WO1998015673A1 - Surface treated steel sheet and method of manufacturing the same - Google Patents

Surface treated steel sheet and method of manufacturing the same Download PDF

Info

Publication number
WO1998015673A1
WO1998015673A1 PCT/JP1997/003652 JP9703652W WO9815673A1 WO 1998015673 A1 WO1998015673 A1 WO 1998015673A1 JP 9703652 W JP9703652 W JP 9703652W WO 9815673 A1 WO9815673 A1 WO 9815673A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
nickel
treatment
plating
tin
Prior art date
Application number
PCT/JP1997/003652
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Ohmura
Tatsuo Tomomori
Hideo Ohmura
Original Assignee
Toyo Kohan Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co. Ltd. filed Critical Toyo Kohan Co. Ltd.
Priority to JP51740098A priority Critical patent/JP3492704B2/en
Priority to AU45715/97A priority patent/AU4571597A/en
Publication of WO1998015673A1 publication Critical patent/WO1998015673A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance

Definitions

  • the present invention relates to a surface-treated steel sheet which prevents the adhesion between steel sheets, which is likely to occur when manufacturing a steel sheet which has been subjected to a heat treatment of a plated steel sheet in an annealing furnace to diffuse the plating into the steel sheet, and to manufacture the same. It is about the law. Background art
  • a steel sheet plated with nickel or the like is usually plated, then wound up in a tight coil form, and then subjected to a box-type annealing furnace in a box-type annealing furnace to provide processing characteristics.
  • Heat treated at around ° C. the diffusion of Nigel on the surface of the steel sheet is promoted, so that there is a problem that the wound and overlapped steel sheets come into close contact with each other.
  • a wire or the like is wound into a coil together with the steel sheet as a spacer, and a heat treatment is performed in a state where an open coil is provided with a gap between the wound steel sheets, or an oxide stable at high temperatures.
  • a method has been adopted in which a release agent such as carbide, nitride or the like is applied to the surface of the steel sheet in advance, and heat treatment is performed in a state where direct contact between the steel sheets is prevented.
  • the method of superposing the wire on the steel sheet and winding and annealing requires that the surface of the steel sheet is easily scratched and that extra work is required to wrap and unwind the wire. Absent. Furthermore, the method of applying a release agent to the surface of the steel sheet and annealing it increases the cost due to the use of the release agent, makes it difficult to remove the release agent, and changes the appearance of the steel sheet surface However, these methods are not practically applicable industrially.
  • An object of the present invention is to provide a surface-treated steel sheet which has been subjected to an adhesion preventing treatment for suppressing the adhesion between plated steel sheets when heat-treating a steel sheet coated with nickel or the like. Disclosure of the invention
  • the surface-treated steel sheet according to claim 1 is obtained by applying nickel plating to both sides of a cold-rolled steel sheet, then applying tin plating to only one side, and then immersing in a bath containing sodium orthosilicate as a main component or sodium orthosilicate.
  • a silicon hydrate is precipitated on the surface by electrolytic treatment in a bath containing as a main component, and then heat treatment is performed to diffuse the adhesion.
  • the surface-treated steel sheet according to claim 2 is provided with a nickel plating of 0.5 to 10 m thickness on both sides of the cold-rolled steel sheet, and then a tin plating of 0.05 to 5 m thickness only on one side. And then immersed in a bath containing sodium orthosilicate as a main component, or electrolytically treated in a bath containing sodium orthosilicate as a main component, so that the surface has a silicon amount of 0.1 to 3%. mg Zm 2 of silicon hydrate was precipitated, followed by heat treatment to diffuse the target.
  • the surface-treated steel sheet according to claim 3 is obtained by sequentially applying nickel plating and tin plating on both sides of a cold-rolled steel sheet, and further immersing in a bath containing sodium orthosilicate as a main component or mainly using sodium orthosilicate. It is characterized in that silicon hydrate is deposited on the surface by electrolytic treatment in a bath as a component, and then heat treatment is performed to diffuse the nickel plating and tin plating.
  • the cold-rolled steel sheet is provided with nickel plating having a thickness of 0.5 to 10 m on both sides, and thereafter, tin plating having a thickness of 0.5 to 5 m is provided on both sides. And then immersed in a bath containing sodium orthosilicate as a main component, or electrolytically treated in a bath containing sodium orthosilicate as a main component, so that the surface has a silicon amount of 0.1 to 3 mg. A silicon hydrate of Zm 2 is precipitated, and then heat treatment is performed. Gel plating and tin plating are diffused.
  • the cold-rolled steel sheet is plated with nickel on both sides, then tin-plated on only one side, and further immersed in a bath mainly containing sodium orthosilicate.
  • Electrolytic treatment in a bath containing soda orthosilicate as a main component to precipitate silicon hydrate on the surface, followed by heat treatment to diffuse the nickel plating into the cold-rolled steel sheet and the tin is characterized in that a diffusion layer of plating and nickel plating is formed.
  • the cold-rolled steel sheet is subjected to nickel plating and tin plating sequentially on both sides, and further immersed in a bath containing sodium orthosilicate as a main component, or sodium orthosilicate. Electrolytic treatment is performed in a bath containing a main component to precipitate silicon hydrate on the surface, and then heat treatment is performed to diffuse the nickel plating into the cold-rolled steel sheet. It is characterized in that a diffusion layer is formed.
  • FIG. 1 is a schematic manufacturing process diagram when a silicon hydrate is formed on the surface of a surface-treated steel sheet.
  • FIG. 2 is a perspective view showing a state where the surface-treated steel sheet is fixed by applying a certain pressure.
  • FIG. 3 is a perspective view showing a state in which two bonded test pieces are forcibly peeled off.
  • a nickel-iron diffusion layer is formed on one side of a cold-rolled steel sheet, and a silicon oxide layer is further formed thereon.
  • the nickel plating layer may be formed on the uppermost layer (on the nickel-iron diffusion layer).
  • the nickel-iron diffusion layer preferably has a thickness of at least 0.5 m from the viewpoint of improving corrosion resistance, but a thickness exceeding 10 zz m is not economically preferable.
  • the thickness be at least 0.5 m from the viewpoint of further improving the corrosion resistance, which is not sufficient with the nickel-iron diffusion layer alone. The thickness exceeding is not economically preferable.
  • the layer of silicon oxide is 0.
  • l ⁇ 3 mg / m 2 is present as a silicon amount, because, if the lower limit is 0. Lmg Zm less than 2, a heat treatment at sufficient adhesion prevention This is because it cannot be planned.
  • an amount exceeding 3 mg / m 2 is not preferable because the silicon oxide makes the appearance color tone of the surface-treated steel sheet white.
  • the silicon hydrate is precipitated from sodium orthosilicate, the silicon hydrate is extremely fine, and the color tone unique to the metal color can be maintained as it is.
  • the silicon hydrate that precipitates from sodium orthosilicate is subjected to moisture treatment in a subsequent heat treatment step to form silicon oxide.
  • the reason why the amount of silicon oxide deposited is defined as “as silicon amount” in the present invention is because of the convenience of analyzing silicon oxide. That is, the amount of silicon in the silicon oxide was specified by the fluorescent X-ray 'analysis method.
  • Silicon hydrate is nickel-plated on a cold-rolled steel sheet and then immersed in a bath containing sodium orthosilicate as a main component, or electrolyzed in a bath containing sodium orthosilicate as a main component and then heat-treated. It is formed by this.
  • the electrolysis method has better adhesion efficiency than the immersion method.
  • a nickel-iron diffusion layer is formed on another surface, a nickel-tin tin diffusion layer is formed thereon, and a silicon oxide layer is further formed thereon. I have.
  • the nickel-iron diffusion layer preferably has a thickness of 0.5 to 10 zrn, and the nickel-tin tin diffusion layer thereon has a thickness of 0.05 to 5 m. Further It is preferable that the silicon oxide layer thereon has a silicon amount of 0.1 to 3 mg_m 2 .
  • the reason for forming the nickel-iron diffusion layer on the other side is the same as the reason described on one side above, but the reason for forming the nickel-tin tin diffusion layer is that the nickel-tin tin diffusion layer is extremely excellent in corrosion resistance. Because it is. That is, it has sufficient corrosion resistance to strong acids such as sulfuric acid, nitric acid, and hydrochloric acid. If the thickness of the nickel-tin tin diffusion layer is less than 0.05, the corrosion resistance cannot be sufficiently maintained, while if it exceeds 5 m, it is not preferable from an economic viewpoint.
  • the reason for forming the silicon oxide layer is the same as above.
  • the surface-treated steel sheet of claim 2 is different from the surface-treated steel sheet of claim 1 in that nickel-tin diffusion layers are formed on both surfaces.
  • the thickness of the nickel-tin tin diffusion layer is preferably 0.05-5.
  • the surface-treated layer formed on the surface of the surface-treated steel sheet according to claim 1 or 2 may necessarily form a layer that cannot be clearly separated and distinguished. That is, the diffusion layer formed on the surface of the surface-treated steel sheet according to claim 1 or 2 is formed by heat treatment after plating, and the boundary of this diffusion layer gradually depends on the processing temperature and the processing time. It becomes unclear, and the base material iron and nickel plating (including tin plating if tin plating is applied) may intermingle with each other, and each component may form a diffusion layer with a concentration gradient .
  • the iron-nickel diffusion layer consists of two components, iron and nickel.
  • the iron concentration is higher on the side closer to the base material (iron), and the nickel concentration is higher on the upper layer (surface). It is a layer with a high gradient.
  • a three-component diffusion layer of nickel, tin, and iron may be formed.
  • nickel plating and tin plating are applied to a substrate in an overlapping manner, and then heat treatment is performed.
  • a means for forming the iron-nickel-tin alloy layer there is a method in which nickel plating and tin plating are repeatedly applied to a substrate, and the subsequent heat treatment is performed at a high temperature or performed for a long time. is there.
  • the nickel-tin tin diffusion layer is formed by applying a tin-nickel alloy plating to the substrate, as described above, in addition to applying a tin plating after nickel plating to form a two-layer plating layer and then performing a heat treatment. It can also be formed by heat treatment.
  • the cold-rolled steel sheet usually, a steel sheet of low-carbon aluminum killed steel is suitably used.
  • Cold-rolled steel sheets made from non-aging low-carbon steel with the addition of niobium, boron and titanium are also used.
  • the cold rolled, electrolytically cleaned, annealed, and temper rolled steel sheet is used as the plating original sheet, but the cold rolled steel sheet may be used as the plating original sheet.
  • after nickel plating is performed after cold rolling recrystallization annealing of the steel base and thermal diffusion treatment of the nickel plating layer can be simultaneously performed.
  • any of known plating baths such as a watt bath, a sulfamic acid bath, and a chloride bath can be used in the present invention.
  • the types of plating include matte, semi-gloss, and glossy, but matte or semi-glossy other than glossy to which a sulfur-containing organic substance is added is preferably used in the present invention. I'll
  • the bath composition includes an acidic bath and an alkali bath which are usually used, and a stannous sulfate bath or a phenolsulfonic acid bath is preferably used.
  • the method of tin plating is generally performed in the steps of degreasing, pickling, tin plating, reflow (tin melting treatment), and chemical treatment.
  • the plated steel sheet is subjected to immersion treatment or electrolytic treatment in a sodium orthosilicate solution.
  • the sodium orthosilicate solution has a concentration of 1 to 7%, more preferably 2 to 4%.
  • the concentration is 1% or less, the amount of silicon hydrate precipitated on the steel sheet is small, and in the subsequent heat treatment step, the required amount of silicon oxide of 0.1 lg Zm 2 or more is obtained. In addition, when heat treatment is performed, the adhesion between the steel sheets tends to occur.
  • the total amount of electricity when the electrolytic treatment for attaching silicon hydrate is performed is preferably from 0.1 to 100 Coulomb dm 2 .
  • the nickel-plated steel sheet that has been treated with the above-mentioned sodium orthosilicate solution and wound into a coil is subjected to box annealing at a temperature of about 500 to 700 ° C for several hours or more.
  • box annealing at a temperature of about 500 to 700 ° C for several hours or more.
  • diffusion layers of various thicknesses can be formed. This thickness can be adjusted by changing the heat treatment temperature and time.
  • FIG. 1 is a schematic manufacturing process diagram in a case where a nickel-plated steel sheet is subjected to electrolytic treatment in a bath containing sodium orthosilicate as a main component to precipitate silicon hydrate on the surface thereof.
  • any of the horizontal processing tanks shown in FIGS. 1 (a) and (b) or the vertical processing tanks shown in FIGS. 1 (c) and 1 (d) may be used.
  • a method of first performing A treatment and then performing C treatment can also be used.
  • Any of the above treatment methods can clean the surface of the plated steel sheet during this treatment, and thus is effective as a method for depositing a large amount of silicon hydrate on the surface of the Nigel plated steel sheet.
  • the process of first performing the C treatment and then performing the A treatment It is excellent in the efficiency of precipitating silicon hydrate on the surface of the plate.
  • a process of repeating the C process a plurality of times may be performed.
  • a processing-C processing-As in A processing the polarity of the beginning and end may be the same.
  • the heat treatment for forming the diffusion layer can be performed in a non-oxidizing or reducing protective gas atmosphere (for example, 6.5% hydrogen, the balance of nitrogen gas, and a protective gas with a dew point of 60 ° C). It is preferable to prevent film formation.
  • the heat treatment temperature must be 300 ° C or higher.
  • a method of heat treatment there are a box annealing method and a continuous annealing method. In the present invention, either method may be used.
  • a high-temperature, short-time treatment that is, 600 to 850 ° C for 30 seconds to 5 hours
  • the heat treatment conditions of 450 to 650 ° C. for 5 to 15 hours are preferred in the box annealing method.
  • the bath composition for tin plating may be any of a commonly used acidic bath or alkali bath, but in the present invention, a stannous sulfate bath or a phenolsulfonic acid bath is suitably used.
  • the plating thickness was controlled by changing the electrolysis time.
  • the immersion time was varied to adjust the amount of adhesion.
  • the current density was 5AZdm 2
  • the quantity of electricity and polarity were changed variously to prepare a different processing steel sheet deposition amount of silicon hydrate.
  • the difference from the first embodiment is that after nickel plating was applied to both surfaces, a nickel-tin alloy was applied to one surface under the following conditions. Other points are the same as in the first embodiment.
  • Nickel chloride (N i C 12 ⁇ 6H 2 0) 300 g / 1 sodium fluoride (NaF) 30 g / 1 acid fluoride Anmoniumu (NH 4 HF 2) 35 g / 1 Bath temperature: 65 ° C
  • the nickel-tin alloy plating bath may be a chloride monofluoride bath or a pyrophosphate bath. Table 1 summarizes the results.
  • a sample with a size of 10 Omm X 3 Omm was cut out from the treated steel sheet obtained as described above, and the two specimens treated under the same conditions were overlapped so that the treated surfaces were in contact as shown in Fig. 2. Combine them into a laminated body 1 and apply 4 sets of bolts 4 and nuts 5 to each test piece with a torque wrench via a pressure receiving plate 2 and a securing plate 3 that are placed in contact with the top and bottom of the laminated body. It was fastened and fixed so that the same lashing force of Zmm 2 acts. The temperature of the thus secured test piece was changed in a protective gas atmosphere consisting of 6.5% hydrogen and the balance of nitrogen at a temperature of (550 to 700 ° C) for different times. (1 to 10 hours) Heat treatment was performed.
  • one end of the bonded surface of the two bonded test pieces is forcibly peeled off, and the two ends are T-shaped so that both peeled ends are fixed to both chucks of the tensile tester.
  • the tensile test piece was peeled off by a tensile tester, the adhesion strength at which peeling started was measured, and the degree of adhesion of the test piece by heat treatment (adhesion prevention) was evaluated based on the following criteria.
  • Table 1 shows the processing conditions and evaluation results for the samples. Table 1 Plated thickness Annealing with lulycaic acid solder solution During annealing
  • Electrolysis 100 1.05 550 10 ⁇ Back side 2. 0 1. 0
  • Electrolysis 1000 2.35 700 1 ⁇ Back side 10 2 ⁇ A treatment
  • Electrolysis 1000 2.23 700 1 ⁇ Back side 8 2 ⁇ C treatment
  • Electrolytic C processing 200 1.46 600 12 ⁇ Back side 3.2 0.03 ⁇ A processing
  • the surface-treated steel sheet of the present invention has excellent corrosion resistance and also has excellent anti-adhesion properties during heat treatment. That is, even when the plating treatment is performed while the surface-treated steel sheet is wound in a coil shape, adhesion between the steel sheets does not occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

The adherence of nickel-plated steel sheets, which is liable to occur when the nickel-plated steel sheets are thermally treated in an annealing furnace so as to disperse the nickel into the steel sheets, is prevented. A surface treated steel sheet characterized in that the steel sheet is obtained by plating both surfaces of a cold rolled steel sheet with nickel, plating one surface only of this nickel plated steel sheet with tin, immersing the resultant steel sheet in a bath containing ortho-sodium silicate as a main component or electrolyzing the same steel sheet in the same bath, to deposit silicon hydrate on the surface of the steel sheet, and then thermally treating the resultant steel sheet so as to disperse the nickel and tin therein.

Description

明 細 書  Specification
表面処理鋼板およびその製造法 技術分野  Surface treated steel sheet and its manufacturing method
本発明は、 めっきした鋼板を焼鈍炉中で熱処理して、 めっきを鋼板中に拡散さ せる処理を施した鋼板を製造する際に起こりやすい鋼板同士の密着防止を図った 表面処理鋼板およびその製造法に関するものである。 背景技術  The present invention relates to a surface-treated steel sheet which prevents the adhesion between steel sheets, which is likely to occur when manufacturing a steel sheet which has been subjected to a heat treatment of a plated steel sheet in an annealing furnace to diffuse the plating into the steel sheet, and to manufacture the same. It is about the law. Background art
ニッケルなどのめっきを施した鋼板は、 通常めつきを施した後に、 タイトなコ ィル状に巻き取り、 次いで加工特性を付与させるために、 箱型焼鈍炉中で 5 0 0 〜7 0 0 °C前後で熱処理される。 しかし、 この熱処理に際しては、 鋼板表面の二 ッゲルの拡散が促進されるために、 巻き取られて重なった鋼板同士の密着が生じ るという問題がある。 このため、 従来はワイヤ一などをスぺーサ一として鋼板と ともにコイル状に巻き込み、 巻き取られた鋼板間に間隙を設けてオープンコイル とした状態で熱処理するか、 あるいは高温で安定な酸化物、 炭化物、 窒化物など の離型剤を予め鋼板表面に塗布し、 鋼板同士の直接接触を防止した状態で熱処理 する、 という方法が採られていた。  A steel sheet plated with nickel or the like is usually plated, then wound up in a tight coil form, and then subjected to a box-type annealing furnace in a box-type annealing furnace to provide processing characteristics. Heat treated at around ° C. However, during this heat treatment, the diffusion of Nigel on the surface of the steel sheet is promoted, so that there is a problem that the wound and overlapped steel sheets come into close contact with each other. For this reason, conventionally, a wire or the like is wound into a coil together with the steel sheet as a spacer, and a heat treatment is performed in a state where an open coil is provided with a gap between the wound steel sheets, or an oxide stable at high temperatures. A method has been adopted in which a release agent such as carbide, nitride or the like is applied to the surface of the steel sheet in advance, and heat treatment is performed in a state where direct contact between the steel sheets is prevented.
' しかし、 ワイヤ一を鋼板に重ね合わせて巻き取り焼鈍する方法は鋼板表面に疵 が付きやすいこと、 およびワイヤーの巻き込み、 巻き解きを必要とするための余 分な作業を必要とし、 能率的ではない。 さらに、 離型剤を鋼板表面に塗布して焼 鈍する方法は、 離型剤の使用によるコスト上昇を招来すること、 および離型剤の 除去が困難であること、 さらに鋼板表面の外観が変化する、 などの問題を有して おり、 いずれの方法も工業的には実用性に乏しいものである。  '' However, the method of superposing the wire on the steel sheet and winding and annealing requires that the surface of the steel sheet is easily scratched and that extra work is required to wrap and unwind the wire. Absent. Furthermore, the method of applying a release agent to the surface of the steel sheet and annealing it increases the cost due to the use of the release agent, makes it difficult to remove the release agent, and changes the appearance of the steel sheet surface However, these methods are not practically applicable industrially.
また、 ニッケルめっき鋼板ではないが、 冷延鋼板の密着防止処理においては、 鋼板表面にチタン、 アルミニウムなどの酸化物質を離型剤を付着させることによ り、 焼鈍時の密着を防止することも行われている (特開昭 6 3— 2 3 5 4 2 7公 報など) 。  In addition, although it is not a nickel-plated steel sheet, in the process of preventing adhesion of a cold-rolled steel sheet, it is also possible to prevent adhesion during annealing by attaching a release agent to an oxidizing substance such as titanium or aluminum on the steel sheet surface. (Eg, Japanese Patent Laid-Open Publication No. 63-23535427).
しかし、 焼鈍後の鋼板表面にはこれらの酸化物が残留し、 鋼板表面の色調が変 '化し、 外観が損なわれるという欠点を有していた。 これらの理由から、 ニッケル めっき鋼板の熱処理においては、 前記したワイヤーが用いられ、 酸化物質の使用 は行われていなかった。 However, these oxides remain on the steel sheet surface after annealing, and the color tone of the steel sheet surface changes. And had the disadvantage that the appearance was impaired. For these reasons, in the heat treatment of the nickel-plated steel sheet, the above-mentioned wire was used, and no oxidizing substance was used.
本発明は、 ニッケルなどのめつきした鋼板を熱処理する際のめっき鋼板同士の 密着を抑えるための、 密着防止処理をした表面処理鋼板を提供することを技術的 課題とする。 発明の開示  An object of the present invention is to provide a surface-treated steel sheet which has been subjected to an adhesion preventing treatment for suppressing the adhesion between plated steel sheets when heat-treating a steel sheet coated with nickel or the like. Disclosure of the invention
請求項 1の表面処理鋼板は、 冷延鋼板の両面にニッケルめっきを施し、 その後 片面のみに錫めつきを施し、 さらにオルソケィ酸ソーダを主成分とする浴中に浸 潰するか又はオルソケィ酸ソーダを主成分とする浴中で電解処理をして表面にシ ' リコン水和物を析出させ、 その後熱処理を行い、 前記めつきを拡散させたことを 特徴とする。  The surface-treated steel sheet according to claim 1 is obtained by applying nickel plating to both sides of a cold-rolled steel sheet, then applying tin plating to only one side, and then immersing in a bath containing sodium orthosilicate as a main component or sodium orthosilicate. A silicon hydrate is precipitated on the surface by electrolytic treatment in a bath containing as a main component, and then heat treatment is performed to diffuse the adhesion.
また、 請求項 2の表面処理鋼板は、 冷延鋼板の両面に 0 . 5〜 1 0 mの厚み のニッケルめっきを施し、 その後片面のみに 0 . 0 5〜5 mの厚みの錫めつき を施し、 さらにオルソケィ酸ソ一ダを主成分とする浴中に浸潰するか又はオルソ ケィ酸ソ一ダを主成分とする浴中で電解処理をして表面にシリコン量として 0 . l〜3 m g Zm2 のシリコン水和物を析出させ、 その後熱処理を行い、 前記めつ きを拡散させたことを特徴とする。 Further, the surface-treated steel sheet according to claim 2 is provided with a nickel plating of 0.5 to 10 m thickness on both sides of the cold-rolled steel sheet, and then a tin plating of 0.05 to 5 m thickness only on one side. And then immersed in a bath containing sodium orthosilicate as a main component, or electrolytically treated in a bath containing sodium orthosilicate as a main component, so that the surface has a silicon amount of 0.1 to 3%. mg Zm 2 of silicon hydrate was precipitated, followed by heat treatment to diffuse the target.
そして、 請求項 3の表面処理鋼板は、 冷延鋼板の両面にニッケルめっき及び錫 めっきを順次施し、 さらにオルソケィ酸ソーダを主成分とする浴中に浸潰するか 又はオルソケィ酸ソ一ダを主成分とする浴中で電解処理をして表面にシリコン水 '和物を析出させ、 その後熱処理を行い、 前記ニッケルめっき及び錫めつきを拡散 させたことを特徴とする。  The surface-treated steel sheet according to claim 3 is obtained by sequentially applying nickel plating and tin plating on both sides of a cold-rolled steel sheet, and further immersing in a bath containing sodium orthosilicate as a main component or mainly using sodium orthosilicate. It is characterized in that silicon hydrate is deposited on the surface by electrolytic treatment in a bath as a component, and then heat treatment is performed to diffuse the nickel plating and tin plating.
さらに、 請求項 4の表面処理鋼板は、 冷延鋼板の両面に 0 . 5〜 1 0 mの厚 みのニッケルめっきを施し、 その後両面に 0 . 0 5〜5 mの厚みの錫めつきを 順次施し、 さらにオルソケィ酸ソーダを主成分とする浴中に浸潰するか又はオル ソケィ酸ソ一ダを主成分とする浴中で電解処理をして表面にシリコン量として 0 . l〜3 m g Zm2 のシリコン水和物を析出させ、 その後熱処理を行い、 前記ニッ ゲルめつき及び錫めつきを拡散させたことを特徴とする。 Further, in the surface-treated steel sheet of claim 4, the cold-rolled steel sheet is provided with nickel plating having a thickness of 0.5 to 10 m on both sides, and thereafter, tin plating having a thickness of 0.5 to 5 m is provided on both sides. And then immersed in a bath containing sodium orthosilicate as a main component, or electrolytically treated in a bath containing sodium orthosilicate as a main component, so that the surface has a silicon amount of 0.1 to 3 mg. A silicon hydrate of Zm 2 is precipitated, and then heat treatment is performed. Gel plating and tin plating are diffused.
また、 請求項 5の製造法は、 冷延鋼板の両面にニッケルめっきを施し、 その後 片面のみに錫めつきを施し、 さらにオルソケィ酸ソ一ダを主成分とする浴中に浸 漬するか又はオルソケィ酸ソ一ダを主成分とする浴中で電解処理をして表面にシ ' リコン水和物を析出させ、 その後熱処理を行い、 前記ニッケルめっきを冷延鋼板 中に拡散させるとともに、 前記錫めつきとニッケルめつきとの拡散層を形成させ ることを特徴とする。  Further, in the production method of claim 5, the cold-rolled steel sheet is plated with nickel on both sides, then tin-plated on only one side, and further immersed in a bath mainly containing sodium orthosilicate. Electrolytic treatment in a bath containing soda orthosilicate as a main component to precipitate silicon hydrate on the surface, followed by heat treatment to diffuse the nickel plating into the cold-rolled steel sheet and the tin It is characterized in that a diffusion layer of plating and nickel plating is formed.
そして、 請求項 6の製造法は、 冷延鋼板の両面にニッケルめっき及び錫めつき を順次施し、 さらにオルソケィ酸ソ一ダを主成分とする浴中に浸潰するか又はォ ルソケィ酸ソーダを主成分とする浴中で電解処理をして表面にシリコン水和物を 析出させ、 その後熱処理を行い、 前記ニッケルめっきを冷延鋼板中に拡散させる とともに、 前記錫めつきとニッケルめつきとの拡散層を形成させることを特徴と する。  In the production method according to claim 6, the cold-rolled steel sheet is subjected to nickel plating and tin plating sequentially on both sides, and further immersed in a bath containing sodium orthosilicate as a main component, or sodium orthosilicate. Electrolytic treatment is performed in a bath containing a main component to precipitate silicon hydrate on the surface, and then heat treatment is performed to diffuse the nickel plating into the cold-rolled steel sheet. It is characterized in that a diffusion layer is formed.
これらの製造法において、 電解処理が、 0 . l〜2 0 AZ d m2 の電流密度で、 トータル電気量 0 . 1〜1 0 0 0ク一ロン Z d m2 のシリコン水和物を析出させ 'るものであることが望ましく、 シリコン水和物の層を形成させる工程において、 A処理と C処理とを交互に行うことが望ましい。 図面の簡単な説明 In these production methods, electrolytic treatment, 0. L~2 0 at a current density of AZ dm 2, the total amount of electricity from 0.1 to 1 0 0 0 click one Ron Z dm precipitating second silicon hydrate ' In the step of forming a silicon hydrate layer, it is desirable to perform the A treatment and the C treatment alternately. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 表面処理鋼板の表面にシリコン水和物を形成させる場合の概略製造ェ 程図である。 図 2は、 表面処理鋼板を、 一定の圧力を負荷して固縛する状態を示 す斜視図である。 図 3は、 接着した 2枚の試験片を強制的に剥離する状態を示す 斜視図である。 発明を実施するための最良の形態  FIG. 1 is a schematic manufacturing process diagram when a silicon hydrate is formed on the surface of a surface-treated steel sheet. FIG. 2 is a perspective view showing a state where the surface-treated steel sheet is fixed by applying a certain pressure. FIG. 3 is a perspective view showing a state in which two bonded test pieces are forcibly peeled off. BEST MODE FOR CARRYING OUT THE INVENTION
冷延鋼板にニッケルめっきを施した後、 オルソケィ酸ソーダ浴中で浸漬処理、 'あるいは特定の条件下で電解処理することにより、 熱処理後も優れた外観を保持 し、 熱処理時の鋼板同士の密着防止に優れたニッケルめっき鋼板が得られる。 以下、 本発明をさらに詳細に説明する。 請求項 1の表面処理鋼板は、 冷延鋼板の片面には、 ニッケル—鉄拡散層、 さら にその上にシリコン酸化物の層が形成されている。 あるいは熱処理温度が低い場 合にはニッケルめっき層が最上層 (ニッケル一鉄拡散層の上) に形成されている 場合もある。 After cold-rolled steel sheet is nickel-plated, immersion treatment in sodium orthosilicate bath, or electrolytic treatment under specific conditions, maintains excellent appearance even after heat treatment, adhesion of steel sheets during heat treatment A nickel-plated steel sheet excellent in prevention can be obtained. Hereinafter, the present invention will be described in more detail. In the surface-treated steel sheet according to claim 1, a nickel-iron diffusion layer is formed on one side of a cold-rolled steel sheet, and a silicon oxide layer is further formed thereon. Alternatively, when the heat treatment temperature is low, the nickel plating layer may be formed on the uppermost layer (on the nickel-iron diffusion layer).
上記ニッケル一鉄拡散層は、 耐食性を向上させる観点から最低 0 . 5 mの厚 みがあることが好ましいが、 1 0 zz mを超えた厚みは経済上好ましくない。  The nickel-iron diffusion layer preferably has a thickness of at least 0.5 m from the viewpoint of improving corrosion resistance, but a thickness exceeding 10 zz m is not economically preferable.
またニッケルめっき層を存在させる場合には、 上記のニッケル—鉄拡散層のみで は十分でない耐食性をさらに向上させる観点から最低 0 . 5 mの厚みがあるこ 'とが好ましいが、 1 0 /•i mを超えた厚みは経済上好ましくない。  When a nickel plating layer is present, it is preferable that the thickness be at least 0.5 m from the viewpoint of further improving the corrosion resistance, which is not sufficient with the nickel-iron diffusion layer alone. The thickness exceeding is not economically preferable.
シリコン酸化物の層がシリコン量として 0 . l〜3 m g /m2 存在させるのが 好ましいが、 その理由は、 下限が 0 . l m g Zm2 未満である場合には、 熱処理 時に十分な密着防止が図れないからである。 一方、 3 m g /m2 を超える量は、 シリコン酸化物が表面処理鋼板の外観色調を白くさせてしまうので好ましくない。 また、 本発明においては、 シリコン水和物はオルソケィ酸ソ一ダから析出させ るので、 極めて微細であり金属色特有の色調はそのまま維持できる。 Although the layer of silicon oxide is 0. Preferable to l~3 mg / m 2 is present as a silicon amount, because, if the lower limit is 0. Lmg Zm less than 2, a heat treatment at sufficient adhesion prevention This is because it cannot be planned. On the other hand, an amount exceeding 3 mg / m 2 is not preferable because the silicon oxide makes the appearance color tone of the surface-treated steel sheet white. In the present invention, since the silicon hydrate is precipitated from sodium orthosilicate, the silicon hydrate is extremely fine, and the color tone unique to the metal color can be maintained as it is.
ここで、 オルソケィ酸ソ一ダから析出するシリコン水和物は、 その後に行われ る熱処理工程で、 水分がとばされてシリコン酸化物となる。  Here, the silicon hydrate that precipitates from sodium orthosilicate is subjected to moisture treatment in a subsequent heat treatment step to form silicon oxide.
また、 本発明においてシリコン酸化物の析出量を 「シリコン量として」 と規定 している理由は、 シリコン酸化物の分析上の都合からである。 すなわち蛍光 X線 '分析法によって、 シリコン酸化物中のシリコン量を特定したからである。  Further, the reason why the amount of silicon oxide deposited is defined as “as silicon amount” in the present invention is because of the convenience of analyzing silicon oxide. That is, the amount of silicon in the silicon oxide was specified by the fluorescent X-ray 'analysis method.
シリコン水和物は、 冷延鋼板上にニッケルめつきした後、 オルソケィ酸ソーダ を主成分とする浴中に浸漬するか、 あるいはオルソケィ酸ソーダを主成分とする 浴中で電解した後、 熱処理することにより形成される。 ただし、 浸漬方式よりも 電解方式の方が付着効率がよい。  Silicon hydrate is nickel-plated on a cold-rolled steel sheet and then immersed in a bath containing sodium orthosilicate as a main component, or electrolyzed in a bath containing sodium orthosilicate as a main component and then heat-treated. It is formed by this. However, the electrolysis method has better adhesion efficiency than the immersion method.
次に、 請求項 1の表面処理鋼板は、 他面に、 ニッケル一鉄拡散層が形成され、 その上にニッケル一錫拡散層が形成され、 さらにその上にシリコン酸化物の層が 形成されている。  Next, in the surface-treated steel sheet according to claim 1, a nickel-iron diffusion layer is formed on another surface, a nickel-tin tin diffusion layer is formed thereon, and a silicon oxide layer is further formed thereon. I have.
上記ニッケル一鉄拡散層は 0 . 5〜 1 0 z rnの厚みであることが好ましく、 そ の上のニッケル一錫拡散層は 0 . 0 5〜 5 mの厚みのものが好ましい。 さらに その上のシリコン酸化物の層はシリコン量として 0 . l〜3 m g _ m2 のものが '好ましい。 The nickel-iron diffusion layer preferably has a thickness of 0.5 to 10 zrn, and the nickel-tin tin diffusion layer thereon has a thickness of 0.05 to 5 m. further It is preferable that the silicon oxide layer thereon has a silicon amount of 0.1 to 3 mg_m 2 .
他面でのニッケル一鉄拡散層を形成させる理由は上記片面で記載した理由と同 様であるが、 ニッケル一錫拡散層を形成させる理由は、 ニッケル一錫拡散層が極 めて耐食性が優れているからである。 すなわち、 硫酸、 硝酸、 塩酸などの強酸に 対しても十分な耐食性を有する。 ニッケル一錫拡散層の厚みが 0 . 0 5未満であ るとこの耐食性は十分に保持できず、 一方 5 mを超えると経済的観点から好ま しくない。 シリコン酸化物の層を形成させる理由は上記と同様である。  The reason for forming the nickel-iron diffusion layer on the other side is the same as the reason described on one side above, but the reason for forming the nickel-tin tin diffusion layer is that the nickel-tin tin diffusion layer is extremely excellent in corrosion resistance. Because it is. That is, it has sufficient corrosion resistance to strong acids such as sulfuric acid, nitric acid, and hydrochloric acid. If the thickness of the nickel-tin tin diffusion layer is less than 0.05, the corrosion resistance cannot be sufficiently maintained, while if it exceeds 5 m, it is not preferable from an economic viewpoint. The reason for forming the silicon oxide layer is the same as above.
請求項 2の表面処理鋼板が、 請求項 1の表面処理鋼板と異なる点は、 両面に二 ッケル一錫拡散層が形成されていることである。 このニッケル一錫拡散層の厚み は、 0 . 0 5〜5 であることが好ましい。 このことにより両面とも優れた耐 食性を有する表面処理鋼板とすることができる。 すなわち両面にわたって上記強 '酸などと接触する環境に耐えることができる。  The surface-treated steel sheet of claim 2 is different from the surface-treated steel sheet of claim 1 in that nickel-tin diffusion layers are formed on both surfaces. The thickness of the nickel-tin tin diffusion layer is preferably 0.05-5. Thus, a surface-treated steel sheet having excellent corrosion resistance on both surfaces can be obtained. In other words, it can withstand the environment in which both sides come into contact with the strong acid or the like.
しかし、 請求項 1又は 2の表面処理鋼板の表面に形成された表面処理層は、 必 ずしも明確に分離区別できない層を形成している場合もある。 すなわち、 請求項 1又は 2の表面処理鋼板の表面部に形成された拡散層は、 めっき後熱処理によつ て形成されるのであるが、 この拡散層は処理温度、 処理時間によってその境界が だんだん不明確となり、 母材である鉄、 ニッケルめっき (錫めつきを施した場合 には錫めつきも含む) が相互に入り交じり、 各成分が濃度勾配を有した拡散層を 形成することがある。  However, the surface-treated layer formed on the surface of the surface-treated steel sheet according to claim 1 or 2 may necessarily form a layer that cannot be clearly separated and distinguished. That is, the diffusion layer formed on the surface of the surface-treated steel sheet according to claim 1 or 2 is formed by heat treatment after plating, and the boundary of this diffusion layer gradually depends on the processing temperature and the processing time. It becomes unclear, and the base material iron and nickel plating (including tin plating if tin plating is applied) may intermingle with each other, and each component may form a diffusion layer with a concentration gradient .
具体的には、 ニッケル一鉄拡散層の場合には、 鉄一ニッケルの 2成分からなり、 母材 (鉄) に近い側には、 鉄の成分濃度が高く、 上層 (表面) ではニッケル濃度 が高い勾配を持った層となっている。  Specifically, in the case of a nickel-iron diffusion layer, the iron-nickel diffusion layer consists of two components, iron and nickel. The iron concentration is higher on the side closer to the base material (iron), and the nickel concentration is higher on the upper layer (surface). It is a layer with a high gradient.
' 又、 熱処理温度を高くしたり時間を長くすると、 ニッケル一錫一鉄の 3成分の 拡散層を形成する場合もあるが、 この場合には、 母材 (鉄) に近い側には、 鉄の 成分濃度が高く、 中間ではニッケル濃度が高く、 上層 (表面) では錫濃度が高い 勾配を持った拡散層となっている。  又 In addition, if the heat treatment temperature is increased or the time is increased, a three-component diffusion layer of nickel, tin, and iron may be formed. In this case, the iron near the base material (iron) In the middle layer, the nickel concentration is high, and in the upper layer (surface), the tin concentration is high, forming a diffusion layer with a gradient.
ニッケル一錫拡散層を形成させる手段としては、 基板にニッケルめっきと錫め つきを重ねて施し、 その後熱処理する方法がある。 また、 鉄一ニッケル一錫合金層を形成させる手段としては、 基板にニッケルめ つきと錫めつきを重ねて施し、 その後の熱処理を高温で処理したり、 長時間にお よぶ処理をする方法がある。 As a means for forming a nickel-tin tin diffusion layer, there is a method in which nickel plating and tin plating are applied to a substrate in an overlapping manner, and then heat treatment is performed. In addition, as a means for forming the iron-nickel-tin alloy layer, there is a method in which nickel plating and tin plating are repeatedly applied to a substrate, and the subsequent heat treatment is performed at a high temperature or performed for a long time. is there.
本発明においてニッケル一錫拡散層は、 前述したようにニッケルめっき後錫め つきを施し 2層めつき層とした後に熱処理する以外に、 ニッケル一錫の合金めつ 'きを基板に施してその後熱処理することによつても形成できる。  In the present invention, the nickel-tin tin diffusion layer is formed by applying a tin-nickel alloy plating to the substrate, as described above, in addition to applying a tin plating after nickel plating to form a two-layer plating layer and then performing a heat treatment. It can also be formed by heat treatment.
冷延鋼板としては、 通常低炭素アルミニウムキルド鋼の鋼板が好適に用いられ る。 さらにニオブ、 ボロン、 チタンを添加し、 非時効性低炭素鋼から製造された 冷延鋼板も用いられる。 通常、 冷延後、 電解洗浄、 焼鈍、 調質圧延した鋼板をめ つき原板とするが、 冷延後の鋼板をめつき原板とする場合もある。 この場合は、 冷延後にニッケルめっきを施した後、 引き続いて鋼素地の再結晶焼鈍とニッケル めっき層の熱拡散処理を同時に行うことができる。  As the cold-rolled steel sheet, usually, a steel sheet of low-carbon aluminum killed steel is suitably used. Cold-rolled steel sheets made from non-aging low-carbon steel with the addition of niobium, boron and titanium are also used. Usually, the cold rolled, electrolytically cleaned, annealed, and temper rolled steel sheet is used as the plating original sheet, but the cold rolled steel sheet may be used as the plating original sheet. In this case, after nickel plating is performed after cold rolling, recrystallization annealing of the steel base and thermal diffusion treatment of the nickel plating layer can be simultaneously performed.
ニッケルめっき浴は、 ワット浴、 スルファミン酸浴、 塩化物浴など公知のめつ き浴のいずれも本発明に用いることができる。 さらに、 めっきの種類としては、 無光沢、 半光沢、 および光沢めつきがあるが、 硫黄を含有する有機物を添加した 光沢めつき以外の無光沢、 または半光沢めつきが本発明において好適に用いられ 'る。  As the nickel plating bath, any of known plating baths such as a watt bath, a sulfamic acid bath, and a chloride bath can be used in the present invention. Further, the types of plating include matte, semi-gloss, and glossy, but matte or semi-glossy other than glossy to which a sulfur-containing organic substance is added is preferably used in the present invention. I'll
(錫めつき)  (With tin plating)
浴組成は通常用いられている酸性浴、 アルカリ浴があるが、 硫酸第 1錫浴ある いはフエノ一ルスルフォン酸浴が好適に用いられる。  The bath composition includes an acidic bath and an alkali bath which are usually used, and a stannous sulfate bath or a phenolsulfonic acid bath is preferably used.
なお、 錫めつきの方法は、 脱脂、 酸洗、 錫めつき、 リフロー (錫溶融処理) 、 ケミカル処理の工程で製造される場合が一般的である。  In addition, the method of tin plating is generally performed in the steps of degreasing, pickling, tin plating, reflow (tin melting treatment), and chemical treatment.
以上の様にしてめつきを施した鋼板に、 オルソケィ酸ソ一ダ溶液中で浸漬処理、 または電解処理を施す。 オルソケィ酸ソーダ溶液は 1〜 7 %の濃度であることが 好ましく、 2〜4 %であることがより好ましい。  The plated steel sheet is subjected to immersion treatment or electrolytic treatment in a sodium orthosilicate solution. Preferably, the sodium orthosilicate solution has a concentration of 1 to 7%, more preferably 2 to 4%.
1 %以下の濃度である場合は、 シリコン水和物の鋼板上への析出量が少なく、 後の熱処理工程において、 必要とされる 0 . l g Zm2 以上の量のシリコン酸化 '物が得られず、 熱処理を施す際にめつき鋼板同士の密着が生じやすくなる。 When the concentration is 1% or less, the amount of silicon hydrate precipitated on the steel sheet is small, and in the subsequent heat treatment step, the required amount of silicon oxide of 0.1 lg Zm 2 or more is obtained. In addition, when heat treatment is performed, the adhesion between the steel sheets tends to occur.
また電解処理を施す場合、 処理電圧が高くなるという問題もある。 一方、 7 %以上の濃度である場合は、 オルソケィ酸ソーダ溶液が鋼板の移動に 伴って処理槽から持ち出される量も増加するので不経済である。 また処理浴の取 扱いも危険になり、 好ましくない。 In addition, when the electrolytic treatment is performed, there is a problem that a treatment voltage is increased. On the other hand, if the concentration is 7% or more, the amount of sodium orthosilicate solution taken out of the treatment tank as the steel sheet moves increases, which is uneconomical. In addition, handling of the treatment bath becomes dangerous, which is not preferable.
シリコン水和物を付着させる電解処理を施す場合のトータル電気量は、 0 . 1 〜 1 0 0 0クーロン d m2 であることが好ましい。 The total amount of electricity when the electrolytic treatment for attaching silicon hydrate is performed is preferably from 0.1 to 100 Coulomb dm 2 .
トータル電気量が 0 . 1ク一ロン/ d m2 未満の場合は、 シリコン水和物のめつ き鋼板上への付着効率が悪く、 必要とされるシリコン量として 0 . l g Zm2 以 上の量のシリコン酸化物が得られず、 熱処理を施す際に鋼板同士の密着が生じや すくなる。 Total amount of electricity to zero. 1 for less than click one Ron / dm 2, poor adhesion efficiency onto dark-out steel sheet silicon hydrate, as the silicon amount required 0. Lg Zm 2 than on A large amount of silicon oxide cannot be obtained, and the steel sheets tend to adhere to each other during heat treatment.
' 一方、 トータル電気量を 1 0 0 0クーロン Z d m2 以上に増加させても、 それ 以上のシリコン水和物が鋼板上に析出しないため経済的な無駄が生ずる。 'On the other hand, even if the total amount of electricity is increased to 100 Coulombs Z dm 2 or more, no more silicon hydrate will be precipitated on the steel sheet, and economic waste will occur.
上記のオルソケィ酸ソ一ダ溶液による処理が施されてコイル状に巻き取られた ニッケルめっき鋼板を、 箱型焼鈍法を用いて 5 0 0〜7 0 0 °C程度の温度以下で 数時間以上加熱することにより、 種々の厚みの拡散層を形成させることができる。 この厚みは熱処理温度や時間を変えることにより加減することができる。  The nickel-plated steel sheet that has been treated with the above-mentioned sodium orthosilicate solution and wound into a coil is subjected to box annealing at a temperature of about 500 to 700 ° C for several hours or more. By heating, diffusion layers of various thicknesses can be formed. This thickness can be adjusted by changing the heat treatment temperature and time.
図 1は、 ニッケルめっき鋼板をオルソケィ酸ソーダを主成分とする浴中で電解 処理して、 その表面にシリコン水和物を析出形成させる場合の概略製造工程図で ある。  FIG. 1 is a schematic manufacturing process diagram in a case where a nickel-plated steel sheet is subjected to electrolytic treatment in a bath containing sodium orthosilicate as a main component to precipitate silicon hydrate on the surface thereof.
前記電解処理は、 図 1の(a )や(b )に示す水平型処理槽、 又は同図(c )や(d ) に示す垂直型処理槽のいずれの処理槽を用いてもよい。  For the electrolytic treatment, any of the horizontal processing tanks shown in FIGS. 1 (a) and (b) or the vertical processing tanks shown in FIGS. 1 (c) and 1 (d) may be used.
' ニッケルめっき鋼板の表面に シリコン水和物の析出層を形成させる方法とし ては、 図 1 ( a )又は(c )に示すように、 初めに C処理 (鋼板側を陰極にする) を 施した後、 次の工程で A処理 (鋼板側を陽極) する方法がある。  '' As a method of forming a precipitate layer of silicon hydrate on the surface of a nickel-plated steel sheet, first, as shown in Fig. 1 (a) or (c), C treatment (the steel sheet side is used as a cathode) is performed. After that, there is a method of A treatment (steel plate side anode) in the next step.
また、 図 1 ( b )又は(d )に示すように、 初めに A処理を施した後次に C処理する 方法も用いることもできる。  Further, as shown in FIG. 1 (b) or (d), a method of first performing A treatment and then performing C treatment can also be used.
上記いずれの処理方法も、 この処理中においてめつき鋼板の表面を清浄化させる ことができるので、 二ッゲルめつき鋼板の表面にシリコン水和物を多量析出層さ せる方法として有効である。  Any of the above treatment methods can clean the surface of the plated steel sheet during this treatment, and thus is effective as a method for depositing a large amount of silicon hydrate on the surface of the Nigel plated steel sheet.
特に、 先に C処理をして、 後に A処理をするという工程は、 ニッケルめっき鋼 板の表面にシリコン水和物を析出させる効率の点で優れている。 In particular, the process of first performing the C treatment and then performing the A treatment It is excellent in the efficiency of precipitating silicon hydrate on the surface of the plate.
さらに、 処理槽および電極を多数個設けて、 C処理→A処理、 あるいは A処理 Furthermore, a large number of processing tanks and electrodes are provided, and C treatment → A treatment or A treatment
→C処理を複数回繰り返す処理を施してもよい。 → A process of repeating the C process a plurality of times may be performed.
さらにまた、 上記の複数回の繰り返し処理において、 C処理一 A処理一。処理 Furthermore, in the above-mentioned multiple repetition processes, C process-A process-A. processing
、 あるいは A処理一 C処理— A処理のように、 初めと終わりの極性を同一として もよい。 , Or A processing-C processing-As in A processing, the polarity of the beginning and end may be the same.
(熱処理)  (Heat treatment)
拡散層を形成させるための熱処理は、 非酸化性または還元性保護ガス雰囲気 (例 えば水素 6. 5%, 残部窒素ガス、 露点一 60°Cの保護ガス) 下で行うことが表 面の酸化膜形成を防止するために好ましい。 熱処理温度は 300°C以上が必要で める。 The heat treatment for forming the diffusion layer can be performed in a non-oxidizing or reducing protective gas atmosphere (for example, 6.5% hydrogen, the balance of nitrogen gas, and a protective gas with a dew point of 60 ° C). It is preferable to prevent film formation. The heat treatment temperature must be 300 ° C or higher.
熱処理する方法としては箱型焼鈍法と連続焼鈍法があるが、 本発明ではそのい ずれの方法によってもよく、 連続焼鈍法では高温、 短時間処理、 即ち 600〜8 50 °C X 30秒〜 5分が好ましく、 箱型焼鈍法では 450〜650°CX 5〜15 時間の熱処理条件が好ましい。  As a method of heat treatment, there are a box annealing method and a continuous annealing method. In the present invention, either method may be used. In the continuous annealing method, a high-temperature, short-time treatment, that is, 600 to 850 ° C for 30 seconds to 5 hours The heat treatment conditions of 450 to 650 ° C. for 5 to 15 hours are preferred in the box annealing method.
(実施例)  (Example)
(実施例 1 )  (Example 1)
冷延鋼板 (基板) を、 アルカリ電解脱脂 (苛性ソーダ 30 gZl , 5 A/dm2 Cold-rolled steel plate (substrate) was washed with alkaline electrolytic degreasing (caustic soda 30 gZl, 5 A / dm 2
(陽極処理) X 1 0秒, 5 A/dm2 (陰極処理) X 1 0秒、 浴温 70°C) 、 硫 酸酸洗 (硫酸 50 gZ l, 浴温 30°C, 20秒浸漬) を行った後、 下記の条件で 基板両面にニッケルめつきを行つた。 (Anodic treatment) X 10 seconds, 5 A / dm 2 (Cathode treatment) X 10 seconds, bath temperature 70 ° C), sulfuric acid pickling (sulfuric acid 50 gZl, bath temperature 30 ° C, immersion for 20 seconds) After that, nickel plating was performed on both sides of the substrate under the following conditions.
浴組成 硫酸ニッケル 320 g.  Bath composition Nickel sulfate 320 g.
塩化ニッケル 40 g.  Nickel chloride 40 g.
ほう酸 30 g.  Boric acid 30 g.
ラウリル硫酸ソーダ 0. 5 g.  0.5 g of sodium lauryl sulfate.
浴温度 55 ± 2 °C  Bath temperature 55 ± 2 ° C
PH 4. 1〜4. 6  PH 4.1 to 4.6
撹拌 空気撹拌  Stir Air stir
1 OA/dm2 アノード : ニッケルペレツ卜 1 OA / dm 2 Anode: Nickel pellet
上記の条件で、 電解時間を変化させてニッケルめっきの厚みが異なったものを幾 種類か作成した。 上記ニッケルめっきに引き続いて、 下記条件で片面に錫めつき を施した。 Under the above conditions, several types of nickel plating having different thicknesses were prepared by changing the electrolysis time. Following the nickel plating, tin plating was applied to one surface under the following conditions.
浴組成 : 硫酸第一錫 30 gZ l (S++)  Bath composition: stannous sulfate 30 gZl (S ++)
フエノ一ルスルフォン酸 60 g 1  Phenylsulfonic acid 60 g 1
エトキシ化 αナフトール 5 g 1  Ethoxylated α-naphthol 5 g 1
浴温度 : 50 ± 2 °C  Bath temperature: 50 ± 2 ° C
電流密度 : 2 OA/ dm2 Current density: 2 OA / dm 2
アノード : 錫板  Anode: Tin plate
なお、 錫めつきの浴組成は通常用いられている酸性浴あるいはアルカリ浴のいず れでも良いが、 本発明では硫酸第一錫浴あるいはフエノールスルフォン酸浴が好 適に用いられる。 めっき厚みは電解時間を変えて制御した。 The bath composition for tin plating may be any of a commonly used acidic bath or alkali bath, but in the present invention, a stannous sulfate bath or a phenolsulfonic acid bath is suitably used. The plating thickness was controlled by changing the electrolysis time.
ついで、 オルソケィ酸ソ一ダ溶液中で種々の条件で浸漬処理、 または電解処理を 施した。 Next, immersion treatment or electrolytic treatment was carried out under various conditions in a sodium orthosilicate solution.
[オルソケィ酸ソ一ダ溶液でのシリコン水和物の電解析出処理]  [Electrodeposition of Silicon Hydrate in Sodium Orthosilicate]
•処理浴 オルソケィ酸ソーダ 30 1  • Treatment bath Sodium orthosilicate 30 1
'浴 温 50 ± 5 °C  'Bath temperature 50 ± 5 ° C
•付着量の調整は、 浸漬処理の場合は、 浸漬時間を種々変化させた。 電解処理の 場合は、 電流密度を 5AZdm2 とし、 電気量および極性を種々変化させ、 シリ コン水和物の付着量の異なる処理鋼板を作製した。 • In the case of immersion treatment, the immersion time was varied to adjust the amount of adhesion. For electrolytic treatment, the current density was 5AZdm 2, the quantity of electricity and polarity were changed variously to prepare a different processing steel sheet deposition amount of silicon hydrate.
(実施例 2 )  (Example 2)
前述の実施例 1と異なる点は、 両面にニッケルめっきを施した後、 片面に下記 条件でニッケル一錫合金めつきを施したことである。 その他の点は実施例 1と同 様である。  The difference from the first embodiment is that after nickel plating was applied to both surfaces, a nickel-tin alloy was applied to one surface under the following conditions. Other points are the same as in the first embodiment.
浴組成 : 塩化第一錫 (SnC 12 · 2H2〇) 50 g/ 1 Bath composition: Stannous chloride (SnC 1 2 · 2H 2 〇) 50 g / 1
塩化ニッケル (N i C 12 · 6H20) 300 g/ 1 フッ化ナトリウム (NaF) 30 g/ 1 酸性フッ化アンモニゥム (NH4HF2) 35 g/ 1 浴温度 : 6 5 °C Nickel chloride (N i C 12 · 6H 2 0) 300 g / 1 sodium fluoride (NaF) 30 g / 1 acid fluoride Anmoniumu (NH 4 HF 2) 35 g / 1 Bath temperature: 65 ° C
2 . 5 A/ d m2 2.5 A / dm 2
P H 2 . 5  P H 2.5
アノード 錫を 2 8 %含有したニッケル一錫合金アノード  Anode Nickel-tin alloy anode containing 28% tin
なお、 ニッケル一錫合金めつき浴には、 塩化物一フッ化物浴の他ピロリン酸浴等 でもよい。 この結果を表 1にまとめた。  The nickel-tin alloy plating bath may be a chloride monofluoride bath or a pyrophosphate bath. Table 1 summarizes the results.
上記のようにして得られた処理鋼板から 1 0 O mm X 3 O mmの大きさの試料 を切り出し、 図 2に示すように同一条件で処理した 2枚の試料の処理面が接する ように重ね合わせて積層体 1とし、 その上下に接するように配設した受圧板 2、 および固縛板 3を介して、 4組のボルト 4とナット 5をトルクレンチを用いて各 試験片に常に 3 k g f Zmm2 の同一の固縛力が作用するように締め付け、 固定 した。 このように固縛した試験片を、 6 . 5 %の水素と残部が窒素からなる保護 ガス雰囲気中で温度を変化させ (5 5 0〜 7 0 0 °C) の温度で、 時間を変えて ( 1〜1 0時間) 熱処理した。 A sample with a size of 10 Omm X 3 Omm was cut out from the treated steel sheet obtained as described above, and the two specimens treated under the same conditions were overlapped so that the treated surfaces were in contact as shown in Fig. 2. Combine them into a laminated body 1 and apply 4 sets of bolts 4 and nuts 5 to each test piece with a torque wrench via a pressure receiving plate 2 and a securing plate 3 that are placed in contact with the top and bottom of the laminated body. It was fastened and fixed so that the same lashing force of Zmm 2 acts. The temperature of the thus secured test piece was changed in a protective gas atmosphere consisting of 6.5% hydrogen and the balance of nitrogen at a temperature of (550 to 700 ° C) for different times. (1 to 10 hours) Heat treatment was performed.
熱処理後、 図 3に示すように接着した 2枚の試験片の接着面の一端を強制的に剥 離し、 剥離した両端を引張試験機の両チャック部に固着するために T字状となる ように折曲げ、 引張試験片とした。 この引張試験片を引張試験機にて剥離し、 剥 離が開始する密着強度を測定し、 試験片が熱処理によって密着した程度 (密着防 止性) を下記の基準に基づいて評価した。  After the heat treatment, as shown in Fig. 3, one end of the bonded surface of the two bonded test pieces is forcibly peeled off, and the two ends are T-shaped so that both peeled ends are fixed to both chucks of the tensile tester. Into a tensile test piece. The tensile test piece was peeled off by a tensile tester, the adhesion strength at which peeling started was measured, and the degree of adhesion of the test piece by heat treatment (adhesion prevention) was evaluated based on the following criteria.
〇:良好 (3 k g f未満の張力で剥離した)  〇: Good (peeled off with a tension of less than 3 kgf)
X :不良 (3 k g f以上の張力で剥離した)  X: defective (peeled off with a tension of 3 kgf or more)
'試料の処理条件及び評価結果を表 1に示す。 表 1 めっきした厚み 才ルリケィ酸リ-ダ溶液での 焼鈍 焼鈍時 Table 1 shows the processing conditions and evaluation results for the samples. Table 1 Plated thickness Annealing with lulycaic acid solder solution During annealing
IX m ケィ酸塩析出処理条件 の 料 鋼极同士 IX m Material with different silicate precipitation conditions
No Ni Sn 種類 電解処理 ト-タル電気量 温度 時間 の密着 の 1脂/序 J Λ /fjm 2 (時) 防止性No Ni Sn Type Electrolytic treatment Total electricity amount Temperature / time adhesion 1 grease / order J Λ / fjm 2 (hour) Prevention
1 表面 2. 1 1 surface 2.1
浸漬 0. 41 550 10 〇 裏面 1. 9 0. 3  Immersion 0.41 550 10 〇 Back 1.9 0.3
2 表面 2. 0  2 Surface 2.0
電解 理 100 1. 05 550 10 〇 裏面 2. 0 1. 0  Electrolysis 100 1.05 550 10 〇 Back side 2. 0 1. 0
3 表面 2. 5 c処锞 m 3 surface 2. 5 c Sho锞m
電解 →A処理 100 1. 14 550 10 〇 裏面 1. 5 1. 5  Electrolysis → A treatment 100 1.14 550 10 裏面 Back side 1.5 1.5
Book
4 表面 4. 9  4 Surface 4.9
一 電解 C処理 1 5 0. 50 600 8 〇 裏面 1. 8 0. 5  1 Electrolysis C treatment 1 5 0.50 600 8 裏面 Back side 1.80.5
発 5 表面 4 ― 電解 A処理 250 1. 70 600 8 〇 裏面 1 0. 4 Start 5 Front 4 ― Electrolytic A treatment 250 1.70 600 8 〇 Back 1 0.4
6 表面 3. 5 2. 5 c処理 6 surface 3. 5 2. 5 c processing
明 電解 250 1. 84 700 1 〇 裏面 4. 6 1. 2 → C笾理 Ming Electrolysis 250 1.84 700 1 裏面 Back side 4. 6 1.2 → C treatment
7 表面 15 5 C処珲→A L理  7 Surface 15 5 C processing → A L processing
電解 1000 2. 35 700 1 〇 裏面 10 2 →A処理  Electrolysis 1000 2.35 700 1 〇 Back side 10 2 → A treatment
8 表面 10 4 A処 理  8 Surface 10 4 A treatment
電解 1000 2. 23 700 1 〇 裏面 8 2 →C処理  Electrolysis 1000 2.23 700 1 〇 Back side 8 2 → C treatment
9 表面 0. 5 0. 03  9 Surface 0.5 0.53
浸漬 0. 39 600 1 2 〇 裏面 3. 2 0. 03  Immersion 0.39 600 1 2 裏面 Back side 3.2 0.03
10 表面 0. 5 0. 03  10 Surface 0.5 0.5 0.03
電解 A処理 200 1. 32 600 12 〇 裏面 3. 2 0. 03 →C処理  Electrolysis A treatment 200 1.32 600 12 裏面 Back side 3.2 0.03 → C treatment
1 1 表面 0. 5 0. 03  1 1 Surface 0.5 0.53
電解 C処瑪 200 1. 46 600 12 〇 裏面 3. 2 0. 03 →A処理  Electrolytic C processing 200 1.46 600 12 裏面 Back side 3.2 0.03 → A processing
1 2 表面 1. 9 0. 4  1 2 Surface 1.9 0.4
浸漬 0. 42 650 6 〇 裏面 2. 3 0. 09  Immersion 0.442 650 6 裏面 Back side 2.3 0.09
13 表面 1. 9 0. 4  13 Surface 1. 9 0.4
電解 A処理 50 0. 85 650 6 〇 sta 2. 3 0. 09 — C処理  Electrolysis A treatment 50 0.85 650 6 sta sta 2. 3 0.09 — C treatment
14 表面 1. 9 0. 4  14 Surface 1.9 0.4
電解 C処珲 ήπ 50 0. 93 650 6 〇 裏面 U. 09 Α処理 Electrolytic C treatment ήπ 50 0.93 650 6 裏面 Back side U.09 Αtreatment
1 5 表面 2. 0 0. 31  1 5 Surface 2.0.0 0.31
550 10 X 比 裏面 2. 3  550 10 X ratio Back 2.3
較 16 表面 1. 9 0. 43 Comparison 16 Surface 1.9 0.43
600 8 X 裏面 4. 7  600 8 X back side 4.7
An example
1 7 表面 0. 5 0. 1  1 7 Surface 0.5 0.5 0.1
650 8 X 裏面 2. 1 0. 08  650 8 X back side 2. 1 0.08
1 8 表面 3. 5 2. 21  1 8 Surface 3.5 2.21
700 1 X 裏面 4. 5 0. 72 表 1に示すように、 本発明の表面処理鋼板は、 熱処理時の鋼板同士の密着が起 きにくい。 700 1 X back side 4.5 0.72 As shown in Table 1, in the surface-treated steel sheet of the present invention, adhesion of the steel sheets during heat treatment hardly occurs.
なお、 比較例として、 ニッケルめっき鋼板上になんらシリコン酸化物の層を形 成させないで熱処理したが、 鋼板同士の密着が起こった。  As a comparative example, heat treatment was performed without forming any silicon oxide layer on the nickel-plated steel sheet, but adhesion between the steel sheets occurred.
産業上の利用可能性 Industrial applicability
本発明の表面処理鋼板は、 耐食性に優れ、 熱処理する際の密着防止性にも優れ ている。 すなわち、 表面処理鋼板をコイル状に巻き取った状態で、 めっきを拡散 させる処理を施す際にも、 鋼板同士の密着を生じることがない。  The surface-treated steel sheet of the present invention has excellent corrosion resistance and also has excellent anti-adhesion properties during heat treatment. That is, even when the plating treatment is performed while the surface-treated steel sheet is wound in a coil shape, adhesion between the steel sheets does not occur.

Claims

請 求 の 範 囲 The scope of the claims
1 . 冷延鋼板の両面にニッケルめっきを施し、 その後片面のみに錫めつきを 施し、 さらにオルソケィ酸ソーダを主成分とする浴中に浸潰するか又はオルソケ ィ酸ソ一ダを主成分とする浴中で電解処理をして表面にシリコン水和物を析出さ せ、 その後熱処理を行い、 前記めつきを拡散させたことを特徴とする表面処理鋼 板。 1. Nickel plating on both sides of cold-rolled steel sheet, then tin plating only on one side, and then immerse in a bath containing sodium orthosilicate as a main component, or use sodium orthosilicate as a main component. A surface-treated steel sheet characterized in that silicon hydrate is precipitated on the surface by electrolytic treatment in a bath to be heated, and then heat treatment is performed to diffuse the adhesion.
2 . 冷延鋼板の両面に 0 . 5〜 1 0 mの厚みのニッケルめっきを施し、 そ の後片面のみに 0 . 0 5〜5 mの厚みの錫めつきを施し、 さらにオルソケィ酸 ソーダを主成分とする浴中に浸漬するか又はオルソケィ酸ソーダを主成分とする 浴中で電解処理をして表面にシリコン量として 0 . l〜3 m g /m2 のシリコン 水和物を析出させ、 その後熱処理を行い、 前記めつきを拡散させたことを特徴と する表面処理鋼板。 2. Both sides of the cold-rolled steel sheet are nickel-plated with a thickness of 0.5 to 10 m, then only one side is coated with a tin with a thickness of 0.05 to 5 m, and sodium orthosilicate is further added. as the amount of silicon on the surface by electrolytic treatment in a bath consisting mainly of one or Orusokei sodium immersed in a bath consisting mainly 0. precipitating silicon hydrate l~3 mg / m 2, After that, a heat-treated steel sheet is characterized in that the adhesion is diffused.
3 . 冷延鋼板の両面にニッケルめっき及び錫めつきを順次施し、 さらにオル ソケィ酸ソーダを主成分とする浴中に浸漬するか又はオルソケィ酸ソ一ダを主成 分とする浴中で電解処理をして表面にシリコン水和物を析出させ、 その後熱処理 を行い、 前記ニッケルめっき及び錫めつきを拡散させたことを特徴とする表面処 理鋼板。  3. Nickel plating and tin plating are sequentially applied to both sides of the cold-rolled steel sheet, and then immersed in a bath containing sodium orthosilicate as a main component, or electrolyzed in a bath containing sodium orthosilicate as a main component. A surface-treated steel sheet characterized by being subjected to a treatment to precipitate silicon hydrate on the surface, and then to a heat treatment to diffuse the nickel plating and tin plating.
4 . 冷延鋼板の両面に 0 . 5〜 1 0 x mの厚みのニッケルめっきを施し、 そ の後両面に 0 . 0 5〜 5 mの厚みの錫めつきを順次施し、 さらにオルソケィ酸 ソーダを主成分とする浴中に浸漬するか又はオルソケィ酸ソーダを主成分とする 浴中で電解処理をして表面にシリコン量として 0 . l〜3 m g /m2 のシリコン 水和物を析出させ、 その後熱処理を行い、 前記ニッケルめっき及び錫めつきを拡 散させたことを特徴とする表面処理鋼板。 4. Both sides of the cold-rolled steel sheet are plated with nickel to a thickness of 0.5 to 10 xm, then both sides are tin-plated to a thickness of 0.05 to 5 m, and then sodium orthosilicate is applied. as the amount of silicon on the surface by electrolytic treatment in a bath consisting mainly of one or Orusokei sodium immersed in a bath consisting mainly 0. precipitating silicon hydrate l~3 mg / m 2, Thereafter, a heat treatment is performed to diffuse the nickel plating and tin plating.
5 . 冷延鋼板の両面にニッケルめっきを施し、 その後片面のみに錫めつきを 施し、 さらにオルソケィ酸ソーダを主成分とする浴中に浸潰するか又はオルソケ ィ酸ソ一ダを主成分とする浴中で電解処理をして表面にシリコン水和物を析出さ せ、 その後熱処理を行い、 前記ニッケルめっきを冷延鋼板中に拡散させるととも に、 前記錫めつきとニッケルめつきとの拡散層を形成させることを特徴とする、 表面処理鋼板の製造法。 5. Both sides of the cold-rolled steel sheet are plated with nickel, and then only one side is tin-plated. Electrolytic treatment in a bath to perform precipitation of silicon hydrate on the surface, followed by heat treatment to diffuse the nickel plating into the cold-rolled steel sheet and to reduce the tin plating and the nickel plating. Characterized by forming a diffusion layer, Manufacturing method of surface treated steel sheet.
6 . 冷延鋼板の両面にニッケルめっき及び錫めつきを順次施し、 さらにオル ソケィ酸ソーダを主成分とする浴中に浸潰するか又はオルソケィ酸ソーダを主成 分とする浴中で電解処理をして表面にシリコン水和物を析出させ、 その後熱処理 を行い、 前記ニッケルめっきを冷延鋼板中に拡散させるとともに、 前記錫めつき とニッケルめつきとの拡散層を形成させることを特徴とする、 表面処理鋼板の製 造法。  6. Nickel plating and tin plating are sequentially applied to both sides of the cold-rolled steel sheet, and then immersed in a bath containing sodium orthosilicate as a main component, or electrolytically treated in a bath containing sodium orthosilicate as a main component. To precipitate silicon hydrate on the surface, and then heat-treat to diffuse the nickel plating into the cold-rolled steel sheet and form a diffusion layer of the tin plating and the nickel plating. Manufacturing method of surface-treated steel sheet.
7 . 前記電解処理が、 0 . 1〜2 0 AZ d m2 の電流密度で、 トータル電気 量 0 . 1〜 1 0 0 0クーロン Z d m2 のシリコン水和物を析出させる請求項 5又 は 6記載の製造法。 7. The method according to claim 5, wherein the electrolytic treatment precipitates a silicon hydrate having a total electric quantity of 0.1 to 100 Coulomb Z dm 2 at a current density of 0.1 to 20 AZ dm 2 . Production method as described.
8 . 前記シリコン水和物の層を形成させる工程において、 A処理と C処理と を交互に行う請求項 5〜 7のいずれか記載の製造法。  8. The method according to any one of claims 5 to 7, wherein in the step of forming the silicon hydrate layer, A treatment and C treatment are alternately performed.
PCT/JP1997/003652 1996-10-09 1997-10-09 Surface treated steel sheet and method of manufacturing the same WO1998015673A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP51740098A JP3492704B2 (en) 1996-10-09 1997-10-09 Surface-treated steel sheet and its manufacturing method
AU45715/97A AU4571597A (en) 1996-10-09 1997-10-09 Surface treated steel sheet and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP28589596 1996-10-09
JP8/285895 1996-10-09

Publications (1)

Publication Number Publication Date
WO1998015673A1 true WO1998015673A1 (en) 1998-04-16

Family

ID=17697418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003652 WO1998015673A1 (en) 1996-10-09 1997-10-09 Surface treated steel sheet and method of manufacturing the same

Country Status (4)

Country Link
JP (1) JP3492704B2 (en)
AU (1) AU4571597A (en)
TW (1) TW448247B (en)
WO (1) WO1998015673A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140397A (en) * 1996-11-13 1998-05-26 Nippon Steel Corp Production of nickel plated steel sheet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582726A (en) * 1978-12-15 1980-06-21 Tamagawa Kikai Kinzoku Kk Preventing method for adhesion in heat treatment of metal
JPS57143490A (en) * 1981-03-02 1982-09-04 Toyo Kohan Co Ltd Production of metallic plate for printing material
JPS5842788A (en) * 1981-09-09 1983-03-12 Nippon Steel Corp Surface treated steel plate for fuel vessel
JPS5845397A (en) * 1981-09-14 1983-03-16 Nippon Steel Corp Production of surface treated steel plate for fuel vessel
JPS605894A (en) * 1983-06-25 1985-01-12 Nippon Steel Corp Surface treated steel sheet for vessel
JPS61264196A (en) * 1985-05-20 1986-11-22 Toyo Kohan Co Ltd Surface treated steel sheet for welded can and its manufacture
JPS62256991A (en) * 1986-04-30 1987-11-09 Nippon Kokan Kk <Nkk> Production of surface treated steel sheet for welded can
JPH04154997A (en) * 1990-10-15 1992-05-27 Nkk Corp Ni diffused steel sheet for di can and its production
JPH06108286A (en) * 1992-09-26 1994-04-19 Toyo Kohan Co Ltd High workability nickel-tin plated steel strip
JPH08333689A (en) * 1995-06-01 1996-12-17 Toyo Kohan Co Ltd Nickel plated steel sheet applied with adhesion preventing treatment at the time of annealing and its production

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582726A (en) * 1978-12-15 1980-06-21 Tamagawa Kikai Kinzoku Kk Preventing method for adhesion in heat treatment of metal
JPS57143490A (en) * 1981-03-02 1982-09-04 Toyo Kohan Co Ltd Production of metallic plate for printing material
JPS5842788A (en) * 1981-09-09 1983-03-12 Nippon Steel Corp Surface treated steel plate for fuel vessel
JPS5845397A (en) * 1981-09-14 1983-03-16 Nippon Steel Corp Production of surface treated steel plate for fuel vessel
JPS605894A (en) * 1983-06-25 1985-01-12 Nippon Steel Corp Surface treated steel sheet for vessel
JPS61264196A (en) * 1985-05-20 1986-11-22 Toyo Kohan Co Ltd Surface treated steel sheet for welded can and its manufacture
JPS62256991A (en) * 1986-04-30 1987-11-09 Nippon Kokan Kk <Nkk> Production of surface treated steel sheet for welded can
JPH04154997A (en) * 1990-10-15 1992-05-27 Nkk Corp Ni diffused steel sheet for di can and its production
JPH06108286A (en) * 1992-09-26 1994-04-19 Toyo Kohan Co Ltd High workability nickel-tin plated steel strip
JPH08333689A (en) * 1995-06-01 1996-12-17 Toyo Kohan Co Ltd Nickel plated steel sheet applied with adhesion preventing treatment at the time of annealing and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140397A (en) * 1996-11-13 1998-05-26 Nippon Steel Corp Production of nickel plated steel sheet

Also Published As

Publication number Publication date
JP3492704B2 (en) 2004-02-03
AU4571597A (en) 1998-05-05
TW448247B (en) 2001-08-01

Similar Documents

Publication Publication Date Title
JP3045612B2 (en) High corrosion resistant nickel-plated steel strip and its manufacturing method
KR101108312B1 (en) Plated steel sheet for can and process for producing the same
EP0725453B1 (en) Surface-treated steel sheet for battery case and battery case
EP3461579B1 (en) Method for producing cladding material
EP2925089B1 (en) Substrate for flexible devices and method for producing same
JP2971366B2 (en) Nickel-plated steel sheet subjected to adhesion prevention treatment during annealing and its manufacturing method
JP3439912B2 (en) Battery can material excellent in deep drawability and method for producing the same
JP3492704B2 (en) Surface-treated steel sheet and its manufacturing method
JPS6136595B2 (en)
JP2534604B2 (en) Highly workable nickel-tin plated steel strip for battery cases
JP3092930B2 (en) Ni, Cu coated cold rolled steel sheet and method for producing the same
JP4612572B2 (en) Manufacturing method of high purity Ni diffusion plated steel sheet
JPH0441085A (en) Production of aluminum laminated steel plate
JPH05156416A (en) Galvanizing method for si-containing steel sheet
JP2001345080A (en) Ni plated steel sheet for positive electrode can of alkaline manganese battery, its manufacturing method and positive electrode using it
JPH11117085A (en) Steel sheet for welded can, excellent in weldability, corrosion resistance, and adhesion
JP3461684B2 (en) Manufacturing method of steel plate for laminated welding can
JPH0420989B2 (en)
JPH1060687A (en) Surface treated steel sheet for welded can, excellent in filiform rust resistance and resistance to corrosion under coated film, and its production
JP2002004084A (en) Nickel plated steel strip having excellent workability and corrosion resistance and method for manufacturing the same
JPH0971876A (en) Steel sheet for welded can excellent in weldability, corrosion resistance, appearance and adhesion
JPS6033384A (en) Preparation of steel sheet for container excellent in corrosion resistance and weldability
JPS629195B2 (en)
JPH0456117B2 (en)
JPS629196B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA