WO1998007220A1 - Electrode for spark plugs of internal combustion engines and process for manufacturing the same - Google Patents

Electrode for spark plugs of internal combustion engines and process for manufacturing the same Download PDF

Info

Publication number
WO1998007220A1
WO1998007220A1 PCT/DE1997/001637 DE9701637W WO9807220A1 WO 1998007220 A1 WO1998007220 A1 WO 1998007220A1 DE 9701637 W DE9701637 W DE 9701637W WO 9807220 A1 WO9807220 A1 WO 9807220A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
protection layer
wear protection
coating
tip
Prior art date
Application number
PCT/DE1997/001637
Other languages
German (de)
French (fr)
Inventor
Andreas Niegel
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP97936587A priority Critical patent/EP0860043B1/en
Priority to BR9706642A priority patent/BR9706642A/en
Priority to DE59709228T priority patent/DE59709228D1/en
Priority to JP10509285A priority patent/JPH11514145A/en
Publication of WO1998007220A1 publication Critical patent/WO1998007220A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs

Definitions

  • the invention is based on an electrode for spark plugs with an electrode base made of metal, and a method for their production. From DE 36 12 135 AI an electrode is in particular middle and / or
  • Ground electrode for igniting flammable mixtures in which the surface acting as a spark transfer surface has an electrically conductive, particularly erosion-resistant and well-adhering first coating and a second coating that the first coating has a slight
  • Electron work function mediated The coating takes place in the plasma spraying process.
  • Common spark plugs generally have a center electrode and a ground electrode, the tips of the two electrodes being arranged in relation to one another in such a way that a spark gap is left free. Due to the constant generation of sparks between the two electrodes, the tips are subject to considerable wear. This problem places high demands on the temperature resistance,
  • Phase can be complex for production.
  • the intermetallic phases show a very brittle behavior. If intermetallic phases level, the resistance to corrosion and oxidation is considerably reduced.
  • Wear protection layer is applied by means of laser powder coating, its use in production is considerably easier and allows the combination of chemically different materials with little mutual mixing.
  • Laser powder coating also occasionally called
  • Laser spraying allows the wear protection layer to be applied in one layer in a single step. With this method, very good adhesion is achieved on all materials of the electrodes, which generally consist of a composite material (copper core with a coating based on a nickel alloy).
  • the laser coating process has the advantage that it can be used to apply strictly limited and precise coatings.
  • the measures listed in the subclaims permit advantageous developments and improvements of the electrodes for spark plugs specified in the main claim. It is particularly advantageous that a wide variety of materials can be applied as corrosion protection for the electrode tip. Materials such as metals, alloys of metals, metal ceramics, or oxides, etc. are conceivable.
  • Partial areas of the electrodes are coated, such as electrode tips, electrode jacket areas, electrode areas with notches or conical recesses.
  • FIG. 1 shows the schematic production sequence for producing an electrode for spark plugs with a corrosion-resistant coating
  • FIG. 2 and FIG. 3 show two examples of coated electrode bodies.
  • the invention uses a modern coating method for the production of wear protection layers such. B. for spark plug electrodes.
  • Thermal spraying as a modern surface technology offers a wide range of applications.
  • components made from a wide variety of basic materials can be made of metal, with layers of refractory metals, oxides and metal ceramics for protection against wear and corrosion.
  • Almost all coating materials that can be produced in powder form can be processed.
  • the Spray additive is fed to a high-energy heat source and melted.
  • the molten particles of the coating material are accelerated towards a substrate and usually hit at high speed to form a layer.
  • the substrate is only subjected to a low thermal load during the process.
  • the spray jet is spatially very limited in all processes, but there are considerable spray losses.
  • Laser spraying in which the coating material is slowly blown into the focus area of a laser beam using a carrier gas. At the same time, the substrate is melted by the laser beam, so that there is a connection between the substrate and the coating material in the melt.
  • Laser spraying is characterized by the fact that it is a real one-step process. Previously, a workpiece surface was first coated and then treated in a second step with the help of a laser beam. This procedure combines both steps. Laser spraying is mostly used with CO 2 lasers with a net output of a few kilowatts. Thermally sprayed layers are characterized by layer thicknesses in the range from 100 ⁇ m to a few mm, whereby the binding mechanism is based either on mechanical clamping, adhesion, diffusion, chemical bonding or electrostatic forces.
  • Laser powder coatings can be used to protect electrodes made of various base materials with wear protection layers made of refractory metals, alloys, metal ceramics and other compounds (silicides, oxides, aluminides, borides, nitrides, carbides) against spark erosion wear and corrosion wear. This is especially the copper, which is otherwise difficult to coat, which is the good heat conductor of the core of an electrode Composite material forms easily coatable by means of laser powder coating.
  • the alloys NiCrjiAinYcs and RuAln have proven particularly suitable for the coating and particularly wear-resistant. After thermal shock testing and running time tests, these materials have significantly improved stability compared to previously used wear protection layers.
  • Figure 1 shows the schematic manufacturing process for the manufacture of spark plug electrodes from a composite wire.
  • the nickel-coated copper wire the starting material for the electrodes
  • Station S2 produces the dimensionally accurate wire sections 1 which are upset in station S3 in order to produce the electrode seat 8.
  • the wear-resistant layer is applied with a laser after the basic electrode body has been assembled.
  • the electrode, which is now fully coated, is post-treated, and burrs, e.g. B. removed by grinding. The electrode is installed in the ceramic body after its completion.
  • FIG. 2 shows a center electrode 1 which was coated by the method according to the invention from FIG. 1. It can be seen that even thin layers can be applied very precisely with this method. The geometry of the workpieces is also irrelevant. The coating takes place before the electrode is installed in the ceramic body. At the transition point 5 between the coating 4 and the electrode body 1 there are well separated phases between
  • Electrode body and coating which has a thickness of 0.5 mm, for example.
  • the electrode base body must be configured for the coating in the area of the coating.
  • the nickel-coated copper wire is reduced to a reduced or non-cutting Brought diameter. Care must be taken to ensure that the copper core is not exposed, otherwise there will be signs of corrosion. If, as in FIG. 2, the end face is not to be coated, a thermal process with strong beam bundling must be used, ie laser or
  • Electron beam pointed process A plasma jet would result in a too wide thermal range.
  • the counter electrode 3, which is installed in the candle housing 2 can also be provided with a coating, which in this example is applied in a conical depression 7.
  • the coating can be carried out after the electrode has been installed in the housing, if a laser spraying process is used.
  • center electrodes In addition to the coating processes for center electrodes, other electrodes can also be provided with wear protection layers. Almost any geometric shape can be coated. End or outer surface coatings of extruded center electrodes, coatings of profiled wires for ground electrodes, or coatings of electrode blanks or plates can be carried out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spark Plugs (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

A spark plug for internal combustion engines is disclosed. At least one of the electrodes of the spark plug is protected, in particular wear-protected, by an anti-wear layer applied by laser powder coating.

Description

El ktrode für Zündkerzen für Brennkraftmaschinen und Verfahren zu ihrer HerstellungEl ktrode for spark plugs for internal combustion engines and process for their manufacture
Stand der TechnikState of the art
Die Erfindung geht aus von einer Elektrode für Zündkerzen mit einem Elektrodengrundkörper aus Metall, sowie einem Verfahren zu ihrer Herstellung. Aus der DE 36 12 135 AI ist bereits eine Elektrode insbesondere Mittel- und/oderThe invention is based on an electrode for spark plugs with an electrode base made of metal, and a method for their production. From DE 36 12 135 AI an electrode is in particular middle and / or
Masseelektrode zum Zünden brennbarer Gemische bekannt, bei welcher die als Funkenübergangsfläche wirkende Oberfläche eine elektrisch leitende, besonders abbrandfeste und gut haftende erste Beschichtung und eine zweite Beschichtung aufweist, die der ersten Beschichtung eine geringeGround electrode for igniting flammable mixtures is known, in which the surface acting as a spark transfer surface has an electrically conductive, particularly erosion-resistant and well-adhering first coating and a second coating that the first coating has a slight
Elektronen-Austrittsarbeit vermittelt. Die Beschichtung erfolgt im Plasmaspritzverfahren.Electron work function mediated. The coating takes place in the plasma spraying process.
Gängige Zündkerzen besitzen in der Regel eine Mittelelektrode und eine Masseelektrode, wobei die Spitzen beider Elektroden so zueinander angeordnet sind, daß eine Funkenstrecke frei gelassen ist . Durch die dauernde Funkenerzeugung zwischen beiden Elektroden unterliegen die Spitzen einem erheblichen Verschleiß. Dieses Problem stellt hohe Anforderung an die Temperaturfestigkeit,Common spark plugs generally have a center electrode and a ground electrode, the tips of the two electrodes being arranged in relation to one another in such a way that a spark gap is left free. Due to the constant generation of sparks between the two electrodes, the tips are subject to considerable wear. This problem places high demands on the temperature resistance,
Korrosionsbeständigkeit und Wärmeausdehnungscharakteristik der Elektrodenspitze dar. Funkenerosion und Oxidationserscheinungen führen ebenfalls zu erheblichen Beanspruchungen. Aus der DE 40 39 778 ist ein Verfahren zur Beschichtung der Elektrodenspitzen mit korrosionsfesten Materialien bekannt. Nach dieser Druckschrift werden Elektrodengrundkörper oder auch nur die Elektrodenspitzen mit einer intermetallischen Phase versehen. Diese Herstellung der intermetallischenCorrosion resistance and thermal expansion characteristics of the electrode tip. Spark erosion and oxidation phenomena also lead to considerable stress. A method for coating the electrode tips with corrosion-resistant materials is known from DE 40 39 778. According to this publication, electrode base bodies or only the electrode tips are provided with an intermetallic phase. This manufacture of the intermetallic
Phase kann für die Produktion aufwendig sein. Darüber hinaus zeigen die intermetallischen Phasen ein sehr sprödes Verhalten. Im Falle des egierens von intermetallischen Phasen wird die Korrosions- und Oxidationsbeständigkeit erheblich herabgesetzt.Phase can be complex for production. In addition, the intermetallic phases show a very brittle behavior. If intermetallic phases level, the resistance to corrosion and oxidation is considerably reduced.
Vorteile der ErfindungAdvantages of the invention
Die erfindungsgemäße Elektrode mit den Merkmalen der nebengeordneten Ansprüche hat den Vorteil, daß dieThe electrode of the invention with the features of the independent claims has the advantage that
Verschleißschutzschicht mittels Laserpulverbeschichtung aufgebracht wird, dessen Einsatz in der Produktion erheblich einfacher ist und den Verbund chemisch unterschiedlicher Werkstoffe mit geringer gegenseitiger Aufmischung erlaubt. Das Laserpulverbeschichten (auch gelegentlich alsWear protection layer is applied by means of laser powder coating, its use in production is considerably easier and allows the combination of chemically different materials with little mutual mixing. Laser powder coating (also occasionally called
Laserspritzen bezeichnet) erlaubt die Aufbringung der Verschleißschutzschicht einlagig in einem einzigen Arbeitsschritt . Es wird mit diesem Verfahren eine sehr gute Haftung auf allen Materialien der Elektroden, die in der Regel aus einem Verbundmaterial (Kupferkern mit Ummantelung auf Basis einer Nickellegierung) bestehen, erreicht. Das Laser-Beschichtungsverfahren hat den Vorteil, daß damit streng begrenzte und punktgenaue Beschichtungen aufgebracht werden können.Laser spraying) allows the wear protection layer to be applied in one layer in a single step. With this method, very good adhesion is achieved on all materials of the electrodes, which generally consist of a composite material (copper core with a coating based on a nickel alloy). The laser coating process has the advantage that it can be used to apply strictly limited and precise coatings.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Elektroden für Zündkerzen möglich. Besonders vorteilhaft ist es, daß unterschiedlichste Materialien als Korrosionsschutz für die Elektrodenspitze aufgebracht werden können. Dabei sind mit Materialien wie Metalle, Legierungen von Metallen, Metallkeramiken, oder Oxide usw. denkbar.The measures listed in the subclaims permit advantageous developments and improvements of the electrodes for spark plugs specified in the main claim. It is particularly advantageous that a wide variety of materials can be applied as corrosion protection for the electrode tip. Materials such as metals, alloys of metals, metal ceramics, or oxides, etc. are conceivable.
Dabei werden Teilbereiche der Elektroden beschichtet, wie Elektrodenspitzen, Elektrodenmantelbereiche , Elektrodenflächen mit Einkerbungen oder kegelförmigen Aussparungen.Partial areas of the electrodes are coated, such as electrode tips, electrode jacket areas, electrode areas with notches or conical recesses.
Zeichnungdrawing
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert . Es zeigt Figur 1 den schematischen Produktionsablauf zur Herstellung einer Elektrode für Zündkerzen mit einer korrosionsfesten Beschichtung, Figur 2 und Figur 3 zwei Beispiele für beschichtete Elektrodenkörper.Embodiments of the invention are shown in the drawing and explained in more detail in the following description. FIG. 1 shows the schematic production sequence for producing an electrode for spark plugs with a corrosion-resistant coating, FIG. 2 and FIG. 3 show two examples of coated electrode bodies.
Beschreibung des AusführungsbeispielsDescription of the embodiment
Die Erfindung verwendet ein modernes Beschichtungsverfahren zur Herstellung von Verschleißschutzschichten z. B. für Zündkerzenelektroden. Das thermische Spritzen als moderne Oberflächentechnologie bietet dabei vielfältige Anwendungsmöglichkeiten. Damit lassen sich Bauteile aus verschiedensten Grundstoffen im erfindungsgemäßen Fall aus Metall, mit Schichten aus hochschmelzenden Metallen, Oxiden und Metallkeramiken zum Schutz vor Verschleiß und Korrosion versehen. Es können nahezu alle Beschichtungswerkstoffe, die in Pulverform herstellbar sind, verarbeitet werden. Der Spritzzusatz wird einer energiereichen Wärmequelle zugeführt und aufgeschmolzen. Die schmelzflüssigen Partikel des Beschichtungsstoffes werden in Richtung eines Substrats beschleunigt und treffen mit meist hoher Geschwindigkeit auf, um eine Schicht zu bilden. Das Substrat unterliegt während des Prozesses in der Regel einer nur geringen thermischen Belastung. Der Spritzstrahl ist bei allen Verfahren räumlich stark begrenzt, dennoch liegen erhebliche Spritzverluste vor. Eine Ausnahme bildet da das Laserspritzen, bei welchem der Beschichtungswerkstoff mit Hilfe eines Trägergases langsam in den Fokusbereich eines Laserstrahls geblasen wird. Gleichzeitig wird durch den Laserstrahl das Substrat aufgeschmolzen, so daß in der Schmelze eine Verbindung zwischen Substrat und Beschichtungswerkstoff entsteht. Das Laserspritzen zeichnet sich dadurch aus, daß es sich um ein echtes Einstufenverfahren handelt . Bisher wurde eine Werkstückoberfläche zunächst beschichtet und anschließend in einem zweiten Arbeitsgang mit Hilfe eines Laserstrahls nachbehandelt. Bei diesem Verfahren werden beide Schritte kombiniert. Das Laserspritzen wird zumeist mit Cθ2~Laser mit Nettoleistungen von einigen Kilowatt eingesetzt. Thermisch gespritzte Schichten zeichnen sich durch Schichtdicken im Bereich von 100 μm bis zu einigen mm aus, wobei der Bindungsmechanismus entweder auf mechanischer Verklammerung, Adhäsion, Diffusion, chemischer Bindung oder elektrostatischen Kräften beruht . Mit demThe invention uses a modern coating method for the production of wear protection layers such. B. for spark plug electrodes. Thermal spraying as a modern surface technology offers a wide range of applications. In this way, components made from a wide variety of basic materials can be made of metal, with layers of refractory metals, oxides and metal ceramics for protection against wear and corrosion. Almost all coating materials that can be produced in powder form can be processed. The Spray additive is fed to a high-energy heat source and melted. The molten particles of the coating material are accelerated towards a substrate and usually hit at high speed to form a layer. As a rule, the substrate is only subjected to a low thermal load during the process. The spray jet is spatially very limited in all processes, but there are considerable spray losses. An exception to this is laser spraying, in which the coating material is slowly blown into the focus area of a laser beam using a carrier gas. At the same time, the substrate is melted by the laser beam, so that there is a connection between the substrate and the coating material in the melt. Laser spraying is characterized by the fact that it is a real one-step process. Previously, a workpiece surface was first coated and then treated in a second step with the help of a laser beam. This procedure combines both steps. Laser spraying is mostly used with CO 2 lasers with a net output of a few kilowatts. Thermally sprayed layers are characterized by layer thicknesses in the range from 100 μm to a few mm, whereby the binding mechanism is based either on mechanical clamping, adhesion, diffusion, chemical bonding or electrostatic forces. With the
Laserpulverbeschichten können Elektroden aus verschiedenen Grundwerkstoffen mit Verschleißschutzschichten aus hochschmelzenden Metallen, Legierungen, Metallkeramiken und anderen Verbindungen (Silizide, Oxide, Aluminide, Boride, Nitride, Carbide) gegen Funkenerrosionsverschleiß und Korrosionsverschleiß versehen werden. Hierbei ist besonders das sonst nur unter schwer zu beschichtende Kupfer, welches als guter Wärmeleiter den Kern einer Elektrode aus Verbundmaterial bildet, mittels Laserpulverbeschichten gut beschichtbar. Besonders geeignet für die Beschichtung und besonders verschleißfest haben sich die Legierungen NiCrjiAinYcs und RuAln erwiesen. Diese Materialien weisen nach Thermoschockprüfung und LaufZeituntersuchungen eine deutlich verbesserte Standfestigkeit im Vergleich zu bisher verwendeten Verschleißschutzschichten auf.Laser powder coatings can be used to protect electrodes made of various base materials with wear protection layers made of refractory metals, alloys, metal ceramics and other compounds (silicides, oxides, aluminides, borides, nitrides, carbides) against spark erosion wear and corrosion wear. This is especially the copper, which is otherwise difficult to coat, which is the good heat conductor of the core of an electrode Composite material forms easily coatable by means of laser powder coating. The alloys NiCrjiAinYcs and RuAln have proven particularly suitable for the coating and particularly wear-resistant. After thermal shock testing and running time tests, these materials have significantly improved stability compared to previously used wear protection layers.
Figur 1 zeigt den schematischen Fertigungsablauf zur Fertigung von Zündkerzenelektroden aus einem Verbunddraht.Figure 1 shows the schematic manufacturing process for the manufacture of spark plug electrodes from a composite wire.
In der Station SI wird der nickelummantelte Kupferdraht, das Ausgangsmaterial für die Elektroden, von einer Rolle abgezogen und kalibriert. Station S2 stellt die maßgenauen Drahtabschnitte 1 her, die in Station S3 angestaucht werden, um den Elektrodensitz 8 herzustellen. In Station S4 wird mit einem Laser die verschleißfeste Schicht aufgebracht, nachdem der Elektrodengrundkörper konfektioniert wurde. In einer letzten Station S5 wird die Elektrode, die nun fertig beschichtet vorliegt, nachbehandelt, und Grate z. B. durch Abschleifen entfernt. Die Elektrode wird nach ihrer Fertigstellung in den Keramikkörper verbaut.In the SI station, the nickel-coated copper wire, the starting material for the electrodes, is pulled off a roll and calibrated. Station S2 produces the dimensionally accurate wire sections 1 which are upset in station S3 in order to produce the electrode seat 8. In station S4, the wear-resistant layer is applied with a laser after the basic electrode body has been assembled. In a last station S5, the electrode, which is now fully coated, is post-treated, and burrs, e.g. B. removed by grinding. The electrode is installed in the ceramic body after its completion.
Figur 2 zeigt eine Mittelelektrode 1, die nach dem erfindungsgemäßen Verfahren aus Fig. 1 beschichtet wurde. Man erkennt, daß mit diesem Verfahren sehr präzise auch dünne Schichten aufgebracht werden können. Dabei spielt auch die Geometrie der Werkstücke keine Rolle. Die Beschichtung erfolgt vor dem Einbau der Elektrode in den Keramikkörper. An der Übergangsstelle 5 zwischen Mantelbeschichtung 4 und Elektrodenkörper 1 gibt es gut getrennte Phasen zwischenFIG. 2 shows a center electrode 1 which was coated by the method according to the invention from FIG. 1. It can be seen that even thin layers can be applied very precisely with this method. The geometry of the workpieces is also irrelevant. The coating takes place before the electrode is installed in the ceramic body. At the transition point 5 between the coating 4 and the electrode body 1 there are well separated phases between
Elektrodenkörper und Beschichtung, die beispielsweise einen Dicke von 0,5 mm aufweist. Der Elektrodengrundkörper muß im Bereich der Beschichtung für die Beschichtung konfiguriert werden. Im Beispiel der Fig. 2 wird der nickelummantelte Kupferdraht spanend oder nichtspanend auf einen reduzierten Durchmesser gebracht. Dabei muß darauf geachtet werden, daß der Kupferkern nicht bloßgelegt wird, da es sonst zu Korrosionserscheinungen kommt. Soll, wie in Fig. 2, die Stirnfläche nicht beschichtet werden, muß ein thermisches Verfahren mit einer starken Bündelung des Strahles eingesetzt werden, d. h. Laser- oderElectrode body and coating, which has a thickness of 0.5 mm, for example. The electrode base body must be configured for the coating in the area of the coating. In the example of FIG. 2, the nickel-coated copper wire is reduced to a reduced or non-cutting Brought diameter. Care must be taken to ensure that the copper core is not exposed, otherwise there will be signs of corrosion. If, as in FIG. 2, the end face is not to be coated, a thermal process with strong beam bundling must be used, ie laser or
Elektronenstrahlspitzverfahren. Ein Plasmastrahl ergäbe einen zu breiten thermischen Bereich.Electron beam pointed process. A plasma jet would result in a too wide thermal range.
Wie in Figur 3 zu sehen, kann auch die Gegenelektrode 3, die im Kerzengehäuse 2 installiert ist, mit einer Beschichtung, die in diesem Beispiel in einer kegelförmigen Vertiefung 7 aufgebracht wird, versehen werden. Hier kann die Beschichtung vorgenommen werden, nachdem die Elektrode im Gehäuse verbaut ist, wenn man ein Laserspritzverfahren einsetzt.As can be seen in FIG. 3, the counter electrode 3, which is installed in the candle housing 2, can also be provided with a coating, which in this example is applied in a conical depression 7. Here the coating can be carried out after the electrode has been installed in the housing, if a laser spraying process is used.
über die Beschichtungsverfahren für Mittelelektroden hinaus, können auch andere Elektroden mit Verschleißschutzschichten versehen werden. Hierbei ist die Beschichtung fast jeder geometrischen Form möglich. Es können Stirn- oder MantelflächenbeSchichtungen von fließgepreßten Mittelelektroden, Beschichtungen von Profildrähten für Masseelektroden, oder Beschichtungen von Elektrodenronden oder -platinen vorgenommen werden. In addition to the coating processes for center electrodes, other electrodes can also be provided with wear protection layers. Almost any geometric shape can be coated. End or outer surface coatings of extruded center electrodes, coatings of profiled wires for ground electrodes, or coatings of electrode blanks or plates can be carried out.

Claims

Ansprüche Expectations
1. Elektrode für Zündkerzen für Brennkraftmaschinen mit einer auf der Elektrode aufgebrachten1. Electrode for spark plugs for internal combustion engines with one applied to the electrode
Verschleißschutzschicht, dadurch gekennzeichnet, daß für das Beschichten der Elektrode ein Laser als thermische Quelle dient und die Verschleißschutzschicht unter Verwendung pulverförmigen Bechichtungsmaterials mittels Laserpulverbeschichten in einem Arbeitsschritt auftragbar ist.Wear protection layer, characterized in that a laser serves as a thermal source for coating the electrode and the wear protection layer can be applied in one work step using powdered coating material by means of laser powder coating.
2. Elektrode nach Anspruch 1, dadurch gekennzeichnet, daß die Verschleißschutzschicht aus Metallen oder aus Legierungen von Metallen, vorzugsweise aus Nickellegierungen oder Edelmetallverbindungen besteht .2. Electrode according to claim 1, characterized in that the wear protection layer consists of metals or alloys of metals, preferably of nickel alloys or noble metal compounds.
3. Elektrode nach Anspruch 1, dadurch gekennzeichnet, daß die Verschleißschutzschicht aus Metallkeramiken besteht.3. Electrode according to claim 1, characterized in that the wear protection layer consists of metal ceramics.
4. Elektrode nach Anspruch 1, dadurch gekennzeichnet, daß die Verschleißschutzschicht aus Metallverbindungen bestehen.4. Electrode according to claim 1, characterized in that the wear protection layer consist of metal compounds.
5. Elektrode nach Anspruch 1, dadurch gekennzeichnet, daß die Stirnfläche und/oder die Mantelfläche an der Spitze einer Mittelelektrode mit einer Verschleißschutzschicht versehen ist.5. Electrode according to claim 1, characterized in that the end face and / or the outer surface is provided with a wear protection layer at the tip of a central electrode.
6. Elektrode nach Anspruch 1, dadurch gekennzeichnet, daß eine angephasten Fläche an der Spitze und/oder die Stirnfläche einer Massenelektrode mit einer Verschleißschutzschicht versehen ist. 6. Electrode according to claim 1, characterized in that a chamfered surface at the tip and / or the end face of a mass electrode is provided with a wear protection layer.
7. Elektrode nach Anspruch 1, dadurch gekennzeichnet, daß eine kegelförmig vertiefte Fläche an der Spitze einer Massenelektrode mit einer Verschleißschutzschicht versehen ist.7. Electrode according to claim 1, characterized in that a conically recessed surface at the tip of a mass electrode is provided with a wear protection layer.
8. Verfahren zur Herstellung einer Elektrode für Zündkerzen für Brennkraftmaschinen mit einer auf der Elektrode aufgebrachten Verschleißschutzschicht mit folgenden Verfahrensschritten: a) Kalibrieren des als Ausgangsmaterial für die Elektroden dienenden Grunddrahtes b) Abscheren maßgenauer Abschnitte c) Anstauchen der Elektrodenspitze und Konfektionieren der zu beschichtenden Fläche d) Aufbringen der Verschleißschutzschicht mit Laserpulverbeschichten e) Nachbehandlung 8. A method for producing an electrode for spark plugs for internal combustion engines with a wear protection layer applied to the electrode, with the following process steps: a) calibrating the base wire serving as the starting material for the electrodes b) shearing off dimensionally accurate sections c) upsetting the electrode tip and assembling the surface to be coated d ) Applying the wear protection layer with laser powder coatings e) Post-treatment
PCT/DE1997/001637 1996-08-08 1997-08-02 Electrode for spark plugs of internal combustion engines and process for manufacturing the same WO1998007220A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP97936587A EP0860043B1 (en) 1996-08-08 1997-08-02 Process for deposition and manufacturing electrodes for spark plugs of internal combustion engines
BR9706642A BR9706642A (en) 1996-08-08 1997-08-02 Electrode for spark plugs for internal combustion engines and process for their production
DE59709228T DE59709228D1 (en) 1996-08-08 1997-08-02 METHOD FOR COATING AND PRODUCING AN ELECTRODE FOR SPARK PLUGS FOR INTERNAL COMBUSTION ENGINES
JP10509285A JPH11514145A (en) 1996-08-08 1997-08-02 Electrode for spark plug for internal combustion engine and method of making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19631985A DE19631985A1 (en) 1996-08-08 1996-08-08 Electrode with a wear-resistant coating, spark plug and process for its manufacture
DE19631985.4 1996-08-08

Publications (1)

Publication Number Publication Date
WO1998007220A1 true WO1998007220A1 (en) 1998-02-19

Family

ID=7802101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/001637 WO1998007220A1 (en) 1996-08-08 1997-08-02 Electrode for spark plugs of internal combustion engines and process for manufacturing the same

Country Status (7)

Country Link
EP (1) EP0860043B1 (en)
JP (1) JPH11514145A (en)
CN (1) CN1198848A (en)
BR (1) BR9706642A (en)
DE (2) DE19631985A1 (en)
HU (1) HUP9901495A3 (en)
WO (1) WO1998007220A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11870222B2 (en) 2021-05-04 2024-01-09 Federal-Mogul Ignition Gmbh Spark plug electrode and method of manufacturing the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19939319B4 (en) * 1999-07-29 2004-05-06 Robert Bosch Gmbh Spark plug for an internal combustion engine
DE10120563A1 (en) * 2001-04-03 2002-11-07 Phoenix Contact Gmbh & Co Surge protection element and surge protection device
JP4069826B2 (en) * 2003-07-30 2008-04-02 株式会社デンソー Spark plug and manufacturing method thereof
DE10348778B3 (en) * 2003-10-21 2005-07-07 Robert Bosch Gmbh Sparking plug electrode has a primary material combined with 2-20 per cent secondary material in powder pure metal form
DE102004023459A1 (en) 2004-05-12 2005-12-15 Beru Ag Method for producing a spark plug
DE102005018674A1 (en) * 2005-04-21 2006-10-26 Robert Bosch Gmbh Electrode for a spark plug
CN101064414B (en) * 2006-04-28 2010-11-03 柳孟柱 Compound center electrode of vehicle plug and its preparing method
DE102010004345B4 (en) 2010-01-11 2018-02-22 Viessmann Werke Gmbh & Co Kg Electrode for flame monitoring on a heating burner
JP5755373B2 (en) 2012-08-09 2015-07-29 日本特殊陶業株式会社 Spark plug
DE102015115746B4 (en) 2015-09-17 2017-04-27 Federal-Mogul Ignition Gmbh A method of manufacturing a spark plug ignition electrode and spark plug made therewith

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947654A (en) * 1973-10-24 1976-03-30 Sirius Corporation Method of generating laser-radio beam
DE3612135A1 (en) * 1986-04-10 1987-10-15 Kuno Dr Ing Kirner Electrode for igniting combustible mixtures of gases and vapours
DE4039778C1 (en) * 1990-12-13 1992-05-14 Robert Bosch Gmbh, 7000 Stuttgart, De

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE686426C (en) * 1938-02-12 1940-01-10 Wippermann Jr Akt Ges Process for the production of an erosion-proof protective coating on spark plug electrodes
JPH05234662A (en) * 1991-12-27 1993-09-10 Ngk Spark Plug Co Ltd Electrode for spark plug and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947654A (en) * 1973-10-24 1976-03-30 Sirius Corporation Method of generating laser-radio beam
DE3612135A1 (en) * 1986-04-10 1987-10-15 Kuno Dr Ing Kirner Electrode for igniting combustible mixtures of gases and vapours
DE4039778C1 (en) * 1990-12-13 1992-05-14 Robert Bosch Gmbh, 7000 Stuttgart, De

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11870222B2 (en) 2021-05-04 2024-01-09 Federal-Mogul Ignition Gmbh Spark plug electrode and method of manufacturing the same

Also Published As

Publication number Publication date
EP0860043A1 (en) 1998-08-26
BR9706642A (en) 1999-01-12
DE59709228D1 (en) 2003-03-06
DE19631985A1 (en) 1998-02-19
HUP9901495A2 (en) 1999-09-28
CN1198848A (en) 1998-11-11
JPH11514145A (en) 1999-11-30
EP0860043B1 (en) 2003-01-29
HUP9901495A3 (en) 2000-03-28

Similar Documents

Publication Publication Date Title
DE4321673C2 (en) Process for producing a component by means of arc spraying, and applications of this process
EP0219536B1 (en) Protection layer
DE3426201C2 (en)
EP0860043B1 (en) Process for deposition and manufacturing electrodes for spark plugs of internal combustion engines
EP3325685B1 (en) Method for coating a cylinder barrel of a cylinder crankcase, cylinder crankcase with a coated cylinder barrel and engine
EP0840809B1 (en) Product with a metallic base body provided with cooling channels and its manufacture
DE102005044991A1 (en) Process for producing a protective layer, protective layer and component with a protective layer
EP1878813A1 (en) Coating process for aluminum-silicon casting
WO2002060025A1 (en) Method for producing a spark plug electrode
WO2019219551A1 (en) Brake body and method for producing same
EP0931172A1 (en) Coated wear resisting parts for internal combustion engines, specially piston rings, and method for their production
DE3509022A1 (en) Method for producing electrical contact parts
DE102009049811B4 (en) Method for producing an electrode
EP1900708B1 (en) Heat insulation material with high cyclical temperature rating
EP0561812B1 (en) Electrode, and process for manufacturing it
EP1235047B1 (en) Pyrotechnic igniter and manufacturing process therefor
EP1536180B1 (en) Method for manufacturing an glow stab for a glow plug
DE102004006857B4 (en) Gradient layer and process for its preparation
EP1127958A2 (en) Process for coating a surface
DE102013112809A1 (en) A method for producing a sprayed cylinder surface of a cylinder crankcase of an internal combustion engine and such a cylinder crankcase
DE102009004201A1 (en) Process useful for wire arc spraying of workpieces, especially hollow bodies using wires made from different materials gives improved coating quality combined with shorter coating time
EP3969204A1 (en) Coated metal substrates that are susceptible to wear, and method for the manufacture thereof
DE102004025553B4 (en) Camshaft and a method for its production
DE102020104953A1 (en) Spark plug and method for manufacturing a spark plug
DE102020132346A1 (en) Cylinder liner coating for an internal combustion engine and spray wire for producing such a cylinder liner coating

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97191027.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN HU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997936587

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09051110

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1998 509285

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997936587

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997936587

Country of ref document: EP