JPS6036693A - Tinned steel sheet and manufacture thereof - Google Patents

Tinned steel sheet and manufacture thereof

Info

Publication number
JPS6036693A
JPS6036693A JP14389383A JP14389383A JPS6036693A JP S6036693 A JPS6036693 A JP S6036693A JP 14389383 A JP14389383 A JP 14389383A JP 14389383 A JP14389383 A JP 14389383A JP S6036693 A JPS6036693 A JP S6036693A
Authority
JP
Japan
Prior art keywords
alloy
plating
tin
steel sheet
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14389383A
Other languages
Japanese (ja)
Other versions
JPS629196B2 (en
Inventor
Tadashi Nemoto
根本 忠志
Hiroaki Kawamura
河村 宏明
Masanobu Matsubara
政信 松原
Tsuneo Inui
乾 恒夫
Osamu Yoshioka
吉岡 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP14389383A priority Critical patent/JPS6036693A/en
Publication of JPS6036693A publication Critical patent/JPS6036693A/en
Publication of JPS629196B2 publication Critical patent/JPS629196B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the corrosion resistance of a tinned sheel sheet by forming a Cu-Ni layer contg. specified amounts of a Cu-Sn alloy and an Ni-Sn alloy besides an Fe-Sn alloy when an electrolytically tinned steel sheet is manufactured using a continuously cast material. CONSTITUTION:This tinned steel sheet has a layer consisting of <=0.2g/m<2> in total of >=0.001g/m<2> Cu >=50wt% of which is in the form of a Cu-Sn alloy and >=0.001g/m<2> Ni >=50wt% of which is in the form of an Ni-Sn alloy and 0.001- 1.5g/m<2> (expressed in terms of Sn) Fe-Sn alloy between a steel sheet and an Sn layer. For example, a steel sheet is plated with 0.001-0.199g/m<2> Cu, and it is plated with >=0.001g/m<2> Ni. The total amount of Cu and Ni is adjusted to <=0.2 g/m<2>. The plated steel sheet is tinned and heated at about 150-400 deg.C to convert >=50wt% of the Cu into a Cu-Sn alloy and >=50wt% of the Ni into an Ni-Sn alloy. At the same time, 0.001-1.5g/m<2> (expressed in terms of Sn) Fe-Sn alloy is formed. Thus, the desired tinned steel sheet is obtd.

Description

【発明の詳細な説明】 本発明は耐食性を改善する電気錫めっき鋼板およびその
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electro-tin plated steel sheet that improves corrosion resistance and a method for manufacturing the same.

電気錫めっき鋼板は食品、飲料容器として用いられてい
る。この錫めっき鋼板は脱脂、酸洗したのち、錫めつき
を行い、つづいて錫の融点以上に短時間加熱し、錫表面
を光輝化すると同時に鉄−錫合金を形成させる。この鉄
−錫合金は耐・k性に大きく影響する。
Electrotinned steel sheets are used for food and beverage containers. This tin-plated steel sheet is degreased and pickled, then tin-plated, and then heated for a short time above the melting point of tin to make the tin surface bright and at the same time form an iron-tin alloy. This iron-tin alloy greatly affects resistance and k resistance.

一方、電気錫めっき鋼板のふ地鋼は需要家のニーズある
いは経済性の面から、近年インゴット利に代り、蓮続鋳
造材を用いるようになった。
On the other hand, due to the needs of customers and economical reasons, in recent years, lotus-cast steel has been used instead of ingot steel for electrolytic tin-plated steel sheets.

連続鋳造祠はインゴツト材のリムド鋼のように表層が純
鉄に近い表面リム層を持たず、表層も含め、均一な組成
を有する傾向にあり、表面層まで添加された不純元素を
多く含み、耐食性に大きな障害となる。このようにリム
層を持たない連続鋳造材を用いた錫めっき鋼板の合金層
の耐食性が劣り、種々のトラブルを引き起すことがある
Continuous casting shrines do not have a surface rim layer that is close to pure iron like ingot rimmed steel, but they tend to have a uniform composition including the surface layer, and contain many impurity elements added to the surface layer. This is a major obstacle to corrosion resistance. As described above, the corrosion resistance of the alloy layer of a tin-plated steel sheet using a continuous casting material without a rim layer is poor, which may cause various troubles.

錫めっき鋼板の耐食性を評価する方法としてATC試験
が用いられる。ATC試験は綱に対するFe−an合金
の被覆性を示すものである。連続鋳造材を使用した錫め
っき鋼板は一般的1こリムド鋼を使用した場合よりAT
C値が高(、耐食性が劣る。
The ATC test is used as a method for evaluating the corrosion resistance of tin-plated steel sheets. The ATC test shows the coating properties of the Fe-an alloy on the steel. Tin-plated steel sheets made from continuous cast materials have a higher AT than when using general rimmed steel.
High C value (poor corrosion resistance.

さらに、実際のクエン酸系食品での耐食性が劣り、しば
しば缶内腐食のトラブルを引き起す。耐食性の悪い理由
としては、錫溶融時、生成した鉄−錫合金の被覆率のみ
ならず、表層の不純物により鋼の腐食を促進させ、膨張
缶あるいは孔食を引き起すものと考えられる。
Furthermore, it has poor corrosion resistance in actual citric acid-based foods, often causing problems with corrosion inside the can. The reason for the poor corrosion resistance is thought to be not only the coverage of the iron-tin alloy formed when tin is melted, but also the fact that impurities in the surface layer accelerate corrosion of the steel, causing expansion can or pitting corrosion.

ATC値は鉄−錫合金量の増加とともに低くなる。リム
ド鋼に較べ、同じ鉄−錫合金量であっても連続鋳造材は
一般的に高い値を示す。したがって、単に鉄−錫合金量
を増加させるのみではATC値を改善する対策とならな
い。
The ATC value decreases as the amount of iron-tin alloy increases. Compared to rimmed steel, continuous casting materials generally exhibit higher values even with the same amount of iron-tin alloy. Therefore, simply increasing the amount of iron-tin alloy is not a measure to improve the ATC value.

連続鋳造材を用いた′電気錫めっき銅板の耐食性改善方
法として特開昭57−108291号がある。この方法
は錫めっき前に鉄めっきを施し、鋼表層を改質し、表層
が純鉄に近いリムド鋼の表層と同じようにするものであ
るが、リムド鋼の表層は冷間圧延、焼鈍、調質圧延した
錫めっき鋼板用原板憂こおいては20〜40μmで厚く
、リムド鋼と同程度の耐食性に改善するには、リムド鋼
のリム層の厚みまで鉄めっhを必要とする。この]1み
ま= 3− で鉄めっきすると、′11気鉄めつきにおいて多大の電
気量を必要とし、また電着応力による板の形状を悪化さ
けることになり、経済的にも、品質面昏こおいても好ま
しくない。特開昭54−108291号では微量の鉄め
っきを行うようにしているが、鉄めつきlが微Jである
と、素地鋼表面の鋼を十分鉄めっきで被覆することがで
きないので、連続鋳造材の不純元素をもつ表層を改質で
きない。
JP-A-57-108291 discloses a method for improving the corrosion resistance of electro-tinned copper plates using continuous casting materials. In this method, iron plating is applied before tin plating to modify the steel surface layer so that the surface layer is similar to the surface layer of rimmed steel, which is close to pure iron. However, the surface layer of rimmed steel is cold rolled, annealed, The temper-rolled original plate for tin-plated steel sheet is thick at 20 to 40 μm, and in order to improve the corrosion resistance to the same level as rimmed steel, iron plating is required to the thickness of the rim layer of rimmed steel. If iron plating is carried out at this rate of 1 = 3, a large amount of electricity will be required for iron plating, and the deterioration of the shape of the plate due to electrodeposition stress will be avoided, both economically and in terms of quality. It's not good to be in a coma. In JP-A No. 54-108291, a small amount of iron plating is applied, but if the iron plating l is too small, the steel on the surface of the base steel cannot be sufficiently coated with iron plating, so continuous casting is required. The surface layer of the material containing impure elements cannot be modified.

本願は鉄−錫合金の他に50重1%以上がCu −Sn
合金を有するCu層と50重量%以上がNl −Sn合
金を有するN1層を設けることにより、上述の欠点を克
服し、連続鋳造材を用いた錫めっき鋼板の耐食性を改善
するものである。
In this application, in addition to the iron-tin alloy, 50% by weight or more is Cu-Sn.
By providing a Cu layer having an alloy and an N1 layer having 50% by weight or more of an Nl-Sn alloy, the above-mentioned drawbacks are overcome and the corrosion resistance of a tin-plated steel sheet using a continuously cast material is improved.

一方、電気錫めっき鋼板のA、 T C値を改善する方
法として特公昭54−20940号がある。この発明は
鋼板表面にNl、CuおよびN1−Sn合金のうち1種
を0.005〜05μmの範囲で前めっきし、非酸化性
雰囲気中において前めっき金属または合金が鋼板中に全
1浸透拡散するまで加熱し、その後に錫めっきを行う方
法である。
On the other hand, there is Japanese Patent Publication No. 54-20940 as a method for improving the A and T C values of electrolytic tin-plated steel sheets. This invention involves pre-plating the surface of a steel plate with one of Nl, Cu and N1-Sn alloy to a thickness of 0.005 to 05 μm, and all of the pre-plating metal or alloy permeates and diffuses into the steel plate in a non-oxidizing atmosphere. This method involves heating the material until it reaches 100%, and then tin-plating it.

 4− 電気錫めっきラインにおいて、錫めっき前に上it4の
金属あるいは合金が鋼板中へ浸透拡散させる加熱装置は
有していないので当然、焼鈍工程で行うこととなる。し
かし焼鈍後、一般に錫めっき鋼板(ぶりき)川原板は用
途に応じた硬さ、表面粗さに仕上げるため、さらには形
状を改善するために調質圧延を行う。調質圧延時、鋼板
表面にCuやNlが微量存在しても、ロールの寿命が短
くなったり、形状矯正が容易にできなくなるなどの欠点
があり、実用化に種々の障害が起る。
4- Since the electro-tin plating line does not have a heating device for permeating and diffusing the upper IT4 metal or alloy into the steel sheet before tin plating, it is naturally carried out in the annealing process. However, after annealing, tin-plated steel sheets (tin plate) are generally subjected to temper rolling in order to achieve hardness and surface roughness suitable for the intended use, as well as to improve the shape. Even if a small amount of Cu or Nl is present on the surface of a steel sheet during temper rolling, there are drawbacks such as shortened roll life and difficulty in shape correction, which poses various obstacles to practical application.

本願はCuおよびN1が鋼中に浸透拡散をさけるために
、CuおよびN1がその後めっきされるSnと、通常の
電気錫めっきラインにおけるSnを溶融光輝化するりフ
ロ一工程で加熱することにより合金化させると同時にC
uおよびN1で十分被覆されていない寓出鋼上の錫層と
反応させてFe−Sn合金を形成させるものである。C
uおよびN1は上層のsnと反応してCu−Sn合金お
よびNi−Sn合金を形成し、 CuおよびNlは鋼と
の反応を抑制する。このため、Cu −Sn合金および
N1−Sn合金のみでは、素地鋼と十分接着せずに、軒
い加工を行ったとき中間層のCu Sn合金およびN1
−Sn合金さらには合金未形成のCuおよびN1が靭離
することがある。例えば缶蓋のイクスバンジョンリング
加工部、絞り缶等で錫層とともに剥離するので、Fe−
Sn合金の形成により錫層と素地鋼の接着を強固にする
ものである。
In order to prevent Cu and N1 from penetrating and diffusing into the steel, Cu and N1 are alloyed with Sn, which is subsequently plated, and Sn in a normal electro-tin plating line by heating in a single step of melting and brightening the tin. At the same time as C
The Fe-Sn alloy is formed by reacting with the tin layer on the exposed steel which is not sufficiently coated with u and N1. C
u and N1 react with sn in the upper layer to form a Cu-Sn alloy and a Ni-Sn alloy, and Cu and Nl suppress the reaction with steel. For this reason, Cu-Sn alloy and N1-Sn alloy alone do not adhere well to the base steel, and when the eaves are processed, the intermediate layer Cu-Sn alloy and N1
-Sn alloys as well as unalloyed Cu and N1 may spall. The Fe-
The formation of the Sn alloy strengthens the adhesion between the tin layer and the base steel.

一方、特公昭54−20940号は錫めっh前に、焼鈍
工程で約700℃の高温で加熱し、N1゜Cuあるいは
N1−Sn合金を漫透拡敵してし才い、この拡散層がバ
リヤーとなり、錫めっき後のりフロ一工程で鉄−錫合金
形成が困難となる。さらには、前めっき金属が消失する
まで加熱するものであり、耐食性に効果を発揮するCu
−Sn合金あるいは、N1−Sn合金の形成が起りに(
(なり、優した耐食性を発揮できないばかりか、調質圧
延でのトラブルも生じやすい欠点がある。本願は上述の
欠点を克服し、連続鋳造材の耐食性を改善するものであ
る。
On the other hand, in Japanese Patent Publication No. 54-20940, prior to tin plating, N1°Cu or N1-Sn alloy was heated at a high temperature of approximately 700°C in an annealing process to diffuse the diffusion layer. acts as a barrier, making it difficult to form an iron-tin alloy in the single glue flow step after tin plating. Furthermore, it is heated until the pre-plated metal disappears, and Cu is effective for corrosion resistance.
-The formation of Sn alloy or N1-Sn alloy occurs (
(However, it has the drawback that it not only cannot exhibit good corrosion resistance, but also tends to cause trouble during temper rolling.) The present application overcomes the above-mentioned drawbacks and improves the corrosion resistance of continuous casting materials.

次に本願を具体的に説明する。Next, the present application will be specifically explained.

鋼板と錫層との間に、 Cu量0.001 f/lt?
以上、N11it O,001f/n?以上およびSn
iとして0001−1.5 f/dのFe−Sn合金か
らなり、CuとNilの総和が02か背以下で、Cuの
中Cu−8n合金が50重fA%以−1−lNlの中N
l−Sn合金が50jlIfi%以−F存在する錫めっ
き鋼板である。
Cu content between the steel plate and the tin layer is 0.001 f/lt?
That's all, N11it O,001f/n? above and Sn
It is made of a Fe-Sn alloy with 0001-1.5 f/d as i, the sum of Cu and Nil is 02 or less, and the Cu-8n alloy in Cu is more than 50% fA%-1-1Nl in Nl.
This is a tin-plated steel sheet in which l-Sn alloy is present in an amount of 50% or more.

Cu−Sn合金およびCuは素地鋼表面の耐食性すこ効
果があ1]、さらにNiおよびN1−Sn合金の存在に
よりさらに耐食性が改善される。Cu@としては0、0
01 r乙r? 17.上で耐食性が改善され、さらに
0、001 ?At?以にのN1が存在するとさらに耐
食性が向上する。N1とCuとの総和が0.2 ?/l
r?以」ユではそれ以上の耐食11は得られない。Cu
およびNlは50重社%以上をSnとの合金にすること
により耐食性が改善される。
The Cu-Sn alloy and Cu have a positive effect on the corrosion resistance of the base steel surface, and the presence of Ni and the N1-Sn alloy further improves the corrosion resistance. 0, 0 as Cu@
01 r? 17. Corrosion resistance has been improved above 0,001? At? The presence of N1 further improves corrosion resistance. Is the sum of N1 and Cu 0.2? /l
r? No higher corrosion resistance of 11 can be obtained with the above. Cu
Corrosion resistance is improved by alloying 50% or more of Nl with Sn.

Fe−Sn合金は主にFeSn2であるが、この量が過
大になると、製缶工程における加工において合金層へク
ラックを発生させることがあり、さらに錫めっき鋼板は
近年、薄めつき化が進んでいることに鑑み、1.5 ?
/rr?が限度である。また、Fe−Sn合金が鋼の表
面に錫■として0. OO1t/lr?以−E存在しな
いと、素地鋼と錫層との接着が十分でなく、 7− 加工用途に適さなζなるので、Fe−Sn合金はsnt
としテO,OO1〜1.5 ?/rr?が適している。
Fe-Sn alloys mainly consist of FeSn2, but if this amount becomes too large, cracks may occur in the alloy layer during processing in the can manufacturing process, and tin-plated steel sheets have become thinner in recent years. Considering this, 1.5?
/rr? is the limit. In addition, Fe-Sn alloy is applied to the surface of the steel as tin. OO1t/lr? If E does not exist, the adhesion between the base steel and the tin layer will not be sufficient, and the Fe-Sn alloy will not be suitable for processing purposes.
Toshite O,OO1~1.5? /rr? is suitable.

以下、本発明の錫めっき鋼板の製造方法(二ついて具体
的に説明する。
Hereinafter, two methods for producing a tin-plated steel sheet according to the present invention will be specifically explained.

(1)冷間圧延、焼鈍、調質圧延された鋼板を脱脂、酸
洗したのも0.001〜0.19 f/rr?の銅めつ
きまたはニッケルめっきを行う。銅めっき浴としてはビ
ロリン酸浴、硫酸浴およびホウフッ化浴が用いられる。
(1) Is it 0.001 to 0.19 f/rr when cold rolled, annealed, and temper rolled steel sheets are degreased and pickled? Perform copper plating or nickel plating. As the copper plating bath, a birophosphoric acid bath, a sulfuric acid bath, and a borofluoride bath are used.

電気めっきにより銅めっきを施すことができ、また浸漬
めっきであってもさしつかえない。
Copper plating can be performed by electroplating, and immersion plating may also be used.

ニッケルめっきとしては′電気めつきが適し、゛宸気ニ
ッケルめっき浴としては、硫酸ニッケルめっき浴、塩化
ニッケルめっき浴、スルフアミ;/酸浴およびMINニ
ツ)1ルアンモニウム浴のいずれも用いることができる
。銅めつき(またはニッケルめっき)後、ひきつづきニ
ッケル(または銅めっき)を行う。CuとN1の総量が
0.2カ背以下となるようにニッケル(または銅)めっ
きを行う。次工程で銅めっきは錫との反応により、 C
uの一部または全= 8一 部がCu、−Sn合金を形成する。CuおよびCu−S
n合金の総量がCu臘として0.0019an?以上存
在しないと耐食性は改善されないので銅めっき門として
は0、001 W/n?以上必要である。Nl 、 N
i−Sn合金はN1情として0.001 V/rr?以
上でさらに耐食性を改善するのに効果があるが、CuJ
iiとの総和が0.2り/−を越えると、Pc−Sn合
金の生成が困難となるので、銅めっき■とニツノ1ルめ
つき量の総和は022242以下が適している。銅めっ
きとニッケルめっきの順序はいずれでもよい。銅めっき
、ニッケルめっきを行ったのち、ひきつづき錫めっきを
行う。
Electroplating is suitable for nickel plating, and any of nickel sulfate plating baths, nickel chloride plating baths, sulfuric acid baths and MIN1 ammonium baths can be used as nickel plating baths. . After copper plating (or nickel plating), continue with nickel (or copper plating). Nickel (or copper) plating is performed so that the total amount of Cu and N1 is 0.2 or less. In the next step, copper plating reacts with tin, resulting in C
Part or all of u = 8 part forms Cu, -Sn alloy. Cu and Cu-S
Is the total amount of n alloy 0.0019an as Cu? Corrosion resistance will not be improved unless more than 0.001 W/n? The above is necessary. Nl, N
i-Sn alloy is 0.001 V/rr as N1 condition? Although the above is effective in further improving corrosion resistance, CuJ
If the sum with ii exceeds 0.2/-, it will be difficult to form a Pc-Sn alloy, so the sum of the amounts of copper plating (1) and Nitsuno1 plating is preferably 022242 or less. Copper plating and nickel plating may be performed in any order. After copper plating and nickel plating, tin plating is performed.

錫めっき量は用途に応じ決定され、通常錫めっき鋼板の
錫めっき量は28.5.6.84および11.2 。
The amount of tin plating is determined depending on the application, and the amount of tin plating on tin-plated steel sheets is usually 28.5, 6.84 and 11.2.

?、/ly?であるが、287/靜以下例えば17〜あ
るいはそれ以下でも適用できる3、錫めっき浴としては
硫酸浴、アルカリ浴、ハロゲン浴およびホウフッ化浴を
用いることができる。錫めっきしたのち、錫を溶融光輝
化するりフロ一工程で150〜400℃で加熱す−ろ。
? ,/ly? However, a tin plating bath of 287/silence or less, for example 17 or less, can be used.3 As the tin plating bath, a sulfuric acid bath, an alkaline bath, a halogen bath, and a borofluoride bath can be used. After tin plating, the tin is heated at 150 to 400°C in a reflow step to melt and brighten the tin.

加熱方法としては電気抵抗加熱、高周波加熱およびその
fJt用が適用できる。実際の連続ラインにおいては秒
単位の加熱で行うので、最高到達温度醗こより加熱温度
を制御することができる。この加熱によりCu−8n合
金、i”Ji−8n合金およびFe−8n合金の形成が
起る。めっきしたCuおよびNlのうち50mk%以上
をこの加熱により、8nとの合金すなわちCu−8n合
金、N1−8n合金を形成させなければならないので、
150℃以上の加熱が必要である。同時にFe−8n合
金の形成が起るが400℃以上に加熱するとre−8n
合金の生成が過大になるので150〜400℃が好まし
い。錫の融点231.9℃以上ではCu−8n合金、N
i−8n合金およびFe−8n合金の形成速度が高(な
るので、 CuおよびNiの合金化率が高くなる。加熱
したのち急冷し、所定の化学処理を行い、塗油する。
As the heating method, electric resistance heating, high frequency heating, and fJt use thereof can be applied. In an actual continuous line, heating is performed in seconds, so the heating temperature can be controlled from the maximum temperature reached. This heating causes the formation of Cu-8n alloy, i"Ji-8n alloy, and Fe-8n alloy. More than 50 mk% of the plated Cu and Nl is alloyed with 8n, that is, Cu-8n alloy, Since N1-8n alloy must be formed,
Heating to 150°C or higher is required. At the same time, the formation of Fe-8n alloy occurs, but when heated above 400℃, re-8n
The temperature is preferably 150 to 400°C since alloy formation becomes excessive. When the melting point of tin is 231.9°C or higher, Cu-8n alloy, N
Since the formation rate of i-8n alloy and Fe-8n alloy is high, the alloying rate of Cu and Ni is high. After heating, it is rapidly cooled, a prescribed chemical treatment is performed, and oil is applied.

(2) 上述の(1)の方法におけろ、CuおよびNi
めつきのかわりに鋼板上にCuとNiとの共析めつきに
よっても本発明の錫めっき鋼板を製造できる。共析めつ
き浴としてビロリン酸浴を用いることができる。共析め
つき量はCu量0. OO1?y讐以上、Ni量0、0
019/n?以上で、その総量が0.21/n?以下で
ある。共析めっきしたのち前述の(1)と同じく銭めっ
きし、150〜400℃で加熱する。加熱したのち、化
学処理な行い、塗油する。
(2) In the method (1) above, Cu and Ni
Instead of plating, the tin-plated steel sheet of the present invention can also be produced by eutectoid plating of Cu and Ni on a steel sheet. A birophosphoric acid bath can be used as the eutectoid plating bath. The eutectoid plating amount is 0. OO1? More than yen, Ni amount 0, 0
019/n? Is the total amount 0.21/n? It is as follows. After eutectoid plating, metal plating is performed in the same manner as in (1) above, and heated at 150 to 400°C. After heating, chemical treatment and oiling are applied.

以下、本発明を実施例により具体的暑こ説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 焼鈍、i&i質圧延した0、22簡のアルミキルド連N
鋼の冷延鋼板を79′6の水酸化ナトリウム溶液中で電
解脱脂し、水洗1./、3%の硫酸溶液中で電解し、水
洗したのち、次に示すピロリン酸相めっき浴組成および
条件で0032h?の銅めつきを行い水洗したのち、次
に示す硫酸ニッケルめっき浴組成および条件で0. O
I W//n?のニッケルめっきを施し、水洗したのち
硫酸錫めっき浴中で6.6 t/lr?の錫めっきを行
い、抵抗加熱法により、最高到達温度270℃まで3秒
間加熱し、Snを溶融させるとともに、Cu−811合
金、Ni−8n合金およびFa−8n合金を形成させた
。ひきつづき通常用いられる重クロム酸ナトリウム溶液
中で化学処理を行い、乾燥したのち塗油した。
Example 1 Annealed, I & I quality rolled 0,22 piece aluminum killed series N
A cold-rolled steel plate was electrolytically degreased in a 79'6 sodium hydroxide solution and washed with water. /, After electrolyzing in a 3% sulfuric acid solution and washing with water, 0032h? with the following pyrophosphoric acid phase plating bath composition and conditions. After performing copper plating and washing with water, nickel sulfate plating bath composition and conditions shown below were used for 0. O
I W//n? After applying nickel plating and washing with water, it was placed in a tin sulfate plating bath at 6.6 t/lr? was plated with tin, and heated for 3 seconds to a maximum temperature of 270° C. using a resistance heating method to melt Sn and form a Cu-811 alloy, a Ni-8n alloy, and an Fa-8n alloy. This was followed by a chemical treatment in a commonly used sodium dichromate solution, dried and oiled.

生成しit Cu −So 合金はCuMとして0.0
3 ?/lr?、1l− Ni−8n合金はNi量として0. OI V、y讐で
Cu、 Nlとも全量8nとの合金を形成した。Fe−
8n合金はSn量として0.8 f/rr?であった。
The produced it Cu-So alloy is 0.0 as CuM
3? /lr? , 1l-Ni-8n alloy has a Ni content of 0. An alloy was formed with both Cu and Nl in a total amount of 8n in OIV and Yen. Fe-
8n alloy has Sn content of 0.8 f/rr? Met.

X線回折結果、Cu−8n合金はCu5Snb 、Ni
−8n合金はNi1sn4であった。
X-ray diffraction results show that the Cu-8n alloy is Cu5Snb, Ni
-8n alloy was Ni1sn4.

銅めっき浴の組成および処理条件 組 成 ピロリン酸相 80 W/1 ピロリン酸カリウム 350 f/1 アンモニア水 3αし′l 処理条件 電流密度 2 A/drr? 処理亀気量 0.8 C/dイ 浴 温 55 ℃ ニッケルめっき浴の組成および処理条件組 成 硫酸ニッケル 200 f/1 ホウ酸 10 f/1 処理条件 電流密度 I A/dTr? 処理電気魚 0.40/dぜ 12− 浴 温 45 ℃ 実施例2 実施例1と同様の冷延鋼板を用い、前処理を行ったのち
、実施例1と同様のニッケルめっき浴を用い、電流密度
I A/dぜ、処理電気量I C/d扉で0、025 
f/dのニッケルめっきを施し、水洗したのち、実施例
1と同様の銅めっき浴を用い、電流密度0.1 k/d
tr? 、処理電気1jt 0. I C/drr?で
0.004f//m″の銅めっきを施し、水洗したのち
、硫酸錫めっき浴中で5.61/W?の賜めつきを行い
、抵抗加熱法により、最高到達温度240℃まで3秒間
加熱し、Snを溶融するとともに、Cu−8n合金、N
i −8n合金およびFe−8n合金を形成させた。ひ
きつづき通常用いられる重クロム酸ナトリウム溶液中で
化学処理を行い、塗油した。生成したCu−8n合金は
Cu量として0.004 f!/d、Ni−8n合金は
Nl量として0.025 ?/W?でCu、Niとも全
[Snと(D合金となった。Fe−an合金は0.7 
VArlであった。X線回折結果はCu−an合金はC
u58ru+ 、 N1−an合金はN15Sn4であ
った。
Composition of copper plating bath and processing conditions Composition Pyrophosphate phase 80 W/1 Potassium pyrophosphate 350 f/1 Ammonia water 3αshi'l Processing conditions Current density 2 A/drr? Processing amount: 0.8 C/d bath Temperature: 55°C Nickel plating bath composition and processing conditions: Nickel sulfate: 200 f/1 Boric acid: 10 f/1 Processing conditions: Current density: I A/dTr? Processed electric fish 0.40/dze12- Bath temperature 45°C Example 2 A cold-rolled steel plate similar to that used in Example 1 was pretreated, and then a nickel plating bath similar to that used in Example 1 was used to conduct electric current treatment. Density I A/dze, processing electricity I C/d door 0.025
After applying nickel plating of f/d and washing with water, using the same copper plating bath as in Example 1, a current density of 0.1 k/d was applied.
tr? , processing electricity 1jt 0. IC/drr? Copper plating is applied to 0.004 f//m'', washed with water, and then plated at 5.61/W in a tin sulfuric acid plating bath, and heated to a maximum temperature of 240°C for 3 seconds using the resistance heating method. Heating to melt Sn, Cu-8n alloy, N
An i-8n alloy and a Fe-8n alloy were formed. This was followed by chemical treatment in a commonly used sodium dichromate solution and oiling. The produced Cu-8n alloy has a Cu content of 0.004 f! /d, Ni-8n alloy has an Nl content of 0.025? /W? Therefore, both Cu and Ni became a total [Sn and (D alloy).The Fe-an alloy was 0.7
It was VArl. The X-ray diffraction results show that the Cu-an alloy is C
The u58ru+, N1-an alloy was N15Sn4.

実施例3 実施例1と同様の冷延鋼板を用い、前処理を行ったのち
、次に示すピロリン酸浴を用いCuとNlとの共析めつ
きを行い、0.02 f/m”のCuと0.039/d
のNiを析出さゼた。水洗したのち、硫、酸錫めっき洛
中で5゜6 f/nt”の錫めっきを行い、抵抗加熱法
により、最高到達温度をSnの融点(掘下の220℃ま
で10秒間加熱し、Cu−8n4金、N1−Sn合金お
よびFe−8o合金を形成させた。ひきつづき通常用い
られる重クロム酸ナトリウム溶液中で化学処理を行い、
塗油した。
Example 3 A cold-rolled steel sheet similar to that of Example 1 was pretreated, and then eutectoid plating with Cu and Nl was performed using the following pyrophosphoric acid bath, resulting in a plating of 0.02 f/m''. Cu and 0.039/d
Ni was precipitated. After rinsing with water, tin plating was performed at 5°6 f/nt" in a sulfur and acid tin plating system, and the highest temperature was heated for 10 seconds to the melting point of Sn (220°C below the surface), and Cu- 8n4 gold, N1-Sn alloy and Fe-8o alloy were formed, followed by chemical treatment in commonly used sodium dichromate solution.
I anointed it with oil.

生成したCu−Sn合金は01014り/n?、Ni−
Sn合金は002か背でCuの合金化率は57%、Ni
の合金化率は67%で、Fe Sn合金は0.029/
lt?であ−) だ。X線間ル1結果、Cu−Sn合金
はCueSo6 、Ni −Sn合金はN15Sn4で
あった。
The produced Cu-Sn alloy is 01014ri/n? , Ni-
The Sn alloy is 002 and the alloying rate of Cu is 57%, Ni
The alloying ratio of is 67%, and the Fe Sn alloy is 0.029/
lt? De-) It is. As a result of X-ray inspection, the Cu-Sn alloy was CueSo6, and the Ni-Sn alloy was N15Sn4.

CuとN1との共析めつきの組成および処理条件組 成 ビロリン酸ニッケル 300 ?/1 ビロリン酸銅 15 t/1 ピロリ゛/酸カリウム 350 ?/10ツシエル准 
25v/ρ 処理条件 電流密度 I A、/(Jrr? 処理電気量 3 C/dn? 浴 温 60 ℃ 比較例 実施例1と同様の冷延鋼板を用い、前処理を行ったのち
、硫酸錫めっき浴中で5.6 ?/n?の錫めっきを行
い、抵抗加熱法暑こより錫を溶融さ−(するとともに1
’e−Sn合金を形成させた。ひきつづき刑常用いられ
る重クロム酸ナトリウム溶液中で化学処理を行い、塗油
した。生成したFe−Sn合金は0.9P/靜であった
Composition and processing conditions for eutectoid plating of Cu and N1 Composition Nickel birophosphate 300 ? /1 Copper pyrophosphate 15 t/1 Potassium pyrophosphate 350 ? /10 Tushiel Junior
25v/ρ Processing conditions Current density IA,/(Jrr? Processing electricity amount 3C/dn? Bath temperature 60°C Comparative example Using the same cold rolled steel sheet as in Example 1, pretreatment was performed and then tin sulfuric acid plating was performed. Tin plating is carried out at 5.6 ?/n? in a bath, and the tin is melted in the heat by resistance heating method
'e-Sn alloy was formed. It was then chemically treated in a sodium dichromate solution, which is commonly used in criminal cases, and then anointed with oil. The produced Fe-Sn alloy had a density of 0.9P/silence.

実施例1〜3、比較例で得られた錫めっき鋼板について
人’t’ c i<験および次に示す耐食性試験を行っ
た。
The tin-plated steel sheets obtained in Examples 1 to 3 and Comparative Example were subjected to human 't' c i< tests and the following corrosion resistance test.

耐食性試験 50w+X20mの試片をFe−Sn合金層およびCI
J−Sn合金を形成していないSnを40℃のINの水
15− 酸化ナトリウム溶液中で0.35 Vに保ち、電解除去
した。二の試片の端面なシールして、25℃のIMのク
エン酸溶液中に漫せきし、発生する水素量より、鉄腐食
速度をめた。鉄腐食速度を■/dWhrで示した。
Corrosion resistance test A 50w+X20m specimen was coated with Fe-Sn alloy layer and CI
Sn that did not form a J-Sn alloy was electrolytically removed in an IN water 15-sodium oxide solution at 40° C. while maintaining the voltage at 0.35 V. The end face of the second specimen was sealed and soaked in IM citric acid solution at 25°C, and the iron corrosion rate was estimated from the amount of hydrogen generated. The iron corrosion rate was expressed as ■/dWhr.

@1衷に示すように、本発明の錫めっき鋼板は優れた耐
食性を示し、連続鋳造材の耐食性を大幅に改善した。
As shown in Figure 1, the tin-plated steel sheet of the present invention exhibited excellent corrosion resistance and significantly improved the corrosion resistance of continuous casting materials.

16一16 one

Claims (1)

【特許請求の範囲】 (1)鋼板と錫層との間に、Cu1lO,001f/n
?以上、Nl量0.001 f/r1以上および8ni
lとして0、001〜1.5 tA??のF’e−Sn
合金からなり、CuトN1量の総和が0.2 f/rr
?以下で、Cuの中Cu−8n合金が50重服%以上、
Nlの中Ni−8n台金が50重量%以上存在すること
を特徴とする錫めっき銅板。 (21w4板上ニ0.001〜0.199 ?/rr?
 (D銅メツきをしたのち、0.001 f/lr?以
上でCu量との総和が0.2 f/yrl以下のニッケ
ルめっきを行い、つづいて錫めっきを行い、150〜4
00℃で加熱し、Cuの中Cu−8n合金を50重量%
以上、Niの中Ni −Sn合金を50重量%以上形成
せしめると同時に、法。 (3) 鋼板上に0001〜0.199 rk?のニッ
ケルめっきをしたのち、0.001 t/n?以−Eで
N1h↓との総和が0.2 ?/n?以下の銅めつきを
行い、つづいて錫めっきを行い、150〜400℃で加
熱し、Cuの中Cu−8n合金を50重量%以上、Ni
の中Ni −3nO金を50重ら1%以−E形戊せしめ
ると同時φこ、法。 (4) 鋼板上+: 0.001 t/rr?以上のC
uと0.001?7臂以上のN1、その総和が0.2 
f/lr/以下でCuとNiとの共析めっきをしたのち
、錫めっきを行い、ひきつづき150〜400℃で加熱
し、Cuの中Cu −Sn合金を50重量%以」ユ、N
1の中Ni−8n合金を50重量%以上形成せしめると
同時に、Sn量として
[Claims] (1) Between the steel plate and the tin layer, Cu11O,001f/n
? Above, Nl amount 0.001 f/r1 or above and 8ni
0,001 to 1.5 tA as l? ? F'e-Sn
Made of alloy, the total amount of Cu and N1 is 0.2 f/rr
? Below, Cu-8n alloy in Cu is 50% or more,
A tin-plated copper plate characterized in that Ni-8n base metal is present in an amount of 50% by weight or more in Nl. (21w4 board 0.001~0.199 ?/rr?
(After D copper plating, nickel plating is performed at 0.001 f/lr? or more and the total amount with Cu is 0.2 f/yrl or less, followed by tin plating,
Heating at 00℃, 50% by weight of Cu-8n alloy in Cu
As described above, at the same time as forming 50% by weight or more of a Ni-Sn alloy in Ni, the process is performed. (3) 0001~0.199 rk on steel plate? After nickel plating, 0.001t/n? Therefore, the sum of -E and N1h↓ is 0.2? /n? The following copper plating is carried out, followed by tin plating, heated at 150 to 400°C, and Cu-8n alloy is added to Cu in an amount of 50% by weight or more, Ni
At the same time, when the Ni-3nO gold is made into an E shape by 50 layers and 1% or more, the process is performed simultaneously. (4) On steel plate +: 0.001 t/rr? Above C
u and 0.001? N1 over 7 arms, the sum of which is 0.2
After eutectoid plating with Cu and Ni at f/lr/ or less, tin plating is performed, followed by heating at 150 to 400°C to form a Cu-Sn alloy of not less than 50% by weight in Cu.
At the same time, at the same time as 50% by weight or more of Ni-8n alloy is formed in
JP14389383A 1983-08-08 1983-08-08 Tinned steel sheet and manufacture thereof Granted JPS6036693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14389383A JPS6036693A (en) 1983-08-08 1983-08-08 Tinned steel sheet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14389383A JPS6036693A (en) 1983-08-08 1983-08-08 Tinned steel sheet and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6036693A true JPS6036693A (en) 1985-02-25
JPS629196B2 JPS629196B2 (en) 1987-02-26

Family

ID=15349490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14389383A Granted JPS6036693A (en) 1983-08-08 1983-08-08 Tinned steel sheet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6036693A (en)

Also Published As

Publication number Publication date
JPS629196B2 (en) 1987-02-26

Similar Documents

Publication Publication Date Title
US5679181A (en) Method for manufacturing a corrosion resistant nickel plating steel sheet or strip
US4104135A (en) Method of producing highly corrosion resistant tin-plated steel sheet
US4468292A (en) Production of highly rust resistant tinplate sheets for welded cans
JPH0578889A (en) Aluminum alloy sheet for terminal
JP3439912B2 (en) Battery can material excellent in deep drawability and method for producing the same
JPH0689472B2 (en) Thin Sn plated steel plate for can making and method for manufacturing the same
JPS6036693A (en) Tinned steel sheet and manufacture thereof
JP2534604B2 (en) Highly workable nickel-tin plated steel strip for battery cases
JPH0919775A (en) Lead composite steel and its manufacture
JPS6036692A (en) Tinned steel sheet and manufacture thereof
JP3449087B2 (en) Tinned steel sheet for electronic equipment parts
JP2577246B2 (en) Manufacturing method of surface-treated steel sheet for coating base with excellent processing corrosion resistance
JPS5938315B2 (en) Manufacturing method of ultra-thin iron-tin alloy coated steel sheet
JPH0971851A (en) Production of zinc-tin alloy plated steel sheet
JPH04314875A (en) Production of tinned copper alloy material containing zinc
JPS629197B2 (en)
JP3434927B2 (en) Manufacturing method of steel plate for welding can with excellent paint appearance
JPH0288797A (en) Surface-treated steel sheet for high-performance, lead frame having excellent corrosion resistance, solderability, and platability
JPH01165788A (en) Surface-treated steel sheet for high-performance lead frame having excellent corrosion resistance and solderability
JPH01165757A (en) Production of surface-treated steel sheet for lead frame having excellent corrosion resistance, platability and solderability
JPH0510421B2 (en)
JPS58174591A (en) Preparation of tin electroplated steel plate with high corrosion resistance
JPH01165758A (en) Production of surface-treated steel sheet for lead frame having excellent corrosion resistance, platability and solderability
JPS6286199A (en) Pretreatment for tin plate having excellent corrosion resistance
JPH0457752B2 (en)