WO1998004075A1 - Communication equipment and communication system - Google Patents

Communication equipment and communication system Download PDF

Info

Publication number
WO1998004075A1
WO1998004075A1 PCT/JP1996/002042 JP9602042W WO9804075A1 WO 1998004075 A1 WO1998004075 A1 WO 1998004075A1 JP 9602042 W JP9602042 W JP 9602042W WO 9804075 A1 WO9804075 A1 WO 9804075A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
digital information
information
communication device
output
Prior art date
Application number
PCT/JP1996/002042
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Shiba
Minoru Moteki
Akitsuna Yuhara
Hitoshi Yanagihara
Yasuhiro Ohta
Original Assignee
Hitachi, Ltd.
Hitachi Media Electronics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Media Electronics Co., Ltd. filed Critical Hitachi, Ltd.
Priority to JP1998506770A priority Critical patent/JP3769301B6/en
Priority to PCT/JP1996/002042 priority patent/WO1998004075A1/en
Publication of WO1998004075A1 publication Critical patent/WO1998004075A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4904Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using self-synchronising codes, e.g. split-phase codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4906Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • H04L27/2275Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals
    • H04L27/2278Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals using correlation techniques, e.g. for spread spectrum signals

Definitions

  • the present invention relates to a communication device and a communication system using a phase modulation method.
  • An object of the present invention is to solve the above-mentioned problem and to provide a communication system capable of improving noise immunity even when a key code length is short (including a case where spread spectrum is not performed). It is in the thing.
  • the purpose of the above is to use a digital information sequence that associates binary digital information with 1 and 1 1 as b (j), where j is an integer, and that the transmitting side has n (n is 3 or more) partial sequences.
  • the multiplied outputs are transmitted sequentially or directly or modulated, and the receiving side directly or demodulates the received signal according to the above, and then the n This is achieved by successively multiplying the signals corresponding to the fractional sequences to reproduce the digital information sequence corresponding to the original 1 and 1 and then reproducing the digital information from the information.
  • the signal (T is (n ⁇ 1)) T (n is 2 or more) before T and the current This is achieved by multiplying all of the signals, and then squaring the signal to reproduce the signal synchronization signal.
  • FIG. 1 is a system block diagram of a communication device according to a first embodiment of the present invention
  • FIG. 2 is an explanatory diagram of a conventional DPSK modulation method.
  • FIG. 3 is a block diagram of a part of the receiving side according to a second embodiment of the present invention.
  • FIG. 4 is a block diagram of a part on the transmitting side according to a second embodiment of the present invention.
  • FIG. 5 is a block diagram of a part of the receiving side according to a third embodiment of the present invention.
  • FIG. 6 is a block diagram of a part of the receiving side according to a fourth embodiment of the present invention.
  • FIG. 7 is a block diagram of a part of a receiving side according to a fifth embodiment of the present invention.
  • FIG. 8 is a block diagram of a part of the receiving side according to a sixth embodiment of the present invention.
  • FIG. 9 is a block diagram of a part of the receiving side according to a seventh embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a surface acoustic wave matching filter according to a first embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a surface acoustic wave matching filter according to an eighth embodiment of the present invention.
  • Fig. 12 shows the output signal waveform of the matched filter.
  • Fig. 13 shows the signal waveform after conventional delay detection.
  • FIG. 14 is a signal waveform after four-stage multiplication detection of the present invention.
  • Figure 15 shows the output signal waveform of the matched filter.
  • Fig. 16 shows the signal waveform after conventional delay detection.
  • FIG. 17 is a signal waveform after four-stage multiplication detection according to the present invention.
  • FIG. 18 is a system block diagram of the communication device according to the ninth embodiment of the present invention
  • FIG. 19 is a system block diagram of the communication device according to the tenth embodiment of the present invention.
  • FIG. 20 is a system block diagram of the communication device according to the eleventh embodiment of the present invention.
  • FIG. 21 is a system block diagram of a communication device according to a 12th embodiment of the present invention.
  • FIG. 22 is a schematic diagram of a convolver used in the communication device of the 12th embodiment of the present invention.
  • FIG. 23 is a system block diagram of a communication device according to a thirteenth embodiment of the present invention.
  • FIG. 24 is an explanatory diagram of a digital operation device used in the communication device of the thirteenth embodiment of the present invention.
  • FIG. 25 is a wireless LAN communication system using the communication device of the present invention.
  • FIG. 1 shows an example of a spread spectrum communication apparatus using the present invention, using a system block.
  • digital information corresponding to basebands 1 and 1 1 is input from the transmitting terminal 1, and digital information corresponding to 1 and 1 1 generated from the pseudo noise (PN) code generator 2.
  • the information (here, for example, 1 corresponds to 0-1 power of the digital information and 1) is multiplied by the mixer 3.
  • the same function can be realized by using a digital processing circuit using a shift register and a half adder.
  • the digital information for transmission is multiplied by the ⁇ -stage multiplying circuit 4 which is a characteristic part of the present invention, by multiplying the information before 1 by ( ⁇ 1) bits and the current information, respectively. can get.
  • the ⁇ -stage multiplying circuit 4 which is a characteristic part of the present invention, by multiplying the information before 1 by ( ⁇ 1) bits and the current information, respectively. can get.
  • n-stage multiplication circuit 4 has four stages in this embodiment, and is constituted by a three-stage shift register 5 and a multiplier 6. This circuit can perform the same processing using the half adder as described above.
  • the signal output from the n-stage multiplication circuit 4 is multiplied by a carrier 8 generated by an oscillator 7 by a mixer 8, modulated into a high-frequency band, then amplified by an amplifier 9, and output from an antenna 10. You.
  • the received modulated signal input from the antenna 10 is amplified by the amplifier 11 and converted into a matched signal by the surface acoustic wave matched filter 12 corresponding to the PN code on the output side.
  • an n-stage multiplication detection circuit 13 (four stages in this case), is used to multiply the information before 1 to (n ⁇ 1) bits and the current information, respectively.
  • the information cycle is ⁇
  • the delay line 1, 2 ⁇ delay line 15, 2 ⁇ ⁇ delay line 15, and 3 ⁇ ⁇ delay line 16 are 1 to 3 bits before
  • the mixer 17 multiplies each signal by the current signal. Since the demodulated detection signal obtained is a signal obtained by detecting a matched signal, the pulse width is narrow. Therefore, the signal is converted into a digital signal having an appropriate pulse width ratio by a square wave output circuit 18 such as a comparator and output from an output terminal 19.
  • FIG. 2 shows a conventional DPSK (Differentia1PhasesSehiftKeying) system.
  • A is the original digital information
  • (b) is the spread signal spread by the PN code (here, 5 bits)
  • (c) is the transmission / reception and modulation signal multiplied by the carrier.
  • the digital signal corresponds to 0 when there is no phase change of the signal and 1 when there is a phase change.
  • D shows the detection and demodulation method of the receiver.
  • a feature of the DPSK method is that no special oscillation circuit is required on the demodulation side, and a demodulated signal can be obtained from terminal 20 using only 1T delay line 21 and mixer 22.
  • FIG. 3 shows a part of a second embodiment of the present invention.
  • an n-stage multiplication circuit and an n-stage multiplication detection circuit which are characteristic portions of the present invention, have six stages.
  • Fig. 3 shows the inside of the n-stage multiplication detection circuit 13; 1T delay line 23, 2T delay line 24, 3T delay line 25, 4T delay line 26, 5T delay
  • the output of line 27 is multiplied by the current signal by mixer 28 to obtain an output detection signal.
  • FIG. 4 shows the inside of the n-stage multiplication circuit 4, and a transmission digital signal is obtained by a 5-stage shift register 29 and a mixer 30.
  • the equivalent SZN of the receiving device is further improved, the communication reliability is improved, and the communication distance is increased. Can be planned.
  • FIG. 5 shows an n-stage multiplication detection circuit of the communication device of the third embodiment.
  • the number of stages in this embodiment is four, similar to that of the first embodiment.
  • an n-stage multiplication detection circuit 13 has delay lines 31 with a delay time of 1 T, delay lines with 2 T and a delay line with 3 T and 3 T
  • the signal before 1 to 3 bits is obtained by the delay line 33 of FIG. 1, first, a multiplied signal of the 0T and 1T signals is formed by the mixer 34, and 2 ⁇ is obtained by the mixer 35. , 3 ⁇ to form a multiplied signal. Next, each signal is multiplied by the mixer 36 to obtain an output detection signal.
  • each signal is multiplied at a time, but it is actually difficult to form such a circuit. Therefore, in the present embodiment, each signal output is multiplied by two, and finally, the output is multiplied. According to this embodiment, even when it is difficult to multiply ⁇ signals as in the first embodiment, ⁇ multiplication outputs can be obtained.
  • FIG. 6 shows an ⁇ -stage multiplication detection circuit of the communication device of the fourth embodiment.
  • the number of stages in this embodiment is four, similar to that of the third embodiment, delay lines 37, 38, and 39 with a delay time of 1 mm are cascaded inside the ⁇ -stage multiplication detection circuit 13 Then, the signal before 1 to 3 bits is obtained, and first, the current signal is multiplied by the output of the delay line 37 of the first stage by the mixer 40, and the signal is also multiplied by the delay line 38 of the second stage. The output of the third-stage delay line 39 is multiplied by the mixer 41, and finally, the output is multiplied by the mixer 42.
  • a delay line having a long delay time for example, 3 T
  • only a 1 T delay line may be used, so that the circuit can be downsized. . (In general, the longer the delay line, the larger the delay line.)
  • FIG. 7 shows an n-stage multiplication detection circuit of the communication device of the fifth embodiment.
  • the internal processing of the n-stage multiplication detection circuit 13 includes the signal output of the delay line 43 with a delay time of 1 T and the current signal. Is multiplied by a mixer 44, and the signal is multiplied by the output of a delay line 45 having a delay time of 2 T by a mixer 46 to obtain an output detection demodulated signal.
  • three mixers were required.However, according to this embodiment, only two mixers need be used, so that the circuit can be reduced in size and cost. is there.
  • FIG. 8 shows a part of a spread spectrum communication apparatus according to the sixth embodiment.
  • ⁇ FIG. 8 shows a demodulation detection section of a receiver, and a detection circuit section 49 has a 1T delay line 4.
  • the conventional DPSK differential detection method using a conventional DPSK method and a mixer 48 is used.
  • the detected signal passes through a low-pass filter 50, and a carrier component is removed.
  • a narrow synchronous signal 52 having the same polarity code is obtained by the mixer 51.
  • this synchronization signal 52 as a comparison synchronization signal for the square wave output comparator 53, the effective SZN can be improved by picking up only the narrow matching signal part as the comparator output.
  • a sine wave was used as the synchronizing signal.
  • the pulse width is narrower than that, and the effective SZN can be further improved.
  • FIG. 9 shows a part of the spread spectrum communication apparatus according to the seventh embodiment.
  • ⁇ FIG. 9 shows a demodulation detection unit of the receiver, and the same parts as in FIG. Numbered.
  • the detection circuit section 49 uses a conventional DPSK delay detection method.
  • the detected signal passes through the low-pass filter 50, the carrier component is removed, and is input to the square wave output comparator 53.
  • a part of the remaining signal is multiplied by a mixer 55 with a signal passing through a 2T delay line 54 and a signal not passing through the delay line 54 according to the flow of a solid line 58 to suppress noise components.
  • the comparator After squaring and passing through the low-pass filter 57, it is input to the comparator as a comparison synchronization signal 52.
  • the synchronization signal is raised to the fourth power with a different delay time from the original signal, so that the noise component is suppressed and the synchronization can be maintained more.
  • FIG. 10 schematically shows the surface acoustic wave matched filter 12 used in the first embodiment.
  • an input interdigital electrode 61 and an output encoding electrode 62 are arranged on a surface acoustic wave substrate 60.
  • the PN code matches the change in the polarity of the encoding electrode
  • a sharp peak-shaped matching signal is output from the output terminal 64.
  • the use of the surface acoustic wave matched filter of the present embodiment has a feature that the detection circuit does not require a synchronization circuit, the high-speed synchronization can be obtained, and the detection signal can be obtained with a low current.
  • FIG. 11 schematically shows a surface acoustic wave matched filter according to an eighth embodiment.
  • the same parts as those in FIG. 10 are given the same numbers.
  • the surface acoustic wave substrate 60 often uses a crystal having a low temperature coefficient in order to suppress a delay time variation due to a temperature variation in the encoding electrode section.
  • the electromechanical coupling coefficient of the crystal substrate is small, the impedance of the interdigital transducer increases, and the mismatch loss increases.
  • the piezoelectric thin film 6 5 high coupling coefficient was deposited only on the input interdigital electrode portion lowers the sag shaped electrode 6 1 of impedance enter, thereby suppressing mismatch loss c
  • this embodiment it is possible to obtain a matched filter that is resistant to temperature fluctuation and has low loss.
  • FIGS. 12 to 17 show a comparison between a conventional signal waveform and the signal waveform of the present invention in order to show the effectiveness of the present invention.
  • a communication method a spread spectrum communication method is taken as an example.
  • Fig. 12 shows a signal level of 19.1.14 dBm (peak value of power per 1 MHz) and a noise level of 19.1 dBm.
  • FIG. 13 is a conventional delay detection waveform under the same conditions
  • FIG. 14 is an output signal of the four-stage detection circuit of the present invention.
  • a noise component is observed, but in the method of the present invention, almost no noise component is observed.
  • Fig. 15 shows the signal level of 94.0 dBm (peak value of power per 1 MHz) and the noise level.
  • FIG. 16 is a conventional delay detection waveform under the same conditions
  • FIG. 17 is an output signal of the four-stage detection circuit of the present invention.
  • the noise component is sufficiently small and the signal can be discriminated.
  • the signal synchronization is clearly shown, and can be used as a synchronization signal for comparators.
  • FIG. 18 is a block diagram of a communication device according to a ninth embodiment of the present invention.
  • the same parts as those in FIG. 1 of the first embodiment are denoted by the same reference numerals.
  • the modulated signal received from the antenna 10 is directly input to the matched filter 12.
  • the carrier from the oscillator 66 is once multiplied by the mixer 67 to generate the intermediate signal. It is converted to a frequency (IF) signal and input at the matched fill.
  • IF frequency
  • This embodiment is effective when the frequency of the RF signal is high (for example, 2.4 GHz band) and it is difficult to operate the SAW matched filter 27, the surface acoustic wave delay line 28, the mixer 29, and the like. .
  • FIG. 19 is a block diagram of a communication apparatus according to a tenth embodiment of the present invention.
  • the first embodiment is an example of a spread spectrum communication system, but the present embodiment relates to direct modulation of the BPSK system.
  • the digital signal input from the input terminal 68 is directly input to the n-stage multiplication circuit 4.
  • the signal output from the n-stage multiplication circuit 4 is multiplied by a carrier generated by an oscillator 69 by a mixer 70, modulated into a high frequency band, then amplified by an amplifier 71, and then amplified by an antenna 72. Is output.
  • the reception modulation signal input from the antenna 72 is amplified by the amplifier 73, and a high SZN demodulation detection signal is obtained by the n-stage multiplication detection circuit 13.
  • the demodulated detection signal obtained has a wide pulse width.
  • the signal is converted into a digital signal having an appropriate pulse width ratio by the waveform shaping circuit 74 and output from the output terminal 75.
  • the present embodiment relates to direct modulation of the BPSK scheme.
  • the present invention can be applied to schemes other than the spread spectrum communication scheme.
  • FIG. 20 is a block diagram of the eleventh embodiment of the present invention.
  • the same parts as those in FIG. 19 of the tenth embodiment are denoted by the same reference numerals.
  • This embodiment relates to the direct modulation of the BPSK system, as in the tenth embodiment.
  • the modulated signal received from the antenna 72 was directly input to the n-stage multiplication detection circuit 13.
  • the carrier from the oscillator 76 and the mixer The signal is multiplied by 7 and converted into an intermediate frequency (IF) signal, which is input to an n-stage multiplication detection circuit 13.
  • IF intermediate frequency
  • This embodiment is effective when the frequency of the RF signal is high (for example, in the 2.4 GHz band) and it is difficult to operate a delay line, a mixer, and the like.
  • FIG. 21 is a block diagram of a 12th embodiment of the present invention.
  • the same parts as in FIG. 1 of the first embodiment are denoted by the same reference numerals.
  • the modulated signal received from the antenna 10 is input to the matched filter 12, but in the present embodiment, the modulated signal is input to the convolver 78.
  • the digital signal of the PN code generator 79 is modulated in the convolver 78 by the carrier of the oscillator 80 and the mixer 81, and convolved with the input signal from the antenna.
  • the SAW matched filter since the SAW matched filter is used, it is difficult to change the PN code.
  • Fig. 22 schematically shows the structure of a convolver using surface acoustic waves.
  • An input signal is input from the input terminal 82, a reference signal is input to the input terminal 83, and a convolution output is output from the output terminal 84.
  • a surface acoustic wave substrate 85 and input IDTs 86 and 87 are arranged inside the convolver, and a convolution output is obtained in the nonlinear interaction area 88 by spatial integration of the two input signals. Is received.
  • FIG. 23 is a block diagram of a thirteenth embodiment of the present invention.
  • the same parts as in FIG. 1 of the first embodiment are denoted by the same reference numerals.
  • the modulated signal received from the antenna 10 is input to the matched filter 12 and a matched signal is obtained by analog signal processing.
  • the received signal is converted into a digital signal, and thereafter, the digital arithmetic unit 89 demodulates the information signal.
  • FIG. 24 shows the processing contents of the digital arithmetic unit 89.
  • the digitized spread signal is input to the input terminal 90, and the arithmetic processing unit performs correlation processing with the PN code as needed, and outputs a digital signal from the output terminal 91 when the correlation output exceeds a certain level. Is output.
  • This embodiment is effective in reducing the cost of the circuit when the information speed is relatively low.
  • FIG. 25 shows a communication system using the present invention.
  • a communication device of this system is used for a LAN.
  • the communication devices 96 and 97 are connected to the LAN cable 92, and the communication devices 9 and 94 are connected to each terminal 93 and 94. 5, 9 and 8 are connected.
  • the communication devices 101 and 102 are connected to the terminals 99 and 100, respectively, and the terminals can communicate freely (without passing through a wired system). If this embodiment is used, each terminal does not need to be connected to the RAN cable, so that the terminal can be moved freely (rate).
  • ADVANTAGE OF THE INVENTION it becomes possible to raise noise immunity performance, it becomes possible to improve the reliability of a communication apparatus, and to expand a communication distance, and to implement

Abstract

Communication equipment and a communication system whose noise immunity can be improved even in the case of a short key-code length (inclusive of the case where diffusion of a spectrum is not effected). A series of digital information containing binary information composed of 1 and -1 is set to b(j) with j being an integer. On the transmitting side, multiplication output of n (n=3 or more) partial series are serially transmitted either directly or after being modulated, while on the receiving side, the received signals are demodulated if they are modulated, and the signals corresponding to the n partial series are serially multiplied so as to reproduce the digital information series corresponding to the original values of 1 and -1. Furthermore, digital information is reproduced from that information. Synchronous reproduction means on the receiving side of a spectrum diffusion communication system multiples all the signals from time T to (n - 1)T by the present signal, where T is the information bit interval and n is 2 or greater, and the product signal is multiplied by itself to reproduce the synchronizing signal.

Description

明 細 書  Specification
通信装置および通信システム 技術分野 Communication device and communication system
本発明は、 位相変調方式を用いた通信装置および通信システムに関す る。 背景技術  The present invention relates to a communication device and a communication system using a phase modulation method. Background art
従来のデジタル通信方式は、 例えば、 電子情報通信学会スぺク 卜ラム 拡散通信研究会 信学技報 S S T 9 5— 7 9巻 ( 1 9 9 5— 1 0 ) の第 4 3頁から 4 8頁に記載されているよう に、 2値の差分位相変調方式(D P S K) 等を用いる場合が多い。 しかし、 従来の方式では、 例えば、 ス ぺク 卜ラム拡散通信方式の様に、 送受信器でキーコ一 ドの相関をとる等 の手段により処理利得を得て、 雑音に対して強いシステムを作るこ とが できる。 しかし、 この手法では、 キ一コ一 ド長が短く なると、 処理利得 が減少し、 対雑音性能を上げるこ とが難しい。 発明の開示  Conventional digital communication methods are described in, for example, IEICE Spectrum Diffusion Communication Research Institute, IEICE Technical Report, SST 95-79, Vol. As described on the page, binary differential phase modulation (DPSK) is often used. However, in the conventional method, for example, as in the spread spectrum communication method, it is possible to obtain a processing gain by means of correlating a key code with a transmitter / receiver and to create a system resistant to noise. And can be. However, in this method, when the code length is reduced, the processing gain is reduced, and it is difficult to improve the noise immunity. Disclosure of the invention
本発明の目的は、 上述の問題を解決し、 キーコー ド長が短い場合 (ス ぺク トラムの拡散を行なわない場合も含む) でも、 対雑音性能を上げる ことが可能となる通信方式を提供する事にある。  An object of the present invention is to solve the above-mentioned problem and to provide a communication system capable of improving noise immunity even when a key code length is short (including a case where spread spectrum is not performed). It is in the thing.
上記の目的は、 2値のデジタル情報を 1 と一 1 に対応させたデジタル 情報数列を、 j を整数として b ( j ) とし、 送信側では n個 ( nは 3以 上) の部分数列の乗算出力を順次、 直接、 または変調して送信し、 受信 側では受信信号を、 上記に対応し、 直接、 または復調した後、 n個の部 分数列に対応した信号を順次、 乗算するこ とにより、 元の 1 と一 1 に対 応させたデジタル情報数列を再生し、 さらにその情報からデジタル情報 を再生することにより達成される。 また、 スぺク 卜ラム拡散通信システ 厶の受信側の同期再生手段として、 1情報ビッ ト信号周期 T とすると、 T から (n— 1 ) T時間前 ( nは 2以上) の信号と現在の信号を全て乗算し て、 さ らにその信号を 2乗して信号同期信号をを再生するこ とにより達 成される。 図面の簡単な説明 The purpose of the above is to use a digital information sequence that associates binary digital information with 1 and 1 1 as b (j), where j is an integer, and that the transmitting side has n (n is 3 or more) partial sequences. The multiplied outputs are transmitted sequentially or directly or modulated, and the receiving side directly or demodulates the received signal according to the above, and then the n This is achieved by successively multiplying the signals corresponding to the fractional sequences to reproduce the digital information sequence corresponding to the original 1 and 1 and then reproducing the digital information from the information. Also, assuming that one information bit signal period T is used as a synchronous reproduction means on the receiving side of the spread spectrum communication system, the signal (T is (n−1)) T (n is 2 or more) before T and the current This is achieved by multiplying all of the signals, and then squaring the signal to reproduce the signal synchronization signal. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明の第 1実施例の通信装置のシステムブロ ックであり、 第 2図は、 従来の D P S K変調方式の説明図であり、 FIG. 1 is a system block diagram of a communication device according to a first embodiment of the present invention, and FIG. 2 is an explanatory diagram of a conventional DPSK modulation method.
第 3図は、 本発明の第 2実施例の受信側の 1 部に関するブロ ック図であ り、 FIG. 3 is a block diagram of a part of the receiving side according to a second embodiment of the present invention.
第 4図は、 本発明の第 2実施例の送信側の 1 部に関するブロ ッ ク図であ り、 FIG. 4 is a block diagram of a part on the transmitting side according to a second embodiment of the present invention.
第 5図は、 本発明の第 3実施例の受信側の 1 部に関するブロ ック図であ 、 FIG. 5 is a block diagram of a part of the receiving side according to a third embodiment of the present invention.
第 6図は、 本発明の第 4実施例の受信側の 1 部に関するプロ ック図であ 、 FIG. 6 is a block diagram of a part of the receiving side according to a fourth embodiment of the present invention.
第 7図は、 本発明の第 5実施例の受信側の 1 部に関するプロ ッ ク図であ 、 FIG. 7 is a block diagram of a part of a receiving side according to a fifth embodiment of the present invention.
第 8図は、 本発明の第 6実施例の受信側の 1 部に関するプロ ッ ク図であ り、  FIG. 8 is a block diagram of a part of the receiving side according to a sixth embodiment of the present invention.
第 9図は、 本発明の第 7実施例の受信側の 1 部に関するプロ ッ ク図であ Ό、  FIG. 9 is a block diagram of a part of the receiving side according to a seventh embodiment of the present invention.
第 1 0図は、 本発明の第 1実施例の弾性表面波マツチ ドフィル夕の模式 図であり、 FIG. 10 is a schematic diagram of a surface acoustic wave matching filter according to a first embodiment of the present invention. FIG.
第 1 1 図は、 本発明の第 8実施例の弾性表面波マツチ ドフ ィ ル夕の模式 図であり、 FIG. 11 is a schematic diagram of a surface acoustic wave matching filter according to an eighth embodiment of the present invention.
第 1 2図は、 マッチ ドフ ィ ル夕の出力信号波形であり、 Fig. 12 shows the output signal waveform of the matched filter.
第 1 3図は、 従来の遅延検波後の信号波形であり、 Fig. 13 shows the signal waveform after conventional delay detection.
第 1 4図は、 本発明の 4段乗算検波後の信号波形であり、 FIG. 14 is a signal waveform after four-stage multiplication detection of the present invention,
第 1 5図は、 マッチ ドフィルタの出力信号波形であり、 Figure 15 shows the output signal waveform of the matched filter.
第 1 6図は、 従来の遅延検波後の信号波形であり、 Fig. 16 shows the signal waveform after conventional delay detection.
第 1 7図は、 本発明の 4段乗算検波後の信号波形であり、 FIG. 17 is a signal waveform after four-stage multiplication detection according to the present invention.
第 1 8図は、 本発明の第 9実施例の通信装置のシステムプロ ックであり、 第 1 9図は、 本発明の第 1 0実施例の通信装置のシステムプロ ックであ Ό、 FIG. 18 is a system block diagram of the communication device according to the ninth embodiment of the present invention, and FIG. 19 is a system block diagram of the communication device according to the tenth embodiment of the present invention.
第 2 0図は、 本発明の第 1 1実施例の通信装置のシステムプロ ックであ Ό、 FIG. 20 is a system block diagram of the communication device according to the eleventh embodiment of the present invention.
第 2 1 図は、 本発明の第 1 2実施例の通信装置のシステムプロ ックであ り、 FIG. 21 is a system block diagram of a communication device according to a 12th embodiment of the present invention.
第 2 2図は、 本発明の第 1 2実施例の通信装置に用いたコンボルバの模 式図であり、 FIG. 22 is a schematic diagram of a convolver used in the communication device of the 12th embodiment of the present invention,
第 2 3図は、 本発明の第 1 3実施例の通信装置のシステムプロ ッ クであ り、 FIG. 23 is a system block diagram of a communication device according to a thirteenth embodiment of the present invention.
第 2 4図は、 本発明の第 1 3実施例の通信装置に用いたデジタル演算装 置の説明図であり、 FIG. 24 is an explanatory diagram of a digital operation device used in the communication device of the thirteenth embodiment of the present invention,
第 2 5図は、 本発明の通信装置を用いた無線 L A N通信システムである。 発明を実施するための最良の形態 FIG. 25 is a wireless LAN communication system using the communication device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の詳細を第 1 図から第 2 5図に示した実施例によって説 Π Hereinafter, the details of the present invention will be described with reference to the embodiments shown in FIGS. 1 to 25. Π
明する。 I will tell.
第 1 図は本発明を用いたスぺク トラム拡散通信装置の 1例をシステム ブロ ックを用いて示したものである。 送信側においては、 ベースバン ド の 1 と一 1 に対応するデジタル情報は送信端子 1から入力され、 疑似雑 音 (PN ) コ一 ド発生器 2から発生された、 1 と一 1 に対応するデジタル 情報 (ここでは、 例えば 1がデジタル情報の 0— 1力く 1 に対応する) と 混合器 3により乗算される。 この回路部分の信号処理は、 シフ ト レジス 夕 と半加算器を用いたデジタル処理回路を用いても同様の機能を実現す るこ とができる。 次に、 本発明の特徴部分である η段乗算回路 4 により、 それぞれの 1から ( η— 1 ) ビッ 卜前の情報と現在の情報を乗算するこ とによ り、 送信用のデジタル情報が得られる。 式で示せば、  FIG. 1 shows an example of a spread spectrum communication apparatus using the present invention, using a system block. On the transmitting side, digital information corresponding to basebands 1 and 1 1 is input from the transmitting terminal 1, and digital information corresponding to 1 and 1 1 generated from the pseudo noise (PN) code generator 2. The information (here, for example, 1 corresponds to 0-1 power of the digital information and 1) is multiplied by the mixer 3. For the signal processing of this circuit part, the same function can be realized by using a digital processing circuit using a shift register and a half adder. Next, the digital information for transmission is multiplied by the η-stage multiplying circuit 4 which is a characteristic part of the present invention, by multiplying the information before 1 by (η−1) bits and the current information, respectively. can get. In a formula,
( 1 ) となる。 こ こで b j は n段乗算回路 4の出力信号、 c i は入力信号であ る。 n 段乗算回路 4は本実施例では 4段であり、 3段のシフ ト レジスタ 5 と乗算器 6により構成される。 この部分の回路も、 上述と同様に以上、 半加算器を用いて同様の処理が可能である。 n段乗算回路 4から出力さ れた信号は発振器 7により生じさせたキヤ リ ァを混合器 8により乗算さ せ、 高周波帯に変調した後、 増幅器 9により増幅され、 アンテナ 1 0 よ り出力される。 受信側では、 アンテナ 1 0 より入力された受信変調信号 は、 増幅器 1 1 により増幅され、 出力側の P N符号に対応した弾性表面 波マッチ ドフィルタ 1 2により、 整合信号に変換され、 本発明のもう 1 つの特徴部分である n段乗算検波回路 1 3 (こ こでは 4段) により、 そ れぞれの 1から ( n— 1 ) ビッ 卜前の情報と現在の情報を乗算するこ と により、 復調検波信号が得られる。 式で示せば、 = Π ( 2 ) (1). Here, bj is the output signal of the n-stage multiplication circuit 4, and ci is the input signal. The n-stage multiplication circuit 4 has four stages in this embodiment, and is constituted by a three-stage shift register 5 and a multiplier 6. This circuit can perform the same processing using the half adder as described above. The signal output from the n-stage multiplication circuit 4 is multiplied by a carrier 8 generated by an oscillator 7 by a mixer 8, modulated into a high-frequency band, then amplified by an amplifier 9, and output from an antenna 10. You. On the receiving side, the received modulated signal input from the antenna 10 is amplified by the amplifier 11 and converted into a matched signal by the surface acoustic wave matched filter 12 corresponding to the PN code on the output side. Another feature, an n-stage multiplication detection circuit 13 (four stages in this case), is used to multiply the information before 1 to (n−1) bits and the current information, respectively. A demodulated detection signal is obtained. In a formula, = Π (2)
み' η段乗算検波回路 1 3内では、情報周期を Τとして遅延時間 1 Τの遅延 線 1 4、 2 Τの遅延線 1 5、 3 Τの遅延線 1 6により、 1から 3 ビッ ト 前の信号を得、 混合器 1 7により、 それそれの信号と現在の信号を乗算 している。 得られた復調検波信号は、 整合信号を検波したものであるた め、 パルスの幅が狭い。 そこで、 コンパレータ等の方形波出力回路 1 8 により、 適当なパルス幅比のデジタル信号に変換され、 出力端子 1 9よ り出力される。  In the η-stage multiplication detection circuit 13, the information cycle is Τ, and the delay line 1, 2 時間 delay line 15, 2 遅 延 delay line 15, and 3 遅 延 delay line 16 are 1 to 3 bits before And the mixer 17 multiplies each signal by the current signal. Since the demodulated detection signal obtained is a signal obtained by detecting a matched signal, the pulse width is narrow. Therefore, the signal is converted into a digital signal having an appropriate pulse width ratio by a square wave output circuit 18 such as a comparator and output from an output terminal 19.
第 2図は従来の D P S K ( D i f f e r e n t i a 1 P h a s e S h i f t K e y i n g ) 方式を示している。 ( a ) が元のディジタ ル情報、 ( b ) が P N符号 (ここでは 5 ビッ 卜) にて拡散された拡散信 号、 ( c ) はキャ リアが乗算された送受、 変調信号である。 ここで、 従 来の D P S K方式では、 信号の位相変化が無い場合をデジタル信号の 0、 位相変化がある場合を 1 に対応させている。 ( d ) は受信器の検波復調 方式を示している。 D P S K方式の特徴は、 復調側に特別な発振回路を 必要とせず、 1 T遅延線 2 1 と混合器 2 2のみにより端子 2 0より検波 復調信号が得られることである。 しかし、 従来の D P S K方式では、 2 種の遅延時間の異なる信号を乗算しているだけであるため、 不規則に入 力される雑音を充分に抑圧することができない。 それに比べ、 本方式で は、 4種の遅延時間の異なる信号を乗算するため、 不規則に加算される 雑音成分が乗算されることにより、 等価的な信号対雑音比が向上する。 以上、 本実施例によれば、 受信装置の等価 S /Nを向上させ、 通信信頼 性の向上、 通信距離の拡大を図る事ができる。  FIG. 2 shows a conventional DPSK (Differentia1PhasesSehiftKeying) system. (A) is the original digital information, (b) is the spread signal spread by the PN code (here, 5 bits), and (c) is the transmission / reception and modulation signal multiplied by the carrier. Here, in the conventional DPSK method, the digital signal corresponds to 0 when there is no phase change of the signal and 1 when there is a phase change. (D) shows the detection and demodulation method of the receiver. A feature of the DPSK method is that no special oscillation circuit is required on the demodulation side, and a demodulated signal can be obtained from terminal 20 using only 1T delay line 21 and mixer 22. However, in the conventional DPSK method, since only two types of signals having different delay times are multiplied, noise that is randomly input cannot be sufficiently suppressed. In contrast, in this method, four types of signals with different delay times are multiplied, and the noise components that are added irregularly are multiplied, thereby improving the equivalent signal-to-noise ratio. As described above, according to the present embodiment, it is possible to improve the equivalent S / N of the receiving device, improve the communication reliability, and increase the communication distance.
第 3図は、 本発明の第 2実施例の 1部を示したものである。 第 2実施 例では、 本発明の特徴部である、 n段乗算回路と n段乗算検波回路を 6 段としている。 第 3図は n段乗算検波回路 1 3の内部を示したもので、 1 T遅延線 2 3、 2 T遅延線 2 4、 3 T遅延線 2 5、 4 T遅延線 2 6、 5 T 遅延線 2 7の出力と現在の信号を混合器 2 8 により乗算して出力検波 信号を得ている。 同様に第 4図は n段乗算回路 4の内部を示したもので あり、 5段のシフ ト レジスタ 2 9 と混合器 3 0により送信デジタル信号 を得ている。 以上、 本実施例によれば、 第 1実施例に比べ、 さ らに段数 が増加しているため、 一層、 受信装置の等価 S Z Nを向上させ、 通信信 頼性の向上、 通信距離の拡大を図る事ができる。 FIG. 3 shows a part of a second embodiment of the present invention. Second implementation In the example, an n-stage multiplication circuit and an n-stage multiplication detection circuit, which are characteristic portions of the present invention, have six stages. Fig. 3 shows the inside of the n-stage multiplication detection circuit 13; 1T delay line 23, 2T delay line 24, 3T delay line 25, 4T delay line 26, 5T delay The output of line 27 is multiplied by the current signal by mixer 28 to obtain an output detection signal. Similarly, FIG. 4 shows the inside of the n-stage multiplication circuit 4, and a transmission digital signal is obtained by a 5-stage shift register 29 and a mixer 30. As described above, according to the present embodiment, since the number of stages is further increased as compared with the first embodiment, the equivalent SZN of the receiving device is further improved, the communication reliability is improved, and the communication distance is increased. Can be planned.
第 5図は第 3実施例の通信装置の n段乗算検波回路を示したものであ る。 本実施例の段数は第 1実施例と同様の 4段であるが、 n段乗算検波 回路 1 3の内部に、 遅延時間 1 Tの遅延線 3 1、 2 Tの遅延線 3 2、 3 Tの遅延線 3 3により、 1 から 3 ビッ ト前の信号を得、 先ず、 混合器 3 4により 0 T、 1 T の信号の乗算信号を形成し、 また、 混合器 3 5によ り 2 Τ、 3 Τ の信号の乗算信号を形成する。 次に、 それぞれの信号を混 合器 3 6により乗算して、 出力検波信号を得る。 第 1実施例では、 各々 の信号を 1度に乗算しているが、 実際には、 この様な回路を形成するこ とは難しい。 そこで、 本実施例では、 各々の信号出力を 2個づっ乗算し、 最後に、 その出力を乗算することとした。 本実施例によれば、 第 1実施 例のように η個の信号の乗算が難しい場合でも、 η個の乗算出力が得ら れる。  FIG. 5 shows an n-stage multiplication detection circuit of the communication device of the third embodiment. The number of stages in this embodiment is four, similar to that of the first embodiment. However, an n-stage multiplication detection circuit 13 has delay lines 31 with a delay time of 1 T, delay lines with 2 T and a delay line with 3 T and 3 T The signal before 1 to 3 bits is obtained by the delay line 33 of FIG. 1, first, a multiplied signal of the 0T and 1T signals is formed by the mixer 34, and 2 Τ is obtained by the mixer 35. , 3 信号 to form a multiplied signal. Next, each signal is multiplied by the mixer 36 to obtain an output detection signal. In the first embodiment, each signal is multiplied at a time, but it is actually difficult to form such a circuit. Therefore, in the present embodiment, each signal output is multiplied by two, and finally, the output is multiplied. According to this embodiment, even when it is difficult to multiply η signals as in the first embodiment, η multiplication outputs can be obtained.
第 6図は第 4実施例の通信装置の η段乗算検波回路を示したものであ る。 本実施例の段数は第 3実施例と同様の 4段であるが、 η段乗算検波 回路 1 3の内部に、 遅延時間 1 Τの遅延線 3 7、 3 8、 3 9を縦続的に 接続し、 1 から 3 ビッ ト前の信号を得、 先ず、 現在の信号と第 1段の遅 延線 3 7の出力を混合器 4 0により乗算し、 また第 2段の遅延線 3 8 と 第 3段の遅延線 3 9の出力を混合器 4 1 により乗算し、 最後に、 その出 力を混合器 4 2により乗算することとした。 第 3実施例では遅延時間の 長い (例えば 3 T ) 遅延線が必要であつたが、 本実施例を用いれば、 1 Tの遅延線のみを用いればよいから、 回路の小形化が可能である。 (一 般に、 遅延時間の長い遅延線ほど大きい。 ) FIG. 6 shows an η-stage multiplication detection circuit of the communication device of the fourth embodiment. Although the number of stages in this embodiment is four, similar to that of the third embodiment, delay lines 37, 38, and 39 with a delay time of 1 mm are cascaded inside the η-stage multiplication detection circuit 13 Then, the signal before 1 to 3 bits is obtained, and first, the current signal is multiplied by the output of the delay line 37 of the first stage by the mixer 40, and the signal is also multiplied by the delay line 38 of the second stage. The output of the third-stage delay line 39 is multiplied by the mixer 41, and finally, the output is multiplied by the mixer 42. In the third embodiment, a delay line having a long delay time (for example, 3 T) is required. However, according to this embodiment, only a 1 T delay line may be used, so that the circuit can be downsized. . (In general, the longer the delay line, the larger the delay line.)
第 7図は第 5実施例の通信装置の n段乗算検波回路を示したものであ る。 本実施例の段数は第 3、 4実施例と同様の 4段であるが、 n段乗算 検波回路 1 3の内部処理として、 遅延時間 1 Tの遅延線 4 3の信号出力 と、 現在の信号を混合器 4 4により乗算し、 またその信号と遅延時間 2 Tの遅延線 4 5の出力を混合器 4 6により乗算し、 出力検波復調信号を 得る。 第 3、 4実施例では 3個の混合器が必要であつたが、 本実施例を 用いれば、 2個の混合器のみを用いればよいから、 回路の小形化、 低価 格化が可能である。  FIG. 7 shows an n-stage multiplication detection circuit of the communication device of the fifth embodiment. Although the number of stages in this embodiment is four, similar to the third and fourth embodiments, the internal processing of the n-stage multiplication detection circuit 13 includes the signal output of the delay line 43 with a delay time of 1 T and the current signal. Is multiplied by a mixer 44, and the signal is multiplied by the output of a delay line 45 having a delay time of 2 T by a mixer 46 to obtain an output detection demodulated signal. In the third and fourth embodiments, three mixers were required.However, according to this embodiment, only two mixers need be used, so that the circuit can be reduced in size and cost. is there.
第 8図は第 6実施例のスぺク トラム拡散通信装置の 1部を示している < 第 8図は受信器の復調検波部を示しており、 検波回路部 4 9は 1 T遅延 線 4 7 と混合器 4 8による従来の DPSK 方式の遅延検波方式を用いてい る。 検波された信号は低域通過フィルタ 5 0を通過し、 キヤ リァ成分を 除去される。 得られた信号は混合器 5 1 により同極符号を有する幅の細 い同期信号 5 2が得られる。 この同期信号 5 2を方形波出力用コンパレ 一夕 5 3の比較用同期信号として用いることにより、 幅の細い整合信号 部分のみをコンパレータの出力として拾い出すことにより、 実効的な S Z Nを向上させることができる。 従来の回路では、 同期信号としては正 弦波を用いていたが、 その方式に比べ、 パルス幅が狭いため、 実効的な S Z Nを一層向上させることができる。  FIG. 8 shows a part of a spread spectrum communication apparatus according to the sixth embodiment. <FIG. 8 shows a demodulation detection section of a receiver, and a detection circuit section 49 has a 1T delay line 4. The conventional DPSK differential detection method using a conventional DPSK method and a mixer 48 is used. The detected signal passes through a low-pass filter 50, and a carrier component is removed. From the obtained signal, a narrow synchronous signal 52 having the same polarity code is obtained by the mixer 51. By using this synchronization signal 52 as a comparison synchronization signal for the square wave output comparator 53, the effective SZN can be improved by picking up only the narrow matching signal part as the comparator output. Can be. In the conventional circuit, a sine wave was used as the synchronizing signal. However, the pulse width is narrower than that, and the effective SZN can be further improved.
第 9図は第 7実施例のスぺク トラム拡散通信装置の 1部を示している < 第 9図は受信器の復調検波部を示しており、 第 8図と同様箇所は同一の 番号を付している。 検波回路部 4 9は第 6実施例と同様、 従来の DPSK 方式の遅延検波方式を用いている。 検波された信号は 1部低域通過フィ ル夕 5 0を通過し、 キャ リア成分を除去され、 方形波出力用コンパレー 夕 5 3に入力される。 のこ りの 1部は実線 5 8の流れに従い、 2 Tの遅 延線 5 4を通過した信号と通過しない信号を混合器 5 5により乗算され、 雑音成分を抑圧し、 混合器 5 6により 2乗され、 低域通過フィル夕 5 7 を通過した後、 比較用同期信号 5 2 としてコンパレータに入力される。 本実施例では、 第 6実施例に比べ、 同期信号が元の信号に対して遅延時 間を異ならせて 4乗されているため、 雑音成分が抑圧され、 より同期を 保持することができる。 FIG. 9 shows a part of the spread spectrum communication apparatus according to the seventh embodiment. <FIG. 9 shows a demodulation detection unit of the receiver, and the same parts as in FIG. Numbered. As in the sixth embodiment, the detection circuit section 49 uses a conventional DPSK delay detection method. The detected signal passes through the low-pass filter 50, the carrier component is removed, and is input to the square wave output comparator 53. A part of the remaining signal is multiplied by a mixer 55 with a signal passing through a 2T delay line 54 and a signal not passing through the delay line 54 according to the flow of a solid line 58 to suppress noise components. After squaring and passing through the low-pass filter 57, it is input to the comparator as a comparison synchronization signal 52. In the present embodiment, as compared with the sixth embodiment, the synchronization signal is raised to the fourth power with a different delay time from the original signal, so that the noise component is suppressed and the synchronization can be maintained more.
第 1 0図は第 1実施例に用いた、 弾性表面波マツチ ドフィルタ 1 2を 模式的に示したものである。 弾性表面波マッチ ドフィルタは弾性表面波 基板 6 0上に、 入力すだれ状電極 6 1 と出力符号化電極 6 2が配置され ている。 入力端子 6 3 より拡散信号が入力され、 P N符号が符号化電極 の極性変化に一致した場合、 出力端子 6 4 より鋭いピーク状の整合信号 が出力される。 本実施例の弾性表面波マッチ ドフィルタを用いれば、 検 波回路を同期回路を必要とせず、 高速に同期捕捉が可能で、 しかも低電 流で検波信号が得られるという特長を有する。  FIG. 10 schematically shows the surface acoustic wave matched filter 12 used in the first embodiment. In the surface acoustic wave matched filter, an input interdigital electrode 61 and an output encoding electrode 62 are arranged on a surface acoustic wave substrate 60. When the spread signal is input from the input terminal 63 and the PN code matches the change in the polarity of the encoding electrode, a sharp peak-shaped matching signal is output from the output terminal 64. The use of the surface acoustic wave matched filter of the present embodiment has a feature that the detection circuit does not require a synchronization circuit, the high-speed synchronization can be obtained, and the detection signal can be obtained with a low current.
第 1 1 図は第 8実施例の弾性表面波マッチ ドフィルタを模式的に示し たものである。 図中、 第 1 0図と同一箇所は同一番号を付した。 通常、 弾性表面波基板 6 0は符号化電極部での温度変動による遅延時間変動を 抑圧するため、 低温度系数を有する水晶を用いる場合が多い。 しかし、 水晶基板の電気機械結合係数は小さいため、 すだれ状電極部のィ ンピー ダンスが高く なり、 ミ スマッチ損失が増大する。 そこで、 本実施例では、 入力すだれ状電極部のみに高結合係数の圧電薄膜 6 5を成膜し、 入力す だれ状電極 6 1 のイ ンピーダンスを下げ、 ミ スマッチ損失を抑えている c 本実施例を用いれば、 温度変動に強く、 低損失なマッチ ドフィルタが得 られる。 FIG. 11 schematically shows a surface acoustic wave matched filter according to an eighth embodiment. In the figure, the same parts as those in FIG. 10 are given the same numbers. Usually, the surface acoustic wave substrate 60 often uses a crystal having a low temperature coefficient in order to suppress a delay time variation due to a temperature variation in the encoding electrode section. However, since the electromechanical coupling coefficient of the crystal substrate is small, the impedance of the interdigital transducer increases, and the mismatch loss increases. Therefore, in this embodiment, the piezoelectric thin film 6 5 high coupling coefficient was deposited only on the input interdigital electrode portion lowers the sag shaped electrode 6 1 of impedance enter, thereby suppressing mismatch loss c By using this embodiment, it is possible to obtain a matched filter that is resistant to temperature fluctuation and has low loss.
第 1 2図から第 1 7図は本発明の有効性を示すために、 従来の信号波 形と、 本発明の信号波形を比較したものである。 通信方式としては、 ス ぺク トラ厶拡散通信方式を例にとっている。 第 1 2図は信号レベル一 8 9 . 1 1 4 d B m ( 1 MHz当りの電力のピーク値) 、 ノィズレベル一 9 FIGS. 12 to 17 show a comparison between a conventional signal waveform and the signal waveform of the present invention in order to show the effectiveness of the present invention. As a communication method, a spread spectrum communication method is taken as an example. Fig. 12 shows a signal level of 19.1.14 dBm (peak value of power per 1 MHz) and a noise level of 19.1 dBm.
8 d B mの場合のマッチ ドフィル夕の出力信号波形である。 第 1 3図は、 同様の条件の従来の遅延検波波形、 第 1 4図は、 本発明の 4段検波回路 の出力信号である。 従来方式の信号では雑音成分が観測されるが、 本発 明の方式では、 雑音成分はほとんど観測されない。 第 1 5図は信号レべ ルー 9 4 . 0 d B m ( 1 MHz当りの電力のピーク値) 、 ノイズレベル一It is an output signal waveform of the matched fill in the case of 8 dBm. FIG. 13 is a conventional delay detection waveform under the same conditions, and FIG. 14 is an output signal of the four-stage detection circuit of the present invention. In the signal of the conventional method, a noise component is observed, but in the method of the present invention, almost no noise component is observed. Fig. 15 shows the signal level of 94.0 dBm (peak value of power per 1 MHz) and the noise level.
9 2 . 5 d B mの場合のマッチドフィル夕の出力信号波形である。 第 1 6図は、 同様の条件の従来の遅延検波波形、 第 1 7図は、 本発明の 4段 検波回路の出力信号である。 従来方式の信号では雑音と信号の判別が難 しいが、 本発明の方式では、 雑音成分は充分小さく、 信号の判別が可能 である。 また、 信号の同期も明確に現われており、 コンパレータ用の同 期信号として充分使用可能である。 It is an output signal waveform of the matched fill in the case of 92.5 dBm. FIG. 16 is a conventional delay detection waveform under the same conditions, and FIG. 17 is an output signal of the four-stage detection circuit of the present invention. Although it is difficult to discriminate between noise and a signal in the signal of the conventional method, in the method of the present invention, the noise component is sufficiently small and the signal can be discriminated. In addition, the signal synchronization is clearly shown, and can be used as a synchronization signal for comparators.
第 1 8図は本発明の第 9実施例の通信装置のプロック図である。 図中、 第 1実施例の第 1図と同一箇所は同一番号を付した。 第 1実施例では、 アンテナ 1 0より受信した変調信号は直接マッチドフィルタ 1 2 に入力 されたが、 本実施例では、 一旦、 発振器 6 6からのキヤ リァと混合器 6 7により乗算され、 中間周波 ( I F ) 信号に変換され、 マッチ ドフィル 夕に入力される。 本実施例は、 R F信号の周波数が高く (例えば 2 . 4 G H z帯) 、 S A Wマッチ ドフィルタ 2 7、 弾性表面波遅延線 2 8、 ミ キサ 2 9等の動作が難しい場合に有効である。  FIG. 18 is a block diagram of a communication device according to a ninth embodiment of the present invention. In the figure, the same parts as those in FIG. 1 of the first embodiment are denoted by the same reference numerals. In the first embodiment, the modulated signal received from the antenna 10 is directly input to the matched filter 12. However, in the present embodiment, the carrier from the oscillator 66 is once multiplied by the mixer 67 to generate the intermediate signal. It is converted to a frequency (IF) signal and input at the matched fill. This embodiment is effective when the frequency of the RF signal is high (for example, 2.4 GHz band) and it is difficult to operate the SAW matched filter 27, the surface acoustic wave delay line 28, the mixer 29, and the like. .
第 1 9図は本発明の第 1 0実施例の通信装置のプロック図である。 図 中、 第 1実施例の第 1 図と同一箇所は同一番号を付した。 第 1実施例は、 スぺク トラム拡散通信方式の例であるが、 本実施例は、 B P S K方式の 直接変調に関するものである。 入力端子 6 8から入力されたデジタル信 号は、 直接、 n段乗算回路 4に入力される。 n段乗算回路 4から出力さ れた信号は発振器 6 9により生じさせたキャ リ アを混合器 7 0により乗 算させ、 高周波帯に変調した後、 増幅器 7 1 により増幅され、 アンテナ 7 2 より出力される。 受信側では、 アンテナ 7 2 より入力された受信変 調信号は、 増幅器 7 3により増幅され、 n 段乗算検波回路 1 3により、 高 S Z Nの復調検波信号が得られる。 得られた復調検波信号は、パルス の幅が広い。 そこで、 波形成形回路 7 4 により、 適当なパルス幅比のデ ジタル信号に変換され、 出力端子 7 5 より出力される。 本実施例は、 B P S K方式の直接変調に関するものである力 本発明は、 スペク トラム 拡散通信方式以外の方式にも適用可能である。 FIG. 19 is a block diagram of a communication apparatus according to a tenth embodiment of the present invention. Figure The same parts as those in FIG. 1 of the first embodiment are denoted by the same reference numerals. The first embodiment is an example of a spread spectrum communication system, but the present embodiment relates to direct modulation of the BPSK system. The digital signal input from the input terminal 68 is directly input to the n-stage multiplication circuit 4. The signal output from the n-stage multiplication circuit 4 is multiplied by a carrier generated by an oscillator 69 by a mixer 70, modulated into a high frequency band, then amplified by an amplifier 71, and then amplified by an antenna 72. Is output. On the receiving side, the reception modulation signal input from the antenna 72 is amplified by the amplifier 73, and a high SZN demodulation detection signal is obtained by the n-stage multiplication detection circuit 13. The demodulated detection signal obtained has a wide pulse width. Then, the signal is converted into a digital signal having an appropriate pulse width ratio by the waveform shaping circuit 74 and output from the output terminal 75. The present embodiment relates to direct modulation of the BPSK scheme. The present invention can be applied to schemes other than the spread spectrum communication scheme.
第 2 0図は本発明の第 1 1実施例のプロッ ク図である。 図中、 第 1 0 実施例の第 1 9図と同一箇所は同一番号を付した。 本実施例は、 第 1 0 実施例と同様、 B P S K方式の直接変調に関するものである。第 1 0実 施例では、 アンテナ 7 2より受信した変調信号は直接 n段乗算検波回路 1 3 に入力されたが、 本実施例では、 一旦、 発振器 7 6からのキャ リ ア と混合器 7 7により乗算され、 中間周波 ( I F ) 信号に変換され、 n段 乗算検波回路 1 3に入力される。 本実施例は、 R F信号の周波数が高く (例えば 2 . 4 G H z帯) 、 遅延線、 ミキサ等の動作が難しい場合に有 効である。  FIG. 20 is a block diagram of the eleventh embodiment of the present invention. In the figure, the same parts as those in FIG. 19 of the tenth embodiment are denoted by the same reference numerals. This embodiment relates to the direct modulation of the BPSK system, as in the tenth embodiment. In the tenth embodiment, the modulated signal received from the antenna 72 was directly input to the n-stage multiplication detection circuit 13. However, in the present embodiment, the carrier from the oscillator 76 and the mixer The signal is multiplied by 7 and converted into an intermediate frequency (IF) signal, which is input to an n-stage multiplication detection circuit 13. This embodiment is effective when the frequency of the RF signal is high (for example, in the 2.4 GHz band) and it is difficult to operate a delay line, a mixer, and the like.
第 2 1 図は本発明の第 1 2実施例のブロック図である。 図中、 第 1実 施例の第 1 図と同一箇所は同一番号を付した。 第 1実施例のスぺク トラ ム拡散通信方式では、 アンテナ 1 0より受信した変調信号はマッチ ドフ ィルタ 1 2に入力されたが、 本実施例では、 コンボルバ 7 8に入力され る。 コンボルバ 7 8には P Nコー ド発生器 7 9のデジタル信号を、 発振 器 8 0のキヤ リァと混合器 8 1 により変調をかけ、 アンテナからの入力 信号と畳み込み積分される。第 1実施例では、 S A Wマッチ ドフィルタ を用いていたため、 P N符号を変化させる事が難しい。 しかし、 本発明 では、 コンボルバ一を用いているため、 PN符号が変化する場合にも対応 可能である。 第 2 2図は弾性表面波を用いたコンボルバの構造を模式的 に示したものである。 入力端子 8 2からは入力信号が入力され、 また、 入力端子 8 3には参照信号が入力され、 コンボリ ユーショ ン出力が出力 端子 8 4 より出力される。 コンボルバ内部には弾性表面波基板 8 5 と入 力すだれ状電極 8 6 、 8 7が配置され、 非線形相互作用領域 8 8では、 入力された 2種の信号の空間積分によるコンボリ ューショ ン出力が得ら れる。 FIG. 21 is a block diagram of a 12th embodiment of the present invention. In the figure, the same parts as in FIG. 1 of the first embodiment are denoted by the same reference numerals. In the spread spectrum communication method of the first embodiment, the modulated signal received from the antenna 10 is input to the matched filter 12, but in the present embodiment, the modulated signal is input to the convolver 78. You. The digital signal of the PN code generator 79 is modulated in the convolver 78 by the carrier of the oscillator 80 and the mixer 81, and convolved with the input signal from the antenna. In the first embodiment, since the SAW matched filter is used, it is difficult to change the PN code. However, in the present invention, since the convolver is used, it is possible to cope with a case where the PN code changes. Fig. 22 schematically shows the structure of a convolver using surface acoustic waves. An input signal is input from the input terminal 82, a reference signal is input to the input terminal 83, and a convolution output is output from the output terminal 84. A surface acoustic wave substrate 85 and input IDTs 86 and 87 are arranged inside the convolver, and a convolution output is obtained in the nonlinear interaction area 88 by spatial integration of the two input signals. Is received.
第 2 3図は本発明の第 1 3実施例のプロ ッ ク図である。 図中、 第 1実 施例の第 1 図と同一箇所は同一番号を付した。 第 1実施例のスぺク 卜ラ ム拡散通信方式では、 アンテナ 1 0より受信した変調信号はマツチ ドフ ィルタ 1 2に入力され、 アナ口グ信号処理により、 整合信号を得ていた 力 本実施例では、 先ず、 受信信号をデジタル信号に変換し、 その後、 デジタル演算装置 8 9により、 情報信号の復調を行なっている。 図 2 4 はデジタル演算装置 8 9の処理内容を示している。 入力端子 9 0にはデ ジタル化された拡散信号が入力され、 演算装置部では、 P N符号と随時、 相関処理を施し、 相関出力がある レベルを超えた場合に出力端子 9 1 よ りデジタル信号が出力される。 本実施例を用いれば、 情報速度が比較的 低速の場合は、 回路の低価格化に有効である。  FIG. 23 is a block diagram of a thirteenth embodiment of the present invention. In the figure, the same parts as in FIG. 1 of the first embodiment are denoted by the same reference numerals. In the spread spectrum communication method of the first embodiment, the modulated signal received from the antenna 10 is input to the matched filter 12 and a matched signal is obtained by analog signal processing. In the example, first, the received signal is converted into a digital signal, and thereafter, the digital arithmetic unit 89 demodulates the information signal. FIG. 24 shows the processing contents of the digital arithmetic unit 89. The digitized spread signal is input to the input terminal 90, and the arithmetic processing unit performs correlation processing with the PN code as needed, and outputs a digital signal from the output terminal 91 when the correlation output exceeds a certain level. Is output. This embodiment is effective in reducing the cost of the circuit when the information speed is relatively low.
第 2 5図は本発明を用いた通信システムを示している。 本実施例は L A Nに本方式の通信装置を用いたものである。 L A N用ケーブル 9 2に 本通信装置 9 6 、 9 7が接続され、 各端末 9 3 、 9 4には本通信装置 9 5, 9 8が接続されている。 また、 各端末 9 9、 1 0 0に本通信装置 1 0 1、 1 0 2を接続し、 各端末間で (有線系を介さず) 自由に通信を行 うことができる。 本実施例を用いれば、 各端末では L ANケーブルに接 続する必要が無いため、 端末を自由に動かす事 (レイァゥ ト) ができる 産業上の利用可能性 FIG. 25 shows a communication system using the present invention. In this embodiment, a communication device of this system is used for a LAN. The communication devices 96 and 97 are connected to the LAN cable 92, and the communication devices 9 and 94 are connected to each terminal 93 and 94. 5, 9 and 8 are connected. Also, the communication devices 101 and 102 are connected to the terminals 99 and 100, respectively, and the terminals can communicate freely (without passing through a wired system). If this embodiment is used, each terminal does not need to be connected to the RAN cable, so that the terminal can be moved freely (rate).
本発明によれば、 対雑音性能を上げることが可能となり、 通信装置の 高信頼性化、 通信距離の拡大が可能となり、 信頼性の高い通信システム が実現できる。  ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to raise noise immunity performance, it becomes possible to improve the reliability of a communication apparatus, and to expand a communication distance, and to implement | achieve a highly reliable communication system.

Claims

請求の範囲 The scope of the claims
1 . 2値のデジタル情報を 1 と一 1に対応させたデジタル情報数列の内、 送信側では n個 ( nは 3以上) の部分数列の乗算出力を順次、 直接、 ま たは変調して送信する事を特徴とする通信装置。 1.2 Of the digital information sequence in which binary digital information is associated with 1 and 1 1, the multiplication output of n (n is 3 or more) partial sequences is sequentially, directly, or modulated on the transmitting side. A communication device characterized by transmitting.
2 . 受信側では受信信号を、上記に対応し、直接、または復調した後、 n 個の部分数列に対応した信号を順次、 乗算することにより、 元の 1 と一 1に対応させたデジタル情報数列を再生し、 さらにその情報からデジ夕 ル情報を再生する事を特徴とする通信装置。  2. The receiving side directly or demodulates the received signal according to the above, and then sequentially multiplies the signals corresponding to the n partial sequences to obtain the digital information corresponding to the original 1 and 1 1 A communication device characterized by reproducing a sequence of numbers and further reproducing digital information from the information.
3 . 2値のデジタル情報を 1 と一 1 に対応させたデジタル情報数列の内、 送信側では n個 ( nは 3以上) の部分数列の乗算出力を順次、 直接、 ま たは変調し、 受信側では受信信号を、 上記に対応し、 直接、 または復調 した後、 n個の部分数列に対応した信号を順次、 乗算することにより、 元の 1 と一 1に対応させたデジタル情報数列を再生し、 さらにその情報 からデジタル情報を再生する事を特徴とする通信システム。 3. In the digital information sequence in which the binary digital information corresponds to 1 and 1 1, the multiplication output of n (n is 3 or more) partial sequences is sequentially, directly, or modulated on the transmitting side, and The receiving side directly or demodulates the received signal according to the above, and then sequentially multiplies the signals corresponding to the n partial sequences to obtain the digital information sequence corresponding to the original 1 and 1 1 A communication system characterized by reproducing and further reproducing digital information from the information.
4 . 請求項 2記載の通信装置において、 1情報ビッ ト信号周期 T とする と、 了から (n— 1 ) T時間前 ( riは 3以上) の信号と現在の信号を全て 乗算して、 元の 1 と一 1に対応させたデジタル情報数列の情報を有する 信号を再生し、 さらにその情報からデジタル情報を再生する事を特徴と する通信装置。  4. In the communication device according to claim 2, assuming that one information bit signal period is T, a signal that is (n−1) T times before (ri is 3 or more) from the end and the current signal are all multiplied, A communication device characterized by reproducing a signal having information of a digital information sequence corresponding to the original 1 and 1 and further reproducing digital information from the information.
5 . 請求項 2記載の通信装置において、 1情報ビッ ト信号周期 Tに対応 した遅延時間を有する 1 T遅延線を縦続に、 多 (n— 1 ) 段に設け、 受信 信号を遅延線の初段に入力し、 それぞれの段の遅延線出力と元の受信信 号を乗算し、 元の 1 と一 1に対応させたデジタル情報数列を再生し、 さ らにその情報からデジタル情報を再生することをを特徴とする通信装置 < 5. The communication device according to claim 2, wherein 1T delay lines having a delay time corresponding to one information bit signal period T are provided in cascade, in many (n-1) stages, and a reception signal is provided in the first stage of the delay line. Multiply the output of each stage by the delay line output and the original received signal to reproduce the digital information sequence corresponding to the original 1 and 1 and to reproduce the digital information from that information Communication device characterized by <
6 . 請求項 2記載の通信装置において、 1情報ビッ ト信号周期 Tに対応 した遅延時間を有する (n— 1 ) 個の 1 T、 2 Τ一… (η— 1 ) Τ遅延線を 設け、 受信信号をそれぞれの遅延線に入力し、 それら遅延線の出力と元 の信号を乗算し、 元の 1 と一 1に対応させたデジタル情報数列を再生し、 さらにその情報からデジタル情報を再生することを特徴とする通信装置 <6. The communication device according to claim 2, corresponding to one information bit signal period T. (N-1) 1T, 2 Τ1 ... (η-1) を delay lines having the same delay time are provided, the received signal is input to each delay line, the output of those delay lines and the original signal Communication device that reproduces a digital information sequence corresponding to the original 1 and 1 and further reproduces digital information from the information.
7 . 請求項 3記載の通信システムにおいて、 2値のデジタル情報を 1 と 一 1に対応させたデジタル情報数列を、 送信側では η個 ( ηは 3以上) の部分数列の乗算出力を順次、 Ρ Ν (疑似雑音) 符号によりスぺク トラ ム拡散変調して送信し、 受信側では受信信号を、 スぺク 卜ラム拡散復調 した後、 η個の部分数列に対応した信号を順次、 乗算することにより、 元の 1 と一 1 に対応させたデジタル情報数列を再生し、 さらにその情報 からデジタル情報を再生することを特徴とする通信システム。 7. The communication system according to claim 3, wherein the digital information sequence in which the binary digital information is made to correspond to 1 and 1 1 is sequentially multiplied and output on the transmitting side by η (η is 3 or more) partial sequences. Ν Ν (pseudo-noise) code is spread-spectrum-modulated and transmitted. The receiving side performs spread-spectrum demodulation on the received signal, and then sequentially multiplies the signals corresponding to η partial sequences. A digital information sequence corresponding to the original 1 and 1 and reproducing digital information from the information.
8 . スペク トラム拡散通信システムの受信側の同期再生手段として、 1 情報ビッ 卜信号周期 Τとすると、 Τから (η— 1 ) Τ時間前 ( ηは 3以上) の信号と現在の信号を全て乗算して、 信号同期信号を再生することをを 特徴とする通信装置。  8. If one information bit signal period Τ is used as a synchronous reproduction means on the receiving side of the spread spectrum communication system, all signals from (Τ−1) Τ time before ((η is 3 or more) and all current signals are used. A communication device characterized by reproducing a signal synchronization signal by multiplying.
9 . スペク トラム拡散通信システムの受信側の同期再生手段として、 1 情報ビッ 卜信号周期 Τとすると、 Τから (η— 1 ) Τ時間前 ( ηは 3以上) の信号と現在の信号を全て乗算して、 さらにその信号を 2乗して信号同 期信号をを再生することをを特徴とする通信装置。  9. As a synchronous reproduction means on the receiving side of the spread spectrum communication system, assuming that one information bit signal period is を, all signals from (Τ−1) Τ hours before ((η is 3 or more) and the current signal are used. A communication device characterized in that the signal is multiplied and the signal is squared to reproduce a signal synchronization signal.
PCT/JP1996/002042 1996-07-22 1996-07-22 Communication equipment and communication system WO1998004075A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1998506770A JP3769301B6 (en) 1996-07-22 Communication apparatus and communication system
PCT/JP1996/002042 WO1998004075A1 (en) 1996-07-22 1996-07-22 Communication equipment and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/002042 WO1998004075A1 (en) 1996-07-22 1996-07-22 Communication equipment and communication system

Publications (1)

Publication Number Publication Date
WO1998004075A1 true WO1998004075A1 (en) 1998-01-29

Family

ID=14153585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002042 WO1998004075A1 (en) 1996-07-22 1996-07-22 Communication equipment and communication system

Country Status (1)

Country Link
WO (1) WO1998004075A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164509A (en) * 1986-12-26 1988-07-07 Nippon Telegr & Teleph Corp <Ntt> Delay detecting circuit
JPH0468737A (en) * 1990-07-05 1992-03-04 Sekiyu Kodan Demodulator for differential phase modulation communication system
JPH0637833A (en) * 1992-07-15 1994-02-10 Uniden Corp Digital signal detecting circuit
JPH07336406A (en) * 1994-06-03 1995-12-22 Fujitsu Ltd Multiple delay detection demodulating device
JPH08125579A (en) * 1994-10-20 1996-05-17 Fujitsu General Ltd Spread spectrum communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164509A (en) * 1986-12-26 1988-07-07 Nippon Telegr & Teleph Corp <Ntt> Delay detecting circuit
JPH0468737A (en) * 1990-07-05 1992-03-04 Sekiyu Kodan Demodulator for differential phase modulation communication system
JPH0637833A (en) * 1992-07-15 1994-02-10 Uniden Corp Digital signal detecting circuit
JPH07336406A (en) * 1994-06-03 1995-12-22 Fujitsu Ltd Multiple delay detection demodulating device
JPH08125579A (en) * 1994-10-20 1996-05-17 Fujitsu General Ltd Spread spectrum communication system

Also Published As

Publication number Publication date
JP3769301B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
US5081642A (en) Reciprocal saw correlator method and apparatus
US5048052A (en) Spread spectrum communication device
US6205169B1 (en) Spread spectrum pulse position modulation communication system
EP0409538B1 (en) Spread spectrum signal demodulator
US6616254B1 (en) Code shift keying transmitter for use in a spread spectrum communications system
US5355389A (en) Reciprocal mode saw correlator method and apparatus
JP3809515B2 (en) Communication method
JPH03226135A (en) Correlation device for spread spectrum communication
JP2742519B2 (en) Differential signal detection matched filter for use in spread spectrum communication systems.
WO1998004075A1 (en) Communication equipment and communication system
JP3769301B6 (en) Communication apparatus and communication system
JP2648517B2 (en) Demodulator for spread spectrum communication
JP3179554B2 (en) Spread spectrum communication system
JP3033374B2 (en) Data transceiver
US6697418B1 (en) Spread spectrum communication device and communication system
Haartsen A differential-delay SAW correlator for combined DSSS despreading and DPSK demodulation
JP3161117B2 (en) Receiver
JP2001024472A (en) Matched filter and communication system
JPH10257015A (en) Spread spectrum demodulation circuit and spread spectrum communication equipment
JP3165233B2 (en) Demodulator for spread spectrum communication
JP2502634B2 (en) Spread spectrum communication device
JPH10335975A (en) Elastic surface wave matched filter, receiver using the same and communications system
JPH0369240A (en) Wideband signal demodulator
Lightfoot et al. A compact hf digital modem with interference and multipath discrimination characteristics
KR19990085246A (en) Apparatus and method for reducing pattern jitter using local symmetric forced waveform

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase