlet 20 of the secondary duct 12 is tubular and has an end face 20a facing the first side surface 40a of the throttle valve 40. Depending on the position of the, there is between the end face 20a and the side face 40a
  • Throttle valve 40 a more or less controllable secondary duct throttle cross section 52.
  • Auxiliary duct throttle cross section 52 depends on the position of throttle valve 40. Roughly considered, the secondary duct throttle cross section 52 is determined by the scope of the
  • Cavity in the wall 36 of the throttle valve connector 34 results in considerable advantages in terms of production costs, weight or material requirements and the space requirements of the gas routing system 4.
  • the tubular throttle valve connector 34 has an inner lateral surface. This lateral surface forms the throttle valve channel 34c. Depending on the position of the throttle valve 40, there is a more or less large throttle cross-section 55 between the throttle valve channel 34c and the peripheral surface 40c of the throttle valve 40.
  • the throttle valve 40 can be adjusted in the opening direction until the throttle valve 40 is parallel to the longitudinal direction of the throttle valve body 34. In the exemplary embodiment shown in FIG. 2, this is a rotation counter clockwise. In this position of the throttle valve 40, the throttle cross section 55 is opened to the maximum.
  • Throttle cross section 55 in the end position of the throttle valve 40 its minimum or the throttle cross section 55 is completely closed.
  • a closed position stop (not shown) is provided, against which the throttle valve shaft 38 comes to rest in the closed position.
  • the throttle valve 40 strikes the throttle valve duct 34c in the closed position; d. H. the throttle valve channel 34c serves as a closed position stop. So that the throttle valve 40 does not become jammed with the throttle valve duct 34c, the throttle valve 40 is set in the closed position, i. H.
  • the throttle valve 40 is not adjustable in the closed position until the throttle valve 40 is transverse to the longitudinal axis of the throttle valve connector 34, but the throttle valve 40 comes into contact with the closed position stop at an angle of less than 90 ° relative to the longitudinal axis of the throttle valve connector 34 .
  • the throttle valve 40 is shown in a position in which the throttle valve 40 is slightly adjusted in the opening direction, i. H.
  • the throttle valve 40 is shown in a position in which the secondary duct throttle cross section 52 and the throttle cross section 55 are slightly open.
  • the throttle valve 40 is in the closed position, ie if the throttle valve 40 or the throttle valve shaft 38 abuts the closed position stop, then the throttle cross section 55 is complete or Nearly completely closed, and also the secondary duct throttle cross section 52 is at least almost completely closed. If the throttle valve 40 is adjusted in the opening direction by the actuator 42 (FIG. 1), starting from the closed position, that is to say in the exemplary embodiment shown in FIG. 2, rotation counterclockwise, then the secondary duct throttle cross section 52 is already at a slight rotation of the throttle valve 40 opened relatively wide, whereas the throttle cross section 55 is initially only opened relatively little.
  • the secondary duct throttle cross section 52 is opened further, to such an extent that the throttling of the secondary gas flow 32 flowing through the secondary duct 12 essentially no longer takes place at the secondary duct throttle cross section 52, but within the secondary duct guide 22; at the same time, the throttle cross section 55 is increasingly opened.
  • the secondary duct throttle cross section 52 When the throttle valve 40 rotates relatively slightly from the closed position, the secondary duct throttle cross section 52 is first opened relatively strongly, and the throttle cross section 55 is opened relatively weakly in the process. A relatively wide rotation of the throttle valve 40 in the opening direction then has virtually no influence on the secondary duct throttle cross section 52 and thus on the size of the secondary gas flow 32 flowing through the secondary duct 12, but by turning the throttle valve 40 then essentially only the through the main channel gas flow 31, which flows relatively broadly opening throttle cross section 55, is controlled.
  • the throttle valve 40 can properly reach its closed position stop, and in order to ensure that the end face 20a of the secondary duct inlet 20 is opposite the side face 40a, in particular in FIG
  • the closed position of the throttle valve 40 is correctly aligned, wherein it is preferably provided that the throttle valve 40 in its closed position rests on the end face 20a of the secondary duct inlet 20 and thus also the secondary duct throttle cross section 52 is closed in the closed position, it can be provided that the end piece 50 is elastic is a resilient molded elastomer part on which the throttle valve 40 comes to rest shortly before reaching its closed position and then presses this elastomer part back until the throttle valve 40 reaches its closed position.
  • the end piece 50 can also be a molded part which is plastically deformable during the assembly of the throttle valve connector 34.
  • the end piece 50 is, for example
  • Thermoplastic that can be deformed by heating.
  • the end piece 50 is installed in the longitudinal direction with oversize in the throttle valve connector 34. After installation, the end piece 50 is heated and the throttle valve 40 is simultaneously in the closing direction up to
  • the plastic reshaping of the end piece 50 also makes it easy to ensure that the end face 20a extends somewhat obliquely and thus the angle of attack of the throttle valve 40 is also optimally adapted in terms of angle.
  • the position of the end face 20a is such that when the throttle valve 40 is in its closed position, the side face 40a of the throttle valve 40 lies just against the end face 20a.
  • the embodiment just described can also be modified so that the end piece 50 is dispensed with, so that the end face 20a is located directly on the bypass tube 44.
  • the entire bypass tube 44 can be produced from a thermoplastic material which can be deformed by the supply of heat. By heating the bypass tube 44 while simultaneously pressing the throttle valve 40, the bypass tube 44 is deformed somewhat, so that after the bypass tube 44 has cooled, the bypass tube 44 assumes the intended shape and length.
  • the end 48 of the bypass tube 44 facing the throttle valve 40 viewed in the radial direction, preferably has a slight distance from the wall 36 of the throttle valve connector 34, so that the entire circumference the end face 20a can be available for the secondary duct throttle cross section 52.
  • the bypass tube 44 projecting inward in the throttle valve connector 34 can be connected to the wall 36 of the throttle valve connector 34 via a narrow web 58 for reasons of stability.
  • FIG. 3 shows a further, preferably selected, particularly advantageous exemplary embodiment.
  • the throttle valve 40 is installed in the throttle valve connector 34 such that the throttle valve 40 is not in its closed position, as shown in FIG. 2, but is located transversely to the longitudinal axis of the throttle valve connector 34. In this closed position of the throttle valve 40 there is over the circumference the throttle valve 40 has a narrow gap between the circumferential pool 40c of the throttle valve 40 and the throttle valve channel 34c of the throttle valve connector 34. It is preferably provided that the end face 20a on the bypass tube 44 also serves as a closed position stop for the throttle valve 40. In this embodiment, the throttle valve 40 comes to rest on the end face 20a in its closed position. The end face 20a determines the closed position of the throttle valve 40.
  • the secondary duct throttle cross section 52 When the throttle valve 40 is adjusted in the opening direction, as explained with reference to FIG. 2, the secondary duct throttle cross section 52 also opens relatively strongly in the exemplary embodiment according to FIG. 3. Because the throttle valve 40 is in its closed position substantially perpendicular to the longitudinal axis of the throttle valve connector 34 in FIG. 3, when the throttle valve 40 is actuated in the opening direction, the throttle cross section 55 initially opens less strongly than in the exemplary embodiment shown in FIG. 2 with a small adjustment angle.
  • the closed position for the throttle valve 40 has to be set less precisely than in the exemplary embodiment shown in FIG. 2, the exact position of the end face 20a in the exemplary embodiment according to FIG. 3 must also be set less precisely than in the case of the exemplary embodiment according to FIG. 2. This simplifies the manufacture of the gas routing systems 4.
  • FIG. 4 shows a further, preferably selected, particularly advantageous exemplary embodiment.
  • the throttle valve channel 34c in FIG. 4 is not cylindrical as in FIG. 3, but in FIG. 4 the throttle valve channel 34c is in approximately dome-shaped.
  • the opening of the throttle cross-section 55 can be further delayed when the throttle valve 40 is adjusted in the opening direction, which facilitates the coordination of the throttle cross-section 55 and the secondary duct throttle cross-section 52 with one another and also the combustion process in the combustion chambers 6, 6 ', 6'',6''''
  • the opening of the throttle cross-section 55 can be further delayed when the throttle valve 40 is adjusted in the opening direction, which facilitates the coordination of the throttle cross-section 55 and the secondary duct throttle cross-section 52 with one another and also the combustion process in the combustion chambers 6, 6 ', 6'',6'''''
  • the lower idling range of the internal combustion engine 2 because due to the spherical shape of the throttle valve duct 34c with a small adjustment angle of the throttle valve 40 in the lower idling range, a relatively large amount of air with high flow velocity through the relatively small cross section of the secondary duct 12 into the combustion chambers 6, 6 ', 6'' , 6 '''flows, while no or almost
  • the cross section of the secondary duct 12 is particularly at the transitions into the combustion chambers 6, 6 ', 6'', 6 ''', especially small.
  • the idling of the internal combustion engine 2 is regulated both by the opening or closing throttle cross section 55 between the throttle valve duct 34c and the throttle valve 40 and also by the opening or closing at the same time

Abstract

Air is fed through an auxiliary port of an internal combustion chamber at a high velocity of flow in a turbulence system. This enables mixture formation to be improved. Air flowing through the auxiliary port must be controlled. In the inventive gas flow control system, the main port gas flow (31) which circulates through the gas throttle port (34c) and the auxiliary port gas flow (12) are jointly regulated by the gas throttle (40). The gas flow control system is especially designed for automotive internal combustion engines.

Description

Gasführungsanl ge einer BrennkraftmaschineGas guidance system of an internal combustion engine
Stand der TechnikState of the art
Die Erfindung geht aus von einer Gasführungsanlage einer Brennkraftmaschine nach der Gattung des Anspruchs 1.The invention relates to a gas routing system of an internal combustion engine according to the preamble of claim 1.
Bei Brennkraftmaschinen wird üblicherweise über einen Kanal ein Gasstrom dem Brennraum bzw. den Brennräumen zugeführt. Der Kanal hat einen relativ großen Querschnitt, damit bei Bedarf ein großer Gasstrom ohne zu große Strömungsverluste dem Brennraum bzw. den Brennräumen zugeführt werden kann. Im Verlauf des Kanals gibt es ein verstellbares Drosselorgan, mit dem der Gasstrom gesteuert wird. Das Drosselorgan wird mit Hilfe eines Stellantriebs verstellt. Das Drosselorgan ist üblicherweise eine Drosselklappe. Der Gasstrom ist strömende Luft, dem je nach Art der Brennkraftmaschine im Verlauf des Kanals Kraftstoff zugeführt wird oder der Kraftstoff wird direkt in den Brennraum bzw. in die Brennräume eingespritzt.In internal combustion engines, a gas stream is usually supplied to the combustion chamber or combustion chambers via a channel. The channel has a relatively large cross-section, so that a large gas flow can be supplied to the combustion chamber or combustion chambers without excessive flow losses if required. In the course of the channel there is an adjustable throttling device with which the gas flow is controlled. The throttle element is adjusted using an actuator. The throttle element is usually a throttle valve. The gas stream is flowing air, which, depending on the type of internal combustion engine, is supplied with fuel in the course of the channel or the fuel is injected directly into the combustion chamber or into the combustion chambers.
Weil der Querschnitt des Kanals relativ groß ist, ist die Strömungsgeschwindigkeit des in den Brennraum bzw. in dieBecause the cross section of the channel is relatively large, the flow velocity is into the combustion chamber or into the
Brennräume einströmenden Gasstroms ziemlich klein. Weil dies insbesondere im Leerlaufbereich der Brennkraftmaschine zu Problemen bei der Gemischbildung und damit beim Verbrennungsverlauf im Brennraum führen kann, kann über einen Nebenkanal ein Nebengasstrom in den Brennraum bzw. in die Brennräume zugeführt wird. Weil der Querschnitt des Nebenkanals ziemlich klein ist, hat der Nebengasstrom in dem Nebenkanal auch bei relativ kleinem Nebengasstrom eine große Strömungsgeschwindigkeit im Bereich des Einlaßkanals in den Brennraum, wodurch sich die Gemischbildung und damit der Verbrennungsverlauf im Brennraum bzw. in den Brennräumen verbessert.Combustion chamber inflowing gas flow is quite small. Because this is particularly true in the idle range of the internal combustion engine Problems with the mixture formation and thus with the course of combustion in the combustion chamber can lead to a secondary gas flow into the combustion chamber or into the combustion chambers via a secondary duct. Because the cross section of the secondary duct is quite small, the secondary gas flow in the secondary duct has a high flow velocity in the region of the inlet duct into the combustion chamber even with a relatively small secondary gas flow, which improves the mixture formation and thus the combustion process in the combustion chamber or in the combustion chambers.
Um den Nebengasstrom in dem Nebenkanal zu steuern, ist bisher im Verlauf des Nebenkanals ein weiteres Drosselorgan vorgesehen. Beide Drosselorgane werden mit Hilfe je eines Stellantriebs verstellt. Das weitere Drosselorgan und der weitere Stellantrieb erfordern insgesamt einen erheblichen Aufwand, und die daraus sich ergebenden Mehrkosten bei der Herstellung der Gasführungsanlage sind von erheblichem Nachteil .In order to control the secondary gas flow in the secondary channel, a further throttle element has hitherto been provided in the course of the secondary channel. Both throttle bodies are adjusted with the help of one actuator each. The further throttle element and the further actuator require considerable effort overall, and the resulting additional costs in the manufacture of the gas routing system are of considerable disadvantage.
Vorteile der ErfindungAdvantages of the invention
Die erfindungsgemäß ausgeführte Gasführungsanlage einer Brennkraftmaschine mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß der Herstellungsaufwand wesentlich reduziert ist.The gas routing system of an internal combustion engine designed according to the invention with the characterizing features of claim 1 has the advantage that the manufacturing effort is significantly reduced.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Gasführungsanlage einer Brennkraftmaschine möglich.Advantageous further developments and improvements of the gas routing system of an internal combustion engine specified in the main claim are possible through the measures listed in the subclaims.
Ist das Drosselorgan in Form einer Drosselklappe ausgebildet und wird zusätzlich der Nebenkanaleinlaß des Nebenkanals von einer Flachseite der Drosselklappe gesteuert, so bietet dies den Vorteil, daß bereits bei geringfügiger Verstellung der Drosselklappe der freie Querschnitt in den Nebenkanal offenbar bzw. schließbar ist.If the throttle element is designed in the form of a throttle valve and the secondary duct inlet of the secondary duct is additionally controlled by a flat side of the throttle valve, this offers the advantage that the free cross-section in the secondary duct is evident or closable even with a slight adjustment of the throttle valve.
Wird der Nebenkanaleinlaß als Anschlag für die Drosselklappe verwendet, dann verringert sich der Herstellungsaufwand vorteilhafterweise zusätzlich, und die Zuordnung der Drosselklappe zu dem Nebenkanaleinlaß ist leicht möglich.If the secondary duct inlet is used as a stop for the throttle valve, then the manufacturing outlay is advantageously also reduced, and the assignment of the throttle valve to the secondary duct inlet is easily possible.
Ist das Drosselorgan so ausgeführt, daß wenn dieIs the throttle body designed so that when the
Drosselklappe den Kanal verschließt, durch geringfügige Verstellung der Drosselklappe der freie Querschnitt des Kanals nur unwesentlich verändert wird, dann hat dies erhebliche Vorteile bei der Zuordnung der Drosselklappe zu dem Nebenkanaleinlaß.Throttle valve closes the channel, the free cross-section of the channel is changed only slightly by slightly adjusting the throttle valve, then this has considerable advantages in assigning the throttle valve to the secondary channel inlet.
Ist der Nebenkanaleinlaß bei der Herstellung verformbar, so erleichtert dies die Herstellung der Gasführungsanlage vorteilhafterweise zusätzlich.If the secondary duct inlet is deformable during manufacture, this advantageously also facilitates the manufacture of the gas routing system.
Zeichnungdrawing
Bevorzugt ausgewählte, besonders vorteilhafte Ausführungs- beispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen die Figur 1 eine schematisierte Darstellung einer erfindungsgemäß ausgeführten Gasführungsanlage und die Figuren 2, 3 und 4 Einzelheiten unterschiedlich ausgeführter Ausführungsbeispiele.Preferred, particularly advantageous exemplary embodiments of the invention are shown in simplified form in the drawing and explained in more detail in the following description. 1 shows a schematic representation of a gas routing system designed according to the invention and FIGS. 2, 3 and 4 show details of differently designed exemplary embodiments.
Beschreibung der AusführungsbeispieleDescription of the embodiments
Die erfindungsgemäß ausgeführte Gasführungsanlage einer Brennkraftmaschine kann bei jeder Brennkraftmaschine angewendet werden, bei der einem Brennraum über einen Kanal ein Hauptkanalgasstrom und über einen Nebenkanal ein Nebengasstrom zugeführt werden soll. Die Brennkraftmaschine kann beispielsweise nur einen Brennraum haben. Die Brennkraftmaschine kann aber auch mehrere Brennräume umfassen. Der Kanal kann beispielsweise vor Erreichen der Brennräume in mehrere Einzelkanäle aufgeteilt werden. Der Kanal mit dem verstellbaren Drosselorgan kann so ausgeführt sein, daß das verstellbare Drosselorgan den Gasstrom für alle Brennräume der Brennkraftmaschine steuert. Die Gasführungsanlage kann aber auch so ausgeführt sein, daß beispielsweise jedem Brennraum der Brennkraftmaschine ein separater Kanal mit einem separaten Drosselorgan zugeordnet ist . Mindestens eines dieser Drosselorgane dient dann auch zum Verstellen des NebengasStroms in dem Nebenkanal. Es kann aber auch vorgesehen sein, daß jedes der verstellbaren Drosselorgane zum Steuern des Hauptkanalgasstrom in dem Kanal und auch zum Steuern des Nebengasstroms in dem Nebenkanal dient .The gas routing system of an internal combustion engine designed according to the invention can be used in any internal combustion engine in which a combustion chamber is provided via a channel a main channel gas stream and a secondary gas stream is to be supplied via a secondary channel. For example, the internal combustion engine can have only one combustion chamber. However, the internal combustion engine can also comprise several combustion chambers. For example, the channel can be divided into several individual channels before reaching the combustion chambers. The channel with the adjustable throttle element can be designed such that the adjustable throttle element controls the gas flow for all combustion chambers of the internal combustion engine. However, the gas routing system can also be designed such that, for example, each combustion chamber of the internal combustion engine is assigned a separate channel with a separate throttle element. At least one of these throttling elements then also serves to adjust the secondary gas flow in the secondary duct. However, it can also be provided that each of the adjustable throttle elements serves to control the main duct gas flow in the duct and also to control the secondary gas flow in the secondary duct.
Bei der nachfolgenden Beschreibung der Ausführungsbeispiele wird aus Vereinfachungsgründen angenommen, daß die Brennkraftmaschine vier Brennräume hat und das Drosselorgan den Gasstrom, den Hauptkanalgasstrom und den Nebengasstroms für die vier Brennräume steuert .In the following description of the exemplary embodiments, it is assumed, for reasons of simplification, that the internal combustion engine has four combustion chambers and the throttle element controls the gas flow, the main channel gas flow and the secondary gas flow for the four combustion chambers.
Die Figur 1 zeigt in symbolhafter Form ein bevorzugt ausgewähltes Ausführungsbeispiel .FIG. 1 shows a preferred selected embodiment in symbolic form.
Die Figur 1 zeigt schematisch eine Brennkraftmaschine 2 und eine zu der Brennkraf maschine 2 gehörende Gasführungsanlage 4. Innerhalb der Brennkraftmaschine 2 gibt es einen ersten Brennraum 6, einen zweiten Brennraum 6', einen dritten Brennraum 6'' und einen vierten Brennraum 6 ' ' ' . Die Gasführungsanlage 4 umfaßt einen Kanal 8, ein Drosselorgan 10 und einen Nebenkanal 12. Der Kanal 8 umfaßt eine Kanaleinlaßseite 14, das Drosselorgan 10, eine Verbindung 15 und einen Sammler 16. In Strömungsrichtung betrachtet kommen die genannten Teile des Kanals 8 in der Reihenfolge ihrer Nennung. Aus dem Sammler 16 zweigen parallel zueinander ein erster Einzelkanal 18, ein zweiter Einzelkanal 18', ein dritter Einzelkanal 18'' und ein vierter Einzelkanal 18''' ab. Die Einzelkanäle 18, 18', 18'', 18''' sind beispielsweise als Schwingrohre ausgebildet, um bei der Brennkraftmaschine 2 die Abgabe einer möglichst großen Vollastleistung erreichen zu können.1 schematically shows an internal combustion engine 2 and a gas routing system 4 belonging to the internal combustion engine 2. Inside the internal combustion engine 2 there are a first combustion chamber 6, a second combustion chamber 6 ', a third combustion chamber 6''and a fourth combustion chamber 6''' . The gas routing system 4 comprises a channel 8, a throttle element 10 and a secondary duct 12. The duct 8 comprises a duct inlet side 14, the throttle element 10, a connection 15 and a collector 16. Viewed in the direction of flow, the parts of the duct 8 mentioned come in the order in which they were named. A first individual channel 18, a second individual channel 18 ', a third individual channel 18''and a fourth individual channel 18''' branch off from the collector 16 in parallel. The individual channels 18, 18 ′, 18 ″, 18 ″ ″ are designed, for example, as oscillating tubes in order to be able to achieve the greatest possible full load output in the internal combustion engine 2.
An den Übergängen der Einzelkanäle 18, 18', 18'', 18''' in die Brennräume 6, 6', 6' ' , 6''' gibt es Einlaßventile, die in der Zeichnung der besseren Übersichtlichkeit wegen nicht dargestellt sind. Im Verlauf des Kanals 8 der Gasführungsanlage 4 gibt es beispielsweise ein Einspritzventil oder mehrere Einspritzventile. In der Zeichnung ist, ebenfalls der besseren Übersichtlichkeit wegen, kein Einspritzventil dargestellt. DieAt the transitions of the individual channels 18, 18 ', 18' ', 18' '' into the combustion chambers 6, 6 ', 6' ', 6' '' there are inlet valves which are not shown in the drawing for the sake of clarity. In the course of the channel 8 of the gas routing system 4, there is, for example, one injection valve or several injection valves. In the drawing, also for the sake of clarity, no injection valve is shown. The
Brennkraftmaschine 2 kann beispielsweise so ausgeführt sein, daß sich im Bereich der Kanaleinlaßseite 14 vor dem Drosselorgan 10 ein Kraftstoffeinspritzventil befindet, oder die Brennkraftmaschine 2 kann so gebaut sein, daß am Ende jedes der Einzelkanäle 18, 18', 18'', 18''' je einInternal combustion engine 2 can, for example, be designed such that a fuel injection valve is located in the area of the channel inlet side 14 in front of the throttle element 10, or the internal combustion engine 2 can be constructed such that at the end of each of the individual channels 18, 18 ', 18' ', 18' ' 'one each
Kraftstoffeinspritzventil angeordnet ist, das den Kraftstoff entweder vor dem Einlaßventil in die Einzelkanäle 18, 18', 18'', 18''' oder hinter den Einlaßventilen direkt in die Brennräume 6, 6', 6'', 6''' einspritzt.Fuel injection valve is arranged, which injects the fuel either upstream of the inlet valve into the individual channels 18, 18 ', 18' ', 18' '' or behind the inlet valves directly into the combustion chambers 6, 6 ', 6' ', 6' ''.
Bei dem bevorzugt ausgewählten Ausführungsbeispiel umfaßt der Nebenkanal 12 einen Nebenkanaleinlaß 20, eine Nebenkanalführung 22, einen sogenannten TurbulenzSammler 24, eine erste Turbulenzluftzuführung 26, eine zweite TurbulenzluftZuführung 26', eine dritte Turbulenzluftzuführung 26'' und eine vierte Turbulenzluftzuführung 26'''. Der Nebenkanal 12 zweigt im Bereich des Drosselorgans 10 aus dem Kanal 8 ab. Der Nebenkanal 12 beginnt mit dem Nebenkanaleinlaß 20.In the preferred embodiment selected, the secondary duct 12 comprises a secondary duct inlet 20, a secondary duct guide 22, a so-called turbulence collector 24, a first turbulence air supply 26, a second Turbulence air supply 26 ', a third turbulence air supply 26''and a fourth turbulence air supply 26'''. The secondary duct 12 branches off from the duct 8 in the region of the throttle element 10. The secondary duct 12 begins with the secondary duct inlet 20.
Durch die Gasführungsanlage 4 strömt ein Gasstrom 30. Der Gasstrom 30 ist in der Zeichnung mit einem mit dem Bezugszeichen 30 versehenen Pfeil symbolhaft dargestellt. Bei dem Gasstrom 30 handelt es sich normalerweise um strömende Luft. Der Gasstrom 30 kann aber auch ein Kraftstoff-Luft-Gemisch sein, je nach dem, ob man den Gasstrom vor oder hinter dem Kraftstoffeinspritzventil betrachtet, wo der strömenden Luft Kraftstoff zugegeben wird. Im Bereich des Drosselorgans 10 teilt sich derA gas stream 30 flows through the gas routing system 4. The gas stream 30 is shown symbolically in the drawing with an arrow provided with the reference symbol 30. Gas stream 30 is typically flowing air. The gas stream 30 can also be a fuel-air mixture, depending on whether one looks at the gas stream upstream or downstream of the fuel injection valve, where fuel is added to the flowing air. In the area of the throttle element 10, the
Gasstrom 30 in einen Hauptkanalgasstrom 31 und in einen Nebengasstrom 32. Der Hauptkanalgasstrom 31 strömt durch die Verbindung 15, durch den Sammler 16 und durch die Einzelkanäle 18, 18', 18'', 18''' in die Brennräume 6, 6', 6'', 6'''. Der Nebengasstrom 32 strömt durch denGas stream 30 into a main channel gas stream 31 and into a secondary gas stream 32. The main channel gas stream 31 flows through the connection 15, through the collector 16 and through the individual channels 18, 18 ', 18' ', 18' '' into the combustion chambers 6, 6 ', 6 '', 6 '' '. The secondary gas stream 32 flows through the
Nebenkanaleinlaß 20, dann durch die Nebenkanalführung 22, durch den TurbulenzSammler 24 und durch die Turbulenzluftzuführungen 26, 26', 26'', 26''', wo der Nebengasstrom 32 vorzugsweise direkt auf das Einlaßventil bzw. auf die Einlaßventile der Brennräume 6, 6', 6'', 6''' gerichtet ist. Weil, abgesehen von relativ kleinem Gasstrom 30 im Leerlaufbereich der Brennkraftmaschine 2, der Nebengasstrom 32 wesentlich kleiner ist als der Hauptkanalgasström 31, ist der Pfeil 32 dünner dargestellt als der Pfeil 31.Secondary duct inlet 20, then through the secondary duct guide 22, through the turbulence collector 24 and through the turbulence air supply lines 26, 26 ', 26' ', 26' '', where the secondary gas flow 32 is preferably directed directly onto the inlet valve or the inlet valves of the combustion chambers 6, 6 ', 6' ', 6' '' is directed. Because, apart from the relatively small gas flow 30 in the idling area of the internal combustion engine 2, the secondary gas flow 32 is significantly smaller than the main duct gas flow 31, the arrow 32 is shown thinner than the arrow 31.
Das symbolhaft dargestellte Drosselorgan 10 umfaßt vorzugsweise einen Drosselklappenstutzen 34. Der Drosselklappenstutzen 34 hat eine rohrförmige Wandung 36 und an der Innenseite der Wandung 36 einen Drosselklappenkanal 34c. In dem Drosselklappenkanal 34c befindet sich eine in der Figur 1 symbolhaft dargestellte, mit Hilfe einer Drosselklappenwelle 38 schwenkbar gelagerte Drosselklappe 40. Die Drosselklappenwelle 38 ist in der Wandung 36 des Drosselklappenstutzens 34 drehbar gelagert. DieThe throttle body 10 shown symbolically preferably comprises a throttle valve connector 34. The throttle valve connector 34 has a tubular wall 36 and a throttle valve channel on the inside of the wall 36 34c. In the throttle valve channel 34c there is a throttle valve 40, which is symbolically shown in FIG. 1 and is pivotably mounted with the aid of a throttle valve shaft 38. The
Drosselklappe 40 ist mit einem ebenfalls symbolhaft dargestellten, mechanisch und/oder elektrisch arbeitenden Stellantrieb 42 verstellbar. Der Stellantrieb 42 umfaßt beispielsweise einen Elektromotor, mit dem über ein nicht dargestelltes Getriebe die Drosselklappenwelle 38 und die an der Drosselklappenwelle 38 befestigte Drosselklappe 40 verstellt werden kann.Throttle valve 40 can be adjusted with a mechanically and / or electrically operating actuator 42, which is also shown symbolically. The actuator 42 comprises, for example, an electric motor with which the throttle valve shaft 38 and the throttle valve 40 fastened to the throttle valve shaft 38 can be adjusted via a gear, not shown.
Der Stellantrieb 42 kann die Drosselklappe 40 so verstellen, daß der freie Querschnitt für den Hauptkanalgasstrom 31 vollständig oder nahezu vollständig verschlossen ist. Die Drosselklappe 40 kann aber auch so verstellt sein, daß die Luft bzw. das Kraftstoff-Luft-Gemisch weitgehend ungedrosselt durch den Drosselklappenkanal 34c des Drosselklappenstutzens 34 in den Sammler 16 strömen kann. Durch Verstellen der Drosselklappe 40 kann der durch den Kanal 8 strömende Hauptkanalgasstrom 31 gesteuert werden.The actuator 42 can adjust the throttle valve 40 so that the free cross section for the main channel gas flow 31 is completely or almost completely closed. The throttle valve 40 can also be adjusted so that the air or the fuel-air mixture can flow largely unthrottled through the throttle valve duct 34c of the throttle valve connector 34 into the collector 16. By adjusting the throttle valve 40, the main duct gas flow 31 flowing through the duct 8 can be controlled.
Der Nebenkanaleinlaß 20 wird bei der in der Figur 1 gezeigten Ausführung beispielsweise durch mehrere durch die Wandung 36 des Drosselklappenstutzens 34 in den Drosselklappenkanal 34c führende Querbohrungen gebildet. Die Querbohrungen sind beispielsweise so angeordnet, daß dann, wenn der Drosselklappenkanal 34c des Kanals 8 durch die Drosselklappe 40 geschlossen ist, auch die Querbohrungen des Nebenkanaleinlasses 20 verschlossen sind. Die Querbohrungen des Nebenkanaleinlasses 20 können von der Umfangsflache der scheibenartigen Drosselklappe 40 verschlossen werden. Wenn die Drosselklappe 40 den freien Querschnitt durch den Kanal 8 geöffnet hat, dann sind auch die Querbohrungen des Nebenkanaleinlasses 20 geöffnet, und der Nebengasstrom 32 kann durch den Nebenkanal 12 in die Brennräume 6 , 6 ' , 6 ' ' , 6''' strömen. Bei dem in der Figur 1 symbolhaft dargestellten, erfindungsgemäß ausgeführten Ausführungsbeispiel kann durch Verstellen der einenIn the embodiment shown in FIG. 1, the secondary duct inlet 20 is formed, for example, by a plurality of cross bores leading through the wall 36 of the throttle valve connector 34 into the throttle valve duct 34c. The transverse bores are arranged, for example, such that when the throttle valve duct 34c of the duct 8 is closed by the throttle valve 40, the transverse bores of the secondary duct inlet 20 are also closed. The transverse bores of the secondary duct inlet 20 can be closed by the peripheral surface of the disk-like throttle valve 40. If the throttle valve 40 has opened the free cross section through the channel 8, then the transverse bores of the Secondary channel inlet 20 is opened, and the secondary gas flow 32 can flow through the secondary channel 12 into the combustion chambers 6, 6 ', 6'',6'''. In the exemplary embodiment shown symbolically in FIG. 1 and embodied according to the invention, by adjusting one
Drosselklappe 40 sowohl der durch den Kanal 8 strömende Hauptkanalgasstrom 31 als auch der durch den Nebenkanal 12 strömende Nebengasstrom 32 gesteuert werden. Das Steuern des Gasstroms 30 bzw. des HauptkanalgasStroms 31 und des Nebengasstroms 32 ist gemeinsam mit dem verstellbaren Drosselorgan 10 möglich.Throttle valve 40 both the main channel gas flow 31 flowing through the channel 8 and the secondary gas flow 32 flowing through the secondary channel 12 can be controlled. The control of the gas flow 30 or the main channel gas flow 31 and the secondary gas flow 32 is possible together with the adjustable throttle element 10.
Weil die durch die Wandung 36 führenden Querbohrungen des Nebenkanaleinlasses 20 bei dem in der Figur 1 symbolhaft dargestellten Ausführungsbeispiel nicht beliebig groß ausgeführt werden können, insbesondere weil die Drosselklappe 40 nicht beliebig dick ist, und weil diese Querbohrungen nicht über den gesamten Umfang des Drosselklappenkanals 34c angeordnet werden können, kann bei dem in der Figur 1 dargestellten Ausführungsbeispiel maximal nur ein relativ kleiner Nebengasstrom 32 durch den Nebenkanal 12 geführt werden. Weil häufig der Nebengasstrom 32 größer sein soll als es bei dem in der Figur 1 dargestellten Ausfuhrungsbeispiel möglich ist, werden in den nachfolgenden Figuren Ausfuhrungsbeispiele gezeigt, bei denen auch das Steuern eines größeren Nebengasstroms 32 möglich ist.Because the transverse bores of the secondary duct inlet 20 leading through the wall 36 cannot be made arbitrarily large in the exemplary embodiment shown symbolically in FIG. 1, in particular because the throttle valve 40 is not arbitrarily thick, and because these transverse bores are not arranged over the entire circumference of the throttle valve duct 34c In the exemplary embodiment shown in FIG. 1, only a relatively small secondary gas flow 32 can be led through the secondary channel 12. Because the secondary gas stream 32 is often intended to be larger than is possible in the exemplary embodiment shown in FIG. 1, exemplary embodiments are shown in the following figures in which the control of a larger secondary gas stream 32 is also possible.
Die Figur 2 zeigt mit geändertem Maßstab ein abgewandeltes, besonders vorteilhaftes, bevorzugt ausgewähltesFIG. 2 shows, with a changed scale, a modified, particularly advantageous, preferably selected one
Ausführungsbeispiel, wobei der besseren Übersichtlichkeit wegen nur der Bereich des Drosselklappenstutzens 34 wiedergegeben ist . In allen Figuren sind gleiche oder gleichwirkende Teile mit denselben Bezugszeichen versehen. Sofern nichts Gegenteiliges erwähnt bzw. in der Zeichnung dargestellt ist, gilt das anhand eines der Figuren Erwähnte und Dargestellte auch bei den anderen Ausführungsbeispielen. Sofern sich aus den Erläuterungen nichts anderes ergibt, sind die Einzelheiten der verschiedenen Ausfuhrungsbeispiele miteinander kombinierbar .Embodiment, for the sake of clarity only the area of the throttle valve connector 34 is shown. In all figures, parts that are the same or have the same effect are provided with the same reference symbols. Unless otherwise stated or shown in the drawing, that which is mentioned and illustrated with reference to one of the figures also applies to the other exemplary embodiments. Unless otherwise stated, the details of the various exemplary embodiments can be combined with one another.
Grob betrachtet, hat die Drosselklappe 40 die Form einer flachen, ebenen, annähernd runden Scheibe. Die Drosselklappe 40 hat eine der Kanaleinlaßseite 14 zugewandte erste Seitenfläche 40a und eine zweite der Verbindung 15 bzw. den Brennräumen 6, 6', 6'', 6''' zugewandte zweite Seitenfläche 40b. Zwischen den beiden Seitenflächen 40a, 40b hat die Drosselklappe 40 eine Umfangsflache 40c.Roughly speaking, the throttle valve 40 has the shape of a flat, flat, approximately round disk. The throttle valve 40 has a first side surface 40a facing the channel inlet side 14 and a second second surface 40b facing the connection 15 or the combustion chambers 6, 6 ', 6' ', 6' ''. The throttle valve 40 has a circumferential surface 40c between the two side surfaces 40a, 40b.
Bei dem in der Figur 2 dargestellten Ausführungsbeispiel wird der Nebenkanaleinlaß 20 im wesentlichen von einemIn the embodiment shown in Figure 2, the secondary channel inlet 20 is essentially one
Bypassrohr 44 gebildet. Der Drosselklappenstutzen 34 mit der Wandung 36 ist ein Spritzgußteil. Die Nebenkanalführung 22 des Nebenkanals 12 bzw. ein erster Teil derBypass tube 44 formed. The throttle valve connector 34 with the wall 36 is an injection molded part. The secondary channel guide 22 of the secondary channel 12 or a first part of the
Nebenkanalführung 22 ist als Hohlraum in die Wandung 36 des Drosselklappenstutzens 34 eingegossen. ImAuxiliary duct guide 22 is cast as a cavity in wall 36 of throttle valve connector 34. in the
Drosselklappenstutzen 34 ist eine von außen durch die Wandung 36 in die Kanaleinlaßseite 14 führende, quer verlaufende Montagebohrung 46 angebracht. Nach außen hin ist die Montagebohrung 46 mit einem Verschlußstopfen 46a verschlossen. Die Montagebohrung 46 verbindet dieThrottle valve connector 34 is provided with a transverse mounting hole 46 leading from the outside through the wall 36 into the channel inlet side 14. To the outside, the mounting hole 46 is closed with a plug 46a. The mounting hole 46 connects the
Nebenkanalführung 22 mit der Kanaleinlaßseite 14. Das Bypassrohr 44 ist auf der der Kanaleinlaßseite 14 zugewandten Seite der Wandung 36 in die Montagebohrung 46 eingesetzt, darin fixiert und abgedichtet. Das Bypassrohr 44 hat ein der Seitenfläche 40a der Drosselklappe 40 zugewandtes Ende 48. Das Bypassrohr 44 ist gebogen, so daß sich das Ende 48 in etwa parallel zur Längsachse des Drosselklappenstutzens 34 in Richtung der Drosselklappe 40 erstreckt. In das Ende 48 des Bypassrohres 44 ist ein Endstück 50 eingepaßt, gegenüber dem Bypassrohr 44 abgedichtet und fixiert. Das Endstück 50 des Nebenkanaleinlasses 20 des Nebenkanals 12 ist rohrförmig und hat eine der ersten Seitenfläche 40a der Drosselklappe 40 zugewandte Stirnseite 20a. Zwischen der Stirnseite 20a und der Seitenfläche 40a gibt es, je nach Stellung derSecondary duct guide 22 with the duct inlet side 14. The bypass tube 44 is inserted into the mounting hole 46 on the side of the wall 36 facing the duct inlet side 14, and is fixed and sealed therein. The bypass tube 44 has one of the side surfaces 40a of the throttle valve 40 facing end 48. The bypass tube 44 is bent so that the end 48 extends approximately parallel to the longitudinal axis of the throttle valve connector 34 in the direction of the throttle valve 40. An end piece 50 is fitted into the end 48 of the bypass tube 44, sealed and fixed with respect to the bypass tube 44. The end piece 50 of the secondary duct inlet 20 of the secondary duct 12 is tubular and has an end face 20a facing the first side surface 40a of the throttle valve 40. Depending on the position of the, there is between the end face 20a and the side face 40a
Drosselklappe 40, einen mehr oder weniger großen steuerbaren Nebenkanaldrosselquerschnitt 52. DerThrottle valve 40, a more or less controllable secondary duct throttle cross section 52. Der
Nebenkanaldrosselquerschnitt 52 ist von der Stellung der Drosselklappe 40 abhängig. Grob betrachtet wird der Nebenkanaldrosselquerschnitt 52 bestimmt vom Umfang derAuxiliary duct throttle cross section 52 depends on the position of throttle valve 40. Roughly considered, the secondary duct throttle cross section 52 is determined by the scope of the
Stirnseite 20a und vom Abstand der Stirnseite 20a bis zur Seitenfläche 40a der Drosselklappe 40.End face 20a and from the distance from the end face 20a to the side face 40a of the throttle valve 40.
Durch das Vorsehen der Nebenkanalführung 22 des Nebenkanals 12 bzw. des ersten Teils der Nebenkanalführung 22 alsBy providing the secondary channel guide 22 of the secondary channel 12 or the first part of the secondary channel guide 22 as
Hohlraum in der Wandung 36 des Drosselklappenstutzens 34 ergeben sich erhebliche Vorteile beim Fertigungsaufwand, beim Gewicht bzw. Materialbedarf und beim Platzbedarf der Gasführungsanlage 4.Cavity in the wall 36 of the throttle valve connector 34 results in considerable advantages in terms of production costs, weight or material requirements and the space requirements of the gas routing system 4.
Der rohrförmige Drosselklappenstutzen 34 hat eine innere Mantelfläche. Diese Mantelfläche bildet den Drosselklappenkanal 34c. Zwischen dem Drosselklappenkanal 34c und der Umfangsflache 40c der Drosselklappe 40 gibt es, je nach Stellung der Drosselklappe 40, einen mehr oder weniger großen Drosselquerschnitt 55. Die Drosselklappe 40 kann in Öffnungsrichtung verstellt werden, bis die Drosselklappe 40 parallel zur Längsrichtung des Drosselklappenstutzens 34 steht. Bei dem in der Figur 2 wiedergegebenen Ausführungsbeispiel ist dies eine Drehung entgegen dem Uhrzeigersinn. In dieser Stellung der Drosselklappe 40 ist der Drosselquerschnitt 55 maximal geöffnet. Durch Drehen der Drosselklappe 40 in Schließrichtung, d. h. in der Figur 2 durch Drehen der Drosselklappe 40 im Uhrzeigersinn, erreicht derThe tubular throttle valve connector 34 has an inner lateral surface. This lateral surface forms the throttle valve channel 34c. Depending on the position of the throttle valve 40, there is a more or less large throttle cross-section 55 between the throttle valve channel 34c and the peripheral surface 40c of the throttle valve 40. The throttle valve 40 can be adjusted in the opening direction until the throttle valve 40 is parallel to the longitudinal direction of the throttle valve body 34. In the exemplary embodiment shown in FIG. 2, this is a rotation counter clockwise. In this position of the throttle valve 40, the throttle cross section 55 is opened to the maximum. By turning the throttle valve 40 in the closing direction, ie in FIG. 2 by turning the throttle valve 40 clockwise, the
Drosselquerschnitt 55 in der Endstellung der Drosselklappe 40 sein Minimum bzw. der Drosselquerschnitt 55 ist ganz geschlossen. Außen am Drosselklappenstutzen 34 ist ein nicht dargestellter Schließstellungsanschlag vorgesehen, an dem die Drosselklappenwelle 38 in Schließstellung zur Anlage kommt. Es kann aber auch vorgesehen sein, daß die Drosselklappe 40 in der Schließstellung an dem Drosselklappenkanal 34c anschlägt; d. h. der Drosselklappenkanal 34c dient als Schließstellungsanschlag. Damit die Drosselklappe 40 nicht mit dem Drosselklappenkanal 34c verklemmt, ist die Drosselklappe 40 in der Schließstellung angestellt, d. h. die Drosselklappe 40 ist in der Schließstellung nicht so weit verstellbar bis die Drosselklappe 40 quer zur Längsachse des Drosselklappenstutzens 34 steht, sondern die Drosselklappe 40 kommt bei einem Winkel von weniger als 90°, bezogen auf die Längsachse des Drosselklappenstutzens 34, an dem Schließstellungsanschlag zur Anlage.Throttle cross section 55 in the end position of the throttle valve 40, its minimum or the throttle cross section 55 is completely closed. On the outside of the throttle valve connector 34, a closed position stop (not shown) is provided, against which the throttle valve shaft 38 comes to rest in the closed position. However, it can also be provided that the throttle valve 40 strikes the throttle valve duct 34c in the closed position; d. H. the throttle valve channel 34c serves as a closed position stop. So that the throttle valve 40 does not become jammed with the throttle valve duct 34c, the throttle valve 40 is set in the closed position, i. H. The throttle valve 40 is not adjustable in the closed position until the throttle valve 40 is transverse to the longitudinal axis of the throttle valve connector 34, but the throttle valve 40 comes into contact with the closed position stop at an angle of less than 90 ° relative to the longitudinal axis of the throttle valve connector 34 .
In der Zeichnung ist die Drosselklappe 40 in einer Stellung gezeigt, in der die Drosselklappe 40 geringfügig in Öffnungsrichtung verstellt ist, d. h. die Drosselklappe 40 ist in einer Stellung dargestellt, in der der Nebenkanaldrosselquerschnitt 52 und der Drosselquerschnitt 55 geringfügig geöffnet sind.In the drawing, the throttle valve 40 is shown in a position in which the throttle valve 40 is slightly adjusted in the opening direction, i. H. The throttle valve 40 is shown in a position in which the secondary duct throttle cross section 52 and the throttle cross section 55 are slightly open.
Wenn sich die Drosselklappe 40 in der Schließstellung befindet, d. h. wenn die Drosselklappe 40 bzw. die Drosselklappenwelle 38 an dem Schließstellungsanschlag anliegt, dann ist der Drosselquerschnitt 55 vollständig oder nahezug vollständig geschlossen, und auch der Nebenkanaldrosselquerschnitt 52 ist mindestens nahezu vollständig geschlossen. Wird die Drosselklappe 40 von dem Stellantrieb 42 (Fig. 1) , ausgehend von der Schließstellung, in Öffnungsrichtung verstellt, d. h. bei dem in der Figur 2 dargestellten Ausfuhrungsbeispiel Drehung entgegen dem Uhrzeigersinn, dann wird zunächst bereits bei geringfügigem Drehen der Drosselklappe 40 der Nebenkanaldrosselquerschnitt 52 relativ weit geöffnet, wohingegen der Drosselquerschnitt 55 zunächst nur relativ wenig geöffnet wird. Bei weiterem Drehen der Drosselklappe 40 in Öffnungsrichtung wird der Nebenkanaldrosselquerschnitt 52 weiter geöffnet, und zwar so weit, daß die Drosselung des durch den Nebenkanal 12 strömenden Nebengasstroms 32 im wesentlichen nicht mehr am Nebenkanaldrosselquerschnitt 52 erfolgt, sondern innerhalb der Nebenkanalführung 22; gleichzeitig wird der Drosselquerschnitt 55 zunehmend geöffnet.If the throttle valve 40 is in the closed position, ie if the throttle valve 40 or the throttle valve shaft 38 abuts the closed position stop, then the throttle cross section 55 is complete or Nearly completely closed, and also the secondary duct throttle cross section 52 is at least almost completely closed. If the throttle valve 40 is adjusted in the opening direction by the actuator 42 (FIG. 1), starting from the closed position, that is to say in the exemplary embodiment shown in FIG. 2, rotation counterclockwise, then the secondary duct throttle cross section 52 is already at a slight rotation of the throttle valve 40 opened relatively wide, whereas the throttle cross section 55 is initially only opened relatively little. When the throttle valve 40 is rotated further in the opening direction, the secondary duct throttle cross section 52 is opened further, to such an extent that the throttling of the secondary gas flow 32 flowing through the secondary duct 12 essentially no longer takes place at the secondary duct throttle cross section 52, but within the secondary duct guide 22; at the same time, the throttle cross section 55 is increasingly opened.
Bei relativ geringfügigem Drehen der Drosselklappe 40 aus der Schließstellung wird der Nebenkanaldrosselquerschnitt 52 zuerst relativ stark geöffnet, und der Drosselquerschnitt 55 wird dabei relativ schwach geöffnet. Ein relativ weites Drehen der Drosselklappe 40 in Öffnungsrichtung hat dann so gut wie keinen Einfluß mehr auf den Nebenkanaldrosselquerschnitt 52 und damit auf die Größe des durch den Nebenkanal 12 strömenden Nebengasstroms 32, sondern durch das Drehen der Drosselklappe 40 wird dann im wesentlichen nur noch der durch den sich relativ weit öffnenden Drosselquerschnitt 55 strömende Hauptkanalgasstrom 31 gesteuert.When the throttle valve 40 rotates relatively slightly from the closed position, the secondary duct throttle cross section 52 is first opened relatively strongly, and the throttle cross section 55 is opened relatively weakly in the process. A relatively wide rotation of the throttle valve 40 in the opening direction then has virtually no influence on the secondary duct throttle cross section 52 and thus on the size of the secondary gas flow 32 flowing through the secondary duct 12, but by turning the throttle valve 40 then essentially only the through the main channel gas flow 31, which flows relatively broadly opening throttle cross section 55, is controlled.
Damit die Drosselklappe 40 ordnungsgemäß ihren Schließstellungsanschlag erreichen kann, und um zu erreichen, daß die Stirnseite 20a des Nebenkanaleinlasses 20 gegenüber der Seitenfläche 40a insbesondere in der Schließstellung der Drosselklappe 40 richtig ausgerichtet ist, wobei vorzugsweise vorgesehen ist, daß die Drosselklappe 40 in ihrer Schließstellung an der Stirnseite 20a des Nebenkanaleinlasses 20 anliegt und somit in der Schließstellung auch der Nebenkanaldrosselquerschnitt 52 geschlossen ist, kann vorgesehen sein, daß das Endstück 50 ein elastisch nachgiebiges Elastomerformteil ist, an dem die Drosselklappe 40 kurz vor Erreichen ihrer Schließstellung zur Anlage kommt und dann dieses Elastomerteil zurückdrückt, bis die Drosselklappe 40 ihre Schließstellung erreicht.So that the throttle valve 40 can properly reach its closed position stop, and in order to ensure that the end face 20a of the secondary duct inlet 20 is opposite the side face 40a, in particular in FIG The closed position of the throttle valve 40 is correctly aligned, wherein it is preferably provided that the throttle valve 40 in its closed position rests on the end face 20a of the secondary duct inlet 20 and thus also the secondary duct throttle cross section 52 is closed in the closed position, it can be provided that the end piece 50 is elastic is a resilient molded elastomer part on which the throttle valve 40 comes to rest shortly before reaching its closed position and then presses this elastomer part back until the throttle valve 40 reaches its closed position.
In Abwandlung der soeben beschriebenen Ausführungsform kann das Endstück 50 auch ein Formteil sein, das während des Zusammenbauens des Drosselklappenstutzens 34 plastisch verformbar ist. Das Endstück 50 ist beispielsweise einIn a modification of the embodiment just described, the end piece 50 can also be a molded part which is plastically deformable during the assembly of the throttle valve connector 34. The end piece 50 is, for example
Thermoplastkunststoff, der durch Anwärmung verformbar ist. Das Endstück 50 wird in Längsrichtung mit Übermaß in den Drosselklappenstutzen 34 eingebaut. Nach dem Einbau wird das Endstück 50 erwärmt, und die Drosselklappe 40 wird gleichzeitig in Schließrichtung bis zumThermoplastic that can be deformed by heating. The end piece 50 is installed in the longitudinal direction with oversize in the throttle valve connector 34. After installation, the end piece 50 is heated and the throttle valve 40 is simultaneously in the closing direction up to
Schließstellungsanschlag gedrückt. Dadurch daß das Endstück 50 durch die Zufuhr der Wärme umgeformt wird, wird die Stirnseite 20a etwas zurückgedrückt, so daß die Stirnseite 20a exakt an der Seitenfläche 40a der Drosselklappe 40 anliegt, wenn sich die Drosselklappe 40 in derClosed position stop pressed. Because the end piece 50 is deformed by the supply of heat, the end face 20a is pushed back somewhat, so that the end face 20a lies exactly against the side face 40a of the throttle valve 40 when the throttle valve 40 is in the
Schließstellung befindet. Durch das plastische Umformen des Endstücks 50 wird auch auf einfache Weise erreicht, daß die Stirnseite 20a etwas schräg verläuft und somit dem Anstellwinkel der Drosselklappe 40 auch winkelmäßig optimal angepaßt ist. Nach dem Wiederabkühlen des Formstücks 50 ist die Position der Stirnseite 20a so, daß, wenn sich die Drosselklappe 40 in ihrer Schließstellung befindet, die Seitenfläche 40a der Drosselklappe 40 gerade an der Stirnseite 20a anliegt. Das soeben beschriebene Ausführungsbeispiel kann auch so abgewandelt werden, daß man auf das Endstück 50 verzichtet, so daß sich die Stirnseite 20a direkt am Bypassrohr 44 befindet . Zwecks Anpassung des Bypassrohrs 44 an die Drosselklappe 40 kann man das gesamte Bypassrohr 44 aus einem durch Wärmezufuhr thermoplastisch verformbaren Werkstoff herstellen. Durch Erwärmung des Bypassrohrs 44 während gleichzeitigem Zudrücken der Drosselklappe 40, wird das Bypassrohr 44 etwas verformt, so daß nach dem Abkühlen des Bypassrohrs 44 dieses exakt die vorgesehene Form und Länge einnimmt .Closed position. The plastic reshaping of the end piece 50 also makes it easy to ensure that the end face 20a extends somewhat obliquely and thus the angle of attack of the throttle valve 40 is also optimally adapted in terms of angle. After the shaped part 50 has cooled down again, the position of the end face 20a is such that when the throttle valve 40 is in its closed position, the side face 40a of the throttle valve 40 lies just against the end face 20a. The embodiment just described can also be modified so that the end piece 50 is dispensed with, so that the end face 20a is located directly on the bypass tube 44. For the purpose of adapting the bypass tube 44 to the throttle valve 40, the entire bypass tube 44 can be produced from a thermoplastic material which can be deformed by the supply of heat. By heating the bypass tube 44 while simultaneously pressing the throttle valve 40, the bypass tube 44 is deformed somewhat, so that after the bypass tube 44 has cooled, the bypass tube 44 assumes the intended shape and length.
Um bei mäßigem Umfang der Stirnseite 20a des Nebenkanaleinlasses 20 einen relativ großen Nebenkanaldrosselquerschnitt 52 herstellen zu können, hat das der Drosselklappe 40 zugewandte Ende 48 des Bypassrohres 44, in radialer Richtung betrachtet, vorzugsweise etwas Abstand zur Wandung 36 des Drosselklappenstutzens 34, damit der gesamte Umfang der Stirnseite 20a für den Nebenkanaldrosselquerschnitt 52 zur Verfügung stehen kann. Das in den Drosselklappenstutzen 34 nach innen ragende Bypassrohr 44 kann aus Stabilitätsgründen über einen schmalen Steg 58 mit der Wandung 36 des Drosselklappenstutzens 34 verbunden sein.In order to be able to produce a relatively large secondary duct throttle cross section 52 with a moderate circumference of the end face 20a of the secondary duct inlet 20, the end 48 of the bypass tube 44 facing the throttle valve 40, viewed in the radial direction, preferably has a slight distance from the wall 36 of the throttle valve connector 34, so that the entire circumference the end face 20a can be available for the secondary duct throttle cross section 52. The bypass tube 44 projecting inward in the throttle valve connector 34 can be connected to the wall 36 of the throttle valve connector 34 via a narrow web 58 for reasons of stability.
Die Figur 3 zeigt ein weiteres bevorzugt ausgewähltes, besonders vorteilhaftes Ausfuhrungsbeispiel .FIG. 3 shows a further, preferably selected, particularly advantageous exemplary embodiment.
Bei dem in der Figur 3 dargestellten Ausfuhrungsbeispiel ist die Drosselklappe 40 in dem Drosselklappenstutzen 34 so eingebaut, daß die Drosselklappe 40 in ihrer Schließstellung, nicht, wie in der Figur 2 gezeigt, angestellt ist, sondern sich quer zur Längsachse des Drosselklappenstutzens 34 befindet. In dieser Schließstellung der Drosselklappe 40 gibt es über den Umfang der Drosselklappe 40 einen schmalen Spalt zwischen der Umfangs lache 40c der Drosselklappe 40 und dem Drosselklappenkanal 34c des Drosselklappenstutzens 34. Vorzugsweise ist vorgesehen, daß die Stirnseite 20a am Bypassrohr 44 auch als Schließstellungsanschlag für die Drosselklappe 40 dient. Bei dieser Ausführung kommt die Drosselklappe 40 in ihrer Schließstellung an der Stirnseite 20a zur Anlage. Die Stirnseite 20a bestimmt die Schließstellung der Drosselklappe 40.In the exemplary embodiment shown in FIG. 3, the throttle valve 40 is installed in the throttle valve connector 34 such that the throttle valve 40 is not in its closed position, as shown in FIG. 2, but is located transversely to the longitudinal axis of the throttle valve connector 34. In this closed position of the throttle valve 40 there is over the circumference the throttle valve 40 has a narrow gap between the circumferential pool 40c of the throttle valve 40 and the throttle valve channel 34c of the throttle valve connector 34. It is preferably provided that the end face 20a on the bypass tube 44 also serves as a closed position stop for the throttle valve 40. In this embodiment, the throttle valve 40 comes to rest on the end face 20a in its closed position. The end face 20a determines the closed position of the throttle valve 40.
Bei Verstellung der Drosselklappe 40 in Öffnungsrichtung öffnet sich, wie anhand der Figur 2 erläutert, auch bei dem Ausführungsbeispiel gemäß Figur 3 der Nebenkanaldrosselquerschnitt 52 zunächst relativ stark. Weil in der Figur 3 die Drosselklappe 40 in ihrer Schließstellung im wesentlichen senkrecht zur Längsachse des Drosselklappenstutzens 34 steht, öffnet sich bei Betätigung der Drosselklappe 40 in Öffnungsrichtung der Drosselquerschnitt 55 bei kleinem Verstellwinkel zunächst weniger stark als bei dem in der Figur 2 gezeigten Ausführungsbeispiel .When the throttle valve 40 is adjusted in the opening direction, as explained with reference to FIG. 2, the secondary duct throttle cross section 52 also opens relatively strongly in the exemplary embodiment according to FIG. 3. Because the throttle valve 40 is in its closed position substantially perpendicular to the longitudinal axis of the throttle valve connector 34 in FIG. 3, when the throttle valve 40 is actuated in the opening direction, the throttle cross section 55 initially opens less strongly than in the exemplary embodiment shown in FIG. 2 with a small adjustment angle.
Weil bei dem in der Figur 3 gezeigten Ausführungsbeispiel die Schließstellung für die Drosselklappe 40 weniger genau eingestellt werden muß als bei dem in der Figur 2 gezeigten Ausfuhrungsbeispiel, muß auch die exakte Lage der Stirnseite 20a bei dem Ausfuhrungsbeispiel gemäß Figur 3 weniger genau eingestellt werden als bei dem Ausführungsbeispiel nach Figur 2. Dies erleichtert die Herstellung der Gasführungsanläge 4.Because in the exemplary embodiment shown in FIG. 3 the closed position for the throttle valve 40 has to be set less precisely than in the exemplary embodiment shown in FIG. 2, the exact position of the end face 20a in the exemplary embodiment according to FIG. 3 must also be set less precisely than in the case of the exemplary embodiment according to FIG. 2. This simplifies the manufacture of the gas routing systems 4.
Die Figur 4 zeigt ein weiteres bevorzugt ausgewähltes, besonders vorteilhaftes Ausführungsbeispiel. Um beim Verstellen der Drosselklappe 40 in Öffnungsrichtung bei kleinem Verstellwinkel ein gegenüber der Figur 3 geringeres Öffnen des Drosselquerschnitts 55 zu erreichen, ist in der Figur 4 der Drosselklappenkanal 34c nicht wie in der Figur 3 zylinderförmig, sondern in der Figur 4 ist der Drosselklappenkanal 34c in etwa kalottenförmig gestaltet. Dadurch kann das Öffnen des Drosselquerschnitts 55 bei Verstellung der Drosselklappe 40 in Öffnungsrichtung weiter verzögert werden, was die Abstimmung des Drosselquerschnitts 55 und des Nebenkanaldrosselquerschnitts 52 zueinander erleichtert und auch den Verbrennungsverlauf in den Brennräumen 6, 6', 6'', 6''' im unteren Leerlaufbereich der Brennkraftmaschine 2 günstig beeinflußt, weil wegen der Kalottenform des Drosselklappenkanals 34c bei kleinem Verstellwinkel der Drosselklappe 40 im unteren Leerlaufbereich relativ viel Luft mit großer Strömungsgeschwindugkeit durch den relativ kleinen Querschnitt des Nebenkanals 12 in die Brennräume 6, 6', 6'', 6''' stömt, während durch den relativ großen Querschnitt des Kanals 8 keine oder fast keine Luft einströmt. Wegen der gewünschten großen Strömungsgeschwindigkeit beim Einströmen des Nebengasstroms 32 in die Brennräume 6, 6', 6'', 6''', ist der Querschnitt des Nebenkanals 12 insbesondere an den Übergängen in die Brennräume 6, 6', 6'', 6''', besonders klein.FIG. 4 shows a further, preferably selected, particularly advantageous exemplary embodiment. In order to achieve a smaller opening of the throttle cross-section 55 compared to FIG. 3 when adjusting the throttle valve 40 in the opening direction with a small adjustment angle, the throttle valve channel 34c in FIG. 4 is not cylindrical as in FIG. 3, but in FIG. 4 the throttle valve channel 34c is in approximately dome-shaped. As a result, the opening of the throttle cross-section 55 can be further delayed when the throttle valve 40 is adjusted in the opening direction, which facilitates the coordination of the throttle cross-section 55 and the secondary duct throttle cross-section 52 with one another and also the combustion process in the combustion chambers 6, 6 ', 6'',6'''' Favorably influenced in the lower idling range of the internal combustion engine 2, because due to the spherical shape of the throttle valve duct 34c with a small adjustment angle of the throttle valve 40 in the lower idling range, a relatively large amount of air with high flow velocity through the relatively small cross section of the secondary duct 12 into the combustion chambers 6, 6 ', 6'' , 6 '''flows, while no or almost no air flows in through the relatively large cross section of the channel 8. Because of the desired high flow velocity when the secondary gas flow 32 flows into the combustion chambers 6, 6 ', 6'',6''', the cross section of the secondary duct 12 is particularly at the transitions into the combustion chambers 6, 6 ', 6'', 6 ''', especially small.
Die Regelung des Leerlaufs der Brennkraftmaschine 2 erfolgt sowohl durch den sich öffnenden bzw. schließenden Drosselquerschnitt 55 zwischen dem Drosselklappenkanal 34c und der Drosselklappe 40 als auch durch den sich gleichzeitig öffnenden bzw. schließendenThe idling of the internal combustion engine 2 is regulated both by the opening or closing throttle cross section 55 between the throttle valve duct 34c and the throttle valve 40 and also by the opening or closing at the same time
Nebenkanaldrosselquerschnitt 52 zwischen der Stirnseite 20a des Nebenkanals 12 und der Seitenfläche 40a der Drosselklappe 40. Der Drosselquerschnitt 55 und der Nebenkanaldrosselquerschnitt 52 tragen zusammen zur Steuerung der Leistung der Brennkraftmaschine 2 bei . Die Summe aus dem Drosselquerschnitts 55 und demSecondary throttle cross-section 52 between the end face 20a of the secondary duct 12 and the side surface 40a of the throttle valve 40. The throttle cross-section 55 and the secondary-channel throttle cross-section 52 contribute together Control of the performance of the internal combustion engine 2. The sum of the throttle cross section 55 and the
Nebenkanaldrosselquerschnitts 52 bestimmen zusammen, aber je nach Stellung der Drosselklappe 40 mit unterschiedlichen Anteilen, die Leistung der Brennkraftmaschine 2. Auxiliary duct throttle cross section 52 together, but depending on the position of throttle valve 40 with different proportions, determine the performance of internal combustion engine 2.

Claims

Patentansprüche claims
1. Gasführungsanlage einer Brennkraftmaschine mit mindestens einem Brennraum, mit einem Kanal (8) zum Zuführen eines Hauptkanalgasstroms in den Brennraum, mit einem verstellbaren Drosselorgan (10, 40) in dem Kanal (8) zum Steuern des Hauptkanalgasstroms und mit einem Nebenkanal (12) zum Zuführen eines Nebengasstroms in den Brennraum, dadurch gekennzeichnet, daß das verstellbare Drosselorgan (10, 40) zum Steuern des Nebengasstroms (32) vorgesehen ist.1. Gas routing system of an internal combustion engine with at least one combustion chamber, with a channel (8) for supplying a main channel gas flow into the combustion chamber, with an adjustable throttle element (10, 40) in the channel (8) for controlling the main channel gas flow and with a secondary channel (12) for supplying a secondary gas flow into the combustion chamber, characterized in that the adjustable throttle member (10, 40) is provided for controlling the secondary gas flow (32).
2. Gasführungsanlage nach Anspruch 1, dadurch gekennzeichnet, daß der Nebengasstrom (32) ein Nebenluftstrom ist.2. Gas routing system according to claim 1, characterized in that the secondary gas stream (32) is a secondary air stream.
3. Gasführungsanläge nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Nebenkanal (12, 26, 26', 26'', 26''') zum Zuführen des Nebengasstroms (32) in den Brennraum (6, 6', 6'', 6''') mit hoher Strömungsgeschwindigkeit dient.3. Gas supply system according to one of the preceding claims, characterized in that the secondary duct (12, 26, 26 ', 26' ', 26' '') for supplying the secondary gas stream (32) into the combustion chamber (6, 6 ', 6' ', 6' '') with high flow velocity.
4. Gasführungsanlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Drosselorgan (10, 40) eine in einem Drosselklappenkanal (34c) schwenkbar gelagerte Drosselklappe (40) ist. 4. Gas supply system according to one of claims 1 to 3, characterized in that the throttle member (10, 40) in a throttle valve channel (34c) is pivotally mounted throttle valve (40).
5. Gasführungsanlage nach Anspruch 4, dadurch gekennzeichnet, daß der Nebenkanal (12) aus dem Drosselklappenkanal (34c) abzweigt .5. Gas routing system according to claim 4, characterized in that the secondary duct (12) branches off from the throttle valve duct (34c).
6. Gasführungsanlage nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Nebenkanal (12) an einem von der Drosselklappe (40) mindestens teilweise verschließbaren Nebenkanaleinlaß (20, 20a) beginnt.6. Gas routing system according to claim 4 or 5, characterized in that the secondary channel (12) at one of the throttle valve (40) at least partially closable secondary channel inlet (20, 20a) begins.
7. Gasführungsanlage nach Anspruch 6, dadurch gekennzeichnet, daß der Nebenkanaleinlaß (20, 20a) von einer Seitenfläche (40a) der Drosselklappe (40) mindestens teilweise verschließbar ist.7. Gas routing system according to claim 6, characterized in that the secondary duct inlet (20, 20a) from a side surface (40a) of the throttle valve (40) is at least partially closable.
8. Gasführungsanlage nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß der Nebenkanaleinlaß (20, 20a) einen Schließstellungsanschlag (20a) für die Drosselklappe (40) bildet.8. Gas routing system according to claim 6 or 7, characterized in that the secondary duct inlet (20, 20a) forms a closed position stop (20a) for the throttle valve (40).
9. Gasführungsanlage nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß der Drosselklappenkanal (34c) im Bereich der Drosselklappe (40) kalottenförmig gestaltet ist.9. Gas routing system according to one of claims 4 to 8, characterized in that the throttle valve channel (34c) in the region of the throttle valve (40) is dome-shaped.
10. Gasführungsanlage nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß mindestens ein Teilbereich des Nebenkanaleinlasses (20, 44, 50) aus Einstellungsgründen plastisch verformbar ist. 10. Gas routing system according to one of claims 6 to 8, characterized in that at least a portion of the secondary duct inlet (20, 44, 50) is plastically deformable for reasons of adjustment.
PCT/DE1997/002161 1996-10-28 1997-09-24 Internal combustion engine gas flow control system WO1998019065A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19644687.2 1996-10-28
DE19644687A DE19644687A1 (en) 1996-10-28 1996-10-28 Gas routing system of an internal combustion engine

Publications (1)

Publication Number Publication Date
WO1998019065A1 true WO1998019065A1 (en) 1998-05-07

Family

ID=7810167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/002161 WO1998019065A1 (en) 1996-10-28 1997-09-24 Internal combustion engine gas flow control system

Country Status (2)

Country Link
DE (1) DE19644687A1 (en)
WO (1) WO1998019065A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4419095B2 (en) * 2006-04-25 2010-02-24 株式会社デンソー Intake device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2703687A1 (en) * 1977-01-29 1978-08-03 Bosch Gmbh Robert DEVICE FOR CONTROLLING ADDITIONAL GAS SUPPLY QUANTITIES INTO THE SUCTION MANIFOLD OF A COMBUSTION MACHINE
GB2069042A (en) * 1980-01-09 1981-08-19 Suzuki Motor Co Ic engine mixture intake system
US4300504A (en) * 1978-08-10 1981-11-17 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine
US4308837A (en) * 1978-05-22 1982-01-05 Toyota Jidosha Kogyo Kabushiki Kaisha Intake system of an internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2703687A1 (en) * 1977-01-29 1978-08-03 Bosch Gmbh Robert DEVICE FOR CONTROLLING ADDITIONAL GAS SUPPLY QUANTITIES INTO THE SUCTION MANIFOLD OF A COMBUSTION MACHINE
US4308837A (en) * 1978-05-22 1982-01-05 Toyota Jidosha Kogyo Kabushiki Kaisha Intake system of an internal combustion engine
US4300504A (en) * 1978-08-10 1981-11-17 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine
GB2069042A (en) * 1980-01-09 1981-08-19 Suzuki Motor Co Ic engine mixture intake system

Also Published As

Publication number Publication date
DE19644687A1 (en) 1998-04-30

Similar Documents

Publication Publication Date Title
DE19527134B4 (en) Fuel guiding device for internal combustion engines
DE4440205C2 (en) Air-fuel system for an internal combustion engine with fuel injection
DE102008040177B4 (en) Intake control device for an internal combustion engine
DE10212596B4 (en) Variable intake device for a multi-cylinder internal combustion engine
EP2728156B1 (en) Control device for a combustion engine
DE4334180A1 (en) Throttling device
EP1157200A1 (en) Air intake system for internal combustion engine
EP0210328A1 (en) Turbo charger for an internal-combustion engine comprising a controlling device for the high-pressure exhaust gas flow
EP2211048A1 (en) Exhaust gas flap device and exhaust gas heat recovery system of a combustion engine
EP0237755A2 (en) Device for providing an intake pipe with continuously variable length for an internal combustion engine
DE3400313C2 (en) Device for regulating the recirculation of the exhaust gases of a diesel engine
DE102004029424A1 (en) Fuel injection control devices for internal combustion engines
DE4431711A1 (en) Device for regulating the idle speed of an internal combustion engine
WO1996002743A1 (en) Air intake device with intake pipes of variable length
WO1998019065A1 (en) Internal combustion engine gas flow control system
DE2211072B2 (en) Mixture-compressing internal combustion engine with a fuel injection device
DE4312331A1 (en) Fuel injection system for an internal combustion engine
DE69724180T2 (en) Exhaust gas recirculation device
EP0411469B1 (en) Electromagnetic actuator
DE102004041880B4 (en) Flap arrangement
DE102018213237B4 (en) Motorcycle internal combustion engine with a motorcycle internal combustion engine intake system and method for controlling such a motorcycle internal combustion engine intake system
EP0870920A2 (en) Gas conveying arrangement for a combustion engine
EP1354157A1 (en) Flap valve
DE10008209A1 (en) Throttle valve assembly
WO2009141212A1 (en) Exhaust gas recirculation device for an internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998519865

Format of ref document f/p: F