明 細 書 電気破砕による地中掘進機、 及び掘削機とその掘削方法 技 術 分 野 Description Underground excavator by electric crushing, and excavator and its excavation method
本発明は、 パルス電気エネルギー放電による電気破砕のための電極周辺溶液を 効率良く保水して掘削する、 電気破砕による地中掘進機、 及び掘削機とその掘削 方法に関する。 背 景 技 術 TECHNICAL FIELD The present invention relates to an underground excavator by electro-fracture, an excavator, and a method of excavating the same, which efficiently retains and excavates a solution around an electrode for electro-fracture by pulsed electric energy discharge. Background technology
従来、 岩盤やコンクリート等を電気エネルギーの放電により破砕する (以下、 電気破砕と呼ぶ) 方法が、 いくつか提案されている。 Conventionally, several methods have been proposed for crushing rock and concrete by discharging electric energy (hereinafter referred to as electro-crushing).
例えば、 特開平 4 - 2 2 2 7 9 4号公報においては、 ドリル等によって岩石等 の固体絶縁物に穴を開け、 この穴の中に粘性の有る電解液 (例えば、 硫酸銅電解 液) を入れた状態で、 この穴の中に同軸状の電極を挿入し、 この電極に高電圧パ ルスを印加している。 これにより、 電極にプラズマ放電が発生し、 このとき放射 される電気的エネルギーが岩石を破砕して断片化している。 そして、 電極の周囲 の閉じ込められた領域の中を上記電解液で満たし、 ブラズマ放電で発生した破壊 力を増大させるようにしている。 また、 高電圧パルスの上昇時間を所定値以下に 小さく し、 固体絶縁物中を放電電流が流れ易く している。 For example, in Japanese Unexamined Patent Publication No. 4-222704, a hole is formed in a solid insulator such as a rock with a drill or the like, and a viscous electrolytic solution (for example, copper sulfate electrolytic solution) is filled in the hole. A coaxial electrode is inserted into this hole with the battery inserted, and a high-voltage pulse is applied to this electrode. As a result, a plasma discharge is generated at the electrode, and the electrical energy radiated at this time crushes rocks and fragments them. Then, the inside of the confined area around the electrode is filled with the above-mentioned electrolyte, so that the destructive force generated by the plasma discharge is increased. Also, the rise time of the high-voltage pulse is reduced to a predetermined value or less, so that the discharge current easily flows through the solid insulator.
かかる電気破砕では、 電解液を電極の周囲の閉じ込められた領域に保水するこ と力 \ 破砕エネルギーを大きくするために重要となっている。 このために、 電解 液をベントナイ 卜又はゼラチンのようなゲル化剤と結合させ、 電解液が流出しな いように充分の粘性を与えることも開示されている。 したがって、 縦方向の穴を 掘削し、 この穴に電解液を満たした状態で破砕する場合には、 ある程度物質中へ 浸透する液量を補えばこの電解液の保持は可能である。 しかし、 横方向の穴に電 解液を保持する方法に関しては開示されておらず、 従来の方法では保持すること
が困難である。 In such electrocrushing, it is important to keep the electrolyte in a confined area around the electrode in order to increase the crushing energy. For this purpose, it is also disclosed that the electrolyte is combined with a gelling agent such as bentonite or gelatin to provide sufficient viscosity so that the electrolyte does not flow out. Therefore, when a vertical hole is excavated and crushed with this hole filled with electrolyte, it is possible to retain this electrolyte by supplementing the amount of liquid that penetrates into the substance to some extent. However, it does not disclose how to hold the electrolyte in the lateral hole, and it is necessary to hold it in the conventional method. Is difficult.
ところで、 電気破砕技術を岩盤やコンクリート等を破砕したり掘削する機械に 適用するに当たっては、 この横方向の穴を利用した破碎ゃ掘削は、 適用範囲を広 くするために非常に重要な機能である。 従って、 横方向の穴に電解液等の溶液を 効率よく保持する技術の開発が、 強く要望されている。 発 明 の 開 示 By the way, when applying electro-crushing technology to machines that crush or excavate rock or concrete, crushing and excavation using this horizontal hole is a very important function in order to expand the applicable range. is there. Therefore, there is a strong demand for the development of a technology for efficiently holding a solution such as an electrolytic solution in a lateral hole. Disclosure of the invention
本発明は、 かかる問題点に着目してなされたものであり、 電気破砕用電極の周 囲に電解液等の溶液を確実に、 効率良く保持できる機構を備えた電気破碎による 地中掘進機、 及び掘削機とその掘削方法を提供することを目的としている。 本発明に係る地中掘進機の第 1発明は、 地中掘進機の前面に設けられた少なく とも 1対の電気破砕用の電極と、 この電極に高電圧パルスを印加するパルス発生 装置と、 前記電極の周囲に充塡された溶液と、 掘進機の外周面に設けられ、 前記 電極の周囲の溶液を掘進機前面と地面との間に保水する保水力バーと、 前記溶液 を電極の周囲に送給する溶液送給管と、 この溶液送給管を経由して掘進機の前面 に溶液を供給するポンプと、 溶液を蓄え、 このポンプによってこの溶液を吸い. h げられる貯留槽とを備え、 前記電極に高電圧パルスで放電させて地中を掘削して い 0 o The present invention has been made in view of such a problem, and has an underground excavator by electro-crushing provided with a mechanism capable of holding a solution such as an electrolytic solution around the electrode for electro-crush securely and efficiently. And an excavator and an excavation method thereof. A first invention of an underground excavator according to the present invention includes at least one pair of electrodes for electric crushing provided on the front surface of the underground excavator, a pulse generator for applying a high-voltage pulse to this electrode, A solution filled around the electrode, a water retention bar provided on an outer peripheral surface of the excavator, for retaining the solution around the electrode between the front surface of the excavator and the ground, and And a pump for supplying the solution to the front of the excavator via the solution supply pipe, and a solution tank for storing the solution and sucking the solution by the pump. Drilling underground by discharging the electrode with a high voltage pulse 0 o
力、かる構成により、 貯留槽の溶液をポンプで吸い上げ、 溶液送給管を経由して 前面の電極の周囲に所定圧力で送給するようにしている。 地中掘進機の外周面に 設けた保水カバ一によって、 この溶液が流出するのを防止している。 したがって 、 電極周囲の溶液が加圧気味になって保水されるので、 電極での放電エネルギー が効率的に掘削に利用される。 なお、 粘性の高い溶液を使用すれば、 さらに溶液 の漏れが少なくなり、 保水効果が大きくなる。 With this configuration, the solution in the storage tank is sucked up by a pump and is sent at a predetermined pressure around the front electrode through the solution feed pipe. This solution is prevented from flowing out by a water retention cover provided on the outer peripheral surface of the underground excavator. Therefore, the solution around the electrode is slightly pressurized and water is retained, and the discharge energy at the electrode is efficiently used for excavation. If a highly viscous solution is used, the leakage of the solution is further reduced, and the water retention effect is increased.
地中掘進機の第 2発明は、 地中掘進機の前面に設けられた少なくとも 1対の電 気破砕用の電極と、 この電極に高電圧パルスを印加するパルス発生装置と、 前記 電極の周囲に充塡された溶液と、 前記電極の周囲に設けられ、 この電極の周囲の
溶液を掘進機前面と地面との間に保水するケースと、 この溶液を電極の周囲に送 給する溶液送給管と、 この溶液送給管を経由して掘進機の前面に溶液を供給する ポンプと、 この溶液を蓄え、 このポンプによってこの溶液を吸い上げられる II宁留 槽とを備え、 前記電極に高電圧パルスで放電させて地中を掘削している。 A second invention of an underground excavator includes at least one pair of electrodes for electric crushing provided on a front surface of the underground excavator, a pulse generator for applying a high-voltage pulse to the electrodes, and a periphery of the electrodes. A solution filled in the electrode, and provided around the electrode; A case for holding the solution between the front of the excavator and the ground, a solution feed pipe that feeds this solution around the electrode, and a solution supplied to the front of the excavator via this solution feed pipe A pump and a II storage tank capable of storing the solution and sucking up the solution by the pump are provided, and the electrode is discharged by a high-voltage pulse to excavate underground.
かかる構成により、 咛留槽の溶液をポンプで吸い上げ、 溶液送給管を経由して 前面の電極の周囲に所定圧力で送給するようにしている。 このとき、 電極周囲の 溶液をケ一スによつて地面との問に保水するので、 この溶液が流出するのを防止 できる。 したがって、 電極周囲の溶液が加圧気味になって保水されるので、 電極 での放電エネルギーが効率的に掘削に利用される。 なお、 粘性の高い溶液を使用 すれば、 さらに溶液の漏れが少なくなり、 保水効果が大きくなる。 With this configuration, the solution in the storage tank is sucked up by a pump, and is supplied at a predetermined pressure to the periphery of the front electrode via the solution supply pipe. At this time, since the solution around the electrode is kept in water between the ground and the case by a case, it is possible to prevent the solution from flowing out. Therefore, the solution around the electrode is slightly pressurized and water is retained, and the discharge energy at the electrode is efficiently used for excavation. If a highly viscous solution is used, the leakage of the solution will be further reduced and the water retention effect will be increased.
第 1又は第 2発明を主体とする第 3発明は、 前記少なくとも 1対の電極が、 掘 削すべき穴の形状と相似である外周部電極と、 この外周部電極の中心部に配設さ れた内部電極とからなる。 A third invention mainly based on the first or second invention is characterized in that the at least one pair of electrodes is provided at an outer peripheral electrode having a shape similar to a shape of a hole to be dug, and at a central portion of the outer peripheral electrode. And internal electrodes.
これにより、 外周部電極の形状を掘削すべき穴と相似の形状とすると共に、 こ の外周部を i対の電極の内の一方の電極とし、 その中心部に他方の電極を配設し ているので、 電気破砕によって所望の形状通りの穴が掘削される。 したがって、 効率的な地中掘進が可能となる。 In this way, the outer peripheral electrode has a shape similar to the hole to be excavated, and the outer peripheral portion is used as one electrode of the i pair of electrodes, and the other electrode is provided at the center thereof. Therefore, a hole according to the desired shape is excavated by electro-fracture. Therefore, efficient underground excavation becomes possible.
第 1又は第 2発明を主体とする第 4発明は、 前記電極の周囲を埋め尽くすよう に、 前記溶液を保水する保水材が設けられている。 A fourth invention mainly based on the first or second invention is provided with a water retaining material for retaining the solution so as to fill up the periphery of the electrode.
これにより、 保水材によって電極周囲の溶液が吸収されて保水される。 したが つて、 電極での放電エネルギーが効率的に掘削に利用され、 効率的な地中掘進が 可能となる。 As a result, the solution around the electrodes is absorbed by the water retention material to retain water. Therefore, the discharge energy at the electrode is efficiently used for excavation, and efficient underground excavation becomes possible.
第 1又は第 2発明を主体とする第 5発明は、 前記電極により破砕して掘削した 土砂等を連続的に排土する連続排土機構を設けている。 A fifth invention based on the first or second invention is provided with a continuous discharging mechanism for continuously discharging soil and the like crushed and excavated by the electrode.
これにより、 電気破砕された土砂等は連続排土機構によつて排土されるため、 効率的な地中掘進が可能となる。 As a result, the electro-crushed earth and sand is discharged by the continuous discharge mechanism, enabling efficient underground excavation.
第 2 ¾明を主体とする第 6発明は、 前記ケースが、 前^電極の内の少なくとも
1対の電極 1の正極又は負極のいずれか一方を構成している。 In a sixth aspect of the invention, which is mainly based on the second aspect, the case may be configured such that at least One of the pair of electrodes 1 constitutes either the positive electrode or the negative electrode.
これにより、 外周部の電極の正極又は負極のいずれか--方が、 溶液を保水する ケースと同等の機能を持っている。 したがって、 構造が簡略化される。 Thus, either the positive electrode or the negative electrode of the outer peripheral electrode has a function equivalent to that of the case for retaining the solution. Therefore, the structure is simplified.
本発明に係る掘削機の第 7発明は、 走行 在な下部走行体と、 下部走行体上に 設けられた車体と、 車体の端部に、 上下、 左右及び前後方向に移動自在に設けら れた作業機アーム部と、 作業機アーム部の先端部に設けられた作業機とを備えた 掘削機において、 前記作業機の前面に設けられた少なくとも 1対の電気破砕用の 電極と、 この電極 1に高電圧パルスを印加するパルス発生装置と、 前記電極の周 囲に充塡された溶液と、 前記電極の周囲の溶液を前記作業機の前面と掘削対象物 との間に保水する、 前記電極の周囲に設けられたケースと、 前記溶液を電極の周 囲に送給する溶液送給管と、 この溶液送給管を経由して掘削機の前面に溶液を供 給するポンプと、 溶液を蓄え、 このポンプによってこの溶液を吸い上げられる貯 留槽とを備え、 前記電極に高電圧パルスで放電させて掘削対象物を掘削している かかる構成により、 作業機アーム部の先端の作業機前面に設けた電極に、 パル ス発生装置により高電圧パルスを印加することで、 電気破砕が可能となる。 この とき、 電極周囲の溶液がケースで保水されるので、 効率的に電気破砕が行われる 。 また、 作業機アーム部を 3次元の任意の方向に向け、 作業機の電極面を掘削対 象物に押し当てることができるので、 自由曲面の破砕や掘削が可能となる。 第 7発明を主体とする第 8発明は、 前記作業機の電極が、 前記車体に対して傾 斜可能となっている。 According to a seventh aspect of the present invention, there is provided an excavator comprising: a traveling lower traveling body; a vehicle body provided on the lower traveling body; and an end of the vehicle body movably provided in up, down, left, right, and front and rear directions. An excavator comprising a working machine arm portion and a working machine provided at a tip end of the working machine arm portion, wherein at least one pair of electrodes for electrocrushing provided on the front surface of the working machine; A pulse generator that applies a high-voltage pulse to 1, a solution filled around the electrode, and a solution around the electrode, which retains water between a front surface of the working machine and an excavation object. A case provided around the electrode, a solution feed pipe for feeding the solution around the electrode, a pump for feeding the solution to the front of the excavator via the solution feed pipe, and a solution. And a storage tank for pumping up this solution. With such a configuration, a high voltage pulse is applied by a pulse generator to an electrode provided in front of the working machine at the tip of the working machine arm. By doing so, electrocrushing becomes possible. At this time, the solution around the electrodes is retained in the case, so that the electrolysis is performed efficiently. In addition, since the working machine arm can be oriented in any three-dimensional direction and the electrode surface of the working machine can be pressed against the object to be excavated, free-form surfaces can be crushed and excavated. An eighth invention mainly based on the seventh invention is such that the electrode of the working machine can be inclined with respect to the vehicle body.
これにより、 電極の前面 (破砕面) を車体に対して傾斜させることができるの で、 自由曲面の掘削が可能となり、 効率的に掘削できる。 As a result, the front surface (crushing surface) of the electrode can be inclined with respect to the vehicle body, so that it is possible to excavate a free-form surface and to excavate efficiently.
第 7又は第 8発明を主体とする第 9発明は、 前記ケースが、 電極の長手方向に 伸縮自在な部材を備えている。 In a ninth invention mainly based on the seventh or eighth invention, the case includes a member that can expand and contract in the longitudinal direction of the electrode.
これにより、 ケースが電極の長手方向に伸縮自在となっているので、 電極によ る掘削深さが深くなつても、 掘削対象物の表面とケース前面との密着 ftが βくな
る。 したがって、 ケースによる溶液の保水性が良くなり、 効率的な掘削が可能と なる。 As a result, the case can be extended and contracted in the longitudinal direction of the electrode, so that even when the excavation depth by the electrode is deep, the close contact ft between the surface of the object to be excavated and the front of the case does not become β. You. Therefore, the water retention of the solution by the case is improved, and efficient excavation becomes possible.
掘削機の第 1 0発明は、 掘削用作業機を有する掘削機において、 前記掘削用作 業機の先端に設けられた少なくとも 1対の電気破砕用の電極と、 この電極に高電 圧パルスを印加するパルス発生装置と、 前記電極の周囲に充塡された溶液と、 こ の溶液を前記電極の周囲に送給する溶液送給管と、 この溶液送給管を経由して前 記掘削用作業機の先端に溶液を供給するポンプと、 前記電極での放電によって破 砕された土砂を溶液と共に吸い上げ、 掘削穴の外部に排土する排土手段とを備え 、 前記電極に高電圧パルスで放電させて掘削対象物を掘削している。 According to a tenth aspect of the present invention, there is provided an excavator having an excavating work machine, wherein at least one pair of electrodes for electric crushing provided at a tip of the excavating work machine, and a high voltage pulse is applied to the electrode. A pulse generator to be applied; a solution charged around the electrode; a solution feed pipe for feeding the solution around the electrode; and a drilling pipe via the solution feed pipe. A pump for supplying the solution to the tip of the working machine, and a discharging means for sucking up the soil and sand crushed by the discharge at the electrode together with the solution and discharging the soil to the outside of the excavation hole. The excavation target is excavated by discharging.
かかる構成により、 掘削用作業機の先端に設けた電極に、 パルス発生装置によ り高電圧パルスを印加することで、 電気破砕が可能となる。 また、 掘削された土 砂等は排土手段によって溶液と共に吸い上げられて掘削穴の外部に排土される。 このとき、 電極周囲の溶液が掘削された穴と外周部電極又は電極を囲むケースに よって保水されるので、 効率的に電気破砕が行われる。 With such a configuration, a high voltage pulse is applied by a pulse generator to the electrode provided at the tip of the excavating work machine, so that electric crushing can be performed. The excavated earth and sand is sucked up together with the solution by the soil discharging means and discharged to the outside of the drilling hole. At this time, since the solution around the electrode is retained by the excavated hole and the outer electrode or the case surrounding the electrode, the electrolysis is efficiently performed.
第 1 0発明を主体とする第 1 1発明は、 前記少なくとも 1対の電極が、 掘削す ベき穴の形状と相似である外周部電極と、 この外周部電極の中央部に配設された 内部電極とからなる。 An eleventh invention mainly based on the tenth invention is characterized in that the at least one pair of electrodes is disposed at an outer peripheral electrode having a shape similar to a shape of a drilled hole, and at a central portion of the outer peripheral electrode. It consists of internal electrodes.
これにより、 掘削用作業機の外周部の形状を、 掘削すべき穴と相似の形状とす ると共に、 この外周部を少なくとも 1対の電極の内の一方の電極とし、 その中央 部に他方の電極を配設しているので、 電気破砕によって所望の形状通りの穴が掘 削される。 したがって、 効率的な掘削が可能となる。 As a result, the outer peripheral portion of the excavator has a shape similar to the hole to be excavated, and the outer peripheral portion is at least one of a pair of electrodes, and the other portion is located at the center of the pair. Since the electrodes are provided, a hole of the desired shape is dug by electro-fracture. Therefore, efficient excavation becomes possible.
掘削機の第 1 2発明は、 下部走行体上に設けられた上部車体と、 掘削対象物に 当接して掘削する掘削用作業機と、 先端部にこの掘削用作業機が取着されると共 に、 基端部が前記上部車体上に取着され、 少なくとも回転、 屈伸又は伸縮を行う ことにより掘削用作業機の掘削位置を操作可能な作業機アームとを備えた掘削機 において、 前記掘削用作業機は、 外周壁を有し、 この外周壁の前端部が掘削対象 物に当接したとき、 この掘削対象物及びこの外周壁とにより囲まれた内部にこの
掘削対象物の破砕物を咛留する貯留室を形成する破砕へッ ドと、 この貯留室内に 設けられた少なくとも一対の電気破砕用の電極と、 この電極の周囲に充填される 溶液と、 この溶液をこの貯留室に供給する溶液送給管と、 この溶液送給笆を経由 して貯留室に溶液を供給するポンプとを備え、 前記電極に高電圧パルスで放電さ せて掘削対象物を掘削している。 A first invention of an excavator includes an upper vehicle body provided on a lower traveling body, an excavator for excavating in contact with an object to be excavated, and an excavator mounted on a tip portion. An excavator, comprising: a working machine arm having a base end attached to the upper vehicle body and capable of operating the excavating position of the working machine for excavation by performing at least rotation, bending, and extension / contraction. The working machine has an outer peripheral wall, and when the front end of the outer peripheral wall comes into contact with the object to be excavated, the inside of the excavating object and the outer wall surrounds the excavating object. A crushing head forming a storage chamber for storing the crushed material of the excavation object, at least a pair of electrodes for electrocrushing provided in the storage chamber, a solution filled around the electrode, A solution supply pipe for supplying the solution to the storage chamber; and a pump for supplying the solution to the storage chamber via the solution supply pipe, and the electrode is discharged by a high voltage pulse to excavate the object to be drilled. Excavating.
かかる構成により、 作業機アームの先端部の破砕へッ ドに設けた電極に高電圧 パルスを印加することで、 電気破砕が可能になる。 このとき、 破砕へッ ドを掘削 対象物に当接することにより貯留室が形成され、 電極周囲の溶液は加圧ぎみにな つて保水されるため、 効率的に電気破枠が行われる。 また、 破砕へッ ドを 3次元 の任意の方向に向けて掘削対象物を破砕できるため、 自由な曲面や、 自由な断面 形状の卜ンネルの掘削が可能となる。 With this configuration, electric crushing becomes possible by applying a high-voltage pulse to the electrode provided on the crushing head at the tip of the working machine arm. At this time, a storage chamber is formed by bringing the crushing head into contact with the object to be excavated, and the solution around the electrode is kept at a pressure of water, so that the electric fracturing frame is efficiently performed. In addition, since the crushing head can be oriented in any three-dimensional direction to crush the object to be excavated, it is possible to excavate a tunnel having a free curved surface or a free sectional shape.
第 1 2発明を主体とする第 1 3発明は、 前記貯留室の下部に直列に連通して配 設され、 且つこの貯留室内に貯留された前記破砕物を順次貯蔵する少なくとも 1 室の貯蔵室と、 これらの貯蔵室を前記貯留室から、 又は上方の貯蔵室から仕切る 少なくとも 1個の可動仕切板と、 これらの貯蔵室の内の最下端の咛蔵室に設けら れた破砕物排出用の可動排出板とを備えている。 A thirteenth invention, which is mainly based on the twenty-second invention, is characterized in that at least one storage chamber is disposed in series communication with a lower part of the storage chamber, and sequentially stores the crushed material stored in the storage chamber. And at least one movable partition plate for separating these storage rooms from the storage room or the upper storage room, and for discharging crushed materials provided in the lowermost storage room of these storage rooms. And a movable discharge plate.
これにより、 貯留室の下方にそれぞれ複数の可動仕切板により仕切られた少な くとも 1室の貯蔵室が直列に連通して設けられると共に、 これらの貯蔵室の内、 最下端の貯蔵室に可動排出板が設けられる。 したがって、 各可動仕切板により貯 留室を仕切った後に、 可動排出板を開いて最下端の貯蔵室の破砕物を排出するこ とができる。 すなわち、 破砕物を所定量づっ貯蔵室に咛蔵して、 排出できるので 、 破砕物排出時に一緒に排出される溶液の量が少なくなり、 経済的な掘削作業が 可能となる。 このとき、 各貯蔵室に破砕物が満杯になったら下方の貯蔵室に送る ようにすると、 一緒に送給される溶液の量をさらに少なくできるので、 ランニン グコス卜を非常に安くできる。 As a result, at least one storage room partitioned by a plurality of movable partition plates is provided below the storage room in series communication, and the lowermost storage room is movable among these storage rooms. A discharge plate is provided. Therefore, after the storage room is partitioned by each movable partition plate, the movable discharge plate can be opened to discharge the crushed material in the lowermost storage room. That is, since a predetermined amount of the crushed material can be stored in the storage room and discharged, the amount of the solution that is discharged together with the crushed material is reduced, and the economical excavation work can be performed. At this time, if the crushed material is filled in each storage room and sent to the lower storage room, the amount of the solution to be sent together can be further reduced, so that the running cost can be extremely reduced.
第】 2発明を主体とする第 1 4発明は、 前記貯留室に、 前記破砕物を排出する スクリュウコンベア式排出装置、 またはバキューム式排出装置を付設している。
これにより、 排出を連続的に行うことができ、 能率的な掘削作業が可能となる 第 I 2発明を主体とする第 1 5発明は、 前記破砕へッ ドの内部を前記 i! 留室と この貯留室の後部とに分割する前壁と、 この前壁の後部により形成され、 前記溶 液送給管から供給される溶液を一時貯蔵する溶液室と、 前記破砕へッ ドが掘削対 象物に当接、 又は掘削対象物から離脱することにより、 前壁に設けられた連通孔 を開閉し、 この溶液室に貯蔵された溶液を咛留室に送給、 又は送給停止するバル ブとを備えている。 According to a fourteenth aspect of the present invention, a screw conveyor type discharge device or a vacuum type discharge device for discharging the crushed material is provided in the storage chamber. Accordingly, the discharge can be continuously performed, and efficient excavation work can be performed. In the fifteenth invention mainly based on the second invention, the inside of the crushing head is connected to the i! A front wall divided into a rear part of the storage chamber, a solution chamber formed by a rear part of the front wall and temporarily storing a solution supplied from the solution supply pipe, and a crushing head to be excavated. A valve that opens or closes a communication hole provided in the front wall by contacting with an object or detaching from an object to be excavated, and sends or stops the supply of the solution stored in this solution chamber to the storage chamber. And
これにより、 破砕ヘッ ド内に溶液を一時的に貯蔵する溶液室を設け、 この溶液 室と貯留室との間に、 溶液室から貯留室への溶液の供給又は供給停止を行うバル ブを設けることで、 電気破砕時にのみ必要量の溶液を供給することができる。 従 つて、 溶液を節約することができ、 ランニングコストの安い掘削作業が可能とな る。 As a result, a solution chamber for temporarily storing the solution is provided in the crushing head, and a valve for supplying or stopping the supply of the solution from the solution chamber to the storage chamber is provided between the solution chamber and the storage chamber. As a result, the required amount of solution can be supplied only at the time of electrocrushing. Therefore, the solution can be saved, and drilling work with low running cost can be performed.
本発明に係る掘削方法の第 1 6発明は、 電極に高電圧エネルギーによる放電を 発^させ、 この放電により掘削対象物を掘削する作業機を作業機アームの先端に 備えた、 電気破砕による掘削機の掘削方法において、 前記作業機を移動し、 電極 を内部に有する破砕へッ ドの前端部を掘削対象物に当接させて、 この破碎へッ ド の内部にその外周壁及び掘削対象物により囲まれた貯留室を形成し、 この貯留室 内に溶液を供給して電極の周囲に充填した後、 電極に高電圧パルスを印加して放 電させて掘削対象物を破砕し、 次に、 破砕されて貯留室内に貯留された破砕物を 貯留室の外部に排出している。 A sixteenth invention of the excavation method according to the present invention is directed to an excavation method using electric crushing, in which a discharge is generated by high-voltage energy at an electrode, and a work machine for excavating an object to be excavated is provided at the tip of a work machine arm. In the method of excavating a machine, the work machine is moved, and a front end portion of a crushing head having an electrode therein is brought into contact with an object to be digged, and an outer peripheral wall and an object to be digged inside the crushing head. After forming a storage chamber surrounded by, the solution is supplied into the storage chamber and filled around the electrode, and then a high-voltage pulse is applied to the electrode to discharge it, thereby crushing the object to be drilled. The crushed material that has been crushed and stored in the storage room is discharged to the outside of the storage room.
かかる構成により、 破砕へッ ドの前端部を掘削対象物に当接させて貯留室を形 成し、 この貯留室内の電極の周囲に溶液を充塡するので、 溶液は加圧ぎみの状態 となる。 よって、 電極の周囲に溶液が均一に充たされるので、 破砕が効率的に行 われる。 With this configuration, the front end of the crushing head is brought into contact with the object to be excavated to form a storage chamber, and the solution is filled around the electrodes in the storage chamber. Become. Therefore, the solution is uniformly filled around the electrode, and crushing is efficiently performed.
掘削方法の第 1 7発明は、 電極に高電圧エネルギーによる放電を発生させ、 こ の放電により掘削対象物を掘削する作業機を作業機アームの先端に備えた、 電気
破砕による掘削機の掘削方法において、 前記作業機を移動し、 電極を内部に有す る破砕へッ ドの前端部を掘削対象物に当接させて、 この破砕へッ ドの内部にその 外周壁及び掘削対象物に囲まれた貯留室を形成し、 少なくとも 1個の可動仕切板 を閉じてこの貯留室を仕切り、 少なくとも 1室の貯蔵室を形成し、 貯留室内に溶 液を供給して電極の周囲に充塡した後、 電極に高電圧パルスを印加して放電させ て掘削対象物を破砕し、 咛留室と次の貯蔵室との間の可動仕切板を開いてこの貯 蔵室に破砕物を送給し、 この貯蔵室に破砕物が満杯になったら、 この可動仕切板 を閉じ、 この貯蔵室から次の貯蔵室に破砕物を送給し、 この後、 順次、 次の貯蔵 室に破砕物を送給してこの破砕物を可動排出板を備えた最下端の貯蔵室に送給し 、 次に、 可動排出板を開いてこの破砕物を外部に排出している。 The seventeenth invention of the excavation method is characterized in that an electric discharge is generated by high-voltage energy at the electrode, and a work machine for excavating an object to be excavated by the discharge is provided at the tip of the work machine arm. In the method of digging an excavator by crushing, the work machine is moved, and a front end portion of a crushing head having an electrode therein is brought into contact with an object to be digged, and the outer periphery of the crushing head is placed inside the crushing head. Forming a storage room surrounded by walls and objects to be excavated, closing at least one movable partition plate to partition the storage room, forming at least one storage room, and supplying a solution into the storage room. After filling around the electrode, a high voltage pulse is applied to the electrode to discharge it, crushing the object to be drilled, opening the movable partition between the storage room and the next storage room, and opening this storage room. When the storage room is full of crushed material, the movable partition plate is closed, and the crushed material is fed from this storage room to the next storage room. The crushed material is fed to the storage room, and the crushed material is sent to the lowermost storage room provided with the movable discharge plate, To, and open the movable discharge plate discharges the crushed material to the outside.
かかる構成により、 可動排出板及び可動仕切板を閉じた状態で咛留室に溶液が 充填されるので、 溶液が過分に供給されずに済み、 供給される溶液の量が少なく てよい。 また、 破砕後は可動仕切板を閉じ、 可動排出板を開いて破砕物を排出す るため、 破砕物と一緒に排出される溶液の量は少なく、 よって、 ランニングコス 卜の安い掘削作業が可能となる。 このとき、 各貯蔵室に破砕物が満杯になったら 下方の貯蔵室に送るようにすると、 一緒に送給される溶液の量をさらに少なくで きるので、 ランニングコストを非常に安くできる。 With this configuration, the solution is filled in the storage chamber with the movable discharge plate and the movable partition plate closed, so that the solution is not excessively supplied, and the amount of the supplied solution may be small. Also, after crushing, the movable partition plate is closed, and the movable discharge plate is opened to discharge the crushed material, so that the amount of solution discharged together with the crushed material is small, so that excavation work with low running cost is possible. Becomes At this time, if the crushed material is filled in each storage room, it is sent to the lower storage room, so that the amount of the solution to be sent together can be further reduced, so that the running cost can be extremely reduced.
掘削方法の第 i 8発明は、 電極に高電圧エネルギーによる放電を発生させ、 こ の放電により掘削対象物を掘削する作業機を作業機アームの先端に備えた、 電気 破砕による掘削機の掘削方法において、 前記作業機を移動し、 電極を内部に有す る破砕へッ ドの前端部を掘削対象物に当接させて、 この破砕へッ ドの内部にその 外周壁及び掘削対象物により囲まれた貯留室を形成し、 この貯留室内に溶液を供 給して電極の周囲に充塡した後、 電極に高電圧パルスを印加して放電させて掘削 対象物を破碎し、 次に、 破砕されて貯留室内に :留された破砕物を、 連続的に貯 留室の外部に排出している。 An i-th invention of the excavation method is a method of excavating an excavator by electric crushing, wherein a discharge device is generated by high-voltage energy at an electrode, and a work device for excavating an excavation object is provided at the tip of a work device arm by the discharge. In the above, the work machine is moved, and the front end of the crushing head having the electrode therein is brought into contact with the object to be excavated, and the inside of the crushing head is surrounded by the outer peripheral wall and the object to be excavated. After the solution is supplied into the storage chamber and filled around the electrode, a high-voltage pulse is applied to the electrode to discharge it, thereby crushing the object to be excavated. Into the storage room : The crushed material that has been retained is continuously discharged outside the storage room.
かかる構成により、 破砕されて狞留室内に咛留された破砕物を、 連続的に貯留 室外に排出することで、 電気破砕による能率的な掘削作業が可能となる。
掘削方法の第 1 9発明は、 電極に高電圧エネルギーによる放電を発生させ、 こ の放電により掘削対象物を掘削する作業機を作業機アームの先端に備えた、 電気 破砕による掘削機の掘削方法において、 破砕へッ ド内の後部に設けられた溶液室 に溶液を供給し、 前記作業機を移動し、 電極を内部に有する破砕へッ ドの前端部 を掘削対象物に当接させて、 この破砕へッ ドの内部にその外周壁及び掘削対象物 に囲まれた貯留室を形成し、 バルブを開いて溶液室内の溶液を貯留室内に供給し て電極の周囲に充塡した後、 電極に高電圧パルスを印加して放電させて掘削対象 物を破砕し、 次に、 バルブを閉じ、 破砕されて貯留室内に貯留した破砕物を貯留 室の外部に排出している。 With this configuration, the crushed material that has been crushed and retained in the storage room is continuously discharged to the outside of the storage room, so that efficient excavation work by electric crushing can be performed. The ninth invention of the excavation method is a method of excavating an excavator by electric crushing, wherein a discharge device is generated by high-voltage energy at an electrode, and a work machine for excavating an object to be drilled is provided at the tip of a work machine arm by the discharge. Supplying a solution to a solution chamber provided in a rear portion of the crushing head, moving the work machine, and bringing a front end portion of the crushing head having an electrode therein into contact with an object to be excavated; A storage chamber surrounded by the outer peripheral wall and the object to be excavated is formed inside the crushing head, and the valve is opened to supply the solution in the solution chamber into the storage chamber and fill around the electrode. A high-voltage pulse is applied to the tank to discharge it, crushing the object to be drilled, then closing the valve, and discharging the crushed material stored in the storage chamber to the outside of the storage chamber.
かかる構成により、 破砕時には溶液用バルブを開いて溶液を供給し、 破砕物を 排出するときは溶液用バルブを閉じるため、 破砕物とともに排出される溶液の量 は少なくなり、 ランニングコストが安くなる。 図面の簡単な説明 With this configuration, the solution valve is supplied by opening the solution valve during crushing, and the solution valve is closed when discharging the crushed material. Therefore, the amount of the solution discharged together with the crushed material is reduced, and the running cost is reduced. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明に係る第 1実施形態の地中掘進機の側面断面図を示す。 FIG. 1 is a side sectional view of an underground excavator according to a first embodiment of the present invention.
図 2は第 2実施形態の地中掘進機の掘削開始時における側面断面図を示す。 FIG. 2 is a side cross-sectional view of the underground excavator according to the second embodiment at the start of excavation.
図 3は第 2実施形態の地中掘進機の掘削途中における側面断面図を示す。 FIG. 3 is a side sectional view of the underground excavator according to the second embodiment during excavation.
図 4 A -図 4 Dは第 2実施形態の地中掘進機の電極の断面形状例を示す。 4A to 4D show examples of the cross-sectional shape of the electrode of the underground excavator according to the second embodiment.
図 5は第 3実施形態の非円形断面地中掘進機の側面断面図を示す。 FIG. 5 is a side sectional view of a non-circular cross-section excavator of a third embodiment.
図 6は第 3実施形態の地中掘進機の半円形の掘削へッ ドの正面図、 図 7はその斜 視図を示す。 FIG. 6 is a front view of a semicircular excavation head of the underground excavator of the third embodiment, and FIG. 7 is a perspective view thereof.
図 8 A—図 8 Bは図 6の電極の形状及び取り付け構造の詳細図を示す。 8A to 8B show detailed views of the shape and mounting structure of the electrode of FIG.
図 9は第 3実施形態の地中掘進機の長方形の掘削へッ ドの正面図、 図】 0はその 斜視図を示す。 FIG. 9 is a front view of a rectangular excavation head of the underground excavator according to the third embodiment, and FIG. 0 is a perspective view thereof.
図 1 1 ー図 1 1 Bは図 9の電極の形状及び取り付け構造の詳細図を示す。 Fig. 11-Fig. 11 B show a detailed view of the shape and mounting structure of the electrode of Fig. 9.
図 1 2 —図 1 3は第 4実施形態の掘削機例の斜視図を示す。 Fig. 12-Fig. 13 show perspective views of an example of an excavator according to the fourth embodiment.
図 1 4は図 1 3の電極の取り付け構造の詳細図、 図 1 5はその電極の側面断面図
の詳細を示す。 Fig. 14 is a detailed view of the electrode mounting structure of Fig. 13, and Fig. 15 is a side sectional view of the electrode. The details are shown below.
図 1 6は図 1 3の他例の電極の側面断面図の詳細を示す。 FIG. 16 shows details of a side sectional view of another example of the electrode of FIG.
図 1 7 -図 1 8は第 5実施形態の掘削機例の斜視図を示す。 FIGS. 17 to 18 show perspective views of an example of an excavator according to the fifth embodiment.
図 1 9は図 1 8の作業機の側面断面図の詳細を示す。 FIG. 19 shows details of a side sectional view of the working machine of FIG.
図 2 0は第 6実施形態のボーリングマシンの側面図を示す。 FIG. 20 shows a side view of the boring machine of the sixth embodiment.
図 2 1は第 7実施形態の自由断面掘削機例の側面図、 図 2 2はその背面図を示す 図 2 3は図 2 1の掘削へッ ドの掘削状態を示す側面断面図の詳細である。 Fig. 21 is a side view of an example of a free-section excavator according to the seventh embodiment, Fig. 22 is a rear view of the excavator, and Fig. 23 is a detail of a side cross-sectional view showing an excavation state of the excavation head of Fig. 21. is there.
図 2 4は図 2 3の排出状態を示す側面断面図である。 FIG. 24 is a side sectional view showing the discharge state of FIG.
図 2 5は第 8実施形態の破砕へッ ドの掘削状態を示す側面断面図の詳細である。 図 2 6は図 2 5の排出状態を示す側面断面図である。 FIG. 25 is a detail of a side sectional view showing an excavated state of the crushing head of the eighth embodiment. FIG. 26 is a side sectional view showing the discharge state of FIG.
図 2 7は第 8実施形態の破砕へッ ドの別の構成を示す側面断面図である。 FIG. 27 is a side sectional view showing another configuration of the crushing head of the eighth embodiment.
図 2 8は第 9実施形態の破砕へッ ドの側面断面図を示す。 FIG. 28 shows a side sectional view of the crushing head of the ninth embodiment.
図 2 9は第 1 0実施形態の破砕へッ ドの側面断面図を示す。 FIG. 29 is a side sectional view of the crushing head of the tenth embodiment.
図 3 0は第 1 1実施形態の破砕へッ ドの側面断面図を示す。 FIG. 30 shows a side sectional view of the crushing head of the eleventh embodiment.
図 3 1は図 3 0電極周辺部の詳細図を示す。 FIG. 31 shows a detailed view of the periphery of the FIG. 30 electrode.
図 3 2は第 1 2実施形態の破砕へッ ドの側面断面図を示す。 FIG. 32 shows a side sectional view of the crushing head of the 12th embodiment.
図 3 3は図 3 2のバルブ室の詳細図を示す。 FIG. 33 shows a detailed view of the valve chamber of FIG.
図 3 4は第 1 3実施形態の破砕へッ ドの側面断面図を示す。 FIG. 34 shows a side sectional view of the crushing head of the thirteenth embodiment.
図 3 5は図 3 4のバルブステム周辺の詳細図を示す。 FIG. 35 shows a detailed view around the valve stem of FIG.
図 3 6は本発明に係る溶液保水による電気破砕の作用効果の説明図である。 発明を実施するための最良の形態 FIG. 36 is an explanatory diagram of the function and effect of electrolysis by the water retention of the solution according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る第 1実施形態は、 地中掘進機に電気破砕を応用している。 The first embodiment according to the present invention applies electric crushing to an underground machine.
図 1は、 地中掘進機 2 0の側面断面図を表している。 電極 1は地中掘進機 2 0 の先端部の前面に設けられており、 少なくとも 1対の止極 2と負極 3とからなつ ている。 正極 2と負極 3問はそれぞれ所定距離をおいて設けられている。 地中掘
進機 2 0の先端部は本体部に対してベアリング 2 3を介して回転自在となってお り、 各電極 1はスリップリング 1 6を介して本体部に敷設された電源ケーブル 1 1に接続されている。 そして、 電源ケーブル 1 1によって、 図示しないパルス発 生装置から高電圧パルスが印加されている。 さらに、 地中掘進機 2 0の先端部はFIG. 1 shows a side cross-sectional view of the underground excavator 20. The electrode 1 is provided on the front surface of the tip of the underground excavator 20, and includes at least one pair of a stop electrode 2 and a negative electrode 3. The positive electrode 2 and the negative electrode 3 are provided at a predetermined distance from each other. Underground excavation The tip of the machine 20 is rotatable with respect to the main body via a bearing 23.Each electrode 1 is connected to a power cable 11 laid on the main body via a slip ring 16. Have been. Then, a high-voltage pulse is applied from a pulse generator (not shown) by the power cable 11. In addition, the tip of the underground excavator 20
、 揺動ジャッキ 2 4により揺動可能となっており、 掘進方向を任意に設定できる ようになっている。 The rocking jack 24 allows rocking, and the digging direction can be set arbitrarily.
地中掘進機 2 0の本体側の外周部には保水カバ一 1 4が設けられており、 この 保水力バー 1 4は地面の掘削開始端面 (例えば、 立坑の側面) に取り付けられて いる。 また、 保水力バー 1 4と本体外周面との接触部には、 シール部材 1 5が取 り付けられている。 そして、 保水力バー 1 4には溶液供給孔 1 4 aが設けられて おり、 この溶液供給孔 1 4 aを経由してポンプ 6から溶液 9が供給される。 この 溶液 9は、 地中掘進機の本体部及び先端部の外周面と掘削された穴との問を通路 として、 図の矢印 Aの方向に流れ、 先端部前面の電極 1の周囲を満たすようにな つている。 また、 先端部前面にはスクレーバ 2 5が配設されており、 このスクレ ーパ 2 5から溶液 9及び電気破砕された土砂等を本体内に取り込む。 そして、 地 中掘進機の先端部を回転させる回転軸シャフ卜の外周面に設けられた攪拌翼 2 1 により、 取り込まれた溶液 9及び土砂等は図示された矢印 B方向に流れ、 本体内 を通って地中掘進機の後方に排出されるようになっている。 A water retention cover 14 is provided on the outer peripheral portion of the underground excavator 20 on the main body side, and the water retention bar 14 is attached to the excavation start end surface of the ground (for example, the side surface of a shaft). In addition, a seal member 15 is attached to a contact portion between the water retention bar 14 and the outer peripheral surface of the main body. The water retention bar 14 is provided with a solution supply hole 14a, and the solution 9 is supplied from the pump 6 via the solution supply hole 14a. This solution 9 flows in the direction of arrow A in the figure through the gap between the outer peripheral surface of the body and the tip of the underground excavator and the drilled hole, and fills around the electrode 1 on the front of the tip. It has become. A scraper 25 is provided at the front of the tip, and the solution 9 and the electro-crushed earth and sand are taken into the main body from the scraper 25. Then, the agitated impeller 21 provided on the outer peripheral surface of the rotary shaft shaft that rotates the tip of the underground excavator causes the taken-in solution 9 and the earth and sand to flow in the direction of the arrow B shown in FIG. Through the underground excavator.
このような構成によると、 地中掘進機 2 0の先端部が任意の回転角度位置にあ る時、 電極 1の正極 2と負極 3との間に高電圧パルスが印加されて放電が発生し 、 放電エネルギーによって岩石等が破砕される。 先端部が逐次回転しているので 、 水平方向に円形の穴が掘削される。 電極 1の周囲にはポンプ 6から供給される 溶液 9が満たされ、 この溶液 9によって放電エネルギーが効率的に岩石中に投入 される。 このとき、 溶液 9は保水カバ一 1 4及びシールド部材 1 5によって漏れ が防止されるので、 地中掘進機の外周面と掘削された穴との間に保水される c そ して、 掘削された土砂は、 溶液 9と共に地中掘進機の後方に排土される。 このよ うにして、 地中に横穴 Dが掘削されて進んで行く。
次に、 図 2〜図 4 Dに基づいて第 2実施形態を説明する。 According to such a configuration, when the tip of the underground excavator 20 is at an arbitrary rotation angle position, a high-voltage pulse is applied between the positive electrode 2 and the negative electrode 3 of the electrode 1 to generate a discharge. Rocks and the like are crushed by the discharge energy. Since the tip is rotating sequentially, a circular hole is drilled horizontally. Around the electrode 1 is filled with a solution 9 supplied from a pump 6, and the solution 9 efficiently discharges energy into the rock. At this time, since the solution 9 is prevented from leaking by the water retention cover 14 and the shield member 15, the water is retained between the outer peripheral surface of the underground excavator and the excavated hole. The sediment with the solution 9 is discharged behind the underground excavator. In this way, the lateral hole D is excavated in the ground and goes on. Next, a second embodiment will be described with reference to FIGS.
本実施形態は、 地中掘進機 2 ϋの他の例を表している。 図 2及び図 は地中掘 進機 2 0 Λの側面断面図であり、 それぞれ掘削開始時及び掘削途中の状態を示し ている。 本実施形態では、 地中掘進機 2 0 Αの先端部の外周部材を電極 1の内の 正極 2又は負極 3のいずれか一方とし、 他方の極をこの先端部の中央部に配設し ている。 なお、 図 2及び図 3では負極 3を外周部材とした例を示している。 正極 2と負極 3との間には絶縁体 1 3が設けられており、 正極 2と負極 3には電源ケ This embodiment shows another example of the underground excavator 2 ϋ. Figures 2 and 3 are side sectional views of the underground excavator 20 mm, showing the state at the start of excavation and the state during excavation, respectively. In the present embodiment, the outer peripheral member at the tip of the underground excavator 20 mm is either the positive electrode 2 or the negative electrode 3 of the electrode 1, and the other pole is disposed at the center of the tip. I have. 2 and 3 show an example in which the negative electrode 3 is used as an outer peripheral member. An insulator 13 is provided between the positive electrode 2 and the negative electrode 3, and a power supply cable is provided between the positive electrode 2 and the negative electrode 3.
2 Two
—ブル 1 1を介してパルス発生装置 1 0が接続されている。 また、 絶縁体〗 3に は、 溶液 9を電極 1の周囲に供給する溶液送給管 7、 及び電極 1の周 Wの掘削さ れた土砂を溶液 9と共に地中掘進機の後方に排出する排出管 8が設けられている 。 溶液送給管 7にはポンプ 6が接続されていて、 このポンプ ΰは咛留槽「)に蓄え られた溶液 9を吸い上げて所定圧力で供給している。 地中掘進機 2 0 Λの本体側 の外周部材は絶縁体 1 2によって負極 3と絶縁されており、 また、 この外 部材 は推進ジャッキ 2 2によって掘削方向に推進されるようになっている。 地中掘進 機の本体の外周部には保水力バー 1 4が設けられており、 この保水力バー 1 4は 地面の掘削開始端面に取り付けられている。 そして、 保水力バー 1 4と本体外周 面との接触部には、 シール部材 1 5が取り付けられている。 —Pulse generator 10 is connected via cable 11. The insulator 溶液 3 has a solution feed pipe 7 for supplying the solution 9 around the electrode 1 and the excavated earth and sand around the electrode 1 is discharged together with the solution 9 to the rear of the underground machine. A discharge pipe 8 is provided. A pump 6 is connected to the solution feed pipe 7, and this pump 吸 い sucks up the solution 9 stored in the storage tank “) and supplies it at a predetermined pressure. Main body of the underground excavator 20 機The outer peripheral member on the side is insulated from the negative electrode 3 by the insulator 12 and the outer member is propelled in the excavation direction by the propulsion jack 22. The outer peripheral portion of the body of the underground machine Is provided with a water retention bar 14 which is attached to the excavation start end face of the ground, and a seal between the water retention bar 14 and the outer peripheral surface of the main body. Member 15 is attached.
図 4 Α〜図 4 Dは、 本実施形態における電極 1を構成する正極 2と負極 3の断 面形状の一例を示している。 地中掘進機 2 0 Aの先端部の外周部材を負極 3とし ており、 また、 この負極 3の中央部に正極 2を配設している。 そして、 この正極 2と負極 3問に前記パルス発生装置 1 0で高電圧パルスを印加することによって 、 電極 1での放電エネルギーが正極 2と負極 3間の岩石等を破砕する。 よって、 電極 1の外周形状を、 掘削すべき穴の所望の断面形状と相似に形成することによ り、 電気破砕された穴の形状を追加的に掘削せずにそのまま使 fflできる。 したが つて、 所望形状の穴を容易に掘削できるので、 効率的である。 FIGS. 4A to 4D show an example of a cross-sectional shape of the positive electrode 2 and the negative electrode 3 constituting the electrode 1 in the present embodiment. The outer peripheral member at the tip of the underground excavator 20 A is the negative electrode 3, and the positive electrode 2 is disposed at the center of the negative electrode 3. By applying a high-voltage pulse to the positive electrode 2 and the negative electrode 3 by the pulse generator 10, the discharge energy at the electrode 1 crushes rocks and the like between the positive electrode 2 and the negative electrode 3. Therefore, by forming the outer peripheral shape of the electrode 1 to be similar to the desired cross-sectional shape of the hole to be excavated, the shape of the electro-crushed hole can be used as it is without additional excavation. Therefore, it is efficient because a hole having a desired shape can be easily excavated.
そして、 地中掘進機 2 0 Aの前面の電極 1の周閉を溶液 9で満たすように、 ボ ンプ 6により所定圧で送給している。 送給された溶液 9が地中掘進機 2 O Aの外
周面を通って掘削開始端面から流出しないように、 保水力バー 1 4及びそのシー ル部材 1 5によって保水される。 この結果、 電極 1での放電エネルギーが溶液 9 を介して確実に岩石に投入されるので、 効率的な破砕力〈可能となる。 なお、 地中 掘進機 2 O Aの前面に、 電極 1の周囲を囲う保水ケースを設けて、 電極 1の周囲 の溶液 9を保水するようにしてもよい。 Then, pumping is performed at a predetermined pressure by the pump 6 so that the solution 9 fills the periphery of the electrode 1 on the front surface of the underground machine 20 A. The delivered solution 9 is outside the underground machine 2 OA Water is retained by the water retention bar 14 and its sealing member 15 so as not to flow out of the excavation start end face through the peripheral surface. As a result, since the discharge energy at the electrode 1 is reliably injected into the rock through the solution 9, an efficient crushing force <becomes possible. In addition, a water retention case surrounding the periphery of the electrode 1 may be provided on the front surface of the underground excavator 2 OA to retain the solution 9 around the electrode 1.
次に、 図 5〜図 1 1に基づいて第 3実施形態を説明する。 Next, a third embodiment will be described with reference to FIGS.
本発明に係る電気破砕技術を応用すると、 トンネルを掘削する場合に掘削へッ ドを回転させる必要はなく、 したがって非円形断面のトンネルを全断面掘削する ことが可能となる。 本実施形態は、 電気破砕を応用した非円形断面の地中掘進機 の例を示している。 When the electro-fracture technology according to the present invention is applied, it is not necessary to rotate the excavation head when excavating a tunnel, and therefore, it is possible to excavate a tunnel having a non-circular cross section in all sections. This embodiment shows an example of an underground excavator having a non-circular cross section to which electro-fracture is applied.
図 5は、 非円形断面地中掘進機 6 0の側面断面図を表している。 電極 1は非円 形断面地中掘進機 6 0の先端部に設けられた掘削へッ ド 6 1の前面に取着されて おり、 図示しないケーブル等により トンネル内に配^されたパルス発生装置 1 0 と接続されていて、 高電圧パルスを印加されるようになっている。 FIG. 5 shows a side cross-sectional view of a non-circular cross-section excavator 60. The electrode 1 is attached to the front of the excavation head 61 provided at the tip of the non-circular cross section excavator 60, and a pulse generator arranged in the tunnel by cables (not shown) etc. It is connected to 10 so that a high-voltage pulse is applied.
掘削へッ ド 6 1の周囲にはシール部材 1 5が設けられており、 このシール部材 1 5により トンネルの内面とこの掘削へッ ド 6 1の外面との間を保水している。 溶液 9はポンプ 6により溶液送給管 7を通って掘削へッ ド 6 1に送られ、 シール 部材 1 5より前方のトンネルの掘削面と掘削へッ ド 6 1の外面との間の空間に供 給されて電極 1の周囲に充塡されるようになつている。 A seal member 15 is provided around the excavation head 61, and the seal member 15 keeps water between the inner surface of the tunnel and the outer surface of the excavation head 61. The solution 9 is pumped by the pump 6 through the solution feed pipe 7 to the excavation head 61, where it is located in the space between the excavation surface of the tunnel ahead of the sealing member 15 and the outer surface of the excavation head 61. It is supplied to fill around the electrode 1.
掘削へッ ド 6 1の後端部には推進ジャッキ 2 2が伸縮自在に取着されており、 この推進ジャッキ 2 2の伸縮により前面の岩石等が破砕されるのに合わせて掘削 へッ ド 6 1を前方に推進する。 そして、 破砕された破砕物は掘削へッ ド fi 1の内 部に設けられたチャンバ 6 2内に入り、 次にこのチャンバ 6 2の後方に配置され たコンベア 3 3によって卜ンネルの後方に排出される。 A propulsion jack 22 is attached to the rear end of the excavation head 6 1 so as to be able to expand and contract. 6 Push 1 forward. The crushed material enters the chamber 62 provided inside the excavation head fi 1 and is then discharged to the rear of the tunnel by the conveyor 33 disposed behind the chamber 62. Is done.
このような構成により トンネル掘削作業をする場合、 非円形断面地中掘進機 6 0の電極 iの先端部を岩盤に接触させ、 電極】の周囲に溶液 9を充塡する。 この とき、 溶液 9はシール部材 1 5により掘削へッ ド 6 1の前部に保水される。 次に
パルス発生装置 1 0から電極 1に 電圧パルスを印加することにより電極 1が放 電し、 岩盤が電気破砕される。 破砕された破砕物はチャンバ 6 2に人った後にコ ンベア 3 3により排出される。 この後、 掘削へッ ド 6 1は推進ジャッキ 2 2によ り前進する。 このようにして、 掘進は連続的に、 効率良く進められる。 When tunnel excavation work is performed with such a configuration, the tip of the electrode i of the non-circular cross section excavator 60 is brought into contact with the bedrock, and the solution 9 is filled around the electrode. At this time, the solution 9 is held at the front of the excavation head 61 by the sealing member 15. next When a voltage pulse is applied from the pulse generator 10 to the electrode 1, the electrode 1 is discharged, and the rock is electrocrushed. The crushed material enters the chamber 62 and is discharged by the conveyor 33. Thereafter, the excavating head 61 is advanced by the propulsion jack 22. In this way, the excavation can proceed continuously and efficiently.
図 6は本実施形態に係る非円形断面掘削へッ ドの例を表す掘削へッ ド 6 1 Aの 正面図であり、 図 7はこの掘削へッ ド 6 1 Λの斜視図である。 掘削へッ ド ΰ 1 A の掘進方向に垂直な断面は非円形形状 (ここでは半円形) を成しており、 この断 面の前面部は複数個の扇型区画 6 3 Aに分割されている。 FIG. 6 is a front view of an excavating head 61A showing an example of a non-circular cross-section excavating head according to the present embodiment, and FIG. 7 is a perspective view of the excavating head 61A. The section of the excavation head ΰ1 A perpendicular to the excavation direction has a non-circular shape (here, semicircular), and the front part of this cross section is divided into a plurality of fan-shaped sections 63 A. I have.
図 8 Aはこの扇型区画 6 3 Aの詳細斜視図であり、 図 8 Bはその E E断面図 である。 扇型区両 6 3 Aの中央部には正極 2が設けられており、 扁型区画 6 3 A の外周壁には負極 3が設けられ、 この正極 2と負極 3とにより電極 1を構成して いる。 正極 2は、 例えばプラスチック等の絶縁材料からなる支持部材 によ つて負極 3から絶縁された状態で支持されている。 また、 正極 2と負極 3問に囲 まれた空間に溶液 9が充境されるので、 放電エネルギーが効率的に岩盤に投入さ れる。 FIG. 8A is a detailed perspective view of the fan-shaped section 63A, and FIG. 8B is a sectional view taken along the line EE. A positive electrode 2 is provided at the center of the fan-shaped section 63 A, and a negative electrode 3 is provided on the outer peripheral wall of the flat section 63 A. The positive electrode 2 and the negative electrode 3 constitute the electrode 1. ing. The positive electrode 2 is supported in a state insulated from the negative electrode 3 by a support member made of an insulating material such as plastic. Further, since the solution 9 is filled in the space surrounded by the positive electrode 2 and the negative electrode 3, the discharge energy is efficiently injected into the rock.
このようにして、 この掘削ヘッ ド 6 1 Aを用いることにより半円形断面のトン ネルを全断面掘削することができ、 一回の掘進で所望の断面形状のトンネルを掘 削可能となり、 作業を効率的に行える。 In this manner, the use of this excavating head 61 A allows the entire cross-section of a tunnel having a semicircular cross section to be excavated, and a tunnel having a desired cross-sectional shape can be excavated in a single excavation. It can be done efficiently.
図 9は非円形断面の他の例である長方形断面の掘削へッ ド 6 1 Bの正面図であ り、 図 1 0はこの掘削へッ ド 6 1 Bの斜視図である。 掘削へッ ド 6 1 Bの前面部 は複数個の矩形区画 6 3 Bに分割されている。 FIG. 9 is a front view of an excavation head 61 B having a rectangular cross section, which is another example of a non-circular cross section, and FIG. 10 is a perspective view of the excavation head 61 B. The front of the excavating head 61B is divided into a plurality of rectangular sections 63B.
図 1 1 Aは矩形区画 6 3 Bの詳細斜視図であり、 図 1 1 Bはその F— F断面図 である。 矩形区画 6 3 Bの中央部には星形の正極 2が設けられており、 矩形区画 6 3 Bの外周壁には負極 3が設けられ、 この正極 2と負極 3とにより電極 iを構 成している。 正極 2は、 例えばプラスチック等の絶縁材料からなる支持部材 6 4 Bによって負極 3から絶縁された状態で支持されている。 そして、 正極 2と負極 3間に囲まれた空間に溶液 9が充填されるので、 放電エネルギーが効率的に岩盤
に投入される。 FIG. 11A is a detailed perspective view of the rectangular section 63B, and FIG. 11B is a sectional view taken along line FF of FIG. A star-shaped positive electrode 2 is provided at the center of the rectangular section 6 3 B, and a negative electrode 3 is provided on the outer peripheral wall of the rectangular section 6 3 B. The positive electrode 2 and the negative electrode 3 constitute an electrode i. are doing. The positive electrode 2 is supported in a state of being insulated from the negative electrode 3 by a support member 64 B made of an insulating material such as plastic. The space between the positive electrode 2 and the negative electrode 3 is filled with the solution 9, so that the discharge energy is efficiently It is thrown into.
このようにして、 この掘削へッ ド 6 1 Bを用いることにより長方形断面の卜ン ネルを全断面掘削することができ、 一回の掘進で所望の断面形状のトンネルを掘 削可能となり、 作業を効率的に行える。 In this way, by using this excavation head 61 B, a tunnel having a rectangular cross section can be excavated in all cross sections, and it becomes possible to excavate a tunnel having a desired cross section shape by one excavation. Can be performed efficiently.
次に、 図 1 2〜図】 6に基づいて第 4実施形態を説明する。 本実施形態は、 電 気破碎を掘削機に応用する例を示している。 Next, a fourth embodiment will be described with reference to FIGS. This embodiment shows an example in which electric crushing is applied to an excavator.
図 1 2及び図 1 3は、 本実施形態を表す掘削機の斜視図である。 掘削機 3 0は 走行自在な下部走行体 3 1を備えており 1、 5下部走行体 3 1上の略中央部には旋回 自在に上部旋回体 3 2が設けられている。 上部旋回体 3 2の前方には上下方向に 揺動自在に揺動部材 3 7が取着され、 この揺動部材 3 7は揺動駆動シリ ンダ 3 8 によって揺動される。 また、 揺動部材 3 7の先端部には作業機駆動シリンダ 3 9 を介して電気破砕用作業機 3 4が取着されており、 作業機駆動シリ ンダ 3 9の作 動によって、 電気破砕用作業機 3 4の向きは 3次元空間の任意の方向を向くこと ができるようになつている。 すなわち、 電気破砕用作業機 3 4の前面は、 上部旋 回体 3 2に対して任意の 3次元方向に傾斜できるようになつている。 さらに、 電 気破砕用作業機 3 4の下方から掘削機の後方にわたって、 コンベア 3 3が配設さ れており、 掘削された土砂等を排土するようになつている。 FIG. 12 and FIG. 13 are perspective views of an excavator representing the present embodiment. The excavator 30 is provided with a lower traveling body 31 that can travel freely. 1, 5 An upper revolving body 32 is provided at a substantially central portion on the lower traveling body 31 so as to be freely rotatable. A swing member 37 is attached to the front of the upper swing body 32 so as to swing vertically, and the swing member 37 is swinged by a swing drive cylinder 38. A working machine 34 for electric crushing is attached to the tip of the swinging member 37 via a working machine driving cylinder 39, and the working machine driving cylinder 39 activates the electric crushing machine. The working machine 34 can be oriented in any direction in the three-dimensional space. That is, the front surface of the electric crushing work machine 34 can be inclined in an arbitrary three-dimensional direction with respect to the upper rotating body 32. Further, a conveyor 33 is provided from below the electric crushing work machine 34 to the rear of the excavator, and discharges excavated earth and sand.
電気破砕用作業機 3 4には、 複数の電極 1が 2次元的に (面状に) 配列されて 設けられている。 各電極 1は正極 2と負極 3からなり、 本実施形態では、 負極 3 は四角柱で、 力、つ、 中空の形状に構成され、 正極 2はこの負極 3の中空部中央に 設けられている。 そして、 各電極 1の掘削面は同一方向を向いて配設されており 、 複数の電極 1の掘削面全体で電気破砕用作業機 3 4の掘削面を構成している。 図 1 4は、 電気破砕用作業機 3 4での電極 1の取り付け構造を表している。 電 極 1は、 電気破砕用作業機 3 4に設けられた支持部材 3 6にスプリング 3 5を介 して取り付けられている。 そして、 電気破砕用作業機 3 4の掘削面に直交する方 向に、 各電極 1が前進又は後退できるようになつている。 これにより、 掘削対象 物の表面の凸凹面に各電極 1が密着できるようになつている。
また、 各電極】の負極 3は溶液 9を保水するケースと同等の機能を有しており 、 電極 1に供給された溶液 9は負極 3の内部で、 かつ、 正極 2の周囲に保水され る。 A plurality of electrodes 1 are provided in a two-dimensionally (planar) array on the electrocrushing work machine 34. Each electrode 1 is composed of a positive electrode 2 and a negative electrode 3. In the present embodiment, the negative electrode 3 is a quadrangular prism, and is formed in a force, a hollow shape, and the positive electrode 2 is provided at the center of the hollow portion of the negative electrode 3. . The excavation surface of each electrode 1 is arranged in the same direction, and the entire excavation surface of the plurality of electrodes 1 constitutes the excavation surface of the electric crusher working machine 34. FIG. 14 shows the mounting structure of the electrode 1 in the electric crushing machine 34. Electrode 1 is attached via a spring 35 to a support member 36 provided on working machine 34 for electrocrushing. Each electrode 1 can move forward or backward in a direction orthogonal to the excavation surface of the electric crushing machine 34. Thus, each electrode 1 can be brought into close contact with the uneven surface of the surface of the object to be excavated. The negative electrode 3 of each electrode has the same function as the case of retaining the solution 9, and the solution 9 supplied to the electrode 1 is retained inside the negative electrode 3 and around the positive electrode 2. .
図 1 5は、 電極 1の側面断面図の一例を示している。 負極 3の中空内部には絶 縁体 1 3が設けられており、 この絶縁体 1 3の内部で、 負極 3の中空中心部に正 極 2が配設されている。 また、 正極 2及び負極 3には、 パルス発生装置 1 0が接 続されている。 正極 2及び負極 3の先端部は、 絶縁体〗 3の前面端より前方に突 出している。 絶縁体〗 3には溶液送給管 7が設けられており、 ポンプ 6によって 貯留槽 5の溶液 9が図示の C方向に送給され、 上記溶液送給管 7を経由して上記 絶縁体 1 3の前方、 すなわち正極 2及び負極 3の先端部に供給される。 この供給 された溶液 9は、 負極 3と絶縁体 1 3と掘削対象物の表面とによって囲まれた領 域に保水される。 このとき、 溶液 9として粘性の高い所定の溶液、 例えばダリー スゃ吸水性ボリマーの水溶液等で構成されているものを供給すると、 この保水領 域は加圧気味になり、 正極 2及び負極 3の周囲に溶液 ί)が保水され易くなる。 ま た、 さらに、 保水領域内の電極 1の周囲を例えばスポンジ等のような保水材 1 8 で埋め尽く し、 上記溶液 9をこの保水材 1 8に吸収させて保水させることも可能 である。 なお、 負極 3の先端部の外周面にシール部材 1 7を設けた場合は、 さら にこの保水性は向上する。 FIG. 15 shows an example of a side sectional view of the electrode 1. An insulator 13 is provided inside the hollow of the negative electrode 3, and the positive electrode 2 is provided in the hollow center of the negative electrode 3 inside the insulator 13. Further, a pulse generator 10 is connected to the positive electrode 2 and the negative electrode 3. The tips of the positive electrode 2 and the negative electrode 3 project forward from the front end of the insulator〗 3. A solution feed pipe 7 is provided on the insulator〗 3, and a solution 9 in a storage tank 5 is fed by a pump 6 in the direction C shown in the drawing, and the insulator 1 is passed through the solution feed pipe 7. 3, that is, to the front ends of the positive electrode 2 and the negative electrode 3. The supplied solution 9 is retained in a region surrounded by the negative electrode 3, the insulator 13 and the surface of the object to be drilled. At this time, if a predetermined highly viscous solution such as an aqueous solution of Dalisu® water-absorbing polymer is supplied as the solution 9, the water retention area becomes slightly pressurized, and the positive electrode 2 and the negative electrode 3 The solution ί) is easily retained around. Further, it is also possible to completely fill the periphery of the electrode 1 in the water retention area with a water retention material 18 such as a sponge, and absorb the solution 9 into the water retention material 18 to retain water. In addition, when the sealing member 17 is provided on the outer peripheral surface of the tip portion of the negative electrode 3, the water retention is further improved.
図 1 6は各電極 1の他の構成例を示しており、 正極 2及び負極 3がケース 1 9 内に収納されている例である。 同図に示すように、 各電極〗毎に、 溶液 9を保水 するケース 1 9を電極 1の外部に設けている。 FIG. 16 shows another configuration example of each electrode 1, in which a positive electrode 2 and a negative electrode 3 are housed in a case 19. As shown in the figure, a case 19 for holding the solution 9 is provided outside the electrode 1 for each electrode〗.
このように、 粘性の高い溶液 9をポンプ 6で送給することにより、 電極 1の周 囲の溶液 9は加圧気味になり、 よって保水性が良い。 さらに、 電極 1の周囲の保 水領域に保水材 1 8を埋め尽くすことにより、 保水性を向上できる。 By feeding the highly viscous solution 9 with the pump 6 in this way, the solution 9 around the electrode 1 becomes slightly pressurized, and thus has good water retention. Furthermore, the water retention can be improved by filling the water retention material 18 in the water retention area around the electrode 1.
なお、 本実施形態で示したような掘削機は、 例えばビルの解体作業、 岩石等の 発破による破砕等に応用可能となる。 また、 オープンケーソン工法における掘削 機としても利用することができる。
次に、 図〗 7〜図 1 9に基づいて、 第 5実施形態を説明する。 The excavator as shown in the present embodiment can be applied to, for example, building demolition work, crushing of rocks by blasting, and the like. It can also be used as an excavator in the open caisson method. Next, a fifth embodiment will be described based on FIG. 7 to FIG.
図 1 7及び図 1 8は、 本実施形態の掘削機を示す斜視図である。 掘削機 4 0は 走行自在な下部走行体 4 1を備えており、 下部走行体 4 1上の略中央部には旋回 自在に上部旋回体 4 2が設けられている。 上部旋回体 4 2の前方には上下方向に 揺動自在にブーム 4 3が取着され、 またブーム 4 3の先端部に上下方向に揺動自 在にアーム 4 4が取着されている。 これらのブーム 4 3及びアーム 4 4は、 それ ぞれ例えば摇動駆動シリンダによって揺動される。 また、 アーム 4 4の先端部に は、 掘削機 4 0の前方に向かって左右方向に細長い形状の電気破砕用作業機 4 5 が取着されている。 この電気破砕用作業機 4 「)の長手方向とアーム 4 4とが成す 角度は、 例えば作業機駆動用のシリンダによって変えられる。 FIG. 17 and FIG. 18 are perspective views showing the excavator of the present embodiment. The excavator 40 is provided with a lower traveling body 41 that can travel freely, and an upper revolving body 42 is rotatably provided substantially at the center of the lower traveling body 41. A boom 43 is attached to the front of the upper swing body 42 so as to be vertically swingable, and an arm 44 is attached to the tip of the boom 43 so as to be vertically swingable. Each of the boom 43 and the arm 44 is oscillated by, for example, a driving cylinder. At the tip of the arm 44, a working machine 45 for electrocrushing, which is elongated in the left-right direction toward the front of the excavator 40, is attached. The angle formed between the longitudinal direction of the electric crushing work machine 4) and the arm 44 can be changed by, for example, a working machine driving cylinder.
電気破砕用作業機 4 5の前部には、 その長手方向に、 複数の電極】力 列に配 設されている。 各電極 1は正極 2と負極 3からなり、 それぞれ電気破砕用作業機 4 5の前方に向かって細長く突出しており、 本実施形態では、 正極 2と負極 3が 交互に配設されている。 そして、 全電極 1の周囲は、 電極 jの長手方向に伸縮自 在なシール部材 4 6によって囲まれている。 図 1 9は、 この電気破砕用作業機 4 5の側面断面図を示している。 正極 2及び負極 3の周囲に供給された溶液 9は、 シール部材 4 6と掘削対象物の表面とによって囲まれた領域内に保水される。 以上の構成によると、 電気破砕用作業機 4 5の前部に伸縮自在なシール部材 4 6を設けているので、 電極 1の周囲の溶液 9を掘削対象物の表面との間に保水す ることができる。 このとき、 電極 1での放電によって掘削対象物が破砕されて掘 削深さが深くなつても、 上記シール部材 4 6の伸縮機能により、 シール部材 4 6 と掘削対象物の表面との密着性が良い。 この結果、 保水性が向上して効率的な掘 削ができるようになる。 At the front of the electrocrushing work machine 45, a plurality of electrodes are arranged in the longitudinal direction thereof in a power train. Each electrode 1 is composed of a positive electrode 2 and a negative electrode 3, each of which protrudes slenderly toward the front of the electric crushing machine 45. In the present embodiment, the positive electrodes 2 and the negative electrodes 3 are arranged alternately. Then, the periphery of all the electrodes 1 is surrounded by a sealing member 46 which is naturally expandable and contractible in the longitudinal direction of the electrode j. FIG. 19 shows a side sectional view of the electric crushing work machine 45. The solution 9 supplied around the positive electrode 2 and the negative electrode 3 is retained in a region surrounded by the seal member 46 and the surface of the object to be excavated. According to the above configuration, the telescopic working machine 45 has a telescopic sealing member 46 at the front, so that the solution 9 around the electrode 1 is retained between the surface of the drilling object and the solution 9. be able to. At this time, even if the object to be excavated is crushed by the electric discharge at the electrode 1 and the excavation depth is deepened, the sealing member 46 and the surface of the object to be excavated by the elastic function of the seal member 46 described above. Is good. As a result, water retention is improved, and efficient excavation becomes possible.
また、 電気破砕用作業機 4 5の電極 1がー列に配列されているので、 細長い溝 状に掘削するのに適している。 そして、 電気破砕用作業機 4 5の長手方向とァ一 ム 4 4とが成す角度を任意に変えることによって、 自由空間での任意の形状の溝 切りが可能となる。
次に、 図 2 0に基づいて第 6実施形態を説明する。 In addition, since the electrodes 1 of the electric crushing machine 45 are arranged in a row, it is suitable for excavating in an elongated groove shape. By arbitrarily changing the angle formed between the longitudinal direction of the electric crushing work machine 45 and the arm 44, grooving of an arbitrary shape in free space becomes possible. Next, a sixth embodiment will be described with reference to FIG.
本実施形態は電気破砕のボーリングマシンへの適用例を示し、 図 2 0は本実施 形態を表す側面図である。 ボーリングマシン 5 0は走行自在な下部走行体 5 1を 備えており、 下部走行体 5 1の略中央部には上部旋回体 5 2が旋回自在に設けら れている。 上部旋回体 5 2上には、 溶液 9を供給するポンプ 6、 及び高電圧パル スを発生させるパルス発生装置 1 0力配設されている。 また、 上部旋回体 5 2上 にはドラム 5 7が設けられており、 ポンプ 6からの溶液 9を送給する溶液送給管 7、 及びパルス発生装置 1 0に接続された電源ケーブル 1 1をボーリング作業機 5 に導くケーブル 5 5は、 ドラム 5 7によって伸縮自在となっている。 上部旋 回体 5 2の前端部には上下方向に揺動自在にブーム 5 3が設けられ、 ブーム 5 3 にはローラ 5 8が回転自在に取着されている。 そして、 ケ一ブル! 5はこの口一 ラ 5 8を介してドラム 5 7からボーリング作業機 5 4に導かれている。 また、 掘 削された土砂等がケーブル 5 5によって溶液 9と共にドラム 5 7側に回収され、 ドラム 5 7から排出されるようになっており、 この排出された土砂はコンベア 5 9によってボーリングマシン 5 0の外部に排土される。 The present embodiment shows an example of application of electrocrushing to a boring machine, and FIG. 20 is a side view showing the present embodiment. The boring machine 50 includes a lower traveling body 51 that can travel freely, and an upper revolving body 52 is provided at a substantially central portion of the lower traveling body 51 so as to freely rotate. A pump 6 for supplying a solution 9 and a pulse generator 10 for generating a high-voltage pulse are provided on the upper rotating body 52. A drum 57 is provided on the upper revolving unit 52, and a solution supply pipe 7 for supplying a solution 9 from a pump 6 and a power cable 11 connected to a pulse generator 10 are provided. A cable 55 leading to the boring machine 5 is made extendable and contractible by a drum 57. A boom 53 is provided at the front end of the upper revolving body 52 so as to be vertically swingable, and a roller 58 is rotatably attached to the boom 53. The cable! 5 is guided from the drum 57 to the boring machine 54 through the mouth 58. Excavated soil and the like are collected by the cable 55 together with the solution 9 on the drum 57 side and discharged from the drum 57, and the discharged soil is conveyed by the boring machine 5 by the conveyor 59. Discharged outside of 0.
ボーリング作業機 5 4には、 電気破砕用の電極が設けられる。 この電極 1は、 前記各実施形態と同様に、 複数の電極で構成されてもよい。 あるいは、 電極 1は ボーリング作業機 5 4の外周部を構成する負極 3と、 負極 3の中央部に設けられ た正極 2とから構成されてもよい。 電極 1の周囲にはケースが設けられ、 ケ一ブ ル 5 5を経由して送給された溶液 9をケースにより電極の周囲に保水している。 また、 負極 3がボーリング作業機 5 4の外周部を構成する場合は、 負極; が上 記ケースと同等の機能を有し、 負極 3内に溶液 9が保水されるようにする。 この 場合、 負極 3の外周形状は掘削すべきボーリング穴と相似の断面形状にすること ができる。 これにより掘削後のボーリング穴を追加的に掘削する必要がないので 、 効率的な掘削が可能となる。 The boring machine 54 is provided with electrodes for electrocrushing. This electrode 1 may be composed of a plurality of electrodes as in the above embodiments. Alternatively, the electrode 1 may be composed of a negative electrode 3 forming the outer peripheral portion of the boring machine 54 and a positive electrode 2 provided at the center of the negative electrode 3. A case is provided around the electrode 1, and the solution 9 supplied via the cable 55 is retained by the case around the electrode. When the negative electrode 3 forms the outer periphery of the boring machine 54, the negative electrode has the same function as the above case, and the solution 9 is retained in the negative electrode 3. In this case, the outer peripheral shape of the negative electrode 3 can have a cross-sectional shape similar to a boring hole to be excavated. This eliminates the need to additionally drill a borehole after drilling, thus enabling efficient drilling.
次に、 図 2 1〜図 2 4を参照して第 7実施形態を説明する。 Next, a seventh embodiment will be described with reference to FIGS.
本実施形態は電気破砕の自由断面掘削機への適用例を示し、 図 2 iは本実施形
態を表す側面図であり、 図 2 2は背面図である。 This embodiment shows an example of application of electric crushing to a free section excavator. FIG. 22 is a side view showing the state, and FIG. 22 is a rear view.
自由断面掘削機 7 0は走行自在な下部走行体 7 1を備えており、 この下部走行 体 7 1の上部には上部車体 7 2が配設されている。 本実施形態においては、 この 上部車体 7 2は下部走行体 7 1のほぼ中央部に旋回自在に搭載されており、 よつ て、 以後上部車体 7 2を上部旋回体 7 2と呼ぶ。 上部旋回体 7 2の前端部に設け られた架台 7 3には、 第 1アーム 7 4が水平軸 X— X回りに回動自在で、 かつ、 この水平軸 X— Xを含む平面内で回動自在に取着されており、 この第 1アーム 7 Ίの先端部には、 第 2アーム 7 5が第 1アーム 7 4と同一の水平軸 X— Xを含む 平面内で冋動自在に取着されている。 また、 この第 2アーム 7 5の先端部には、 破砕へッ ド 7 6が第 1アーム 7 と同一の水平軸 X Xを含む平面内で回動自在 に取着されている。 The free-section excavator 70 includes a lower traveling body 71 that can travel freely, and an upper body 72 is disposed above the lower traveling body 71. In the present embodiment, the upper vehicle body 72 is rotatably mounted substantially at the center of the lower traveling body 71, and hence the upper vehicle body 72 is hereinafter referred to as the upper revolving body 72. A first arm 74 is rotatable about a horizontal axis X-X, and is rotatable in a plane including the horizontal axis X-X, on a platform 73 provided at the front end of the upper swing body 72. The second arm 75 is attached to the distal end of the first arm 74 so as to be freely movable in a plane including the same horizontal axis X--X as the first arm 74. Is being worn. A crushing head 76 is rotatably attached to the tip of the second arm 75 in a plane including the same horizontal axis XX as the first arm 7.
破砕へッ ド 7 6の位置と姿勢は、 上部旋回体 7 2の旋回、 第 1アーム 7 4の水 平軸 X— X回りの回動又は水平軸 X— Xを含む平面内での回動、 そして第 2ァー ム 7 5又は破砕へッ ド 7 Gの水平軸 X - Xを含む平面内での回動等の操作を行う ことによって所定の掘削位置に設定される。 したがって、 図 2 2に示すように自 由な断面形状の掘削穴やトンネル等を掘削することができる。 なお、 破砕へッ ド 7 6の位置と姿勢を所定の掘削位置に設定するための作業機アームの動作形態は 上記に限定するものではない。 すなわち、 作業機アームを所定軸回りに回転させ たり、 屈伸させたり、 あるいは伸縮させたりすることによって、 同様に破砕へッ ド 7 6の位置と姿勢を操作可能である。 また、 上部旋回体 7 2は下部走行体 7 】 に対して旋回自在となっているが、 これのみに限定されず、 例えば作業機アーム を上部旋回体 7 2に対して旋回自在としてもよい。 The position and posture of the crushing head 76 are determined by rotating the upper revolving unit 72, rotating the first arm 74 around the horizontal axis X--X, or rotating in the plane including the horizontal axis X--X. Then, a predetermined excavation position is set by performing an operation such as rotation of the second arm 75 or the crushing head 7G in a plane including the horizontal axis X-X. Therefore, as shown in FIG. 22, it is possible to excavate an excavation hole or a tunnel having a free sectional shape. The operation mode of the work implement arm for setting the position and posture of the crushing head 76 to a predetermined excavation position is not limited to the above. That is, the position and posture of the crushing head 76 can be similarly controlled by rotating, bending and extending, or expanding and contracting the work machine arm around a predetermined axis. Further, although the upper revolving unit 72 is rotatable with respect to the lower traveling unit 7], the present invention is not limited to this. For example, the work implement arm may be rotatable with respect to the upper revolving unit 72.
図 2 3は、 破砕へッ ド 7 6の詳細構成を示す断面図である。 破砕へッ ド 7 6の 外周壁の前端部にはシール部材 4 6が設けられており、 このシール部材 4 6を前 方の掘削対象物 Zに当接させることにより、 この掘削対象物 Zと、 破砕ヘッ ド 7 6の外周壁と、 破砕へッ ド 7 6の内部の絶縁体 1 3との間に貯留室 7 7が形成さ れるようになっている。 貯留室 7 7内には複数の電極 1の各電極対の正極 2と負
極 3が絶縁体 i 3を介して取着されていて、 それぞれの正極 2と負極 3は、 自由 断面掘削機 7 0の車体側又は車体外部に設けられた、 前述と同様のパルス発生装 置 1 0 (図示せず) の高電圧出力端子に接続されている。 また、 貯留室 7 7には ポンプ 6から溶液 9を供給する溶液送給管 7が接続されている。 FIG. 23 is a sectional view showing a detailed configuration of the crushing head 76. A sealing member 46 is provided at the front end of the outer peripheral wall of the crushing head 76, and the sealing member 46 is brought into contact with the excavating object Z so that the excavating object Z A storage chamber 77 is formed between the outer peripheral wall of the crushing head 76 and the insulator 13 inside the crushing head 76. The positive electrode 2 and the negative electrode 2 of each electrode pair The pole 3 is attached via an insulator i 3, and each of the positive electrode 2 and the negative electrode 3 is provided on the vehicle body side of the free-section excavator 70 or outside the vehicle body. 10 (not shown) is connected to the high voltage output terminal. Further, a solution feed pipe 7 for supplying a solution 9 from a pump 6 is connected to the storage chamber 77.
次に、 本実施形態における掘削方法について説明する。 Next, an excavation method according to the present embodiment will be described.
( 1 ) 図 2 3に示すように、 破砕へッ ド 7 6の前面のシール部材 4 6を掘削対象 物 Zに当接させて貯留室 7 7を形成する。 (1) As shown in FIG. 23, the sealing member 46 on the front surface of the crushing head 76 is brought into contact with the object Z to be excavated to form a storage chamber 77.
( 2 ) 次に、 ポンプ 6から溶液送給管 7を経由して溶液 9を供給し、 貯留室 7 7 内の電極 1の周囲に溶液 9を充塡する。 (2) Next, the solution 9 is supplied from the pump 6 via the solution supply pipe 7, and the solution 9 is filled around the electrode 1 in the storage chamber 77.
( 3 ) 次に、 パルス発生装置 1 0による高電圧パルスで電極 1に放電させて掘削 対象物 Zを電気破砕する。 (3) Next, the electrode 1 is discharged by a high-voltage pulse from the pulse generator 10 to electro-fracture the object Z to be excavated.
( 4 ) 所定量の破砕物が貯留室 7 7内に貯留された後、 図 2 4に示すように、 上 部旋回体 7 2の旋回、 第 1アーム 7 4の前記回動、 あるいは第 2アーム 7 5又は 破砕へッ ド 7 6の前記回動等を行うことによつて破砕へッ ド 7 6を掘削対象物 Z から離し、 貯留室 7 7の外部に上記破碎物を排出する。 (4) After a predetermined amount of crushed material is stored in the storage chamber 77, as shown in FIG. 24, the upper revolving unit 72 rotates, the first arm 74 rotates, or the second By rotating the arm 75 or the crushing head 76, the crushing head 76 is separated from the excavation target Z, and the crushed material is discharged to the outside of the storage room 77.
( 5 ) 以上の (1 ) 〜 (4 ) の作動を繰り返して掘削を行う。 以下に、 各種の破砕へッ ドの実施形態について順次説明する。 (5) Excavation is performed by repeating the above operations (1) to (4). Hereinafter, embodiments of various crushing heads will be sequentially described.
先ず、 図 2 5及び図 2 6に基づいて、 第 8実施形態を説明する。 First, an eighth embodiment will be described based on FIG. 25 and FIG.
図 2 5は、 本実施形態の破砕へッ ド 8 0の構成を示す側面断面図である。 破砕 へッ ド 8 0の外周壁の前端部にはシール部材 4 6が取着されており、 このシール 部材 4 6を掘削対象物 Zに当接することにより、 前述同様にこの掘削対象物 と 、 破砕へッ ド 8 0の外周壁と、 破砕へッ ド 8 0の底板部 8 0 a等との間に貯留室 8 1が形成されるようになっている。 破砕へッ ド 8 0の前面には、 複数の電極】 の各電極対、 正極 2及び負極 3が絶縁部材 8 2を介して取着されており、 それぞ れの正極 2と負極 3は、 自由断面掘削機 7 0の車体側又は車体外部に設けられた 、 前述と同様のパルス発生装置 1 0 (図示せず) の高電圧出力端子に接続されて
いる。 また、 絶縁部材 8 2には所定の大きさの孔 8 3が設けられていて、 破砕物 の通過を可能としている。 さらに、 破砕へッ ド 8 0の上部には溶液送給管 7が取 着されていて、 この溶液送給管 7を経由して図示しないポンプから溶液 9を供給 可能となっている。 そして、 貯留室 8 1の下部には、 上部の狞留室 8 1 との仕切 りが可能な貯蔵室 8 4が形成されており、 この貯蔵室 8 4の下部には排出口 8 5 が設けられている。 この排出口 8 5には第 1 シリンダ 8 6により開閉される可動 排出板 8 7が設けられており、 また貯留室 8 1 と貯蔵室 8 4との間には第 2シリ ンダ 8 8により開閉される可動仕切板 8 9が設けられている。 FIG. 25 is a side sectional view showing the configuration of the crushing head 80 of the present embodiment. A seal member 46 is attached to the front end of the outer peripheral wall of the crushing head 80, and by contacting the seal member 46 with the excavation object Z, the excavation object and the The storage chamber 81 is formed between the outer peripheral wall of the crushing head 80 and the bottom plate 80 a of the crushing head 80. On the front surface of the crushing head 80, a plurality of electrode pairs, a positive electrode 2 and a negative electrode 3 are attached via an insulating member 82, and the respective positive electrode 2 and negative electrode 3 are It is connected to the high voltage output terminal of the same pulse generator 10 (not shown) provided on the vehicle body side of the free section excavator 70 or outside the vehicle body. I have. In addition, the insulating member 82 is provided with a hole 83 having a predetermined size to allow the crushed material to pass therethrough. Further, a solution feed pipe 7 is attached to the upper part of the crushing head 80, and a solution 9 can be supplied from a pump (not shown) via the solution feed pipe 7. A storage room 84 is formed below the storage room 81 so as to be able to be separated from the storage room 81 on the upper side, and a discharge port 85 is provided below the storage room 84. Have been. The discharge port 85 is provided with a movable discharge plate 87 opened and closed by a first cylinder 86, and a second cylinder 88 opens and closes between the storage room 81 and the storage room 84. A movable partition plate 89 is provided.
次に、 本実施形態における掘削方法について説明する。 Next, an excavation method according to the present embodiment will be described.
( 1 ) 図 2 5に示すように、 破砕へッ ド 8 0の前面のシール部材 4 6を掘削対象 物 Zに当接させて貯留室 8 1を形成する。 (1) As shown in FIG. 25, the sealing member 46 on the front surface of the crushing head 80 is brought into contact with the object to be excavated Z to form the storage chamber 81.
( 2 ) 次に、 第 1 シリンダ 8 6及び第 2シリンダ 8 8を作動させて可動排出板 8 7及び可動仕切板 8 9を閉じて貯留室 8 1と貯蔵室 8 4とを仕切る。 (2) Next, the first cylinder 86 and the second cylinder 88 are operated to close the movable discharge plate 87 and the movable partition plate 89 to separate the storage room 81 from the storage room 84.
( 3 ) 次に、 溶液送給管 7から溶液 9を貯留室 8 1に供給し、 電極 1の周囲に充 塡する。 (3) Next, the solution 9 is supplied from the solution feed pipe 7 to the storage chamber 81, and is filled around the electrode 1.
( 4 ) 次に、 パルス発生装置 1 0による高電圧パルスで電極 1に放電させ、 掘削 対象物 Zを破砕する。 (4) Next, the electrode 1 is discharged by a high-voltage pulse from the pulse generator 10 to crush the excavation target Z.
( 5 ) 次に、 図 2 5に示すように、 第 2シリンダ 8 8を作動させて可動仕切板 8 9を開き、 貯留室 8 1に貯留した破砕物を貯蔵室 8 4に移動させる。 (5) Next, as shown in FIG. 25, the second cylinder 88 is operated to open the movable partition plate 89, and the crushed material stored in the storage room 81 is moved to the storage room 84.
( 6 ) さらに、 所定量の破砕物が貯蔵室 8 4に貯蔵された後、 図 2 6に示すよう に、 第 2シリンダ 8 8を作動させて可動仕切板 8 9を閉じ、 次に第 1 シリンダ 8 6を作動させて可動排出板 8 7を開き、 破砕物を貯蔵室 8 4外に排出する。 (6) Further, after a predetermined amount of the crushed material is stored in the storage chamber 84, the movable partition plate 89 is closed by operating the second cylinder 88, as shown in FIG. The movable discharge plate 87 is opened by operating the cylinder 86, and the crushed material is discharged out of the storage room 84.
( 7 ) 以上の ( 1 ) 〜 (6 ) の作動を繰り返すことにより掘削を行う。 (7) Excavation is performed by repeating the above operations (1) to (6).
したがって、 破砕へッ ド 8 0を掘削対象物 Zから離すことなく掘削することが できるので、 作業能率が向上する。 また、 当初溶液 9を供給するのは貯留室 8 1 のみとなるので、 溶液 9の供給量は少なくてすみ、 さらに、 破砕物を排出する場 合には貯蔵室 8 4に一時貯蔵した量のみとなるため、 排出される溶液 9の量が少
なくて済むので、 ランニングコストが安くなる。 Therefore, since the crushing head 80 can be excavated without leaving the excavation target Z, the work efficiency is improved. Initially, only the storage room 81 supplies the solution 9; therefore, the supply amount of the solution 9 is small, and when discharging crushed materials, only the amount temporarily stored in the storage room 84 is required. And the amount of solution 9 discharged is small. Since it is not necessary, running costs are reduced.
なお、 本実施形態では、 狞留室 8 1の下部に 1室の貯蔵室 8 4を設けているが 、 本発明はこれに限定されない。 例えば、 図 2 7に示すように、 貯留室 8 】の下 部に複数の貯蔵室 8 4 a , 8 4を直列に配設し、 各貯蔵室間をそれぞれの第 2シ リンダ 8 8 a, 8 8により開閉される可動仕切板 8 9 a , 8 9で仕切るようにし てもよい。 この場合、 貯留室 8 1に貯留された破砕物は順次下方の貯蔵室 8 4 a , 8 4へ送給され、 この貯蔵室 8 4 aが満杯になったら次の貯蔵室 8 4へ送給さ In the present embodiment, one storage room 84 is provided below the storage room 81, but the present invention is not limited to this. For example, as shown in FIG. 27, a plurality of storage chambers 84a and 84 are arranged in series below the storage chamber 8], and a second cylinder 88a, A movable partition plate 8 9 a, 89 that can be opened and closed by the opening 8 may also be used. In this case, the crushed material stored in the storage room 81 is sequentially sent to the lower storage rooms 84a and 84, and when the storage room 84a is full, it is sent to the next storage room 84. Sa
2 Two
れる。 このようにして、 最下端の貯蔵室 8 4に送られた後、 この最下端の貯蔵室 8 4の可動排出板 8 7を開いて外部に排出することができる。 これにより、 溶液 9の排出量を軽減でき、 ランニングコス卜を非常に安くできる。 It is. In this way, after being sent to the lowermost storage room 84, the movable discharge plate 87 of the lowermost storage room 84 can be opened and discharged to the outside. Thereby, the discharge amount of the solution 9 can be reduced, and the running cost can be extremely reduced.
次に、 図 2 8により第 9実施形態の破砕へッ ド 8 0 Λを説明する。 なお、 本実 施形態の構成は、 破砕物排出構造以外は第 8実施形態と同 -なので、 同一部品に は同一符号を付して説明を省略する。 Next, the crushing head 80 of the ninth embodiment will be described with reference to FIG. The configuration of this embodiment is the same as that of the eighth embodiment except for the crushed material discharging structure, and therefore, the same components are denoted by the same reference characters and description thereof is omitted.
破砕へッ ド 8 0 Aの下端部に破砕物排出用のスクリュコンベア式排出装置 9 0 を設けている。 このスクリュコンベア式排出装置 9 0は、 排出管 9 2と、 この排 出管 9 2の内部で排出管 9 2の長さ方向に沿った回転軸の回りに回転するスクリ ュ 9 3と、 このスクリュ 9 3を回転駆動するスクリュ駆動装置 (図示せず) とか なっている。 At the lower end of the crushing head 80 A, a screw conveyor type discharging device 90 for discharging crushed materials is provided. The screw conveyor type discharge device 90 includes a discharge pipe 92, and a screw 93 rotating inside the discharge pipe 92 around a rotation axis along the length direction of the discharge pipe 92. It is a screw drive (not shown) that drives the screw 93 to rotate.
次に掘削方法につし、て説明する。 Next, an excavation method will be described.
( 1 ) 図 2 8に示すように、 破砕へッ ド 8 0 Aの前面のシール部材 4 6を掘削対 象物 Zに当接させて貯留室 8 1を形成する。 (1) As shown in FIG. 28, the sealing member 46 on the front surface of the crushing head 80A is brought into contact with the object Z to be excavated to form the storage chamber 81.
( 2 ) 次に、 溶液送給管 7から溶液 9を咛留室 8 1に供給し、 電極 1の周囲に充 塡する。 (2) Next, the solution 9 is supplied from the solution feed pipe 7 to the storage chamber 81, and is filled around the electrode 1.
( 3 ) 次に、 パルス発生装置 1 0による高電圧パルスで電極 1に放電させ、 掘削 対象物 Zを破砕する。 (3) Next, the electrode 1 is discharged by a high-voltage pulse from the pulse generator 10 to crush the object Z to be excavated.
( 4 ) 次に、 スクリュコンベア式排出装置 9 0を作動させて破砕物を貯留室 8 1 の外部に排出する。
したがって、 掘削及び破砕物排出の作業が連続的に行われ、 効率的である。 なお、 スクリュコンベア式排出装置 9 0の排出口に破砕物と溶液 9を分離する 分離装置 (図示せず) を設け、 この分離装置により分離した溶液 9を再利用して もよい。 (4) Next, the screw conveyor type discharging device 90 is operated to discharge the crushed material to the outside of the storage room 81. Therefore, excavation and crushed material discharge work is performed continuously, which is efficient. A separating device (not shown) for separating the crushed material and the solution 9 may be provided at the discharge port of the screw conveyor type discharging device 90, and the solution 9 separated by the separating device may be reused.
次に、 図 2 9により第 1 0実施形態の破砕へッ ド 8 0 Bを説明する。 なお、 本 実施形態の構成は、 破砕物排出構造以外は第 8実施形態と同一なので、 同一部品 には同一符号を付して説明を省略する。 Next, the crushing head 80B of the tenth embodiment will be described with reference to FIG. The configuration of this embodiment is the same as that of the eighth embodiment except for the crushed material discharging structure, and therefore, the same components are denoted by the same reference characters and description thereof will be omitted.
破砕へッ ド 8 0 Bの下端部に破砕物排出用のバキューム式排出装置 9 1を設け ている。 このバキューム式排出装置 9 1は、 排出管 9 2内の圧力を外気圧より低 圧にし、 排出管 9 2内に流入する破砕物及び溶液 9を貯留室 8 1の外部に排出す るものである。 At the lower end of the crushing head 80 B, a vacuum discharge device 91 for discharging crushed material is provided. The vacuum discharge device 91 reduces the pressure in the discharge pipe 92 to a pressure lower than the outside air pressure, and discharges the crushed material and the solution 9 flowing into the discharge pipe 92 to the outside of the storage chamber 81. is there.
次に、 掘削方法について説明する。 Next, the excavation method will be described.
( 1 ) 図 2 9に示すように、 破砕へッ ド 8 0 Bの前面のシール部材 4 6を掘削対 象物 Zに当接させて貯留室 8 1を形成する。 (1) As shown in FIG. 29, the sealing member 46 on the front surface of the crushing head 80B is brought into contact with the object Z to be excavated to form the storage chamber 81.
( 2 ) 次に、 溶液送給管 7から溶液 9を貯留室 8 1に供給し、 電極 iの周囲に充 塡する。 (2) Next, the solution 9 is supplied from the solution feed pipe 7 to the storage chamber 81, and is filled around the electrode i.
( 3 ) 次に、 パルス発生装置 1 0による高電圧パルスで電極 1に放電させ、 掘削 対象物 Zを破砕する。 (3) Next, the electrode 1 is discharged by a high-voltage pulse from the pulse generator 10 to crush the object Z to be excavated.
( 4 ) 次に、 バキューム式排出装置 9 1を図示しないバキューム装置により作動 させて破砕物を貯留室 8 1の外部に排出する。 (4) Next, the vacuum discharge device 91 is operated by a vacuum device (not shown) to discharge the crushed material to the outside of the storage room 81.
したがって、 掘削及び破砕物排出の作業が連続的に行われ、 効率的である。 なお、 バキューム式排出装置 9 1の排出口に破砕物と溶液 9とを分離する分離 装置 (図示せず) を設け、 これにより分離した溶液 9を再利用してもよい。 次に、 図 3 0により第 1 1実施形態の破砕へッ ド 9 5を説明する。 Therefore, excavation and crushed material discharge work is performed continuously, which is efficient. In addition, a separation device (not shown) for separating the crushed material and the solution 9 may be provided at the outlet of the vacuum discharge device 91, and the separated solution 9 may be reused. Next, the crushing head 95 of the first embodiment will be described with reference to FIG.
破砕へッ ド 9 5の外周壁の前端部にはシール部材 4 6が取着されており、 この シール部材 4 6を掘削対象物 Zに当接するこで、 この掘削対象物 Zと、 破砕へッ ド 9 5の外周壁と、 破砕へッ ド 9 5の内側の前部と後部間を仕切る前壁 9 7との
間に貯留室 8 1が形成されるようになつている。 貯留室 8 1内には絶縁体からな る前壁 9 7を介して複数の電極 1の各電極対、 正極 2及び負極 3が設けられてい る。 また、 破砕へッ ド 9 5の内側後部には、 この前壁 9 7によってこの貯留室 8 1と仕切られている溶液室 9 6が設けられている。 A sealing member 46 is attached to the front end of the outer peripheral wall of the crushing head 95, and the sealing member 46 is brought into contact with the digging object Z, so that the digging object Z and the crushing object can be crushed. Between the outer peripheral wall of the head 95 and the front wall 97 separating the front and rear inside the crushing head 95. A storage room 81 is formed therebetween. In the storage chamber 81, each electrode pair of the plurality of electrodes 1, the positive electrode 2 and the negative electrode 3 are provided via a front wall 97 made of an insulator. A solution chamber 96 which is separated from the storage chamber 81 by the front wall 97 is provided at a rear portion inside the crushing head 95.
図 3 1は各電極 1の正極 2及び負極 3の周辺部分の詳細図である。 前壁 9 7に は貯留室 8 1側に窪んだ凹部 9 8が設けられ、 この凹部 9 8には溶液室 9 6から 貯留室 8 1 に溶液 9を供給する連通孔 9 9が設けられている。 また、 凹部 9 8の 底部中央には、 溶液室 9 6から貯留室 8 1に貫通する貫通穴 1 0 0が設けられて いる。 この貫通穴 1 0 0には電極 1の先端側 (貯留室 8 1側) が摺動自在に H通 しており、 この電極 1の基端部は溶液室 ί) 6の後壁 1 0 〗に設けられた支持穴】 0 2内に挿入されている 電極 1の中央部にはフランジ 1 ϋ 3が設けられており 、 このフランジ 1 () 3と後壁 1 0 1との間にはバネ 1 0 4が介装されていて、 電 極 1を常に前壁 9 7の方向に付勢している。 掘削作業中は、 この付勢力によって 電極 1の先端部は常に掘削対象物 Ζに当接するようになつている。 また、 フラン ジ 1 0 3の前面にはバルブ 1 0 5が設けられており、 このバルブ 1 0 5は、 図 3 1 の細い 2点鎖線に示すようにパネ 1 0 4の付勢力により前壁 9 7に当接し、 こ れによって溶液室 9 6から貯留室 8 1への溶液 9の供給を停止するようになって いる。 FIG. 31 is a detailed view of the periphery of the positive electrode 2 and the negative electrode 3 of each electrode 1. The front wall 97 has a recess 98 formed on the storage chamber 81 side, and the recess 98 has a communication hole 99 for supplying the solution 9 from the solution chamber 96 to the storage chamber 81. I have. In the center of the bottom of the concave portion 98, a through hole 100 is provided that penetrates from the solution chamber 96 to the storage chamber 81. The distal end side of the electrode 1 (the storage chamber 81 side) slidably passes through the through hole 100 through H. The base end of the electrode 1 is the solution chamber ί) 6 The rear wall 10〗 Support hole provided in the electrode] 0 2 A flange 1 13 is provided at the center of the electrode 1 which is inserted into the electrode 2. A spring is provided between the flange 1 () 3 and the rear wall 101. 104 is interposed, constantly biasing electrode 1 in the direction of front wall 97. During the excavation work, the tip of the electrode 1 is always in contact with the object to be excavated owing to this urging force. In addition, a valve 105 is provided on the front of the flange 103, and as shown by a thin two-dot chain line in FIG. 9, so that the supply of the solution 9 from the solution chamber 96 to the storage chamber 81 is stopped.
次に、 掘削について説明する。 Next, excavation will be described.
(】) 溶液輸送管 7から溶液室 9 6に溶液 9を供給する。 ()) Supply the solution 9 from the solution transport pipe 7 to the solution chamber 96.
( 2 ) 次に、 図 3 0に示すように、 破砕へッ ド 9 5のシール部材 4 Gを掘削対象 物 Ζに当接させて貯留室 8 1を形成する。 このとき、 電極 1 は掘削対象物 Ζによ り押圧されてバネ 1 0 4の付勢力に打ち勝って後方に移動し、 これによりバルブ 1 0 5は前壁 9 7から離れる。 このとき、 溶液 9は矢印に示すように連通孔 9 9 を通って咛留室 8 1に供給され、 電極 1の周囲に充塡される。 (2) Next, as shown in FIG. 30, the sealing member 4G of the crushing head 95 is brought into contact with the object to be excavated to form the storage chamber 81. At this time, the electrode 1 is pressed by the excavation target Ζ and overcomes the urging force of the spring 104 and moves rearward, whereby the valve 105 moves away from the front wall 97. At this time, the solution 9 is supplied to the storage chamber 81 through the communication hole 99 as shown by the arrow, and is filled around the electrode 1.
( 3 ) 次に、 パルス発生装置 1 0による高電圧パルスで電極 1に放電させ、 掘削 対象物 Ζを破砕する。
( 4 ) 次に、 破砕へッ ド 9 5を移動させてシール部材 4 6を掘削対象物 Zから離 し、 このときの破砕物を貯留室 8 1の外部に排出する。 このとき、 電極 1はバネ 1 0 4の付勢力により前壁 9 7方向に移動し、 よってバルブ 1 0 5は図 3 1の細 い 2点鎖線に示すように前壁 9 7に当接して溶液 9の拧留室 8 1への供給を停止 させる。 (3) Next, the electrode 1 is discharged with a high voltage pulse from the pulse generator 10 to crush the object to be excavated. (4) Next, the crushing head 95 is moved to separate the seal member 46 from the excavation target Z, and the crushed material at this time is discharged to the outside of the storage room 81. At this time, the electrode 1 moves in the direction of the front wall 97 by the urging force of the spring 104, so that the valve 105 comes into contact with the front wall 97 as shown by a thin two-dot chain line in FIG. The supply of the solution 9 to the storage chamber 81 is stopped.
( 5 ) 以上の ( 1 ) 〜 (4 ) までの作動を繰り返して掘削を行う。 (5) Excavation is performed by repeating the above operations (1) to (4).
このように、 破砕へッ ド 9 5を掘削対象物 Zから離した時にバルブ 1 0 5によ つて溶液 9の貯留室 8 1への供給を停止させるので、 破砕物と共に排出される溶 液 9の量は少なくて済み、 ランニングコストが安くなる。 As described above, when the crushing head 95 is separated from the excavation target Z, the supply of the solution 9 to the storage chamber 81 is stopped by the valve 105, so that the solution 9 discharged together with the crushed material is discharged. And the running cost is low.
次に、 図 3 2により第 1 2実施形態の破砕へッ ド 9 5 Aを説明する。 Next, the crushing head 95A of the 12th embodiment will be described with reference to FIG.
破砕へッ ド 9 5 Aの外周壁の前端部にはシール部材 4 6が取着されており、 こ のシール部材 4 6を掘削対象物 Zに当接することにより、 この掘削対象物 と、 破砕へッ ド 9 5 Λの外周壁と、 破砕へッ ド 9 5 Aの内側の前部と後部間を仕切る 前壁 9 7との間に、 貯留室 8 1が形成される。 また、 破砕へッ ド 9 5 Aの内側の 後部には、 上^前壁 9 7により仕切られた溶液室 9 6が設けられている。 そして 、 貯留室 8 1内には絶縁体からなる前記前壁 9 7を介して複数の電極 1の各電極 対、 正極 2及び負極 3が設けられている。 この各電極 1 (正極 2及び負極 3 ) の 基端部は貯留室 8 1から溶液室 9 6に貫通していて前壁 9 7に摺動自在に支持さ れている。 また、 各電極 1の中央部には前壁 9 7側に端面 1 1 4を有する段差が 設けられていて、 各電極 1はこの端面 1 1 4と前壁 9 7との間に介装されたバネ 1 1 0により前方 (貯留室 8 1から掘削対象物 Zの方) に付勢されている。 この 付勢力によって、 掘削作業中、 各電極 1は常に掘削対象物 Zに当接している。 ま た、 前壁 9 7のほぼ中央部にはバルブ室 1 2 0が設けられている。 さらに、 貯留 室 8 1の下面には排出口 1 1 1が設けられ、 シリンダ 1 1 2により開閉される排 出ゲ一卜 1 1 3が設けられている。 A sealing member 46 is attached to the front end of the outer peripheral wall of the crushing head 95A, and by contacting the sealing member 46 with the digging object Z, the digging object and the crushing object are crushed. A storage chamber 81 is formed between the outer peripheral wall of the head 95 mm and the front wall 97 that partitions between the front part and the rear part inside the crushing head 95A. In addition, a solution chamber 96 partitioned by an upper front wall 97 is provided at the rear inside the crushing head 95A. Then, in the storage chamber 81, each electrode pair of the plurality of electrodes 1, the positive electrode 2 and the negative electrode 3 are provided via the front wall 97 made of an insulator. The base end of each of the electrodes 1 (the positive electrode 2 and the negative electrode 3) penetrates from the storage chamber 81 to the solution chamber 96, and is slidably supported by the front wall 97. In addition, a step having an end face 114 on the front wall 97 side is provided at the center of each electrode 1, and each electrode 1 is interposed between this end face 114 and the front wall 97. Spring 110 is urged forward (from storage chamber 81 toward object Z to be excavated). Due to this urging force, each electrode 1 is always in contact with the object to be excavated Z during excavation work. Further, a valve chamber 120 is provided substantially at the center of the front wall 97. Further, a discharge port 111 is provided on the lower surface of the storage chamber 81, and a discharge gate 113 opened and closed by a cylinder 112 is provided.
図 3 3はバルブ室 1 2 0の詳細断面図である。 このバルブ室 1 2 0には、 溶液 室 9 6に連通する第 1連通孔 1 2 1 と、 貯留室 8 1に連通する第 2連通孔 1 2 2
とが設けられている。 また、 バルブ室 1 2 0内には先端 (ϋ宁留室 8 1側) にパル ブ 1 0 5を備えたバルブステム 1 2 3が設けられていて、 その後端部はバルブ室 1 2 0を貫通してソレノィ ド 1 2 4と係合している。 そして、 バルブステム 1 2 3はバネ 1 2 5により常に第 2連通孔 I 2 2側に付勢されており、 ソレノィ ド】 2 4に通電することよりバルブステム 1 2 3はソレノイ ド】 2 4側に移動して第 2連通孔 1 2 2を開閉するようになっている。 FIG. 33 is a detailed sectional view of the valve chamber 120. The valve chamber 120 has a first communication hole 12 1 communicating with the solution chamber 96, and a second communication hole 1 2 2 communicating with the storage chamber 81. Are provided. In the valve chamber 120, a valve stem 123 with a valve 105 is provided at the tip (the storage chamber 81 side), and the valve chamber 120 is provided at the rear end. Penetrates and engages solenoid 124. The valve stem 1 2 3 is always urged toward the second communication hole I 22 by the spring 1 2 5. When the solenoid 24] is energized, the valve stem 1 2 3 becomes the solenoid 2 4 Side to open and close the second communication hole 122.
次に、 掘削方法について説明する。 Next, the excavation method will be described.
( 1 ) 溶液送給管 7から溶液室 9 6に溶液 9を供給する。 (1) Solution 9 is supplied from solution supply pipe 7 to solution chamber 96.
( 2 ) 図 3 2に示すように、 破砕へッ ド 9 5 Αのシール部材 4 6を掘削対象物 Z に当接させて貯留室 8 1を形成する。 このとき、 電極 1の先端部は掘削対象物 Z に当接して押圧され、 パネ 1 1 0の付勢力に打ち勝って所定量後方に移動する。 したがって、 この付勢力により、 電極 1は掘削対象物 Zに常時当接する。 (2) As shown in FIG. 32, the sealing member 46 of the crushing head 95 Α is brought into contact with the excavated object Z to form the storage chamber 81. At this time, the tip of the electrode 1 is pressed against the excavation object Z, and overcomes the urging force of the panel 110 to move backward by a predetermined amount. Therefore, the electrode 1 is always in contact with the excavation target Z by this urging force.
( 3 ) ソレノイ ド 1 2 4を通電により作動させてバルブステム 1 2 3をソレノィ ド 1 2 4側に移動させ、 バルブ 1 0 5を開いて第 2連通孔 1 2 2を連通させる。 溶液室 9 6の溶液 9を所定量だけ第 1連通孔 1 2 1を経由して貯留室 8 1に供給 し、 電極 1の周囲に充塡する。 (3) Operate the solenoid 124 by energizing to move the valve stem 123 to the solenoid 124 side, open the valve 105 and communicate the second communication hole 122. A predetermined amount of the solution 9 in the solution chamber 96 is supplied to the storage chamber 81 via the first communication hole 122 to be charged around the electrode 1.
( 4 ) ソレノイ ド 1 2 4の通電を停止してバルブ 1 0 5を閉じ、 溶液 9の咛留室 8 1への供給を停止する。 (4) Turn off the solenoid 124 and close the valve 105 to stop supplying the solution 9 to the storage chamber 81.
( 5 ) パルス発生装置 1 0による高電圧パルスで電極 1に放電させ、 掘削対象物 Zを破砕する。 (5) Discharge the electrode 1 with a high voltage pulse from the pulse generator 10 to crush the excavation target Z.
( 6 ) 貯留室 8 1に破碎物が所定量貯留された後、 シリンダ 1 1 2により排出ゲ —卜 1 1 3を作動させ、 排出口 1 1 1を開いて破砕物を貯留室 8 1の外部に排出 する。 (6) After a predetermined amount of the crushed material is stored in the storage chamber 81, the discharge gate 113 is operated by the cylinder 111, and the discharge port 111 is opened to store the crushed material in the storage chamber 81. Discharge to the outside.
( 7 ) 排出ゲート 1 1 3を作動させて排出门 1 1 1を閉じる。 (7) Operate the discharge gate 1 1 3 and close the discharge 1 1 1.
( 8 ) 以上の ( 1 ) 〜 (7 ) の動作を繰り返して掘削を行う。 (8) Excavation is performed by repeating the above operations (1) to (7).
したがって、 破砕へッ ド 9 Γ) Aを掘削対象物 Zから離すことなく、 掘削作業を 行うことができ、 非常に効率的である。 また、 溶液 9の供給量を任意に調節可能
であり、 これにより、 破砕物を咛留室 8 】 の外部に排出するときの溶液 9の排出 量を少なくすることができてランニングコストを安くできる。 Therefore, crushing head 9 Γ) Excavation work can be performed without separating A from excavation target Z, which is very efficient. In addition, the supply amount of solution 9 can be adjusted arbitrarily Accordingly, the amount of the solution 9 discharged when the crushed material is discharged to the outside of the storage chamber 8] can be reduced, and the running cost can be reduced.
次に、 図 3 4により第 1 3実施形態の破砕へッ ド 9 5 Bを説明する。 Next, the crushing head 95B of the thirteenth embodiment will be described with reference to FIG.
本実施形態の構成は、 第 1 2実施形態とバルブ 1 0 5の開閉機構が異なるのみ なので、 同一の構成には同じ符号を付して説明を省略する。 The configuration of this embodiment is different from the first and second embodiments only in the opening / closing mechanism of the valve 105. Therefore, the same components are denoted by the same reference numerals and description thereof is omitted.
前壁 9 7のほぼ中央部には貯留室 8 i側に窪んだ凹部 9 8が設けられており、 この凹部 9 8には溶液室 9 6と貯留室 8 1とを連通する連通孔 9 9が設けられて いて、 その凹部 9 8の中央部にはバルブステム 1 3 0が摺動自在に配設されてい る。 At a substantially central portion of the front wall 97, a concave portion 98 is provided on the storage chamber 8i side, and a communication hole 9 9 for communicating the solution chamber 96 with the storage chamber 81 is formed in the concave portion 98. The valve stem 130 is slidably disposed at the center of the concave portion 98.
図 3 5は、 このバルブステム 1 3 0の周辺の断面詳細図である。 凹部 9 8の底 部中央には、 溶液室 9 6から聍留室 8 1へ貫通する貫通孔〗 3 3が設けられてい て、 この貫通孔 1 3 3にバルブステム 1 3 0の基端側が摺動自在に貫通している 。 このバルブステム 1 3 0の溶液室 9 6側の端部にはフランジ 1 3 4が設けられ ていて、 凹部 9 8近傍の前壁 9 7の溶液室 9 6側の面に対向するこのフランジ 1 FIG. 35 is a detailed sectional view of the periphery of the valve stem 130. At the center of the bottom of the concave portion 98, a through hole 33 extending from the solution chamber 96 to the storage chamber 81 is provided. In this through hole 133, the base end of the valve stem 130 is provided. It penetrates slidably. A flange 134 is provided at the end of the valve stem 130 on the solution chamber 96 side, and the flange 1 opposing the solution chamber 96 surface of the front wall 97 near the concave portion 98.
3 4の面には、 バルブ 1 0 5が設けられている。 また、 貯留室 8 1側に貫通した バルブステム 1 3 0の中間部にフランジ 1 3 2が設けられており、 このフランジA valve 105 is provided on the surface 34. In addition, a flange 13 is provided at an intermediate portion of the valve stem 130 which penetrates the storage chamber 8 1 side.
1 3 2と凹部 9 8の底部との間にはバネ 1 3 1が設けられていて、 このバネ 1 3A spring 1 3 1 is provided between 1 3 2 and the bottom of the concave portion 9 8.
1によりバルブステム 1 3 0は貯留室 8 1側に付勢されている。 そして、 バルブ ステム 1 3 0は、 先端が掘削対象物 Zに当接してこの付勢力に打ち勝って押圧さ れた場合には、 パネ 1 3 1を短縮しながら移動し、 バルブ 1 0 5が開いて溶液室By 1 the valve stem 130 is urged toward the storage chamber 81 side. If the tip of the valve stem 130 comes into contact with the object to be excavated Z and overcomes this urging force and is pressed, the valve stem 1310 moves while shortening the panel 131, and the valve 105 opens. Solution chamber
9 6と貯留室 8 1とが連通する。 また、 バルブステム 1 3 0は、 先端が掘削対象 物 Zから離れた場合には、 パネ 1 3 1の付勢力によって細い 2点鎖線に示す位置 に移動し、 バルブ 1 0 5は閉じるようになつている。 9 6 and the storage room 81 communicate with each other. When the tip of the valve stem 130 moves away from the object Z to be excavated, the valve stem 130 moves to a position shown by a thin two-dot chain line by the urging force of the panel 131, and the valve 105 closes. ing.
次に、 掘削方法について説明する。 Next, the excavation method will be described.
( 1 ) 溶液送給管 7から溶液 9を溶液室 9 6に供給する。 このとき、 バルブ 1 0 5は閉じており、 溶液 9は溶液室 9 6に貯留される。 (1) The solution 9 is supplied to the solution chamber 96 from the solution supply pipe 7. At this time, the valve 105 is closed, and the solution 9 is stored in the solution chamber 96.
( 2 ) 図 3 4に示すように、 破砕へッ ド 9 5 Bのシール部材 4 6を掘削対象物 Z
に当接させて貯留室 8 1を形成する。 このとき、 電極 1 (正極 2と負極 3の対) の先端部は掘削対象物 Zに当接し、 バネ 1 1 0を所定量短縮する。 と同時に、 バ ルブステム〗 3 0の先端も掘削対象物 Zに当接して押圧され、 パネ 1 3 iを短縮 してバルブ 1 0 5を開く。 これによつて、 溶液 9は溶液室 9 6から連通孔 9 9を 通って貯留室 8 1に供給され、 電極 1の周囲に充墳される。 (2) As shown in Fig. 34, the seal member 46 of the crushing head 95B was To form a storage chamber 81. At this time, the tip of the electrode 1 (the pair of the positive electrode 2 and the negative electrode 3) comes into contact with the excavation target Z, and the spring 110 is shortened by a predetermined amount. At the same time, the tip of the valve stem # 30 comes into contact with and is pressed against the excavated object Z, shortening the panel 13i and opening the valve 105. As a result, the solution 9 is supplied from the solution chamber 96 to the storage chamber 81 through the communication hole 99, and is charged around the electrode 1.
( 3 ) パルス発生装置 1 0による高電圧パルスで電極 1に放電させ、 掘削対象物 Zを破砕する。 (3) Discharge the electrode 1 with a high voltage pulse from the pulse generator 10 to crush the excavation target Z.
( 4 ) 貯留室 8 1に破砕物が所定量貯留した後に、 破砕へッ ド 9 5 Bを後方に移 動させ、 シール部材 4 6を掘削対象物 Zから離して破砕物を狞留室 8 1 の外部に 排出する。 このとき、 バルブステム ί 3 0は図 3 5の細い 2点鎖線に示すように 前方へ移動し、 バルブ〗 0 5は閉じて溶液 9の貯留室 8 〗への供給を停止させる (4) After a predetermined amount of the crushed material is stored in the storage room 81, the crushing head 95B is moved backward, the seal member 46 is separated from the excavation target Z, and the crushed material is stored. Discharge to outside of 1. At this time, the valve stem ί30 moves forward as shown by the thin two-dot chain line in FIG.35, and the valve〗 05 closes to stop the supply of the solution 9 to the storage chamber 8〗.
( 5 ) 以上の ( 1 ) ~ ( 4 ) までの作動を繰り返して掘削する。 (5) Excavation is performed by repeating the above operations (1) to (4).
したがって、 破砕物排出時に排出される溶液 9の量は少なくてすみ、 ランニン グコス卜を安くできる。 Therefore, a small amount of the solution 9 is discharged when the crushed material is discharged, and the running cost can be reduced.
以上説明したように、 本発明は地中掘進機の先端部や掘削機の掘削へッ ド内に 設けた電極周囲に、 電解液等の溶液 9を確実に充填して保水できるようにしてい る。 この結果、 岩盤等の破砕物自体の中に電気を放電させたり、 あるいは、 溶液 の中での放電により溶液中で衝撃波を発生させたりすることによって、 効率良く 電気破砕を行うことが可能となる。 As described above, the present invention ensures that a solution 9 such as an electrolytic solution is filled around an electrode provided at the tip of an underground excavator or an excavation head of an excavator so that water can be retained. . As a result, it is possible to efficiently perform electric crushing by discharging electricity into the crushed material itself such as bedrock or generating a shock wave in the solution by discharging in the solution. .
すなわち、 岩石等の破砕物自体の中に電気を放電させて効率良く破砕すること は、 電極に印加するパルス電圧の上昇時間を適切に設定することにより可能とな る。 例えば、 図 3 6は、 印加パルス電圧の上昇時間と、 このパルス電圧を印加し たときの各絶緣物の絶縁耐圧との一般的な関係を示している。 ここで、 横軸は印 加パルス電圧の上昇時間 (通常、 パルス電圧の最大値の 1 0 %から 9 0 %まで上 昇するのに要する時間で示される) を、 縦軸は絶緣耐圧を表しており、 また横軸 を対数 [3盛りとした片対数で表している。 同図において、 曲線 I 4 1、 1 4 2、
1 4 3はそれぞれ水、 大理石、 砂岩の特性を表している。 同図でも分かるように 、 溶液として例えば水を使用した場合、 大理石や砂岩等の岩石の絶縁耐圧は、 パ ルス電圧の上昇時間が短いとき、 水よりも小さい絶縁耐圧を有している。 したが つて、 このときは、 溶液 (水) よりも岩石の方に放電電流が流れ易くなり、 よつ て、 破砕開始時に岩石に穴を掘削して岩石の破砕能率を高めたり、 あるいは、 岩 石を深く破砕するのに適している。 また、 上記において、 パルス電圧の上昇時間 が長いとき、 大理石や砂岩等の岩石の絶縁耐圧は水よりも大きい絶縁耐圧を有し ている。 したがって、 このときは、 岩石より溶液 (水) の方に放電電流が流れ易 くなり、 よって、 溶液中で発生する衝撃波によって広範囲に破砕するのに適して いる。 In other words, efficient crushing by discharging electricity into the crushed material itself, such as rocks, can be achieved by appropriately setting the rise time of the pulse voltage applied to the electrodes. For example, FIG. 36 shows a general relationship between the rise time of the applied pulse voltage and the dielectric strength of each insulator when the pulse voltage is applied. Here, the horizontal axis represents the rise time of the applied pulse voltage (usually indicated by the time required to rise from 10% to 90% of the maximum value of the pulse voltage), and the vertical axis represents the absolute withstand voltage. In addition, the horizontal axis represents the logarithm [3 logarithms with semilogarithm. In the figure, curves I 4 1, 1 4 2, 143 represent the characteristics of water, marble and sandstone, respectively. As can be seen from the figure, when, for example, water is used as the solution, the withstand voltage of rocks such as marble and sandstone is smaller than that of water when the rise time of the pulse voltage is short. Therefore, in this case, the discharge current is more likely to flow in the rock than in the solution (water), so that a hole is drilled in the rock at the start of crushing to increase the crushing efficiency of the rock, or Suitable for crushing stones deeply. In the above, when the rise time of the pulse voltage is long, the withstand voltage of rocks such as marble and sandstone has a higher withstand voltage than water. Therefore, in this case, the discharge current flows more easily in the solution (water) than in the rock, and it is suitable for crushing over a wide area by the shock wave generated in the solution.
このように、 同一の溶液を使用している場合でも、 印加するパルス電圧の上昇 時間と、 この上昇時間に対する、 破砕対象としている岩石等の成分の絶縁耐圧と 、 溶液の絶縁耐圧との関係から、 印加するパルス電圧の上昇時間を変化させるこ とによって放電電流の経路を選択できる。 これによつて、 溶液中で放電させるか 、 あるいは、 岩石中で放電させるかが選択可能となる。 この結果、 効率的に電気 破砕による地中掘進や岩盤の掘削等を行うことができる。 産業上の利用可能性 Thus, even when the same solution is used, the relationship between the rise time of the applied pulse voltage, the withstand voltage of the component such as rock to be crushed, and the withstand voltage of the solution with respect to this rise time The path of the discharge current can be selected by changing the rise time of the applied pulse voltage. This makes it possible to select whether to discharge in a solution or in rock. As a result, underground excavation or rock excavation can be efficiently performed by electric crushing. Industrial applicability
本発明は、 地中掘進機の先端部や掘削機の掘削へッ ド内に設けた電極周囲に、 電解液等の溶液を確実に充塡し、 効率良く保水できる電気破砕を行うことができ るため、 特に横方向の穴を破砕又は掘削する地中掘進機、 及び掘削機とその掘削 方法として有用である。
According to the present invention, it is possible to reliably fill a solution such as an electrolytic solution around an electrode provided in a tip portion of an underground excavator or an excavation head of an excavator to perform electro-crushing capable of efficiently retaining water. Therefore, it is especially useful as an underground excavator for crushing or excavating horizontal holes, and as an excavator and its excavation method.