JPS629196B2 - - Google Patents

Info

Publication number
JPS629196B2
JPS629196B2 JP14389383A JP14389383A JPS629196B2 JP S629196 B2 JPS629196 B2 JP S629196B2 JP 14389383 A JP14389383 A JP 14389383A JP 14389383 A JP14389383 A JP 14389383A JP S629196 B2 JPS629196 B2 JP S629196B2
Authority
JP
Japan
Prior art keywords
alloy
tin
plating
layer
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14389383A
Other languages
Japanese (ja)
Other versions
JPS6036693A (en
Inventor
Tadashi Nemoto
Hiroaki Kawamura
Masanobu Matsubara
Tsuneo Inui
Osamu Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP14389383A priority Critical patent/JPS6036693A/en
Publication of JPS6036693A publication Critical patent/JPS6036693A/en
Publication of JPS629196B2 publication Critical patent/JPS629196B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】 本発明は耐食性を改善する電気錫めつき鋼板お
よびその製造方法に関するもである。 電気錫めつき鋼板は食品、飲料容器として用い
られている。この錫めつき鋼板は脱脂、酸洗した
のち、錫めつきを行い、つづいて錫の融点以上に
短時間加熱し、錫表面を光輝化すると同時に鉄―
錫合金を形成させる。この鉄―錫合金は耐食性に
大きく影響する。 一方、電気錫めつき鋼板の素地鋼は需要家のニ
ーズあるいは経済性の面から、近年インゴツト材
に代り、連続鋳造材を用いるようになつた。 連続鋳造材はインゴツト材のリムド鋼のように
表層が純鉄に近い表面リム層を持たず、表層も含
め、均一な組成を有する傾向にあり、表面層まで
添加された不純元素を多く含み、耐食性に大きな
障害となる。このようにリム層を持たない連続鋳
造材を用いた錫めつき鋼板の合金層の耐食性が劣
り、種々のトラブルを引き起すことがある。 錫めつき鋼板の耐食性を評価する方法として
ATC試験が用いられる。ATC試験は鋼に対する
Fe―Sn合金の被覆性を示すものである。連続鋳
造材を使用した錫めつき鋼板は一般的にリムド鋼
を使用した場合よりATC値が高く、耐食性が劣
る。 さらに、実際のクエン酸系食品での耐食性が劣
り、しばしば缶内腐食のトラブルを引き起す。耐
食性の悪い理由としては、錫溶融時、生成した鉄
―錫合金の被覆率のみならず、表層の不純物によ
り鋼の腐食を促進させ、膨張缶あるいは孔食を引
き起すものと考えられる ATC値は鉄―錫合金量の増加とともに低くな
る。リムド鋼に較べ、同じ鉄―錫合金量であつて
も連続鋳造材は一般的に高い値を示す。したがつ
て、単に鉄―錫合金量を増加させるのみでは
ATC値を改善する対策とならない。 連続鋳造材を用いた電気錫めつき鋼板の耐食性
改善方法として特開昭57―108291号がある。この
方法は錫めつき前に鉄めつきを施し、鋼表層を改
質し、表層が純鉄に近いリムド鋼の表層と同じよ
うにするものであるが、リムド鋼の表層は冷間圧
延、焼鈍、調質圧延した錫めつき鋼板用原板にお
いては20〜40μmで厚く、リムド鋼と同程度の耐
食性に改善するには、リムド鋼のリム層の厚みま
で鉄めつきを必要とする。この厚みまで鉄めつき
すると、電気鉄めつきにおいて多大の電気量を必
要とし、また電着応力による板の形状を悪化させ
ることになり、経済的にも、品質面においても好
ましくない。特開昭54―108291号では微量の鉄め
つきを行うようにしているが、鉄めつき量が微量
であると、素地鋼表面の鋼を十分鉄めつきで被覆
することができないので、連続鋳造材の不純元素
をもつ表層を改質できない。 本願は鉄―錫合金の他に50重量%以上がCu―
Sn合金を有するCu層と50重量%以上がNi―Sn合
金を有するNi層を設けることにより、上述の欠
点を克服し、連続鋳造材を用いた錫めつき鋼板の
耐食性を改善するものである。 一方、電気錫めつき鋼板のATC値を改善する
方法として特公昭54―20940号がある。この発明
は鋼板表面にNi,CuおよびNi―Sn合金のうち1
種を0.005〜0.5μmの範囲で前めつきし、非酸化
性雰囲気中において前めつき金属または合金が鋼
板中に全量浸透拡散するまで加熱し、その後に錫
めつきを行う方法である。 電気錫めつきラインにおいて、錫めつき前に上
記の金属あるいは合金が鋼板中へ浸透拡散させる
加熱装置は有していないので当然、焼鈍工程で行
うこととなる。しかし焼鈍後、一般に錫めつき鋼
板(ぶりき)用原板は用途に応じた硬さ、表面粗
さに仕上げるため、さらには形状を改善するため
に調質圧延を行う。調質圧延時、鋼板表面にCu
やNiが微量存在しても、ロールの寿命が短くな
つたり、形状矯正が容易にできなくなるなどの欠
点があり、実用化に種々の障害が起る。 本願はCuおよびNiが鋼中に浸透拡散をさける
ために、CuおよびNiがその後めつきされるSn
と、通常の電気錫めつきラインにおけるSnを溶
融光輝化するリフロー工程で加熱することにより
合金化させると同時にCuおよびNiで十分被覆さ
れていない露出鋼上の錫層と反応させてFe―Sn
合金を形成させるものである。CuおよびNiは上
層のSnと反応してCu―Sn合金およびNi―Sn合金
を形成し、CuおよびNiは鋼との反応を抑制す
る。このため、Cu―Sn合金およびNi―Sn合金の
みでは、素地鋼と十分接着せずに、軽い加工を行
つたとき中間層のCu―Sn合金およびNi―Sn合金
さらには合金未形成のCuおよびNiが剥離するこ
とがある。例えば缶蓋のイクスバンジヨンリング
加工部、絞り缶等で錫層とともに剥離するので、
Fe―Sn合金の形成により錫層と素地鋼の接着を
強固にするものである。 一方、特公昭54―20940号は錫めつき前に、焼
鈍工程で約700℃の高温で加熱し、Ni,Cuあるい
はNi―Sn合金を浸透拡散してしまい、この拡散
層がバリヤーとなり、錫めつき後のリフロー工程
で鉄―錫合金形成が困難となる。さらには、前め
つき金属が消失するまで加熱するものであり、耐
食性に効果を発輝するCu―Sn合金あるいは、Ni
―Sn合金の形成が起りにくくなり、優れた耐食
性を発輝できないばかりか、調質圧延でのトラブ
ルも生じやすい欠点がある。本願は上述の欠点を
克服し、連続鋳造材の耐食性を改善するものであ
る。 次に本願を具体的に説明する。 鋼板と錫との間に、Cu―Sn合金化率50重量%
以上のCu層がCu量として0.001g/m2以上、Ni―
Sn合金化率50重量%以上のNi層がNi量として
0.001g/m2以上で、かつCu層のCu量とNi層のNi
量の総和が0.2g/m2以下の状態で混在し、かつ
Cu層とNi層の混在した層の中にFe―Sn合金層が
Sn量として0.001〜1.5g/m2の範囲で混在した層
を有する錫めつき鋼板である。 Cu―Sn合金およびCuは素地鋼表面の耐食性に
効果があり、さらにNiおよびNi―Sn合金の存在
によりさらに耐食性が改善される。Cu量として
は0.001g/m2以上で耐食性が改善され、さらに
0.001g/m2以上のNiが存在するとさらに耐食性
が向上する。NiとCuとの総和が0.2g/m2以上で
はそれ以上の耐食性は得られない。CuおよびNi
は50重量%以上をSnとの合金にすることにより
耐食性が改善される。 Fe―Sn合金は主にFeSn2でであるが、この量
が過大になると、製缶工程における加工において
合金層へクラツクを発生させることがあり、さら
に錫めつき鋼板は近年、薄めつき化が進んでいる
ことに鑑み、1.5g/m2が限度である。また、Fe
―Sn合金が鋼の表面に錫量として0.001g/m2
上存在しないと、素地鋼と錫層との接着が十分で
なく、加工用途に適さなくなるもので、Fe―Sn
合金はSn量として0.001〜1.5g/m2が適してい
る。 以下、本発明の錫めつき鋼板の製造方法につい
て具体的に説明する。 (1) 冷間圧延、焼鈍、調質圧延された鋼板を脱
脂、酸洗したのち0.001〜0.19g/m2の銅めつ
きまたはニツケルめつきを行う。銅めつき浴と
してはピロリン酸浴、硫酸浴およびホウフツ化
浴が用いられる。電気めつきにより銅めつきを
施すことができ、また浸漬めつきであつてもさ
しつかえない。 ニツケルめつきとしては電気めつきが適し、
電気ニツケルめつき浴としては、硫酸ニツケル
めつき浴、塩化ニツケルめつき浴、スルフアミ
ン酸浴および硫酸ニツケルアンモニウム浴のい
ずれも用いることができる。銅めつき(または
ニツケルめつき)後、ひきつづきニツケル(ま
たは銅めつき)を行う。CuとNiの総量が0.2
g/m2以下となるようにニツケル(または銅)
めつきを行う。次工程で銅めつきは錫との反応
により、Cuの一部または全部がCu―Sn合金を
形成する。CuおよびCu―Sn合金の総量がCu量
として0.001g/m2以上存在しないと耐食性は
改善されないので銅めつき量としては0.001
g/m2以上必要である。Ni,Ni―Sn合金はNi
量として0.001g/m2以上でさらに耐食性を改
善するのに効果があるが、Cu量との総和が0.2
g/m2を越えると、Fe―Sn合金の生成が困難
となるので、銅めつき量とニツケルめつき量の
総和は0.2g/m2以下が適している。銅めつき
とニツケルめつきの順序はいずれでもよい。銅
めつき、ニツケルめつきを行つたのち、ひきつ
づき錫めつきを行う。錫めつき量は用途に応じ
決定され、通常錫めつき鋼板の錫めつき量は
2.8,5.6,8.4および11.2g/m2であるが、2.8
g/m2以下例えば1g/m2あるいはそれ以下で
も適用できる。錫めつき浴としては硫酸浴、ア
ルカリ浴、ハロゲン浴およびホウフツ化浴を用
いることができる。錫めつきしたのち、錫を溶
融光輝化するリフロー工程で150〜400℃で加熱
する。加熱方法としては電気抵抗加熱、高周波
加熱およびその併用が適用できる。実際の連続
ラインにおいては秒単位の加熱で行うので、最
高到達温度により加熱温度を制御することがで
きる。この加熱によりCu―Sn合金、Ni―Sn合
金およびFe―Sn合金の形成が起る。めつきし
たCuおよびNiのうち50重量%以上をこの加熱
により、Snとの合金すなわちCu―Sn合金、Ni
―Sn合金を形成させなければならないので、
150℃以上の加熱が必要である。同時にFe―Sn
合金の形成が起るが400℃以上に加熱するとFe
―Sn合金の生成が過大になるので150〜400℃
が好ましい。錫の融点231.9℃以上ではCu―Sn
合金、Ni―Sn合金およびFe―Sn合金の形成速
度が高くなるので、CuおよびNiの合金化率が
高くなる。加熱したのち急冷し、所定の化学処
理を行い、塗油する。 (2) 上述の(1)の方法における、CuおよびNiめつ
きのかわりに鋼板上にCuとNiとの共析めつき
によつても本発明の錫めつき鋼板を製造でき
る。共析めつき浴としてピロリン酸浴を用いる
ことができる。共析めつき量はCu量0.001g/
m2以上、Ni量0.001g/m2以上で、その総量が
0.2g/m2以下である。共析めつきしたのち前
述の(1)と同じく錫めつきし、150〜400℃で加熱
する。加熱したのち、化学処理を行い、塗油す
る。 以下、本発明を実施例により具体的に説明す
る。 実施例 1 焼鈍、調質圧延した0.22mmのアルミキルド連鋳
鋼の冷延鋼板を7%の水酸化ナトリウム溶液中で
電解脱脂し、水洗し、3%の硫酸溶液中で電解
し、水洗したのち、次に示すピロリン酸銅めつき
浴組成および条件で0.03g/m2の銅めつきを行い
水洗したのち、次に示す硫酸ニツケルめつき浴組
成および条件で0.01g/m2のニツケルめつきを施
し、水洗したのち硫酸錫めつき浴中で5.6g/m2
の錫めつきを行い、抵抗加熱法により、最高到達
温度270℃まで3秒間加熱し、Snを溶融させると
ともに、Cu―Sn合金、Ni―Sn合金およびFe―Sn
合金を形成させた。ひきつづき通常用いられる重
クロム酸ナトリウム溶液中で化学処理を行い、乾
燥したのち塗油した。 生成したCu―Sn合金はCu量として0.03g/
m2、Ni―Sn合金はNi量として0.01g/m2でCu,
Niとも全量Snとの合金を形成した。Fe―Sn合金
はSn量として0.8g/m2であつた。X線回折結
果、Cu―Sn合金はCu6Sn5、Ni―Sn合金はNi3Sn4
であつた。 銅めつき浴の組成および処理条件 組 成 ピロリン酸銅 80g/ ピロリン酸カリウム 350g/ アンモニア水 3c.c./ 処理条件 電流密度 2A/dm2 処理電気量 0.8C/dm2 浴温 55℃ ニツケルめつき浴の組成および処理条件 組 成 硫酸ニツケル 200g/ ホウ酸 10g/ 処理条件 電流密度 1A/dm2 処理電気量 0.4C/dm2 浴温 45℃ 実施例 2 実施例1と同様の冷延鋼板を用い、前処理を行
つたのち、実施例1と同様のニツケルめつき浴を
用い、電流密度1A/dm2、処理電気量1C/dm2
で0.025g/m2のニツケルめつきを施し、水洗し
たのち、実施例1と同様の銅めつき浴を用い、電
流密度0.1A/dm2、処理電気量0.1C/dm2
0.004g/m2の銅めつきを施し、水洗したのち、
硫酸錫めつき浴中で5.6g/m2の錫めつきを行
い、抵抗加熱法により、最高到達温度240℃まで
3秒間加熱し、Snを溶融するとともに、Cu―Sn
合金、Ni―Sn合金およびFe―Sn合金を形成させ
た。ひきつづき通常用いられる重クロム酸ナトリ
ウム溶液中で化学処理を行い、塗油した。生成し
たCu―Sn合金はCu量として0.004g/m2、Ni―
Sn合金はNi量として0.025g/m2でCu,Niとも全
量Snとの合金となつた。Fe―Sn合金は0.7g/m2
であつた。X線回折結果はCu―Sn合金は
Cu6Sn5、Ni―Sn合金はNi3Sn4であつた。 実施例 3 実施例1と同様の冷延鋼板を用い、前処理を行
つたのち、次に示すピロリン酸浴を用いCuとNi
との共析めつきを行い、0.02g/m2のCuと0.03
g/m2のNiを析出させた。水洗したのち、硫酸
錫めつき浴中で5.6g/m2の錫めつきを行い、抵
抗加熱法により、最高到達温度をSnの融点直下
の220℃まで10秒間加熱し、Cu―Sn合金、Ni―
Sn合金およびFe―Sn合金を形成させた。ひきつ
づき通常用いられる重クロム酸ナトリウム溶液中
で化学処理を行い、塗油した。 生成したCu―Sn合金は0.014g/m2、Ni―Sn合
金は0.02g/m2でCuの合金化率は57%、Niの合
金化率は67%で、Fe―Sn合金は0.02g/m2であ
つた。X線回折結果、Cu―Sn合金はCu6Sn5、Ni
―Sn合金はNi3Sn4であつた。 CuとNiとの共析めつきの組成および処理条件 組 成 ピロリン酸ニツケル 300g/ ピロリン酸銅 15g/ ピロリン酸カリウム 350g/ ロツシエル塩 25g/ 処理条件 電流密度 1A/dm2 処理電気量 3C/dm2 浴温 60℃ 比較例 実施例1と同様の冷延鋼板を用い、前処理を行
つたのち、硫酸錫めつき浴中で5.6g/m2の錫め
つきを行い、抵抗加熱法により錫を溶融させると
ともにFe―Sn合金を形成させた。ひきつづき通
常用いられる重クロム酸ナトリウム溶液中で化学
処理を行い、塗油した。生成したFe―Sn合金は
0.9g/m2であつた。 実施例1〜3、比較例で得られた錫めつき鋼板
についてATC試験および次に示す耐食性試験を
行つた。 耐食性試験 50mm×20mmの試片をFe―Sn合金層およびCu―
Sn合金を形成していないSnを40℃の1Nの水酸化
ナトリウム溶液中で0.35Vに保ち、電解除去し
た。この試片の端面をシールして、25℃の1Mの
クエン酸溶液中に浸せきし、発生する水素量よ
り、鉄腐食速度を求めた。鉄腐食速度をmg/d
m2/hrで示した。 第1表に示すように、本発明の錫めつき鋼板は
優れた耐食性を示し、連続鋳造材の耐食性を大幅
に改善した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electro-tinned steel sheet with improved corrosion resistance and a method for manufacturing the same. Electrically tinned steel sheets are used for food and beverage containers. This tin-plated steel sheet is degreased and pickled, then tin-plated, and then heated for a short time above the melting point of tin to brighten the tin surface and at the same time
Form a tin alloy. This iron-tin alloy greatly affects corrosion resistance. On the other hand, in recent years, continuous casting materials have been used instead of ingot materials for the base steel of electrically tinned steel sheets due to customer needs or economical reasons. Continuously cast materials do not have a surface rim layer that is similar to pure iron like ingot rimmed steel, but tend to have a uniform composition including the surface layer, and contain many impurity elements added to the surface layer. This is a major obstacle to corrosion resistance. As described above, the corrosion resistance of the alloy layer of a tin-plated steel plate using a continuous casting material without a rim layer is poor, and various troubles may occur. As a method for evaluating the corrosion resistance of tin-plated steel sheets
ATC test is used. ATC test on steel
This shows the coating properties of the Fe-Sn alloy. Tin-plated steel sheets made from continuous casting generally have a higher ATC value and poorer corrosion resistance than those made from rimmed steel. Furthermore, it has poor corrosion resistance in actual citric acid-based foods, often causing problems with corrosion inside the can. The reason for the poor corrosion resistance is not only the coverage of the iron-tin alloy formed when tin is melted, but also the impurities on the surface layer that accelerate corrosion of the steel and cause expansion can or pitting corrosion.The ATC value is It decreases as the amount of iron-tin alloy increases. Compared to rimmed steel, continuous casting materials generally exhibit higher values even with the same amount of iron-tin alloy. Therefore, simply increasing the amount of iron-tin alloy
It is not a measure to improve the ATC value. JP-A-57-108291 describes a method for improving the corrosion resistance of electro-tinned steel sheets using continuous casting materials. In this method, iron plating is applied before tin plating to modify the steel surface layer so that the surface layer is similar to the surface layer of rimmed steel, which is close to pure iron, but the surface layer of rimmed steel is cold rolled, Annealed and temper-rolled tin-plated steel plates are thick at 20 to 40 μm, and in order to improve corrosion resistance to the same level as rimmed steel, iron plating is required to the thickness of the rim layer of rimmed steel. Iron plating to this thickness requires a large amount of electricity in electric iron plating, and also deteriorates the shape of the plate due to electrodeposition stress, which is unfavorable both economically and in terms of quality. In JP-A No. 54-108291, a small amount of iron plating is applied, but if the amount of iron plating is small, the steel on the surface of the base steel cannot be sufficiently covered with iron plating, so continuous It is not possible to modify the surface layer of the cast material that contains impure elements. In this application, in addition to the iron-tin alloy, more than 50% by weight is Cu-
By providing a Cu layer with a Sn alloy and a Ni layer with a Ni-Sn alloy of 50% or more by weight, the above-mentioned drawbacks are overcome and the corrosion resistance of tin-plated steel sheets using continuous casting material is improved. . On the other hand, there is a method for improving the ATC value of electrically tin-plated steel sheets, which was published in Japanese Patent Publication No. 1983-20940. In this invention, one of Ni, Cu and Ni-Sn alloy is applied to the surface of the steel plate.
In this method, a seed is preplated to a thickness of 0.005 to 0.5 μm, heated in a non-oxidizing atmosphere until the entire amount of the preplated metal or alloy permeates and diffuses into the steel sheet, and then tin plating is performed. Since the electric tinning line does not have a heating device for permeating and diffusing the above-mentioned metal or alloy into the steel sheet before tinning, this must be done in the annealing process. However, after annealing, the original sheet for tin-plated steel sheet (tin plate) is generally subjected to temper rolling in order to finish the sheet to a hardness and surface roughness appropriate for the intended use, and further to improve the shape. Cu is deposited on the steel plate surface during temper rolling.
Even if a trace amount of Ni is present, there are drawbacks such as shortening the life of the roll and making it difficult to straighten the shape, resulting in various obstacles to practical use. In this application, in order to avoid Cu and Ni penetration diffusion into the steel, Cu and Ni are then plated with Sn.
In a normal electric tinning line, Sn is alloyed by heating in a reflow process that melts and brightens, and at the same time reacts with the tin layer on exposed steel that is not sufficiently coated with Cu and Ni to form Fe-Sn.
It forms an alloy. Cu and Ni react with Sn in the upper layer to form Cu-Sn alloy and Ni-Sn alloy, and Cu and Ni suppress the reaction with steel. For this reason, Cu-Sn alloys and Ni-Sn alloys alone do not adhere well to the base steel, and when light processing is performed, the intermediate layer of Cu-Sn alloys and Ni-Sn alloys, as well as unalloyed Cu and Ni may peel off. For example, it peels off along with the tin layer on the processed parts of can lids, squeezed cans, etc.
The formation of an Fe-Sn alloy strengthens the adhesion between the tin layer and the base steel. On the other hand, in the case of Special Publication No. 54-20940, before tin plating, Ni, Cu or Ni-Sn alloy is permeated and diffused by heating at a high temperature of about 700℃ in an annealing process, and this diffusion layer acts as a barrier and tin It becomes difficult to form an iron-tin alloy during the reflow process after plating. Furthermore, the pre-plated metal is heated until it disappears, and Cu-Sn alloy or Ni which is effective for corrosion resistance is heated.
-The formation of Sn alloys is difficult to occur, which not only makes it impossible to achieve excellent corrosion resistance, but also tends to cause problems during temper rolling. The present application overcomes the above-mentioned drawbacks and improves the corrosion resistance of continuous casting materials. Next, the present application will be specifically explained. Cu-Sn alloying rate of 50% by weight between steel plate and tin
The above Cu layer has a Cu content of 0.001g/ m2 or more, and Ni-
Ni layer with Sn alloying rate of 50% by weight or more is the amount of Ni
0.001g/m2 or more , and the amount of Cu in the Cu layer and the amount of Ni in the Ni layer
Mixed in a total amount of 0.2g/ m2 or less, and
There is a Fe-Sn alloy layer in the mixed layer of Cu and Ni layers.
It is a tin-plated steel sheet having a layer in which the amount of Sn is mixed in the range of 0.001 to 1.5 g/m 2 . Cu--Sn alloy and Cu have an effect on the corrosion resistance of the base steel surface, and the presence of Ni and Ni--Sn alloy further improves the corrosion resistance. Corrosion resistance is improved when the amount of Cu is 0.001g/m2 or more , and
Corrosion resistance is further improved when 0.001 g/m 2 or more of Ni is present. If the total amount of Ni and Cu is 0.2 g/m 2 or more, no further corrosion resistance can be obtained. Cu and Ni
Corrosion resistance is improved by alloying 50% by weight or more with Sn. Fe-Sn alloys are mainly composed of FeSn 2 , but if this amount is too large, cracks may occur in the alloy layer during processing in the can manufacturing process, and in recent years, tin-plated steel sheets have become thinner. In view of the current progress, the limit is 1.5g/ m2 . Also, Fe
- If the Sn alloy is not present on the surface of the steel in terms of tin content of 0.001g/m2 or more , the adhesion between the base steel and the tin layer will not be sufficient, making it unsuitable for processing purposes.
The alloy has a suitable Sn content of 0.001 to 1.5 g/m 2 . Hereinafter, the method for manufacturing a tin-plated steel sheet of the present invention will be specifically explained. (1) After degreasing and pickling a cold-rolled, annealed, and temper-rolled steel plate, it is plated with copper or nickel at a density of 0.001 to 0.19 g/m 2 . As the copper plating bath, a pyrophosphoric acid bath, a sulfuric acid bath, and a hofusing bath are used. Copper plating can be applied by electroplating, and immersion plating is also acceptable. Electroplating is suitable for nickel plating,
As the electric nickel plating bath, any of a nickel sulfate plating bath, a nickel chloride plating bath, a sulfamic acid bath, and a nickel ammonium sulfate bath can be used. After copper plating (or nickel plating), continue with nickel plating (or copper plating). Total amount of Cu and Ni is 0.2
Nickel (or copper) so that g/ m2 or less
Perform plating. In the next step, copper plating reacts with tin, causing some or all of the Cu to form a Cu-Sn alloy. Corrosion resistance will not be improved unless the total amount of Cu and Cu-Sn alloy is 0.001g/m2 or more, so the amount of copper plating should be 0.001g/m2 or more.
g/m 2 or more is required. Ni, Ni-Sn alloy is Ni
It is effective to further improve corrosion resistance when the amount is 0.001 g/m 2 or more, but the total amount with the Cu amount is 0.2
If it exceeds g/m 2 , it becomes difficult to form an Fe-Sn alloy, so it is suitable that the total amount of copper plating and nickel plating is 0.2 g/m 2 or less. Copper plating and nickel plating may be performed in any order. After copper plating and nickel plating, tin plating is continued. The amount of tin plating is determined depending on the application, and the amount of tin plating on tin-plated steel sheets is usually
2.8, 5.6, 8.4 and 11.2g/ m2 , but 2.8
g/m 2 or less, for example 1 g/m 2 or less, can also be applied. As the tinning bath, a sulfuric acid bath, an alkaline bath, a halogen bath, and a borofusating bath can be used. After tin plating, the tin is heated at 150 to 400°C in a reflow process to melt and brighten the tin. As the heating method, electric resistance heating, high frequency heating, and a combination thereof can be used. In an actual continuous line, heating is performed in seconds, so the heating temperature can be controlled based on the maximum temperature reached. This heating causes the formation of Cu--Sn alloy, Ni--Sn alloy and Fe--Sn alloy. By this heating, more than 50% by weight of the plated Cu and Ni is formed into an alloy with Sn, that is, a Cu-Sn alloy, and a Ni
-Since it is necessary to form a Sn alloy,
Heating above 150℃ is required. At the same time Fe-Sn
Alloy formation occurs, but when heated above 400℃ Fe
- 150 to 400℃ as the formation of Sn alloy becomes excessive.
is preferred. If the melting point of tin is 231.9℃ or higher, Cu-Sn
The rate of formation of the alloys, Ni--Sn alloys and Fe--Sn alloys is higher, resulting in higher alloying rates of Cu and Ni. After heating, it is rapidly cooled, subjected to a specified chemical treatment, and then coated with oil. (2) The tin-plated steel sheet of the present invention can also be produced by eutectoid plating of Cu and Ni on a steel sheet instead of plating Cu and Ni in the method (1) above. A pyrophosphoric acid bath can be used as the eutectoid plating bath. The amount of eutectoid plating is Cu amount 0.001g/
m2 or more, Ni amount is 0.001g/ m2 or more, and the total amount is
It is 0.2g/ m2 or less. After eutectoid plating, tin plating is performed as in (1) above and heated at 150 to 400°C. After heating, chemical treatment is performed and oil is applied. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 A cold-rolled steel plate of 0.22 mm aluminum killed continuous cast steel that had been annealed and temper-rolled was electrolytically degreased in a 7% sodium hydroxide solution, washed with water, electrolyzed in a 3% sulfuric acid solution, and washed with water. Copper plating of 0.03 g/m 2 was performed using the copper pyrophosphate plating bath composition and conditions shown below, and after washing with water, nickel plating of 0.01 g/m 2 was performed using the following nickel sulfate plating bath composition and conditions. After applying and washing with water, 5.6g/m 2 in a tin sulfuric acid plating bath.
Tin plating is carried out and heated for 3 seconds to a maximum temperature of 270°C using the resistance heating method to melt the Sn, as well as Cu-Sn alloy, Ni-Sn alloy and Fe-Sn alloy.
An alloy was formed. This was followed by a chemical treatment in a commonly used sodium dichromate solution, dried and oiled. The produced Cu-Sn alloy has a Cu content of 0.03g/
m 2 , Ni-Sn alloy has a Ni content of 0.01 g/m 2 and Cu,
Both Ni and Sn formed an alloy. The Sn content of the Fe-Sn alloy was 0.8 g/m 2 . X-ray diffraction results show that Cu-Sn alloy is Cu 6 Sn 5 and Ni-Sn alloy is Ni 3 Sn 4
It was hot. Copper plating bath composition and processing conditions Copper pyrophosphate 80g / Potassium pyrophosphate 350g / Ammonia water 3c.c. / Processing conditions Current density 2A/dm 2 Processing electricity amount 0.8C/dm 2 Bath temperature 55℃ Nickel metal Composition of bath and treatment conditions Composition of nickel sulfate 200g / Boric acid 10g / Treatment conditions Current density 1A/dm 2 Processing electricity amount 0.4C/dm 2 Bath temperature 45°C Example 2 A cold-rolled steel sheet similar to Example 1 was After pretreatment, the same nickel plating bath as in Example 1 was used at a current density of 1 A/dm 2 and a processing amount of electricity of 1 C/dm 2 .
After applying nickel plating of 0.025 g/m 2 and washing with water, using the same copper plating bath as in Example 1, the current density was 0.1 A/dm 2 and the amount of electricity processed was 0.1 C/dm 2.
After applying 0.004g/ m2 copper plating and washing with water,
Tin plating with a concentration of 5.6 g/m 2 is carried out in a sulfuric acid tin plating bath and heated for 3 seconds to a maximum temperature of 240°C using the resistance heating method to melt the Sn and melt the Cu-Sn.
alloys, Ni-Sn alloy and Fe-Sn alloy were formed. This was followed by chemical treatment in a commonly used sodium dichromate solution and oiling. The produced Cu-Sn alloy has a Cu content of 0.004g/m 2 and a Ni-
The Sn alloy had a Ni content of 0.025 g/m 2 , and both Cu and Ni were alloyed with the total amount of Sn. Fe-Sn alloy is 0.7g/m 2
It was hot. The X-ray diffraction results show that the Cu-Sn alloy is
The Cu 6 Sn 5 and Ni-Sn alloys were Ni 3 Sn 4 . Example 3 A cold-rolled steel sheet similar to that in Example 1 was pretreated, and then Cu and Ni were treated using the following pyrophosphoric acid bath.
Perform eutectoid plating with 0.02 g/m 2 of Cu and 0.03
g/m 2 of Ni was deposited. After washing with water, tin plating at 5.6 g/m 2 in a sulfuric acid tin plating bath and heating for 10 seconds to reach a maximum temperature of 220°C, just below the melting point of Sn, to form a Cu-Sn alloy. Ni-
Sn alloy and Fe-Sn alloy were formed. This was followed by chemical treatment in a commonly used sodium dichromate solution and oiling. The produced Cu-Sn alloy is 0.014g/ m2 , the Ni-Sn alloy is 0.02g/ m2 , the alloying rate of Cu is 57%, the alloying rate of Ni is 67%, and the Fe-Sn alloy is 0.02g. / m2 . X-ray diffraction results show that the Cu-Sn alloy is Cu 6 Sn 5 , Ni
-The Sn alloy was Ni 3 Sn 4 . Composition of eutectoid plating with Cu and Ni and processing conditions Composition Nickel pyrophosphate 300g / Copper pyrophosphate 15g / Potassium pyrophosphate 350g / Rothsiel salt 25g / Processing conditions Current density 1A/dm 2 Processing electricity amount 3C/dm 2 baths Temperature: 60°C Comparative Example A cold-rolled steel sheet similar to that used in Example 1 was pretreated, then tinned at 5.6 g/m 2 in a sulfuric acid tinning bath, and the tin was melted using a resistance heating method. At the same time, an Fe-Sn alloy was formed. This was followed by chemical treatment in a commonly used sodium dichromate solution and oiling. The produced Fe-Sn alloy is
It was 0.9g/ m2 . The tin-plated steel plates obtained in Examples 1 to 3 and Comparative Example were subjected to an ATC test and the following corrosion resistance test. Corrosion resistance test A 50mm x 20mm specimen was coated with Fe―Sn alloy layer and Cu―
Sn that did not form a Sn alloy was electrolytically removed in a 1N sodium hydroxide solution at 40°C while maintaining the voltage at 0.35V. The end face of this specimen was sealed and immersed in a 1M citric acid solution at 25°C, and the iron corrosion rate was determined from the amount of hydrogen generated. iron corrosion rate mg/d
Expressed in m 2 /hr. As shown in Table 1, the tin-plated steel sheet of the present invention exhibited excellent corrosion resistance and significantly improved the corrosion resistance of continuous casting materials. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 鋼板と錫層との間に、Cu―Sn合金化率50重
量%以上のCu層がCu量として、0.001g/m2
上、Ni―Sn合金化率50重量%以上のNi層がNi量
として0.001g/m2以上で、かつCu層のCu量とNi
層のNi量の総和が0.2g/m2以下の状態で混在
し、かつCu層とNi層の混在した層の中にFe―Sn
合金層がSn量として0.001〜1.5g/m2の範囲で混
在した層を有することを特徴とする錫めつき鋼
板。
1 Between the steel plate and the tin layer, a Cu layer with a Cu-Sn alloying rate of 50% by weight or more is Cu, a Ni layer with a Ni-Sn alloying rate of 50% by weight or more is Ni The amount is 0.001g/ m2 or more, and the amount of Cu in the Cu layer and Ni
The total amount of Ni in the layers is 0.2g/ m2 or less, and Fe-Sn is mixed in the layer where the Cu layer and Ni layer are mixed.
A tin-plated steel sheet characterized in that the alloy layer has a mixed layer containing Sn in a range of 0.001 to 1.5 g/m 2 .
JP14389383A 1983-08-08 1983-08-08 Tinned steel sheet and manufacture thereof Granted JPS6036693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14389383A JPS6036693A (en) 1983-08-08 1983-08-08 Tinned steel sheet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14389383A JPS6036693A (en) 1983-08-08 1983-08-08 Tinned steel sheet and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6036693A JPS6036693A (en) 1985-02-25
JPS629196B2 true JPS629196B2 (en) 1987-02-26

Family

ID=15349490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14389383A Granted JPS6036693A (en) 1983-08-08 1983-08-08 Tinned steel sheet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6036693A (en)

Also Published As

Publication number Publication date
JPS6036693A (en) 1985-02-25

Similar Documents

Publication Publication Date Title
US4113580A (en) Steel sheet useful in forming foodstuff and beverage cans
US3174917A (en) Method of making tin plate
US4421828A (en) Steel sheet carrying a protective layer and process for producing such a sheet
JP2707928B2 (en) Hot-dip galvanizing method for silicon-containing steel sheet
US4104135A (en) Method of producing highly corrosion resistant tin-plated steel sheet
JPH0127147B2 (en)
US4036600A (en) Steel substrate electroplated with Al powder dispersed in Zn
JPH0154437B2 (en)
JPH0689472B2 (en) Thin Sn plated steel plate for can making and method for manufacturing the same
JPS6136595B2 (en)
JPS629195B2 (en)
JPS629196B2 (en)
JPH03271354A (en) Production of galvannealed steel sheet
JPS6144158B2 (en)
JPS629197B2 (en)
JPH05106001A (en) Hot-dip galvanizing method for silicon-containing steel sheet
JPH05171389A (en) Manufacture of galvanized steel sheet
JPH0971851A (en) Production of zinc-tin alloy plated steel sheet
JPH0635648B2 (en) Hot-dip, low-reduction type hot dip galvanizing method for zinc or zinc alloys
JPH0434636B2 (en)
JPH0431039B2 (en)
JP3461684B2 (en) Manufacturing method of steel plate for laminated welding can
JP3434927B2 (en) Manufacturing method of steel plate for welding can with excellent paint appearance
JP2541380B2 (en) Method for producing iron-zinc alloy-plated steel sheet having a plurality of iron-zinc alloy plating layers having excellent electrodeposition coatability
JPH0420989B2 (en)