WO1998005956A1 - Gas-chromatography ionization detector - Google Patents

Gas-chromatography ionization detector Download PDF

Info

Publication number
WO1998005956A1
WO1998005956A1 PCT/DE1996/001478 DE9601478W WO9805956A1 WO 1998005956 A1 WO1998005956 A1 WO 1998005956A1 DE 9601478 W DE9601478 W DE 9601478W WO 9805956 A1 WO9805956 A1 WO 9805956A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
ionization detector
gas
heated
ionization
Prior art date
Application number
PCT/DE1996/001478
Other languages
German (de)
French (fr)
Inventor
Michael Beckmann
Hans-Herrmann RÜTTINGER
Original Assignee
Preussag Wasser Und Rohrtechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE19502285A priority Critical patent/DE19502285C2/en
Application filed by Preussag Wasser Und Rohrtechnik Gmbh filed Critical Preussag Wasser Und Rohrtechnik Gmbh
Priority to PCT/DE1996/001478 priority patent/WO1998005956A1/en
Publication of WO1998005956A1 publication Critical patent/WO1998005956A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/64Electrical detectors
    • G01N30/68Flame ionisation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/64Electrical detectors
    • G01N2030/647Electrical detectors surface ionisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/626Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas

Definitions

  • the majority of the detectors used in GC work on the principle of charge transport in an electrical field. With the help of different techniques (e.g. flames, photons, ß-radiation) ions are generated, which are registered directly or indirectly.
  • different techniques e.g. flames, photons, ß-radiation
  • Flame ionization detectors burn the substances (eluate) eluting from a chromatographic separation column in a hydrogen / air diffusion flame above a nozzle.
  • the ionization yield in the FID is very low.
  • the standard sensitivity of approx. 0.016 A * s / g carbon shows that only one ion pair is formed from approximately 500,000 carbon atoms.
  • FID Flameless ionization detectors
  • the thermionic emitter consists of ceramic material with various alkali salt additives, which are used with the sample components
  • SPARE 2 BLADE React ion formation and be consumed in the process.
  • the response and sensitivity of these detectors depend on the amount of reactive ions present and therefore changes over the course of the detector's operating time.
  • An electrically heated ion emitter 4> is used as an electrically heated ion emitter 4> .
  • This version (thermionic detector, TID) is characterized in that the energy required for ion emission is no longer provided by a hydrogen flame. Nevertheless, these detectors require a low and constant volume flow of hydrogen to form a specific reaction zone.
  • the problem stated in the invention is based on the problem of creating a detector which, with a high ion yield, has a response behavior and sensitivity which is independent of consuming reactive ions and which enables hydrogen-free operation.
  • the detector is equipped with a heated nozzle, preferably made of ceramic material.
  • a heated nozzle preferably made of ceramic material.
  • Alumina base The materials should preferably have volume resistivities of> 10 14 ⁇ (20 ° C).
  • the heating windings should be provided with a ceramic layer to protect them from oxidation and / or aggressive media.
  • materials doped with alkali and / or alkaline earth salts are also suitable as ceramic materials.
  • the detector consists of two parts, the detector base (A) and the detector head (B).
  • the detector base and head are preferably made of an iron / nickel / cobalt alloy.
  • the nozzle (C) is formed from a ceramic tube (e.g. made of Rubalit ® 717), which is embedded in the metallic screw connection (N) with the aid of a ceramic adhesive and is thus gas-tightly connected to the detector base.
  • the ceramic tube is wrapped with a heating wire (H).
  • the heating wire is surrounded by a thin ceramic layer or another thin ceramic tube (J).
  • the detector base contains holes that are provided for the supply of the electrical heating current (D) and for the supply of reactive gases (E).
  • the detector head contains a collector electrode (F) which is electrically insulated from other components of the detector and is conductively connected to a shielded measurement signal lead (G).

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The invention concerns an ionization detector comprising a thermal ion emitter. The response behaviour and sensitivity of prior art detectors having emitters of this type depend on the quantity of reactive ions present and therefore vary during the operating period. According to the invention, in order to overcome this disadvantage, the detector is provided with a heated nozzle in which the organic substances to be analysed are combined with a reactive gas without a flame. The nozzle temperature can reach up to 1200 °C.

Description

lonisationsdetektor für die GaschromatographieIonization detector for gas chromatography
Beschreibungdescription
Die Technik der Gaschromatographie (GC) wurde erstmals 1950 von James und Martin 1) nach Vorlagen von Martin und Synge 2) angewandt und bis heute fortlaufend weiterentwickelt. Einen Überblick über den aktuellen Stand der Technik kann dem Review von H. H. Hill 3) entnommen werden.The technique of gas chromatography (GC) was first used in 1950 by James and Martin 1) based on templates by Martin and Synge 2) and has been continuously developed to this day. An overview of the current state of the art can be found in the review by HH Hill 3) .
Ein Großteil der in der GC eingesetzten Detektoren arbeiten nach dem Prinzip des Ladungstransports in einem elektrischen Feld. Hierbei werden mit Hilfe unterschiedlicher Techniken (z. B. Flammen, Photonen, ß-Strahlung) Ionen erzeugt, die direkt oder indirekt registriert werden.The majority of the detectors used in GC work on the principle of charge transport in an electrical field. With the help of different techniques (e.g. flames, photons, ß-radiation) ions are generated, which are registered directly or indirectly.
Seit seiner Einführung im Jahre 1958 gehört der Flammenionisationsdetektor (FID) zu den verbreitetsten Detektoren in der GC. Das Prinzip des FID ist bekannt (US-Patente 3,585,003 und 4,182,740) und basiert auf der Registrierung von Veränderungen im lonenstrom. ImSince its introduction in 1958, the flame ionization detector (FID) has been one of the most common detectors in GC. The principle of the FID is known (US Patents 3,585,003 and 4,182,740) and is based on the registration of changes in the ion current. in the
Flammenionisationsdetektor werden die aus einer chromatographischen Trennsäule eluierenden Substanzen (Eluat) in einer Wasserstoff/Luft- Diffusionsflamme oberhalb einer Düse verbrannt.Flame ionization detectors burn the substances (eluate) eluting from a chromatographic separation column in a hydrogen / air diffusion flame above a nozzle.
Die lonisationsausbeute im FID ist sehr niedrig. Die Standardempfindlichkeit von ca. 0.016 A*s/g Kohlenstoff ergibt, daß aus etwa 500 000 Kohlenstoffatomen nur ein lonenpaar gebildet wird.The ionization yield in the FID is very low. The standard sensitivity of approx. 0.016 A * s / g carbon shows that only one ion pair is formed from approximately 500,000 carbon atoms.
Es wurden auch schon flammenlose lonisationsdetektoren (FID) beschrieben, bei denen der zu untersuchende Probengasstrom zusammen mit Inert- und/oder Reaktivgasströmen an einen beheizten zylindrischen Thermoionen-Emitter geführt werden und die sich hier bildenden Ionen über einen Kollektor zur Messung gelangen. Dieser Effekt wurde erstmals 1964 beschrieben 5).Flameless ionization detectors (FID) have also already been described, in which the sample gas stream to be examined, together with inert and / or reactive gas streams, are led to a heated cylindrical thermionic emitter and the ions that form here are measured by a collector. This effect was first described in 1964 5) .
Der Thermoionenemitter besteht aus keramischem Material mit verschiedenen Alkalisalzzusätzen, die mit den Probekomponenten unterThe thermionic emitter consists of ceramic material with various alkali salt additives, which are used with the sample components
ERSAT2BLATT (REGEL 26) lonenbildung reagieren und dabei verbraucht werden. Das Ansprechverhalten und die Empfindlichkeit dieser Detektoren sind abhängig von der Menge der vorhandenen Reaktivionen und verändert sich daher im Laufe der Betriebszeit des Detektors. Eine Weiterentwicklung dieses Detektors besteht in dem Einsatz eines elektrisch beheizten lonenemitters 4>. Diese Ausführung (thermoionischer Detektor, TID) zeichnet sich dadurch aus, daß die zur lonenemission notwendige Energie nicht mehr von einer Wasserstoffflamme zur Verfügung gestellt wird. Gleichwohl benötigen diese Detektoren zur Ausbildung einer spezifischen Reaktionszone einen geringen und konstanten Volumenstrom an Wasserstoff.SPARE 2 BLADE (RULE 26) React ion formation and be consumed in the process. The response and sensitivity of these detectors depend on the amount of reactive ions present and therefore changes over the course of the detector's operating time. A further development of this detector is the use of an electrically heated ion emitter 4> . This version (thermionic detector, TID) is characterized in that the energy required for ion emission is no longer provided by a hydrogen flame. Nevertheless, these detectors require a low and constant volume flow of hydrogen to form a specific reaction zone.
Der in den Patentansprüchen angegebenen Erfindung liegt das Problem zugrunde, einen Detektor zu schaffen, der bei hoher lonenausbeute ein von sich verbrauchenden Reaktivionen unabhängiges Ansprechverhalten und Empfindlichkeit aufweist und einen wasserstofffreien Betrieb ermöglicht.The problem stated in the invention is based on the problem of creating a detector which, with a high ion yield, has a response behavior and sensitivity which is independent of consuming reactive ions and which enables hydrogen-free operation.
Dieses Problem wurde gemäß Patentanspruch 1 dadurch gelöst, daß der Detektor mit einer beheizten Düse, vorzugsweise aus keramischem Material, ausgestattet ist. Ohne die beim FID erforderliche Wasserstoffflamme erfolgt die für die Detektion erforderliche Ionisation durch „Verbrennen" der zu bestimmenden organischen Substanzen mit einem Reaktivgas durch die Temperatur der beheizten Düse, die mit Hilfe einer elektrischen Widerstandsheizung auf Temperaturen bis ca. 1.200 °C erhitzt werden kann.This problem was solved according to claim 1 in that the detector is equipped with a heated nozzle, preferably made of ceramic material. Without the hydrogen flame required by the FID, the ionization required for detection takes place by "burning" the organic substances to be determined with a reactive gas using the temperature of the heated nozzle, which can be heated to temperatures of up to approx. 1,200 ° C with the aid of an electrical resistance heater.
Auf diese Weise sind z. B. aliphatische, aromatische und halogenierte Kohlenwasserstoffe sowie Substanzen, für die der FID kein oder nur ein geringes Ansprechverhalten aufweist (z. B. Schwefelkohlenstoff, Tetrachlormethan etc.) nachweisbar. Aufgrund dieser Eigenschaft ergeben sich neue Anwendungen und Einsatzmöglichkeiten, speziell im Bereich der Umweltanalytik. Da zum Betrieb des Detektors kein Wasserstoff als Brennbags benötigt wird, ist er besonders für den Einsatz in mobilen Analysegeräten geeignet. Zudem ergeben sich Vorteile hinsichtlich der Sicherheit sowie geringere Betriebskosten.In this way, e.g. B. aliphatic, aromatic and halogenated hydrocarbons and substances for which the FID has little or no response (e.g. carbon disulfide, carbon tetrachloride, etc.) are detectable. This property gives rise to new applications and uses, especially in the field of environmental analysis. Since no hydrogen is required as fuel bags to operate the detector, it is particularly suitable for use in mobile analysis devices. There are also advantages in terms of security and lower operating costs.
Als keramisches Material eignen sich z. B. Werkstoffe aufAs a ceramic material such. B. Materials
Aluminiumoxidbasis. Die Werkstoffe sollen vorzugsweise spezifische Durchgangswiderstände von > 1014 Ω (20 °C) aufweisen. Die Heizwicklungen sollten zum Schutz vor Oxidation und/oder aggressiven Medien mit einer keramischen Schicht versehen sein. Gemäß Anspruch 2 eignen sich als keramische Materialien auch mit Alkali- und/oder Erdalkalisalzen dotierte Werkstoffe. Durch diese Dotierungen könnenAlumina base. The materials should preferably have volume resistivities of> 10 14 Ω (20 ° C). The heating windings should be provided with a ceramic layer to protect them from oxidation and / or aggressive media. According to claim 2, materials doped with alkali and / or alkaline earth salts are also suitable as ceramic materials. Through these endowments
Selektivitäten für organische Substanzen mit Schwefel-, Stickstoff- und/oder Phosphoranteilen erhalten werden.Selectivities for organic substances with sulfur, nitrogen and / or phosphorus contents can be obtained.
Ein Ausführungsbeispiel der Erfindung ist als schematische Schnittzeichnung in der Figur 1 dargestellt und wird im folgenden näher beschrieben.An embodiment of the invention is shown as a schematic sectional drawing in Figure 1 and will be described in more detail below.
Der Detektor setzt sich aus zwei Teilen, der Detektorbasis (A) und dem Detektorkopf (B) zusammen. Detektorbasis und -köpf werden vorzugsweise aus einer Eisen-/Nickel-/Kobalt-Legierung hergestellt.The detector consists of two parts, the detector base (A) and the detector head (B). The detector base and head are preferably made of an iron / nickel / cobalt alloy.
Die Düse (C) wird aus einem keramischen Röhrchen (z. B. aus Rubalit ® 717) gebildet, welches mit Hilfe eines keramischen Klebstoffes in die metallische Schraubverbindung (N) eingelassen ist und so mit der Detektorbasis gasdicht verbunden ist. Das keramische Röhrchen ist mit einem Heizdraht (H) umwickelt. Der Heizdraht ist von einer dünnen Keramikschicht bzw. einem weiteren dünnen Keramikrohr (J) umgeben.The nozzle (C) is formed from a ceramic tube (e.g. made of Rubalit ® 717), which is embedded in the metallic screw connection (N) with the aid of a ceramic adhesive and is thus gas-tightly connected to the detector base. The ceramic tube is wrapped with a heating wire (H). The heating wire is surrounded by a thin ceramic layer or another thin ceramic tube (J).
Die Detektorbasis enthält Bohrungen, welche für die Zuleitung des elektrischen Heizstroms (D) sowie für die Zufuhr von Reaktivgasen (E) vorgesehen sind.The detector base contains holes that are provided for the supply of the electrical heating current (D) and for the supply of reactive gases (E).
Der Detektorkopf enthält eine Kollektorelektrode (F), welche gegen andere Bauteile des Detektors elektrisch isoliert und mit einer abgeschirmten Meßsignalableitung (G) leitend verbunden ist.The detector head contains a collector electrode (F) which is electrically insulated from other components of the detector and is conductively connected to a shielded measurement signal lead (G).
Der Einsatz einer ringförmigen, metallischen Polarisationselektrode (L) ist zur Beschleunigung gebildeter Ionen vorgesehen. Hierzu wird eine Gleichspannung zwischen 50 und 300 Volt mit negativer Polarisation an die Blende angelegt. Die Blende ist hierbei gegen andere Bauteile des Detektors durch ein ringförmiges Bauteil (K) aus z. B. Teflon elektrisch isolierend angebracht. Figur 2: Beispielchromatogramm einer Kohlenwasserstoff-Testmischung (Ausdruck eines Integrators mit quantitativer Auswertung) in „Anlage 2"The use of an annular, metallic polarization electrode (L) is intended to accelerate the ions formed. For this purpose, a DC voltage between 50 and 300 volts with negative polarization is applied to the diaphragm. The aperture is in this case against other components of the detector by an annular component (K) made of z. B. Teflon electrically insulated. Figure 2: Example chromatogram of a hydrocarbon test mixture (printout of an integrator with quantitative evaluation) in "Appendix 2"
Literaturliterature
1) A. T. James, A. J. P. Martin: Biochem. J. 50, 679 (1952) 1 ) AT James, AJP Martin: Biochem. J. 50, 679 (1952)
2) A. Marin, R. Synge: Biochem. J. 35, 1358 (1941) 3) H. H. Hill, Jr.: Anal. Chem. 66, 621 R - 633R (1994) 2 ) A. Marin, R. Synge: Biochem. J. 35, 1358 (1941) 3 ) HH Hill, Jr .: Anal. Chem. 66, 621 R - 633R (1994)
4) DE 29 07 222 C2 4) DE 29 07 222 C2
5) A. Karmen, Giuffrida L: Nature 201 , 1204 (1964) 5) A. Karmen, Giuffrida L: Nature 201, 1204 (1964)

Claims

Patentansprüche claims
1. Flammenloser lonisationsdetektor für die Gaschromatographie, bestehend aus einer Detektorbasis (A) mit einer beheizten Düse (C) aus Keramikmaterial zur Zuführung des Probengases, die mittels einer Heizung (H) beheizt wird, sowie mit Zuleitungen für den elektrischen Heizstrom (D) sowie für Reaktivgase (E) und einem Detektorkopf (B) mit einer Kollektorelektrode (F), die mit einer abgeschirmten Meßsignalableitung (G) leitend verbunden ist.1. Flameless ionization detector for gas chromatography, consisting of a detector base (A) with a heated nozzle (C) made of ceramic material for supplying the sample gas, which is heated by means of a heater (H), and with leads for the electric heating current (D) and for reactive gases (E) and a detector head (B) with a collector electrode (F) which is conductively connected to a shielded measurement signal lead (G).
2. lonisationsdetektor nach Anspruch 1 , gekennzeichnet durch mit Alkali- und/oder Erdalkalisalzen dotiertes Keramikmaterial. 2. ionization detector according to claim 1, characterized by ceramic material doped with alkali and / or alkaline earth salts.
PCT/DE1996/001478 1995-01-26 1996-08-07 Gas-chromatography ionization detector WO1998005956A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19502285A DE19502285C2 (en) 1995-01-26 1995-01-26 Ionization detector for gas chromatography
PCT/DE1996/001478 WO1998005956A1 (en) 1995-01-26 1996-08-07 Gas-chromatography ionization detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19502285A DE19502285C2 (en) 1995-01-26 1995-01-26 Ionization detector for gas chromatography
PCT/DE1996/001478 WO1998005956A1 (en) 1995-01-26 1996-08-07 Gas-chromatography ionization detector

Publications (1)

Publication Number Publication Date
WO1998005956A1 true WO1998005956A1 (en) 1998-02-12

Family

ID=25962842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001478 WO1998005956A1 (en) 1995-01-26 1996-08-07 Gas-chromatography ionization detector

Country Status (2)

Country Link
DE (1) DE19502285C2 (en)
WO (1) WO1998005956A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102539591B (en) * 2011-12-31 2014-04-16 聚光科技(杭州)股份有限公司 Small-sized hydrogen flame ionization detection device
DE102018212089A1 (en) * 2018-07-19 2020-01-23 Hochschule Karlsruhe Sensor device and a method for detecting a hydrocarbon fraction

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423181A (en) * 1966-06-06 1969-01-21 Varian Associates Thermionic detector for gas chromatography
US3589869A (en) * 1969-02-17 1971-06-29 Varian Associates Chemical-ionization detection method and apparatus
US3607096A (en) * 1969-06-25 1971-09-21 Charles H Hartmann Alkali flame ionization detector having cap means for changing the gas flow pattern
DE2907222A1 (en) * 1978-02-28 1980-01-10 Varian Associates METHOD AND DEVICE FOR ANALYZING A SAMPLE
GB2037066A (en) * 1978-10-09 1980-07-02 Simpson C Flame ionisation detector and method of use thereof
DE3835081A1 (en) * 1985-06-11 1989-04-27 Inst Elektroniki Im U A Arifov METHOD AND DEVICE FOR ANALYZING ORGANIC COMPOUNDS BY CHROMATOGRAPHY
US4999162A (en) * 1988-08-26 1991-03-12 Varian Associates, Inc. High temperature flame jet for gas chromatography
US5019517A (en) * 1988-04-15 1991-05-28 Coulson Dale M System, detector and method for trace gases
US5521098A (en) * 1994-07-27 1996-05-28 Hewlett-Packard Company Thermionic ionization detector with flow-through thermionic source

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3585003A (en) * 1967-04-06 1971-06-15 Varian Associates Ionization detector for gas chromatography
US4182740A (en) * 1976-03-01 1980-01-08 Varian Associates, Inc. Flame ionization detector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423181A (en) * 1966-06-06 1969-01-21 Varian Associates Thermionic detector for gas chromatography
US3589869A (en) * 1969-02-17 1971-06-29 Varian Associates Chemical-ionization detection method and apparatus
US3607096A (en) * 1969-06-25 1971-09-21 Charles H Hartmann Alkali flame ionization detector having cap means for changing the gas flow pattern
DE2907222A1 (en) * 1978-02-28 1980-01-10 Varian Associates METHOD AND DEVICE FOR ANALYZING A SAMPLE
GB2037066A (en) * 1978-10-09 1980-07-02 Simpson C Flame ionisation detector and method of use thereof
DE3835081A1 (en) * 1985-06-11 1989-04-27 Inst Elektroniki Im U A Arifov METHOD AND DEVICE FOR ANALYZING ORGANIC COMPOUNDS BY CHROMATOGRAPHY
US5019517A (en) * 1988-04-15 1991-05-28 Coulson Dale M System, detector and method for trace gases
US4999162A (en) * 1988-08-26 1991-03-12 Varian Associates, Inc. High temperature flame jet for gas chromatography
US5521098A (en) * 1994-07-27 1996-05-28 Hewlett-Packard Company Thermionic ionization detector with flow-through thermionic source

Also Published As

Publication number Publication date
DE19502285C2 (en) 1996-11-21
DE19502285A1 (en) 1996-08-08

Similar Documents

Publication Publication Date Title
Kolb et al. A new design of a thermionic nitrogen and phosphorus detector for GC
DE3686162T2 (en) DETECTOR FOR GAS CHROMATOGRAPHS.
DE1673273C3 (en) Selective detector for chromatographic purposes
CH678113A5 (en)
DE2907222A1 (en) METHOD AND DEVICE FOR ANALYZING A SAMPLE
Drees et al. Stepwise optimization of a Flexible Microtube Plasma (FµTP) as an ionization source for Ion Mobility Spectrometry
WO2009036854A1 (en) Flame ionization detector
DE2222396A1 (en) SELECTIVE IONIZATION DETECTOR
Patterson Selective responses of a flameless thermionic detector
DE2631819A1 (en) PROCESS AND DEVICE FOR DETERMINING THE CONTENT OF MOLECULAR AND / OR Bound OXYGEN IN GASES
US3589869A (en) Chemical-ionization detection method and apparatus
DE2055554A1 (en) Gas analysis method
DE2950105A1 (en) ATOMIC ABSORPTION SPECTROMETER WITH DIFFERENT, OPTIONALLY APPLICABLE ATOMIZING DEVICES
WO1998005956A1 (en) Gas-chromatography ionization detector
DE1598914C3 (en) Flame ionization detector
DE2257099C3 (en) Flame ionization detector
DE2633337A1 (en) METHOD AND DEVICE FOR IMPROVING GAS CHROMATOGRAPHIC ANALYZES
DE3779818T2 (en) IONIZATION DETECTORS FOR GAS CHROMATOGRAPHY.
DE3414557A1 (en) IONIZATION DETECTOR
DE2108610C2 (en) Method for the selective determination of sulfur, nitrogen, halogen and phosphorus compounds
DE19618323C2 (en) Device for self-generation of ions for the mass spectrometry of liquids
DE19655220C2 (en) Self-generation ion device for mass spectrometry of liquids
DE2003207A1 (en) Specific reading flame ionization detector
DE2235248A1 (en) FLAME IONIZATION DETECTOR
DE2260793A1 (en) SELECTIVE IONIZATION DETECTOR FOR HALOGEN, PHOSPHORUS OR NITROGEN COMPOUNDS

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase