WO1998012464A1 - Structure composite de conduite - Google Patents
Structure composite de conduite Download PDFInfo
- Publication number
- WO1998012464A1 WO1998012464A1 PCT/US1996/015105 US9615105W WO9812464A1 WO 1998012464 A1 WO1998012464 A1 WO 1998012464A1 US 9615105 W US9615105 W US 9615105W WO 9812464 A1 WO9812464 A1 WO 9812464A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pipe
- extending
- coupling means
- pipeline
- sections
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L9/00—Rigid pipes
- F16L9/14—Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
Definitions
- This invention relates to a pipe structure in which an inner pipe is resiliently supported within an outer pipe, and, more particularly, to an improved structure for protecting an inner pipe before, during, and after instal- lation.
- composite pipe structures made up of layers of different materials, have been used to combine the advantages of different materials in providing mechanical strength, resistance to corrosion, thermal insu- lation, and the like.
- underground steel pipes have been wrapped or otherwise surrounded by non-metallic materials to prevent the corrosive effects of ground water.
- Oil well casings which are formed by strings of steel pipes fastened together and lowered as the well is drilled, are typically protected by cement introduced into the annular space between the outside of the outer wall of the casing and the well bore, to prevent the migration of ground water into the well.
- concrete inner liners have also been used within pipes handling cor- rosive liquids, such as oil field brines.
- glass vessels and glass lined vessels are used extensively, because glass surfaces are chemically inert in such applications.
- glass surfaces are preferred because glass does not contain toxic materials which can be leached into food products and because glass can be easily cleaned.
- Glass containers of well known types are commonly used for the storage and shipment of various types of liquid food products, and glass linings have been used with very large containers, such as, tank trucks for carrying milk or storage tanks for storing milk.
- the use of glass in such applications avoids corrosive processes known to occur when metallic surfaces are exposed to the weak acids present in many food substances. Such corrosive processes in a unlined metal vessel may result in the release of poisonous by products of corrosion into the food products, in the formation of corroded surfaces of the vessel which cannot be adequately cleaned, and in the ultimate destruction of a vessel.
- U.S. Patent 2,907,351 issued to Rohrback, et al. on October 6, 1959, describes the use of a protective sheath made from neoprene or other suitable synthetic rubber over the outside of a section of steel pipe used as a casing in an oil well. A section of this sheath is placed over each individual pipe section, with a skirt portion of the sheath being doubled back, away from one end of the pipe. A portion of pipe is left exposed, either at the end opposite to the skirt or adjacent thereto, so that the pipe can be grasped with ordinary tools.
- the resinous inner pipe which provides an imperme- able, corrosion resistant layer, can be made from any impermeable, substantially rigid resinous material, such as solid polymers of olefins, nylon, PVC (polyvinylchloride) , and mixtures thereof.
- the hydrocarbon gel can be made by mixing a liquid hydrocarbon having a high boiling point, such as gasoline or kerosine, with a gelation agent, such as a hydrocarbon soluble acrylic resin.
- This gel is pumped into a conduit near one end of a section of pipe, while air is allowed to escape through a conduit near the opposite end.
- Sections of pipe can be joined by the ends of the resinous inner pipe sections extending outward to be bolted between flanges of adjacent outer pipe sections.
- U.S. Patent 3,338,742 issued to Mowell, et al. on June 18, 1968 describes a pipeline built from welded sections, each including an outer casing pipe and inner con- duit pipe.
- This pipeline is particularly constructed to allow thermal expansion and contraction of the inner pipe when the pipeline is used for transporting cryogenic liq- uids, such as liquefied natural gas (LNG) at about -260° F.
- cryogenic liq- uids such as liquefied natural gas (LNG) at about -260° F.
- LNG liquefied natural gas
- Sections of insulation material are also installed between the inner and outer pipes.
- bellows structures are welded between adjacent sections of the inner pipe.
- Bands are welded between adjacent sections of the outer pipe, which may be subsequently covered with a concrete jacket to provide the mass necessary for holding the pipeline on the bottom of the sea in an intended application connected to an offshore tanker loading station, and to provide an environmentally protective coating about the outer pipe.
- U.S. Patent 3,677,303 issued to Martin on July 8, 1972, describes a conduit including an inner pipe, which may be metal, plastic, asbestos cement, or other suitable material, and an outer casing, which is larger in diameter and shorter in length than the inner pipe.
- the outer casing includes a coaxial pair of plastic tubes, with a corrugated structure and a foamed resin, such as polyurethane, filling the annular space therebetween.
- the space between the inner pipe and the outer casing is also filled with foamed resin, and sections of the conduit are joined by slipping a band over sleeves fastened over the outside of the outer casing tube near each end.
- the space between the inner pipe and the outer casing is an air space except for a number of pipe supporting disks, and insulating tube sections over the inner pipe between these disks.
- Each disk has a central hole engaging the outer surface of the inner pipe and a corrugated outer surface engaging the inner surface of the casing.
- U.S. Patent 4,516,608 issued to Titus et al. on May 14, 1985, describes an elongated tubular member including a fiber reinforced organic resin tube, such as a tube reinforced by glass fibers, and a tube made from a refractory material, such as a tube made from a plurality of annular ceramic segments bonded together.
- the refractory tube may be inside or outside the resin tube, and a poly- tetrafluoroethylene layer may be placed between these tubes.
- This type of construction is used to provide structural properties which could not be obtained using the resin tube alone. For example, a column made of resin tubes is too flexible to provide adequate compressive strength.
- U.S. Patent 4,590,971 issued to Webster et al. on May 27, 1986, describes an insulated pipeline having spaced sections of heat insulating material held between a continuous corrosion resistant coating on the steel pipe and an outer protective jacket.
- This pipeline is designed particularly for the transportation of crude oil under the North Sea. Thermal insulation is required to keep the oil, which leaves the well as about 48° C, above 23° C to prevent waxing.
- the corrosion resistant coating of polychloroprene rubber, is 6 mm thick.
- the insulation material consists of sections forming portions of a cylinder having a wall thickness of 50 mm, made from rigid polyvinylchloride foam.
- the outer abrasion resistant jacket is made from 6 mm thick polyurethane . This material also extends inward as a fill- er between adjacent sections of insulation material. This construction allows for flexure when the pipeline comes to rest on the uneven sea floor and for thermal expansion and contraction.
- a composite pipe section including an inner pipe of a first length having a tubular central structure, a first end structure at one end, and a second end structure at an opposite end.
- the second end structure is configured to form a seal with a first end structure engaged in axial alignment therewith.
- the composite pipe section includes an outer structure of a second length, greater than the first length.
- the outer structure has a rigid pipe, first coupling means extending from a one end and second coupling means extending from an opposite end.
- the second coupling means is configured to engage a first coupling means placed in axial alignment therewith and to hold such first coupling means in engagement therewith.
- the composite pipe includes a resilient structure extending within an annular space between the inner pipe and the outer structure.
- the resilient structure holds the inner pipe in coaxial alignment within the outer structure and axially within the outer structure so that the outer structure extends, at each end, beyond the first and second end structures of the inner pipe.
- Figure 1 is a cross-sectional elevation of a section of pipe built in accordance with of this invention
- Figure 2 is a cross-sectional elevation of portions of two sections of pipe, as shown in Figure 1, joined to form part of a pipeline;
- Figure 3 is an isometric view of a gasket and a gasket retaining bracket, used in the pipe shown in Figure 1, shown in an exploded relationship;
- Figure 4 is a cross-sectional elevation of portions of two sections of pipe, built in accordance with a second embodiment of this invention, joined to form part of a pipeline;
- Figure 5 is a cross-sectional elevation of portions of two sections of pipe, built in accordance with a third embodiment of this invention, joined to form part of a pipeline; and
- Figure 6 is a cross-sectional elevation of portions of two sections of pipe, built in accordance with a fourth embodiment of this invention, joined to form part of a pipeline.
- Figure 1 shows a section of pipe 10, built in accordance with a first embodiment of this invention, including an inner pipe 12, which is preferably a glass tube, held in a coaxial relationship with a rigid outer pipe 14, which is preferably a steel pipe. The coaxial relationship is maintained by a resilient structure 16 filling most of the annular space between pipes 12 and 14.
- Resilient structure 16 is may be a foam elastomeric resin, such a polyurethane foam, and can either be foamed in place during manufacture or may be inserted into the opening of outer ipe 14 in an integral unit with inner pipe 12.
- inner pipe 12 is held co-axially within outer pipe 14 by means of fixtures (not shown) at each end, which provide apertures for the injection of the material and for the escape of gasses. These fixtures (not shown) may also be used to form the end surfaces 17 of resilient structure 16. This process typically produces an elastomeric foam structure which tightly adheres to adjacent surfaces, such as the outer surface of pipe 12 and the inner surface of pipe 14.
- Pipe section 10 is particularly structured for attachment to other similar sections 10, as shown in Figure 2.
- outer pipe 14 includes an externally threaded portion 18, and a steel coupling 20 is fastened over the opposite end of outer pipe 14.
- Coupling 20 may be formed by welding a fillet 22 around the opposite end and including an internally mating threaded portion 24 within that portion of fillet 22 extending beyond the edge of pipe 14. With this construction, a number of adjacent pipe sections 10 can be joined in alignment by screwing externally threaded portions 18 into the internally threaded portions 24 of the adjacent sections 10.
- the length of inner pipe 12 is shorter than the combined length of outer pipe 14 and coupling 20.
- Inner pipe 12 is laterally positioned within section 10 so that face surfaces 26 of inner pipe 12 are both inward from the adjacent face surfaces 27 of outer pipe 14 and sleeve 16.
- both ends of inner pipe 12 are protected from damage, which might otherwise occur during handling before section 10 is assembled into a pipeline with other sections, by the overhanging and encircling end portions of outer pipe 18 and coupling 20.
- a gasket 28 is placed over the end of inner pipe 12 encircled by coupling 20 and gasket 28 is held in place by a retaining bracket 30.
- Gasket 28 and bracket 30 are sized so that they also are held within the protective length provided by extending outer pipe 14 and coupling 20.
- gasket 28 includes a rim 32 extending axially from each side of a web 34, which extends inward to a central hole 36.
- Retaining bracket 30 includes a cylindrical portion 38, sized to be placed over gasket 28, and a number of axially extending legs 40. Legs 40 provide contact surfaces on the outer surface of inner pipe 12 at the outward extending portion thereof beyond end surface 17 of resilient structure 16.
- Cylindrical portion 38 of bracket 30 includes a small lip 41 extending inward to hold gasket 28 in place within bracket 30. Retaining bracket 30 is thus used to hold gasket 28 in place over an end of inner pipe 12, with web 34 extending over an end surface 26 of pipe 12.
- gasket 28 is preferably composed of a solid elastomeric resin, such as neoprene or polyurethane
- retaining bracket 30 may be fabricated from a metal sheet using stamping and drawing processes, or bracket 30 may alternately be molded from a solid resin, such as polycarbonate.
- outer pipe 14 may be protected from corrosion through the use of various types of coatings, such as zinc plating, or various elas- tormeric materials.
- additional protection can be applied to pipe 14 in the form of a protective sheath 44 over either or both the inside and outside of pipe 14.
- sheath 44 extends end to end and on the outside, sheath 44 extends from a point near welded edge 22 of coupling 20 towards the opposite end of pipe 14.
- Sheath 44 which is preferably made from a solid elastomeric resin, such as a neoprene or polyurethane rubber, may be attached to the outer surfaces of outer pipe 14 through the use of an adhesive or merely by the establishment of tensile circumferential stress in the sheath 44 as it is installed. Where sheath 44 is applied to encase pipe 44 entirely, that it, cover both the inside and outside thereof, it may be applied by dipping pipe 14 in the elastic material.
- a solid elastomeric resin such as a neoprene or polyurethane rubber
- sheath 44 On the outer surface, sheath 44 includes, near the end of outer pipe 14 having external threads 18, a skirt portion 46 which is folded back, away from these external threads 18, over the part of remaining portion of sheath 44. External threads 18 are thus exposed for the installation of a coupling 20 from an adjacent pipe section 10, and an portion of the outer surface of pipe 14 adjacent to these threads 18 is also exposed so that ordinary tooling, such as a pipe wrench, may be applied to pipe 14 in this region for tightening pipe 14 into such a coupling 20 from an adjacent section 10.
- ordinary tooling such as a pipe wrench
- skirt portion 46 is drawn over coupling 20 and over a part of the sheath 44 of the adjacent pipe section 10, forming a hermetic seal to prevent the migration of ambient fluids to the surfaces of outer pipes 12 and coupling 20.
- skirt 46 may be replaced by a protective material wrapped around the threads 18.
- FIG 4 is a cross-sectional elevation of portions of two pipe sections 50, built in accordance with a second embodiment of this invention, joined to form part of a pipeline.
- Each section 50 includes an inner pipe 52, which is preferably a glass tube having an accurately ground face 54 at each end, an outer pipe 56, which is preferably a steel pipe, and an insulating structure 58, which is preferably formed from a foamed elastomeric resin, extending therebetween.
- the inner pipe is suspended within, and protected by, the steel outer pipe.
- each outer pipe 56 includes a diametrically enlarged portion 60, in which internal threads 62 are formed, while external threads 64 are formed on an opposite end of outer pipe 56.
- Internal threads 62 mount with external threads 64, so that a number of pipe sections 50 may be fastened together to form a pipeline.
- the forming of an internally threaded, enlarged section 60 is function- ally equivalent to the attachment of an internally threaded coupling 20 (shown in Figures 1 and 2); if the screw threads are compatible, outer pipe sections formed using each of these techniques can be mated.
- FIG. 4 In the example shown in Figure 4 , separate parts such as gasket 28 and retaining bracket 30 (shown in Figure 3 ) are not used to seal a gap between inner pipes 52. Instead, one or both of the end faces 54 may be coated with a solid elastomeric resin, so that a fluid tight seal is established between these faces 54 as two pipe sections 50 are fastened together.
- an optional additional insulating structure 68 may be formed around the ends of these pipes 52 after outer pipes 56 are screwed together. Insulating structure 68 may be inserted as an integral piece prior top screwing the two adjacent sections together. Alternatively, two holes 70 may be provided in the transitional part of outer pipe 56 adjacent to its diametrically enlarged portion 60.
- One of holes 70 may be used to fill the space around the ends of inner pipes 52, while gasses are allowed to escape through the other hole 70.
- an additional elastomeric sheath 72 may be provided for use in harsh environments to protect the inside and/or outside surfaces of outer pipes 56 from corrosion.
- This sheath 72 includes a skirt portion 74, which is initially folded back, away from external threads 64, and which is folded out straight to cover enlarged portion 60 of an adjacent attached adjacent pipe section 50.
- FIG. 5 is a cross-sectional elevation of portions of two pipe sections 76, built in accordance with a third embodiment of this invention, joined to form part of a pipeline.
- each end of inner pipe 78 is formed to provide an aligning surface mating with the opposite end of this pipe 78, so that, when a number of sections 76 are assembled into a pipeline, adjacent inner pipes 76 will be aligned by their end surfaces.
- an outer overlapping section 80 is formed at one end of each inner pipe 76, to encircle an inner extending section 82 at an opposite end of an inner pipe 76 from an adjacent attached section 76.
- a fluid tight seal around the joint between adjacent inner pipes 78 is further formed through the use of an O-rings 84 and 86, which may be of standard types readily available in a number of elastomeric materials.
- O-rings 84 and 86 are located at internal corners of sections 80 and 82, where these corners are preferably grooved for receiving the O-rings and for reducing the stress concentration which would otherwise occur at sharp corners in these locations.
- O-ring 84 is fit into a groove extending inward from the circular internal corner of outer overlapping section 80, while O-ring 86 is fit into a groove extending inward from the circular internal corner of inner extending section 82.
- the outer diameters of O-ring 84 and of inner extending section 82 are about equal to the inner diameter of O-ring 86. Mounting O-rings in grooves in this way provides the additional advantage of avoiding the generation of the high forces required to provide fluid tight sealing as the adjacent inner pipes are brought together, until the motion required to bring these pipes together is nearly completed. O-rings 84 and 86 may be placed within these grooves during the process of manufacturing pipe sections 76. Additional gasket materials, such as an elastomeric coating applied to the outer cylindrical surface of inner extending section 82, may be used to enhance the seal formed by O-rings 84 and 86.
- each outer pipe 88 has, at one end, an externally threaded portion 90 as previously described relative to Figures 1, 2, and 4. However, at the opposite end, each outer pipe includes a diametrically smaller por- tion 92 which slides inside externally threaded portion 90 as pipe sections 76 are assembled to one another. Each outer pipe 88 also includes a circumferential outward extending ridge 94 adjacent to smaller portion 92.
- a coupling 96 mounted to revolve on ridge 94, is assembled in place with an inner coupling portion 98 and an outer coupling portion 100 forming opposite sides of a groove aligned on ridge 94. Relative motion between coupling por- tions 98 and 100 may be prevented, for example, by a tightly fitting key 102 forced into slots in portions 98 and 100.
- each pipe section 76 also includes an insulating structure 104, which may be formed during the manufacture of the pipe section 76 by injecting an elastomeric resin foam into the annular space between inner pipe 78 and outer pipe 88. Alternatively, the attachment of the two pipe sections 76 may be accomplished using a pair of facing flanges.
- Coupling 96 When pipe sections 76 are assembled into a pipeline, the rotation of coupling 96 provides the axial engagement motion required for assembly through the engagement of internal threads 106 of inner coupling portion 98 with the external threaded portion 90 of an adjacent pipe section 76.
- Coupling 96 may include outer surface features such as flats, knurled ridges, or holes to facilitate grasping for rotation by tooling or by hand. Since this assembly process does not involve the rotation of either of the pipe sections 90 to be assembled, it is particularly desirable under conditions where it is necessary to join portions of a pipeline at a central point, and to join portions of a pipeline including curved sections or various types of attached hardware.
- the threads of externally threaded portion 90 and internal threads 106 of coupling 96 may be made compatible with external threads 18 and 64, with the threads of internally threaded portion 24, and with internal threads 62, so that, with compatible end configurations for internal pipes, pipe sections including rotating couplings 96 may be used with pipes sections using outer pipes built as described in reference to Figures 1, 2, and 4.
- the preceding discussion has described pipe sections 10, 50 and 76 using three different versions of couplings between outer pipes 14, 56 and 88, three different versions of engagement between inner pipes 12, 52 and 78, and an optional sheath 44 and 72 to be applied to pipe sections constructed for use under harsh conditions. It is understood that a pipe section could be built using any combination of these features to advantage without departing from the spirit and scope of the invention.
- relatively strong and stiff outer pipe sections 10, 50 and 76 are joined, one to another, to provide strength and rigidity to the pipeline.
- the assembly and disassembly of a pipeline is accomplished through the use of a simple rota- tional motion, which, depending on factors such as the size of the pipe sections 10, 50 and 76, can easily be applied by hand or with easily available tools.
- This attachment is made, either by means of the direct engagement between screw threads 18 or 62 of adjacent outer pipe sections, or by means of the engagement of a coupling 96 rotatably attached to one outer pipe section 88 with threads 90 on the other outer pipe 88 section.
- This method provides for alignment of adjacent pipe sections by means of the outer pipes thereof, and provides advantages of increased joint strength and rigidity, as well as of ease of assembly, relative to a method of the prior art, as described in U.S. Patent 3,677,303 to Martin, wherein a sleeve is used to bridge a gap between adjacent pipe sections, being attached to each pipe section by means of an O-ring being forced into an outer groove around the pipe section and an inner groove in the sleeve.
- the method of this invention provides an ease of assembly and disassembly advantage over other composite pipe constructions described in the prior art, such as that of U.S. Patent 3,388,724 to Mowell, et al., where welding is used to join both inner and outer pipe sections.
- inner pipe 12, 52 or 78 is suspended within the outer pipe 14, 56 or 88 by means of an insulating structure 16, 58 or 104, which may be inserted with inner pipe 12, 52 or 78 or which may be formed by in- jecting an elastomeric resin foam into the annular space between the outer pipe 14, 56 or 88 and inner pipe 12, 52 or 78.
- the insulating material 16, 58 and 104 may be preferably to provide thermal insulation, which is particularly desirable when a hot or cold fluid is pumped through the inner pipe 12, 52 or 78.
- mechanical protection of the inner pipe 12, 52 or 78 is provided from shocks which may occur during the laying of the pipeline, or thereafter, due to excavation operations, earthquakes, explosions, and so on.
- FIG. 6 a fourth embodiment of the invention is shown and includes two adjacent sections of a pipe 110 which are connected without the use of threads as seen in the prior embodiments.
- Pipe sections 110 are similar to pipe sections 10 shown in Figures 1 and 2 in that a steel coupling 112 is attached over one end of outer pipe 114 (the right end of left pipe section 110 as seen in Figure 6), for example by welding.
- Coupling 112 and outer pipe 114 differs from coupling 20 and outer pipe 14 shown in Figures 1 and 2 in that no threads 18 or 24 are present.
- the two adjacent sections of pipe 110 are couple together in Figure 6 by either press fitting or welding the extending end of coupling 112 to the inserted end of the other pipe section 110.
- the outer pipes 114 are shown as contacting one another after assembly, thereby eliminating gap 42 shown in Figure 2.
- Gasket 118 is essentially a washer having an interior opening co-extensive with the inner diameter of inner glass pipe 120. Gasket 118 is held by casket coupling 116, which extends in both directions in the opening 122 between the facing ends of resilient structure 124.
- the distal ends of gasket coupling 116 approxi- mate a semi-circle so that gasket coupling 116 is held in place over inner pipe 120 in opening 122 and below sheath 126 by the resulting spring effect.
- the extreme distal ends of gasket coupling 116 is directed away from inserted inner pipe 120 whereby it acts as a guide for inner pipe 120 as one section is coupled to the other section.
- the pipe construction described above are particularly useful in providing an attachment means for segments of a glass pipeline, since it is necessary only to cut a long glass tube into sections of appropriate length during the manufacture of the pipe segments.
- the cutting process can be used to provide accurate and smooth end surfaces, or a simple grinding procedure may be used after initial cut- ting, particularly as required for the Figure 5 embodiment. Fluid tight sealing is achieved against the end surfaces, providing a particular advantage, since the manufacturing processes which produce glass tubes do not typically pro- vide accurate inside or outside surfaces against which seals may be pressed to produce reliable fluid tight sealing.
- the materials used in the construction of pipe sections 10, 50 or 76 and 110 can be varied, without departing from the scope of the invention, in order to obtain useful properties for different types of fluids to be transported, for different types of installation procedures, or for different operating environments. While this invention is particularly useful in providing means to allow the simple attachment of sections of a glass inner pipeline, and in protecting such a pipeline from damage before, during, and after installation, other materials, such as tubes made from thermoplastic resins may alternately be used for the inner pipe sections. While glass provides outstanding sur- face properties relative to the transportation of food products and corrosive chemicals, many thermoplastic resins provide improved impact strength and other mechanical properties.
- This invention can also be of use in providing an underground conduit for electrical wires.
- the use of a steel outer pipe, together with a plas- tic inner pipe, should provide excellent protection against the interruption of electrical or communication services due to an excavation accident.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Conduite qui est fabriquée par raccord d'un certain nombre de tronçons dont chacun comporte une structure interne (12, 52, 78 et 120) et une structure externe (14, 56, 88 et 114). La structure externe (14, 56, 88 et 114) qui peut être galvanisée ou encastrée dans une matière élastomère protectrice (44) comporte des raccords appariés à chaque extrémité, permettant de raccorder des parties similaires ensemble bout à bout. La structure interne (12, 52, 78 et 120) comporte un trou qui s'étend sur la longueur de la conduite et des moyens permettant d'étanchéifier le trou au niveau de chaque raccord. La structure interne (12, 52, 78 et 120) est montée élastique à l'intérieur de la structure externe (14, 56, 88 et 114). La structure externe (14, 56, 88 et 114) de chaque tronçon s'étend dans les deux directions au-delà des extrémités de la structure interne (12, 52, 78 et 120).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1996/015105 WO1998012464A1 (fr) | 1996-09-20 | 1996-09-20 | Structure composite de conduite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1996/015105 WO1998012464A1 (fr) | 1996-09-20 | 1996-09-20 | Structure composite de conduite |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998012464A1 true WO1998012464A1 (fr) | 1998-03-26 |
Family
ID=22255831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1996/015105 WO1998012464A1 (fr) | 1996-09-20 | 1996-09-20 | Structure composite de conduite |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1998012464A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112648448A (zh) * | 2020-12-29 | 2021-04-13 | 福建恒杰塑业新材料有限公司 | 一种绿色环保节能型供冷热水管 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4886305A (en) * | 1988-08-12 | 1989-12-12 | Fibercast Company | Double containment pipe fittings and apparatus to adhesively install the same |
US5186502A (en) * | 1990-12-11 | 1993-02-16 | Fibercast Company | Double-containment pipe fittings and system |
US5449204A (en) * | 1993-10-22 | 1995-09-12 | Greene; Karen C. | Double containment fitting |
US5503192A (en) * | 1993-06-08 | 1996-04-02 | Nibco Inc. | Inductive welding of thermoplastic pipe |
-
1996
- 1996-09-20 WO PCT/US1996/015105 patent/WO1998012464A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4886305A (en) * | 1988-08-12 | 1989-12-12 | Fibercast Company | Double containment pipe fittings and apparatus to adhesively install the same |
US5186502A (en) * | 1990-12-11 | 1993-02-16 | Fibercast Company | Double-containment pipe fittings and system |
US5186502B1 (en) * | 1990-12-11 | 1994-08-30 | Fibercast Co | Double-containment pipe fittings and system |
US5503192A (en) * | 1993-06-08 | 1996-04-02 | Nibco Inc. | Inductive welding of thermoplastic pipe |
US5449204A (en) * | 1993-10-22 | 1995-09-12 | Greene; Karen C. | Double containment fitting |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112648448A (zh) * | 2020-12-29 | 2021-04-13 | 福建恒杰塑业新材料有限公司 | 一种绿色环保节能型供冷热水管 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5868437A (en) | Composite pipe structure | |
US3885595A (en) | Conduit for cryogenic fluid transportation | |
EP3642524B1 (fr) | Raccord terminal pour tuyau composite | |
US7399002B2 (en) | Cryogenic seal for vacuum-insulated pipe expansion bellows | |
US4805444A (en) | Secondary containment system | |
CA2655039C (fr) | Procede d'assemblage | |
EP0972980A2 (fr) | Raccord de tuyau composite renforcé par fibres et soumis à des pressions élevées | |
US9863571B2 (en) | Apparatus, systems and methods for thermal management of subsea pipeline | |
US4269436A (en) | Pre-insulated pipe system | |
EP0070065A1 (fr) | Accouplement de tuyau pour tuyaux isolés et procédé pour le monter | |
US3642308A (en) | Conduit system | |
US20090320953A1 (en) | Interstitially Insulated Pipes and Connection Technologies | |
US20060061092A1 (en) | High temperature line expansion installation with bellows | |
EP0266810B1 (fr) | Système d'assemblage d'une pièce de raccordement et d'un tuyau à haute pression en matériau composite, notamment pour l'application aux appareils de l'industrie pétrolière | |
MXPA06010768A (es) | Metodos y configuraciones de tuberia criogenica. | |
EA008159B1 (ru) | Концевое соединение гибкого трубопровода | |
US3907049A (en) | Lined pipe and method of making same | |
AU2007259101B2 (en) | A method of securing wires of at least one armour layer and inner and outer collar members of a portion of flexible pipe | |
US5934711A (en) | Mold shot riser element with O-ring sealing | |
US4279435A (en) | Gas riser apparatus | |
US3987820A (en) | Gas riser apparatus and method | |
AU2008233375A1 (en) | Pipe Insulation | |
US4085950A (en) | Gas riser apparatus and method | |
WO1998012464A1 (fr) | Structure composite de conduite | |
US3537729A (en) | Expansion joint for pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 1998514618 Format of ref document f/p: F |