WO1998001902A1 - Semiconductor component fixing jig, table for placement of semiconductor component and bonding apparatus - Google Patents
Semiconductor component fixing jig, table for placement of semiconductor component and bonding apparatus Download PDFInfo
- Publication number
- WO1998001902A1 WO1998001902A1 PCT/JP1997/002335 JP9702335W WO9801902A1 WO 1998001902 A1 WO1998001902 A1 WO 1998001902A1 JP 9702335 W JP9702335 W JP 9702335W WO 9801902 A1 WO9801902 A1 WO 9801902A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor component
- coating layer
- semiconductor
- pedestal
- metal base
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 158
- 239000011247 coating layer Substances 0.000 claims abstract description 81
- 229910052751 metal Inorganic materials 0.000 claims abstract description 57
- 239000002184 metal Substances 0.000 claims abstract description 57
- 239000000463 material Substances 0.000 claims abstract description 53
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910000423 chromium oxide Inorganic materials 0.000 claims abstract description 32
- 239000002245 particle Substances 0.000 claims abstract description 20
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 65
- 239000010410 layer Substances 0.000 claims description 29
- 230000003746 surface roughness Effects 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000010419 fine particle Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 3
- 150000002506 iron compounds Chemical class 0.000 claims description 3
- 238000005304 joining Methods 0.000 claims description 2
- 239000000428 dust Substances 0.000 abstract description 21
- 238000000576 coating method Methods 0.000 abstract description 7
- 239000011248 coating agent Substances 0.000 abstract description 6
- 238000010276 construction Methods 0.000 abstract 1
- 230000008021 deposition Effects 0.000 abstract 1
- 239000008188 pellet Substances 0.000 description 39
- 239000002585 base Substances 0.000 description 38
- 238000001179 sorption measurement Methods 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 17
- 238000007747 plating Methods 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 239000000919 ceramic Substances 0.000 description 14
- 238000005299 abrasion Methods 0.000 description 10
- 229910001220 stainless steel Inorganic materials 0.000 description 9
- 229910000975 Carbon steel Inorganic materials 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 8
- 229910052725 zinc Inorganic materials 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- 239000010962 carbon steel Substances 0.000 description 7
- 238000009413 insulation Methods 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000010953 base metal Substances 0.000 description 5
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 5
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 229910001315 Tool steel Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- -1 aqueous ammonia Chemical compound 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920001875 Ebonite Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000587161 Gomphocarpus Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910001361 White metal Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- GQPLMRYTRLFLPF-UHFFFAOYSA-N nitrous oxide Inorganic materials [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010969 white metal Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/52—Mounting semiconductor bodies in containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/60—Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6838—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
- H01L24/78—Apparatus for connecting with wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/45124—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
- H01L2224/78—Apparatus for connecting with wire connectors
- H01L2224/787—Means for aligning
- H01L2224/78703—Mechanical holding means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01024—Chromium [Cr]
Definitions
- the present invention relates to a jig for fixing a semiconductor component, a pedestal for mounting a semiconductor component, and a bonding device.
- the present invention is capable of mass-producing a high-quality semiconductor product having good insulation and abrasion resistance, less generation and adhesion of dust.
- the present invention relates to a jig for fixing semiconductor parts, a pedestal for mounting semiconductor parts, and a bonding apparatus.
- a die bonder device as shown in FIG. 6 and a wire bonding device as shown in FIGS. 9 and 10 are used.
- the die bonder device shown in Fig. 6 is a device that joins semiconductor elements (pellets and IC chips) on a lead frame.
- a large number of semiconductor pellets formed by cutting a wafer adhered on a transparent film A wafer cassette ring 2 that holds 1, a monitor device such as a TV camera (not shown) that monitors the position and shape of each semiconductor pellet 1 to judge whether it complies with the standard, and a product that passes the standard on the wafer cassette 2
- the semiconductor pellet 1 that sucks and picks up the semiconductor pellets 1 that are picked up one by one and conveys them to the brialignment 3 and the semiconductor pellet 1 that is positioned by the briar alignment 3 Press the die into a predetermined position on the lead frame 5.
- a denting collet 6 is provided.
- the suction cylinder 13 is arranged so as to face the die suction collet 4 with the wafer cassette ring 2 interposed therebetween.
- the adsorption column 13 is formed in a cylindrical cap shape using a steel material such as carbon steel for machine structure (S45C), and furthermore, a semiconductor pellet is formed. It is manufactured by applying a black zinc plating having a thickness of about 2 to 15 m on the surface that comes into contact with the pellet adhesive film 8 to which 1 is attached.
- the adsorption cylinder 13 is used by being fitted into a steel sleeve 16.
- the reason why black zinc plating is applied to the contact surface of the adsorption cylinder 13 with the film 8 is as follows. That is, when the position and shape of each semiconductor pellet 1 stuck on the film 8 are monitored by the above-described monitor device, the background of the semiconductor pellet 1 which is relatively brightly photographed is darkened, thereby reducing the half. This is for enhancing the contrast between the conductor pellet 1 and the suction tube 13 serving as the background, and making it easy to determine the position and shape of the semiconductor pellet 1.
- a push-up pin 7 is provided so as to be able to move up and down in the axial direction so as to face the die-sucking collet 4 with the film 8 interposed therebetween.
- the push-up pin 7 is implanted on a mandrel 17 that can be moved up and down in the direction of the center axis of the suction tube 13, from the rear side of the film 8 on which a plurality of semiconductor pellets 1 are adhered. It moves through the pin insertion hole 14 of the suction tube 13 and penetrates the film 8 to peel off the semiconductor pellet 1 stuck on the upper surface of the film 8, and the semiconductor pellet 1 is collected by the die suctioning collet. It has the function of moving in the direction of the tip of 4.
- the above-mentioned die bonding collet 6 and die adsorption collet 4 To ensure abrasion resistance, it is generally formed of a cemented carbide containing tungsten (W), cobalt (Co), etc., in a cylindrical shape, and the semiconductor pellet 1 is sucked and held at its tip. It has a truncated pyramid-shaped recess 9. Further, a suction hole 10 for communicating with the concave portion 9 and connecting the semiconductor pellet 1 to a vacuum source for vacuum suction is provided. In addition, the push-up pin 7 disposed opposite to the die suction collet 4 repeatedly contacts the pellet 1 at a high speed, so that the above-mentioned cemented carbide having excellent wear resistance is formed into a cylindrical needle shape. It is formed.
- the suction cylinder 13, the push-up pin 7, the die suction collet 4, and the die bonding collet 6 are moved up and down or swiveled horizontally by a link that moves up and down by a cam device (not shown). It is configured to exercise.
- each semiconductor pellet 1 When performing the die suction operation, the position and shape of each semiconductor pellet 1 are checked by the monitor device in a state where the suction tube 13 is in contact with the back surface of the film 8. Since the surface of the adsorption cylinder 13 is coated with black zinc, the contrast between the semiconductor pellet 1 and the adsorption cylinder 13 as the background is high, and the outline of the semiconductor pellet 1 is monitored by the monitor. It is clearly recognized. Then, a semiconductor bellet having a defect such as a chip or an abnormal shape is determined to be a rejected product, and is excluded from die bonding.
- the suction cylinder 13 with the die suction collet 4 and the push-up pin 7 is built-in, and among the plurality of pellets 1, 1, ...
- the tip (recess) of the die-sucking collet 4 is attached onto the semiconductor pellet 1. Then, the die-sucking collet 4 vacuum-adsorbs the semiconductor pellets 1 one by one into the concave portions 9 and sequentially transports them to the brialignment 3 shown in FIG.
- the bri-alignment 3 positions the transferred semiconductor pellet 1.
- the positioned semiconductor pellet 1 is conveyed in a state of being vacuum-sucked to the tip of a die bonding collet 6, and is placed at a predetermined position on a lead frame 5.
- Collet 6 applies a scrub motion to semiconductor pellet 1, so that semiconductor pellet 1 receives a strong pressing force. Since solder for soldering is applied on the surface of the lead frame 5 in advance, the semiconductor belt 1 is integrally joined on the lead frame 5.
- each electrode portion of the semiconductor pellet 1 is electrically connected to the lead 5a of the lead frame 5 by a wire using a wire-bonding device 20 as shown in FIGS. 9 and 10.
- FIG. 9 shows the entire configuration of the bonding apparatus
- FIG. 10 shows the configuration of a bonding head part which is a main part of the bonding apparatus.
- a wire bonding apparatus as shown in FIG. 9 is an apparatus for connecting an electrode of a semiconductor component mounted on a semiconductor component mounting pedestal (bonding stage) and a lead by a bonding wire.
- the bonding head 101 which has a bonding collet through which a bonding wire has been inserted, is equipped with an ITV camera, which consists of a camera head, a lens, and a lighting for detecting the position and bonding state of semiconductor components. Have been.
- the bonding head 101 is mounted on an XY table drive mechanism (not shown) that can move in the X and Y directions.
- the ITV camera in the head 101 captures the lead frame 5, which is the bonded part, which is conveyed and positioned on the semiconductor component mounting pedestal 102.
- a pair of guide rails 104a, 104b is provided on both sides of the semiconductor component mounting table 102, and the lead frame 5 is provided with guide rails 104a, 104b.
- the sheet is positioned in the width direction, and is guided to a predetermined position while being regulated so as not to meander during transportation.
- a loader 105 is provided on the sending side of the lead frame 5, while an unloader 106 is provided on the storage side.
- These loaders 105 position magazines 107 capable of accommodating a plurality of read frames 5 at predetermined positions, and automatically send out the magazines onto the transport path of the semiconductor component mounting receiving pedestal 102. While having a sending mechanism, the unloader 106 similarly has a storage mechanism for storing the magazine 107 from the transport path.
- the lead frame 5, which is the component to be bonded, is set at a temperature of 200 to 300 on the lower surface of the semiconductor component mounting table 102.
- a heating means 108 such as an overnight plate for heating to about C is provided. Since the heater plate 108 is arranged along the longitudinal direction of the pair of guide rails 104a, 104b, a plurality of semiconductor elements (IC chip) bonded to the lead frame 5 are provided. 1) Can be heated at the same time. By this heating operation, the electrodes of the semiconductor element 1 positioned on the semiconductor component mounting table 102 and the leads 5a of the lead frame 5 are electrically connected by the thermocompression bonding of the bonding wires 21. Connected.
- the bonding stage where this bonding connection is performed that is, the pedestal for mounting semiconductor components, is conventionally provided with a black hard chrome plating layer or a Nigger plating layer on the surface of a metal base material made of SUS stainless steel. What is formed as a coating layer is mainly used.
- Semiconductor component mounting By making the surface of the mounting pedestal black, the contrast between the pedestal and semiconductor components, such as semiconductor elements and lead frames, is increased to improve position detection accuracy.
- the image signals of the semiconductor parts and the pedestal obtained by the ITV camera attached to the bonding head are processed in the binarization circuit of the image processing means.
- the lead portion is lightened
- the other parts are darkened and converted into digital signals, and the signals are used to detect the coordinates of leads and other components.
- the bonding head 101 is provided with a bonding cable 22 for inserting and holding a bonding wire 121 made of a conductive material such as gold (Au) or aluminum (A1).
- the cavities 22 are configured to be movable in the XYZ directions by a bonding head (not shown).
- a discharge electrode 23 and a discharge portion 23a are attached to the bonding head so that the discharge portion 23a can be freely positioned directly below the cabinet 22.
- a metal lead frame press 24 for pressing and fixing the lead frame 5 is provided, and the lead frame press 24 is configured to be moved up and down by a driving means 25.
- the lead frame retainer 24 is a plate-shaped conductive member having an opening 26 at the center capable of surrounding the semiconductor pellet 1 and the lead 5 a of the lead frame 5.
- the lead frame 5 is sandwiched between the bonding stages 27 and fixed at a predetermined position.
- the wire bonding apparatus 20 operates as follows. That is, when the lead frame 5 is carried into the bonding stage 27, it is lowered by the lead frame retainer 24 and the driving means 25, and the lead frame 5 is lowered. 5 is clamped and fixed between the lead frame retainer 24 and the bonding stage 27. Next, the discharge electrode 23 moves, and the discharge part 23 a is positioned so as to be directly below the cavity 22, and the bonding wire 21 led out of the capillary 22 by the discharge between the two. Ball (nail head) is formed at the free end of Thereafter, the movement of the cavity 22 is controlled by a bonding head (not shown), and the electrode on the semiconductor pellet 1 and the lead 5a are electrically connected by the bonding wire 21. When the bonding operation for one semiconductor pellet 1 on the transfer line is completed, the lead frame presser 24 is raised, and the lead frame 5 is transferred by a predetermined amount to bond the next semiconductor pellet. The operation is repeated similarly.
- a die bonder device that is made of conventional carbon steel for machine structural use (S45C) and is equipped with a fixture for fixing semiconductor components such as an adsorption cylinder with black zinc plating on the surface.
- S45C machine structural use
- semiconductor components such as an adsorption cylinder with black zinc plating on the surface.
- the abrasion column has low wear resistance, the production yield of semiconductor components such as semiconductor pellet joints is reduced, and the maintenance of production equipment becomes complicated.
- a coordinate position of a lead to be processed for example, a coordinate position different from a regular coordinate position is detected.
- the lead frame is plated on the lower surface of the lead frame when the lead frame is transported onto the pedestal.
- brazing filler metal such as silver (Ag) forming an intermetallic connection with the iron-based metal component of the cradle
- the cradle and the lead frame may adhere to each other, and the lead frame may be bent or deformed. If the wire bonding operation is performed in this state, the bonding wire is deformed, and in any case, there is a problem that the bonding failure is increased.
- the actual fair 6 1 0 6 8 as described in 4 JP-surface A 1 9 0 3 one T io 2 based ceramics stainless steel base metal Discloses a bonding apparatus using a pedestal on which an insulating film made of an insulating film is formed. However, they did not solve the above problems.
- the present invention has been made in order to solve the above-mentioned problems, and has a good bonding strength and abrasion resistance of a coating layer, can reduce generation and adhesion of dust, It is an object of the present invention to provide a jig for fixing a semiconductor component capable of mass-producing high-quality semiconductor components at a high production yield.
- the present invention provides a semiconductor component having good abrasion resistance, capable of reducing generation and adhesion of dust due to peeling of a coating, and capable of accurately recognizing a coordinate position such as a lead at the time of bonding or the like. Another object is to provide a mounting pedestal and a bonding device using the pedestal.
- the semiconductor component fixing jig and the semiconductor component mounting pedestal according to the present invention are characterized in that a coating layer mainly composed of chromium oxide is formed on the surface of a metal base material.
- chromium oxide power ⁇ I ⁇ dichromate C r 2 0 3
- chromium oxide, wherein the average particle diameter of 0. 1 to 0. 5 m of chromic oxide (C r 2 0 3) is particulate.
- the coating layer containing this oxide as a main component has a deep color and a dark green color.
- the coating layer is preferably formed on the surface of a metal base material having a surface roughness of 5 or more on the basis of the maximum height (Rmax).
- Rmax the maximum height
- the surface of the metal base material is roughened by blasting or the like so that it becomes 5 or more on the basis of Rmax, and thereafter, the coating layer is formed.
- the surface of the metal base material is made as rough as 5 m or more based on Rmax in this way, the bonding strength with the coating layer is increased, and the surface roughness of the semiconductor component fixing jig and the pedestal after the coating layer is formed is also reduced. Can be coarse.
- the surface roughness on the basis of Rmax exceeds 10 m, it becomes difficult to form a uniform coating layer, so that the force is preferably 10 m or less.
- the metal base material is an iron-based metal
- the metal base material and chromium it is preferable to form a reaction layer of an iron compound and chromium oxide between the coating layer containing oxide as a main component.
- the bonding strength with the coating layer containing chromium oxide as a main component can be further increased.
- the coating layer mainly composed of chromium oxide is formed on the surface of the metal base material
- the metal base material surface has a coating layer consisting essentially of a reaction layer and a coating layer mainly composed of chromium oxide, whether or not the interface is clear. Become.
- the semiconductor component fixing jig is suitable for a lead frame retainer for pressing and fixing a lead frame to which a semiconductor element is joined, and a suction cylinder for fixing a semiconductor element by suction.
- the above-mentioned pedestal for mounting semiconductor components is suitable as a pedestal for slidably mounting semiconductor components. Needless to say, the above-mentioned pedestal for mounting a semiconductor component may be used not only for a bonding device but also for mounting a semiconductor component when moving.
- the bonding apparatus according to the present invention is a bonding apparatus for connecting an electrode and a lead of a semiconductor component mounted on a semiconductor component mounting pedestal, wherein the semiconductor component mounting pedestal is a metal motherboard. It is characterized in that a coating layer mainly composed of chromium oxide is formed on the material surface.
- the above-mentioned metal base material is not particularly limited, and general-purpose structural steel materials, corrosion-resistant heat-resistant steels such as stainless steels, various iron-based alloys, carbon steels, titanium alloys, aluminum alloys, and Inconel can be used.
- the coating layer containing chromium oxide as a main component can be formed, for example, by the following procedure.
- a chromic acid (Cr0.) Aqueous solution or slurry (slurry) is applied to the surface of a metal base material such as an iron-based metal that has been surface-treated in advance, or is immersed in the metal base material to immerse it. Apply acid solution or slurry.
- a metal base material such as an iron-based metal that has been surface-treated in advance
- Apply acid solution or slurry Apply acid solution or slurry.
- the reaction layer formed by the chemical reaction between chromium oxide and the surface layer of the metal base material has an average particle size of .
- 0.1 to 0 5 // chromium oxide consisting of particles of m (chromic oxide: C r 2 0 3) coating layer mainly composed of are formed.
- the total thickness of these coating layers is preferably 1 to 5 ⁇ m in total of the reaction layer and the coating layer containing chromium oxide as a main component, and 0 if the thickness of the coating layer is less than 1 ⁇ m, The insulation and abrasion resistance of the fixing jig decrease. If the reaction layer and the coating layer mainly composed of chromium oxide do not contain or contain ceramic fine particles or flakes as described below, conversely, if the coating layer exceeds 5 // m, The uniformity of the coating layer thickness is reduced, and the adhesion and bonding strength are also reduced. For similar reasons, a further 1-3 ⁇ m range is preferred.
- the coating layer (reaction layer and coating layer mainly composed of chromium oxide) formed on the surface of the metal base material should contain 30 to -5 O wt% of the ceramic fine particles and flakes. It is desirable to adjust the amount of addition so that However, ceramic box particles such Thus A 1 2 0 3, in the case of adding the flake thickness of the coating employment in a range of 1. 5 to 8 0 jum is preferred.
- the coating layer containing the ceramic fine particles and the like may be formed by the following manufacturing method in addition to the above. That is, an aqueous solution or slurry containing fine ceramic particles is applied to the surface of the base metal and heated to a temperature of 500 to 600 ° C. to form a porous ceramic layer. (C R_ ⁇ 3) an aqueous solution or slurry may be allowed immersed containing the ceramic layer formed by heat sintering at a temperature 5 0 0 ⁇ 6 0 crc a.
- the thickness of the coating layer can be adjusted by controlling the number of repetitions of the application / impregnation operation and the baking operation.
- the coating layer formed as described above has a high L and bonding strength with respect to the metal base material, and is excellent in high hardness, non-porosity, wear resistance, low friction, heat resistance, and the like.
- the surface hardness when stainless steel is used as the metal base material is slightly affected by the hardness of the metal base material, and is between 500 and 60 OHV (0.1), while the thick coating containing aggregate
- the surface hardness of the layer is as high as 150 to 200 OHV (0.1), and the same hardness as that of cemented carbide can be obtained.
- the chromium oxide constituting the coating layer average particle diameter of (C r 0 0 3) particles is from 0.1 to 0.5 degrees and ultrafine, strong action as a solid lubricant. Therefore, even if the surface roughness (Rmax) is somewhat large, the coefficient of friction is small and the effect of improving the sliding characteristics is remarkable.
- the coating layer is formed by precipitation from an aqueous solution, the constituent particles are super fine, Unlike porous ceramic coatings formed by the injection method, corrosion resistance and wear resistance are not insufficient.
- the surface of the coating layer is densely formed, it has excellent heat resistance and thermal shock resistance, and may cause peeling of the coating layer even when repeated heat cycles act on the semiconductor component fixing jig and the pedestal. Low dusting due to peeling.
- the coating layer has excellent corrosion resistance to acidic solutions such as sulfuric acid, basic solutions such as aqueous ammonia, and organic solvents such as alcohol, acetone, and gasoline. Has excellent durability.
- the coating layer By forming the coating layer in this manner, the function of the metal base material can be greatly enhanced.
- the components of the suction cylinder of the die bonder device, the lead frame holder of the wire bonding device, and the pedestal ⁇ fixing jig when used as a constituent material of a sliding portion such as a heater plate, an excellent effect is exhibited.
- the coating layer has a dark green color, the base where the semiconductor component fixing jig is used as the suction tube of the die bonder device is used, or the semiconductor component mounting pedestal is used as the bonding device component pedestal.
- the contrast between the semiconductor element and the lead and the suction tube and the pedestal serving as the background of the semiconductor element and the lead increases, and the shape and lead of the semiconductor element and the lead are monitored by a monitor device such as a TV camera. Is clearly recognized. Therefore, the recognition error of the semiconductor element and the recognition error of the coordinate position of the lead and the like by the monitor device are reduced, and the semiconductor component can be assembled with high accuracy.
- the coating layer is formed on the semiconductor component fixing jig according to the present invention without performing a process for adjusting the surface roughness on the metal base material itself of the pedestal, the coating layer is formed from ultra-fine chromium oxide particles and dense.
- the surface roughness of the fixing jig and the pedestal is the same as the surface roughness of the metal base material. Surface.
- the semiconductor component fixing jig and the pedestal of the present invention are subjected to roughening treatment such as blast treatment on the metal base material itself in advance to increase the surface roughness (Rma X) of the metal base material itself to 5.O ⁇ m or more. Then, it is desirable to form a coating layer.
- the semiconductor component fixing jig of the present invention having the coating layer formed thereon has a surface roughness (Rmax) of 3 to 5 m, and a uniform coating.
- Rmax surface roughness
- dust and dirt generated in the semiconductor manufacturing equipment during use can be fixed on the fixture and pedestal side without adhering to the semiconductor component side of the product. Adhesive force is possible.
- the semiconductor component fixing jig and the pedestal according to the above configuration, since the coating layer made of ultrafine chromium oxide particles is formed on the surface of the metal base material, the insulating property and the insulation resistance of the fixing jig and the pedestal are improved. It has good abrasion and can prevent the generation and adhesion of dust. Therefore, when this fixing jig and pedestal are used as suction cylinders of die bonders and as lead frame holders, pedestals, and sliding parts for wire-bonding equipment, high-quality semiconductor parts with few defects can be produced at a high production yield. Mass production: it becomes possible.
- FIG. 1 is an embodiment of a die bonder device incorporating a suction cylinder as a semiconductor component fixing jig according to the present invention, and is an enlarged cross-sectional view showing only a die suction portion as a main part.
- FIG. 2 is a perspective sectional view showing one embodiment of a lead frame press as a semiconductor component fixing jig according to the present invention.
- FIG. 3 is a cross-sectional view showing one embodiment of a semiconductor component mounting pedestal according to the present invention.
- FIG. 4 is an enlarged cross-sectional view of a portion IV in FIG.
- FIG. 5 is a cross-sectional view showing another embodiment of the pedestal for mounting a semiconductor component according to the present invention.
- FIG. 6 is a perspective view showing a configuration example of the die bonder device.
- FIG. 7 is an enlarged perspective view showing the suction tube in FIG.
- FIG. 8 is an enlarged sectional view showing a die suction portion of a conventional die bonder device.
- FIG. 9 is a plan view schematically showing the configuration of the bonding device.
- FIG. 10 is a perspective view showing a configuration example of a bonding head part of a wire bonding apparatus.
- adsorption cylinders 13A as semiconductor component fixing jigs according to Examples 1 to 5 shown in Table 1 were prepared.
- the suction tube 13A and the cylindrical sleeve 16A may be integrally formed in advance.
- Comparative Example 1 a carbon steel for machine structural use (S45C), which is a conventional material, was subjected to mechanical polishing to form a cylindrical cap-shaped adsorption cylinder body having the same dimensions as in Example 1.
- a large number of S45C adsorption cylinders were prepared by applying zinc plating with a thickness of 10 m to the surface of the element body on the film contact side.
- lead frame retainers 24a as jigs for fixing semiconductor components according to Examples 6 to 10 as shown in FIG. 2 were respectively manufactured.
- Example 6 Comparative Example 2 The lead frame holder as a semiconductor component fixing jig according to the above was manufactured. Then, the bonding strength (peel? ⁇ ) Of the coating layer of each lead frame retainer manufactured in Examples 6 to 10 and Comparative Example 2 was measured, and the lead frame retainer 24 of the wire bonding apparatus shown in FIG. 10 was measured. After mounting, the characteristics of each lead frame holder, such as wear resistance and the amount of generated dust, were measured and compared and evaluated. The results shown in Table 2 below were obtained.
- Ri consists fine C r 0 3 particles, according to example Li one lead frame press according to each embodiment to form a coating layer of dense high hardness, conventional material Compared with the presser of Comparative Example 2 using, the bonding strength with the coating layer was higher and no peeling occurred. Also, since the amount of dust generated by rubbing with the lead frame is greatly reduced, it has become possible to significantly improve the production yield of semiconductor components.
- a coating layer 112 having a thickness shown in Table 3 was formed on both surfaces of each receiving main body 111.
- semiconductor component mounting pedestals 113 according to Examples 11 to 15 as shown in Table 3 were prepared.
- the coating layer 11'2 of the semiconductor component mounting pedestal 113 has an average particle size of 0.1 to 0.5 // H and an ultrafine chromium oxide (C r n 0.) It was composed of a chromium oxide layer 114 composed of particles and a reaction layer 115 formed by a chemical reaction between the chromium oxide and the iron component of the metal base material.
- Comparative Examples 3 to 5 As shown in Table 3, conventional carbon steel for structural use (S45C) and stainless steel (SUS 304) were visually ground. This was processed to form a plate-shaped pedestal main body having the same dimensions as in Example 11, and a copper plating layer having a thickness shown in Table 3 on the surface of the pedestal main body on the lead frame contact side. (Comparative Example 3), a nickel plating layer (Comparative Example 4), and a zinc plating layer (Comparative Example 5) were formed, and a number of semiconductor component mounting pedestals according to Comparative Examples 3 to 5 were prepared.
- each pedestal was mounted as a pedestal 102 for mounting semiconductor components in the bonding equipment shown in Fig. 9, and the characteristics of each pedestal, such as insulation, abrasion resistance, and the amount of dust generated, were measured and compared. did.
- Ri consists fine C r 0 3 particles, according to the semiconductor component mounting cradle according to each embodiment to form a coating layer of dense high hardness, conventional
- the occurrence of defective parts due to poor wire bonding is less than that of the cradle of each comparative example using a material.
- the bonding strength between the metal base material and the coating layer is greatly increased as compared with the conventional case, there is almost no peeling of the coating layer, and dust is generated due to the peeling of the coating layer and the generated dust is transferred to the lead frame. Almost no adhesion.
- the dust slightly generated in the semiconductor component mounting pedestal according to each example was almost adhered to the pedestal side. In other words, the amount of dust generated and adhered by rubbing with the lead frame is greatly reduced, and it has become possible to significantly improve the production yield of semiconductor components.
- the semiconductor component fixing jig and the pedestal according to the present invention since the coating layer made of ultra-fine oxide particles is formed on the surface of the metal base material, the bonding strength is high, Good insulation and abrasion resistance of handling parts, and can prevent the generation and adhesion of force and dust. Therefore, when these semiconductor component fixing jigs and pedestals are used as components of suction frames and wires for die bonders, lead frame holders for dies, pedestals, and sliding parts, high quality semiconductor components with few defects can be obtained. Mass production with high production yields becomes possible.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Die Bonding (AREA)
Abstract
A semiconductor component fixing jig and a table for the semiconductor component include a coating layer formed on the surface of a metal base and made of a chromium oxide as a principal component. Further, the chromium oxide is a chromic oxide (Cr2O3) having a mean particle diameter of 0.1 to 0.5 νm. A bonding apparatus of this invention is constituted by using the semiconductor component fixing jig and the table described above. According to this construction, it is possible to obtain a semiconductor component fixing jig, a table and a bonding apparatus having excellent wear resistance, capable of reducing occurrence and deposition of dust due to peel of a coating material, and capable of correctly recognizing coordinates positions of leads, and the like, at the time of bonding.
Description
明 細 書 Specification
半導体部品固定治具, 半導体部品載置用受台およびボンディング装置 Fixing jig for semiconductor parts, pedestal for mounting semiconductor parts and bonding equipment
技術分野 Technical field
本発明は半導体部品固定治具, 半導体部品載置用受台およびボンディ ング装置に係り、 特に絶縁性および耐摩耗性が良好で粉塵の発生および 付着が少なく、 良質な半導体製品を量産することが可能な半導体部品固 定治具, 半導体部品載置用受台およびボンディ ング装置に関する。 The present invention relates to a jig for fixing a semiconductor component, a pedestal for mounting a semiconductor component, and a bonding device. In particular, the present invention is capable of mass-producing a high-quality semiconductor product having good insulation and abrasion resistance, less generation and adhesion of dust. The present invention relates to a jig for fixing semiconductor parts, a pedestal for mounting semiconductor parts, and a bonding apparatus.
背景技術 Background art
L S I、 I C、 トランジスタなどの半導体部品の製t 程においては、 例えば図 6に示すようなダイボンダ装置や図 9および図 1 0に示すよう なワイヤーボンディング装置力《使用される。 図 6に示すダイボンダ装置 は、 半導体素子 (ペレツ ト, I Cチップ) をリードフレーム上に接合す る装置であり、 透明なフィルム上に貼着したウェハをカツティングして 形成した多数の半導体ペレツ ト 1を保持するウェハカセットリング 2と、 各半導体ペレツ ト 1の位置および形状をモニタして規格に対する台否を 判断する図示しない T Vカメラなどのモニタ装置と、 ウェハカセッ トリ ング 2上にある規格合格品の半導体べレッ ト 1のみを 1個ずつ吸着し、 ブリアライメント 3に搬送するダイ吸着用コレツ ト 4と、 ブリアライメ ント 3によって位置決めされた半導体ペレツ ト 1を吸着し、 吸着した半 導体ペレツ ト 1をリードフレーム 5上の所定位置に押し付けるダイボン
ディ ング用コレツ ト 6とを備えて構成される。 In the process of manufacturing semiconductor components such as LSIs, ICs, and transistors, for example, a die bonder device as shown in FIG. 6 and a wire bonding device as shown in FIGS. 9 and 10 are used. The die bonder device shown in Fig. 6 is a device that joins semiconductor elements (pellets and IC chips) on a lead frame. A large number of semiconductor pellets formed by cutting a wafer adhered on a transparent film A wafer cassette ring 2 that holds 1, a monitor device such as a TV camera (not shown) that monitors the position and shape of each semiconductor pellet 1 to judge whether it complies with the standard, and a product that passes the standard on the wafer cassette 2 The semiconductor pellet 1 that sucks and picks up the semiconductor pellets 1 that are picked up one by one and conveys them to the brialignment 3 and the semiconductor pellet 1 that is positioned by the briar alignment 3 Press the die into a predetermined position on the lead frame 5. A denting collet 6 is provided.
またウェハカセッ トリング 2を挟み、 ダイ吸着用コレツ ト 4と対向す るように吸着筒 1 3力《配設される。 この吸着筒 1 3は、 図 7および図 8 に拡大して示すように、 例えば機械構造用炭素鋼 ( S 4 5 C) 等の鋼材 を使用して円筒キャップ状に形成され、 さらに半導体ペレッ ト 1を貼着 したペレツ ト接着フィルム 8に当接する表面に、 厚さ 2〜1 5 m程度 の黒色亜鉛めつきを施して製造される。 Further, the suction cylinder 13 is arranged so as to face the die suction collet 4 with the wafer cassette ring 2 interposed therebetween. As shown in FIGS. 7 and 8 in an enlarged manner, the adsorption column 13 is formed in a cylindrical cap shape using a steel material such as carbon steel for machine structure (S45C), and furthermore, a semiconductor pellet is formed. It is manufactured by applying a black zinc plating having a thickness of about 2 to 15 m on the surface that comes into contact with the pellet adhesive film 8 to which 1 is attached.
吸着筒 1 3の中央部には後述する突き上げピン 7を挿通するためのピ ン挿通孔 1 4が穿設され、 さらにピン挿通孔 1 4の周辺には、 フィルム 8を真空吸着するための吸引孔 1 5が多数穿設されている。 この吸着筒 1 3は、 鋼材製のスリーブ 1 6に嵌め込まれて使用される。 A pin insertion hole 14 for inserting a push-up pin 7, which will be described later, is formed in the center of the suction tube 13, and suction around the pin insertion hole 14 for vacuum suction of the film 8 is provided. Many holes 15 are drilled. The adsorption cylinder 13 is used by being fitted into a steel sleeve 16.
ここで吸着筒 1 3のフィルム 8への当接面に黒色亜鉛めつきを施工す る理由は次の通りである。 すなわちフィルム 8上に貼着した各半導体べ レツ ト 1の位置や形状を上記モニタ装置でモニタする際に、 比較的に明 るく撮影される半導体ペレツ ト 1の背景を暗くすることによって、 半導 体ペレツ ト 1と背景になる吸着筒 1 3とのコントラストを高め、 半導体 ペレツ ト 1の位置および形状を判別し易くするためである。 The reason why black zinc plating is applied to the contact surface of the adsorption cylinder 13 with the film 8 is as follows. That is, when the position and shape of each semiconductor pellet 1 stuck on the film 8 are monitored by the above-described monitor device, the background of the semiconductor pellet 1 which is relatively brightly photographed is darkened, thereby reducing the half. This is for enhancing the contrast between the conductor pellet 1 and the suction tube 13 serving as the background, and making it easy to determine the position and shape of the semiconductor pellet 1.
また図 8に示すように、 フィルム 8を挟みダイ吸着用コレツ ト 4に対 向して、 軸方向に昇降自在に突き上げピン 7が配設される。 この突き上 げピン 7は、 吸着筒 1 3の中心軸方向に昇降自在に配設されたマンドレ ル 1 7上に植設され、 複数の半導体ペレツ 卜 1を貼着したフィルム 8の 背面方向から吸着筒 1 3のピン挿通孔 1 4を通り、 フィルム 8に突き刺 さるように運動し、 フィルム 8上面に貼着した半導体ペレツ ト 1を剥離 せしめ、 その半導体ペレツ ト 1をダイ吸着用コレツ ト 4の先端部方向に 移動させる機能を有する。 Further, as shown in FIG. 8, a push-up pin 7 is provided so as to be able to move up and down in the axial direction so as to face the die-sucking collet 4 with the film 8 interposed therebetween. The push-up pin 7 is implanted on a mandrel 17 that can be moved up and down in the direction of the center axis of the suction tube 13, from the rear side of the film 8 on which a plurality of semiconductor pellets 1 are adhered. It moves through the pin insertion hole 14 of the suction tube 13 and penetrates the film 8 to peel off the semiconductor pellet 1 stuck on the upper surface of the film 8, and the semiconductor pellet 1 is collected by the die suctioning collet. It has the function of moving in the direction of the tip of 4.
上記ダイボンディ ング用コレツ ト 6およびダイ吸着用コレツ ト 4は、
耐摩耗強度を確保するために、 一般にタングステン (W) 、 コバルト ( C o ) などを含有した超硬合金で円筒状に形成され、 その先端部に半 導体ペレツ ト 1を吸引してくわえ込むための四角錘台状の凹陥部 9を有 する。 また、 この凹陥部 9に連通し、 半導体ペレツ卜 1を真空源に接続 して真空吸引するための吸引孔 1 0が設けてある。 またダイ吸着用コレ ット 4に対向して配設された突き上げピン 7も高速度でペレツト 1に繰 り返して接触するため、 耐摩耗性に優れた前述の超硬合金によって円柱 針状に形成される。 The above-mentioned die bonding collet 6 and die adsorption collet 4 To ensure abrasion resistance, it is generally formed of a cemented carbide containing tungsten (W), cobalt (Co), etc., in a cylindrical shape, and the semiconductor pellet 1 is sucked and held at its tip. It has a truncated pyramid-shaped recess 9. Further, a suction hole 10 for communicating with the concave portion 9 and connecting the semiconductor pellet 1 to a vacuum source for vacuum suction is provided. In addition, the push-up pin 7 disposed opposite to the die suction collet 4 repeatedly contacts the pellet 1 at a high speed, so that the above-mentioned cemented carbide having excellent wear resistance is formed into a cylindrical needle shape. It is formed.
このような吸着筒 1 3、 突き上げピン 7、 ダイ吸着用コレツ ト 4およ びダイボンディング用コレツト 6は、 図示しないカム装置によって上下 動するリンクによつて上下方向に昇降したり水平方向に旋回運動するよ うに構成されている。 The suction cylinder 13, the push-up pin 7, the die suction collet 4, and the die bonding collet 6 are moved up and down or swiveled horizontally by a link that moves up and down by a cam device (not shown). It is configured to exercise.
ダイ吸着操作を実行する際には、 吸着筒 1 3がフィルム 8の背面に当 接された状態で、 モニタ装置によって各半導体ペレツト 1の位置および 形状がチヱックされる。 吸着筒 1 3の表面には黒色亜鉛めつき力《施工さ れているので、 半導体ペレット 1と、 その背景になる吸着筒 1 3とのコ ントラストが高く、 モニタ装置によって半導体ペレツト 1の輪郭が明瞭 に認識される。 そして欠けなどの欠陥や異常形状を有する半導体べレッ トは不合格品と判定され、 ダイボンディングの対象から除外される。 ダイ吸着用コレツ 卜 4および突き上げピン 7を内蔵した吸着筒 1 3は、 ウェハカセットリング 2上のフィルム 8上面に貼着された複数のペレツ ト 1, 1…のうち、 検査合格品のみを光学的に検知して、 それぞれその 上下部に移動する。 そしてフィルム 8の背面に当接した吸着筒 1 3の内 部空間が真空源に接続され、 フィルム 8と吸着筒 1 3との間に滞留する 空気が吸引孔 1 5を通り除かれる。 そのため、 フィルム 8は吸着筒 1 3 の外表面に吸着固定される。 次に、 突き上げピン 7力《吸着筒 1 3のピン
揷通孔 1 4を通り上昇してフィルム 8を突き破り、 ピン先端に接触した 半導体ペレツ ト 1を押し上げて、 フィルム 8上面から剥離せしめる。 同 時にダイ吸着用コレツ ト 4の先端部 (凹陥部) が当該半導体ペレツ ト 1 上に被着される。 そしてダイ吸着用コレツ ト 4は半導体ペレツ ト 1を 1 個ずつ凹陥部 9内に真空吸着して、 図 6に示すブリアライメント 3に順 次搬送する。 When performing the die suction operation, the position and shape of each semiconductor pellet 1 are checked by the monitor device in a state where the suction tube 13 is in contact with the back surface of the film 8. Since the surface of the adsorption cylinder 13 is coated with black zinc, the contrast between the semiconductor pellet 1 and the adsorption cylinder 13 as the background is high, and the outline of the semiconductor pellet 1 is monitored by the monitor. It is clearly recognized. Then, a semiconductor bellet having a defect such as a chip or an abnormal shape is determined to be a rejected product, and is excluded from die bonding. The suction cylinder 13 with the die suction collet 4 and the push-up pin 7 is built-in, and among the plurality of pellets 1, 1, ... adhered to the upper surface of the film 8 on the wafer cassette ring 2, only the inspection-passed products are optically processed. And move to the top and bottom, respectively. Then, the internal space of the suction tube 13 in contact with the back surface of the film 8 is connected to a vacuum source, and the air remaining between the film 8 and the suction tube 13 is removed through the suction hole 15. Therefore, the film 8 is fixed to the outer surface of the suction tube 13 by suction. Next, push up pin 7 force << pin of suction cylinder 13 上昇 Ascend through the through hole 14 and break through the film 8, push up the semiconductor pellet 1 in contact with the pin tip, and peel it off from the upper surface of the film 8. At the same time, the tip (recess) of the die-sucking collet 4 is attached onto the semiconductor pellet 1. Then, the die-sucking collet 4 vacuum-adsorbs the semiconductor pellets 1 one by one into the concave portions 9 and sequentially transports them to the brialignment 3 shown in FIG.
ブリアライメント 3は搬送された半導体ペレツ ト 1の位置決めを行な う。 位置決めされた半導体ペレツ ト 1はダイボンディ ング用コレツ ト 6 の先端部に真空吸着された状態で搬送され、 リ一ドフレーム 5の所定位 置に載置される。 そしてコレッ ト 6はスクラブモーションを半導体ペレ ッ ト 1に付加するため、 半導体ペレツ ト 1は強い押圧力を受ける。 リ一 ドフレーム 5の表面には予め接台用のハンダが塗布されているため、 半 導体べレッ ト 1はリードフレーム 5上に一体に接合される。 The bri-alignment 3 positions the transferred semiconductor pellet 1. The positioned semiconductor pellet 1 is conveyed in a state of being vacuum-sucked to the tip of a die bonding collet 6, and is placed at a predetermined position on a lead frame 5. Collet 6 applies a scrub motion to semiconductor pellet 1, so that semiconductor pellet 1 receives a strong pressing force. Since solder for soldering is applied on the surface of the lead frame 5 in advance, the semiconductor belt 1 is integrally joined on the lead frame 5.
次に半導体ペレツ ト 1の各電極部とリードフレーム 5のリード 5 aと を、 図 9および図 1 0に示すようなワイヤ—ボンディ ング装置 2 0を使 用して電気的にワイヤーで接続する。 ここで図 9はボンディ ング装置の 全体構成を示す一方、 図 1 0はボンディング装置の要部となるボンディ ングへッ ド部の構成を示す。 Next, each electrode portion of the semiconductor pellet 1 is electrically connected to the lead 5a of the lead frame 5 by a wire using a wire-bonding device 20 as shown in FIGS. 9 and 10. . Here, FIG. 9 shows the entire configuration of the bonding apparatus, while FIG. 10 shows the configuration of a bonding head part which is a main part of the bonding apparatus.
図 9に示すようなワイヤ一ボンディ ング装置は、 半導体部品載置用受 台 (ボンディ ングステージ) 上に載置された半導体部品の電極とリ一ド とをボンディングワイヤによって接続する装置であり、 ボンディングヮ ィャを挿通したボンディ ングコレツ トを備えるボンディングへッド 1 0 1には、 半導体部品の位置やボンディ ング状態を検出するためのカメラ へッ ド, レンズおよび照明灯から成る I T Vカメラ力く搭載されている。 このボンディ ングへッ ド 1 0 1は X方向および Y方向に移動可能な X Y テーブル駆動機構 (図示せず) に搭載されており、 このボンディングへ
ッ ド 1 0 1内の I T Vカメラは半導体部品載置用受台 1 0 2上に搬送さ れ位置決めされる被ボンディ ング部品であるリ一ドフレーム 5を撮影す る。 A wire bonding apparatus as shown in FIG. 9 is an apparatus for connecting an electrode of a semiconductor component mounted on a semiconductor component mounting pedestal (bonding stage) and a lead by a bonding wire. The bonding head 101, which has a bonding collet through which a bonding wire has been inserted, is equipped with an ITV camera, which consists of a camera head, a lens, and a lighting for detecting the position and bonding state of semiconductor components. Have been. The bonding head 101 is mounted on an XY table drive mechanism (not shown) that can move in the X and Y directions. The ITV camera in the head 101 captures the lead frame 5, which is the bonded part, which is conveyed and positioned on the semiconductor component mounting pedestal 102.
半導体部品載置用受台 1 0 2の両側には、 一対のガイ ドレール 1 0 4 a , 1 0 4 bが配設されており、 リードフレーム 5はガイドレール 1 0 4 a , 1 0 4 bによつて幅方向の位置決めがなされ、 搬送時に蛇行しな いように位置規制されながら所定位置に案内される。 このリードフレー ム 5の送出側にはローダ 1 0 5が配設される一方、 収納側にはアンロー ダ 1 0 6が配設される。 これらのローダ 1 0 5は、 複数枚のリードフレ ーム 5を収納可能なマガジン 1 0 7を所定位置に位置決めして半導体部 品載置用受台 1 0 2の搬送路上に自動的に送出する送出機構を有してい る一方、 アンローダ 1 0 6は同様にマガジン 1 0 7を搬送路から収納す る収納機構を備えている。 A pair of guide rails 104a, 104b is provided on both sides of the semiconductor component mounting table 102, and the lead frame 5 is provided with guide rails 104a, 104b. By this, the sheet is positioned in the width direction, and is guided to a predetermined position while being regulated so as not to meander during transportation. A loader 105 is provided on the sending side of the lead frame 5, while an unloader 106 is provided on the storage side. These loaders 105 position magazines 107 capable of accommodating a plurality of read frames 5 at predetermined positions, and automatically send out the magazines onto the transport path of the semiconductor component mounting receiving pedestal 102. While having a sending mechanism, the unloader 106 similarly has a storage mechanism for storing the magazine 107 from the transport path.
また半導体部品載置用受台 1 0 2の下面には、 被ボンディング部品で あるリードフレーム 5を温度 2 0 0〜3 0 0。C程度に加熱するためのヒ 一夕プレートなどの加熱手段 1 0 8が配置されている。 このヒータプレ ート 1 0 8は、 一対のガイドレール 1 0 4 a , 1 0 4 bの長手方向に沿 つて配置されているため、 リードフレーム 5に接合されている複数の半 導体素子 (I Cチップ) 1を同時に加熱することができる。 この加熱操 作によつて半導体部品載置用受台 1 0 2上に位置決めされた半導体素子 1の電極とリードフレーム 5のリード 5 aとがボンディングワイヤ 2 1 の熱圧着によつて電気的に接続される。 The lead frame 5, which is the component to be bonded, is set at a temperature of 200 to 300 on the lower surface of the semiconductor component mounting table 102. A heating means 108 such as an overnight plate for heating to about C is provided. Since the heater plate 108 is arranged along the longitudinal direction of the pair of guide rails 104a, 104b, a plurality of semiconductor elements (IC chip) bonded to the lead frame 5 are provided. 1) Can be heated at the same time. By this heating operation, the electrodes of the semiconductor element 1 positioned on the semiconductor component mounting table 102 and the leads 5a of the lead frame 5 are electrically connected by the thermocompression bonding of the bonding wires 21. Connected.
このボンディ ング接続が実施されるボンディ ングステージ、 すなわち 半導体部品載置用受台は、 従来は S U S系のステンレス鋼材から成る金 属母材表面に黒色の硬質クロムめつき層や二ッゲルめつき層を被覆層と して形成したものが主として使用されている。 このように半導体部品載
置用受台の表面を黒色化することにより、 受台と半導体素子やリードフ レームなどの半導体部品とのコントラストを高めることにより位置検出 精度を高めている。 The bonding stage where this bonding connection is performed, that is, the pedestal for mounting semiconductor components, is conventionally provided with a black hard chrome plating layer or a Nigger plating layer on the surface of a metal base material made of SUS stainless steel. What is formed as a coating layer is mainly used. Semiconductor component mounting By making the surface of the mounting pedestal black, the contrast between the pedestal and semiconductor components, such as semiconductor elements and lead frames, is increased to improve position detection accuracy.
すなわち、 ボンディングへッドに付設された I T Vカメラで され た半導体部品および受台の画像信号が、 画像処理手段の 2値化回路にお いて処理され、 例えばリードの部分は明色化される一方、 それ以外の部 分は暗色化されてデジタル信号化され、 その信号によってリード等の座 標位置を検出している。 That is, the image signals of the semiconductor parts and the pedestal obtained by the ITV camera attached to the bonding head are processed in the binarization circuit of the image processing means. For example, while the lead portion is lightened, The other parts are darkened and converted into digital signals, and the signals are used to detect the coordinates of leads and other components.
上記ボンディ ング装置の要部となるボンディ ングへッ ド部の構成を図 1 0を参照して説明する。 すなわち、 ボンディングへッド 1 0 1は、 金 (A u ) やアルミニウム (A 1 ) などの導電性材料から成るボンディン グワイヤ一 2 1を挿通保持するワイヤ一ボンディングキヤビラリ 2 2を 備え、 このキヤビラリ 2 2は、 図示しないボンディングへッ ドにより X Y Z方向に移動自在となるように構成されている。 A configuration of a bonding head portion which is a main portion of the above-described bonding device will be described with reference to FIG. That is, the bonding head 101 is provided with a bonding cable 22 for inserting and holding a bonding wire 121 made of a conductive material such as gold (Au) or aluminum (A1). The cavities 22 are configured to be movable in the XYZ directions by a bonding head (not shown).
またボンディ ングへッ ドには、 放電電極 2 3がその放電部 2 3 aがキ ャビラリ 2 2の直下に対して itii自在に付設される。 またリードフレー ム 5を押圧固定するための金属製のリードフレーム押え 2 4力ぐ設けられ、 このリードフレーム押え 2 4は駆動手段 2 5によって昇降動するように 構成される。 このリードフレーム押え 2 4は、 中央部に半導体ペレツ 卜 1およびリードフレーム 5のリード 5 aとを包囲可能な開口部 2 6を有 する平板状の導電部材であり、 下降時にヒ一夕ブロックなどのボンディ ングステ一ジ 2 7との間でリードフレーム 5を挟持し所定位置に固定す る。 A discharge electrode 23 and a discharge portion 23a are attached to the bonding head so that the discharge portion 23a can be freely positioned directly below the cabinet 22. In addition, a metal lead frame press 24 for pressing and fixing the lead frame 5 is provided, and the lead frame press 24 is configured to be moved up and down by a driving means 25. The lead frame retainer 24 is a plate-shaped conductive member having an opening 26 at the center capable of surrounding the semiconductor pellet 1 and the lead 5 a of the lead frame 5. The lead frame 5 is sandwiched between the bonding stages 27 and fixed at a predetermined position.
上記ワイヤーボンディング装置 2 0は以下のように動作する。 すなわ ち、 リードフレーム 5がボンディ ングステージ 2 7に搬入されると、 リ ―ドフレーム押え 2 4力く駆動手段 2 5によって下降し、 リ一ドフレーム
5はリードフレーム押え 2 4とボンディングステージ 2 7との間に挟持 固定される。 次に放電電極 2 3が移動し、 その放電部 2 3 aがキヤビラ リ 2 2の直下になるように位置決めされ、 両者間での放電によりキヤピ ラリ 2 2から導出されているボンディ ングワイヤー 2 1の自由端にボー ル (ネイルへッ ド) 2 1 3カ<形成される。 しかる後に、 図示しないボン ディングへッ ドによりキヤビラリ 2 2が移動制御され、 半導体ペレツ ト 1上の電極とリ一ド 5 aとの間がボンディングワイヤ一 2 1によって電 気的に接続される。 そして搬送ライン上の 1個の半導体ペレツ ト 1につ いてのボンディ ング操作が完了すると、 リードフレーム押え 2 4は上昇 し、 リードフレーム 5が所定量搬送されて次の半導体ペレッ トについて のボンディ ング操作が同様に繰り返される。 The wire bonding apparatus 20 operates as follows. That is, when the lead frame 5 is carried into the bonding stage 27, it is lowered by the lead frame retainer 24 and the driving means 25, and the lead frame 5 is lowered. 5 is clamped and fixed between the lead frame retainer 24 and the bonding stage 27. Next, the discharge electrode 23 moves, and the discharge part 23 a is positioned so as to be directly below the cavity 22, and the bonding wire 21 led out of the capillary 22 by the discharge between the two. Ball (nail head) is formed at the free end of Thereafter, the movement of the cavity 22 is controlled by a bonding head (not shown), and the electrode on the semiconductor pellet 1 and the lead 5a are electrically connected by the bonding wire 21. When the bonding operation for one semiconductor pellet 1 on the transfer line is completed, the lead frame presser 24 is raised, and the lead frame 5 is transferred by a predetermined amount to bond the next semiconductor pellet. The operation is repeated similarly.
し力、しな力 ら、 従来の機械構造用炭素鋼 ( S 4 5 C) で形成し、 表面 に黒色亜鉛めつきを施工した吸着筒などの半導体部品固定治具を装着し たダイボンダ装置においては、 吸着筒の耐摩耗強度が低いため、 半導体 ペレッ ト接合体などの半導体部品の製造歩留りが低下したり、 製造装置 の保守管理が煩雑になる欠点があつた。 A die bonder device that is made of conventional carbon steel for machine structural use (S45C) and is equipped with a fixture for fixing semiconductor components such as an adsorption cylinder with black zinc plating on the surface. However, since the abrasion column has low wear resistance, the production yield of semiconductor components such as semiconductor pellet joints is reduced, and the maintenance of production equipment becomes complicated.
すなわち高速度でダイボンディング動作を繰り返す毎にペレツ 卜を貼 着したフィルムと吸着筒上面とが摺動するため、 吸着筒表面の黒色亜鉛 めっきが摩耗したり剥離し易く、 モニタ時における黒色背景が得られな くなる。 その結果、 モニタ装置による半導体ペレツ 卜の位置および形状 確認に際し、 認識ミスが発生し易くなり、 製品の不良率が急増するおそ れがある。 In other words, each time the die bonding operation is repeated at a high speed, the film on which the pellet is adhered and the upper surface of the adsorption cylinder slide, so that the black zinc plating on the adsorption cylinder surface is easily worn or peeled off, and the black background during monitoring has It will not be available. As a result, when checking the position and shape of the semiconductor pellet with the monitor device, recognition errors are likely to occur, and the defect rate of the product may increase rapidly.
そのため短い運転期間において、 高い頻度で吸着筒を交換する必要が あった。 このように吸着筒を交換するたびにダイボンダ装置を停止する ために長期間に渡る連続運転が困難であり、 装置の保守管理に要する労 力も増大する問題点があつた。
—方、 従来のリードフレーム押えを固定治具として使用したワイヤー ボンディング装置においては、 リ一ドフレーム押えが金属などの導電性 材料で形成されていたため、 放電電極とリードフレーム押えとの間に十 分な絶縁距離が確保できな 、場合に、 放電電極とワイヤーとの間で発生 すべき放電が、 放電電極とリードフレームとの間で生じてしまう現象が 多発する問題点があった。 Therefore, it was necessary to frequently replace the adsorption column during a short operation period. As described above, since the die bonder device is stopped every time the suction cylinder is replaced, continuous operation for a long period of time is difficult, and there is a problem that the labor required for maintenance of the device increases. On the other hand, in a conventional wire bonding apparatus using a lead frame retainer as a fixing jig, since the lead frame retainer is formed of a conductive material such as a metal, there is not enough space between the discharge electrode and the lead frame retainer. If a sufficient insulation distance cannot be ensured, there is a problem that a phenomenon that a discharge to be generated between the discharge electrode and the wire frequently occurs between the discharge electrode and the lead frame.
このような現象が生じると、 ボンディングワイヤーの自由端に接合用 のボールが形成されないため、 ボンディング不良が生じ安定したボンデ ィング作業が実施できない問題点があつた。 When such a phenomenon occurs, a bonding ball is not formed at the free end of the bonding wire, so that there is a problem that a bonding failure occurs and a stable bonding operation cannot be performed.
上記のような不具合を低減する対策として、 例えば特開平 7— 7 8 8 4 3号公報に開示されるようにリ一ドフレーム押え本体表面にセラミッ クス, 耐熱性硬質ゴム, 耐熱性プラスチック, カーボンから成る絶縁性 被膜を形成したリードフレーム押えが実用化されている。 しかしな力《ら、 これらの絶縁性被膜はいずれも粗大な粒子から構成されており、 耐摩耗 強度および絶縁性が不十分であるとともに、 発塵性が高く、 粉塵の付着 による半導体部品の劣化を招き易い問題点があつた。 As measures to reduce the above problems, for example, ceramics, heat-resistant hard rubber, heat-resistant plastic, carbon, and the like are disclosed on the surface of the lead frame holding body as disclosed in Japanese Patent Application Laid-Open No. 7-78843. A lead frame retainer on which an insulating film made of PTFE is formed has been put to practical use. However, these insulating coatings are composed of coarse particles, and have insufficient abrasion resistance and insulation, high dust generation, and deterioration of semiconductor parts due to dust adhesion. There was a problem that was easy to invite.
また、 ステンレス鋼などの金属母材表面に黒色金属めつき層を被覆層 として形成した半導体部品載置用受台を装着した従来のボンディング装 置においては、 受台の耐摩耗強度および被覆層の接合強度が低いため、 半導体回路基板などの半導体部品の製造歩留りが低下したり、 製造装置 の保守管理が煩雑になる欠点があつた。 In addition, in a conventional bonding apparatus in which a pedestal for mounting a semiconductor component in which a black metal plating layer is formed as a coating layer on the surface of a metal base material such as stainless steel, the wear resistance of the pedestal and the coating layer Due to the low bonding strength, the manufacturing yield of semiconductor components such as semiconductor circuit boards has been reduced, and the maintenance of manufacturing equipment has been complicated.
すなわち、 各半導体素子について高速度のボンディング動作力《完了す る毎にリードフレームと受台上面とが摺動するため、 受台表面の黒色金 厲めつき層が摩耗したり剥離し易く、 モニタ時における黒色背景が得ら れなくなる。 具体的には、 ボンディングの際に受台上の黒色めつき層が 剥離して白色の金属母材が露出するため、 画像処理装置の 2値化回路で
処理されるリ一ド等の座標位置を自動認識する際に、 正規の座標位置と 異なる座標位置を検出してしまうという欠点があつた。 In other words, the high-speed bonding operation force of each semiconductor element <Because the lead frame slides on the upper surface of the pedestal each time it is completed, the black gold plating layer on the pedestal surface is easily worn or peeled off, and the monitor The black background at the time cannot be obtained. Specifically, during bonding, the black plating layer on the pedestal peels off, exposing the white metal base material. When automatically recognizing a coordinate position of a lead to be processed, for example, a coordinate position different from a regular coordinate position is detected.
その結果、 モニタ装置による半導体素子やリードの位置および形状確 認に際し、 認識ミス力発生し易くなり、 製品の不良率が急増するおそれ がある。 そのため短い運転期間において、 高い頻度で受台を交換する必 要があった。 このように受台を交換するたびにボンディング装置を停止 しなければならず、 長期間に渡る連続運転が困難であり、 装置の保守管 理に要する労力も増大する問題点があつた。 As a result, when the position and shape of the semiconductor element and the lead are confirmed by the monitor device, a recognition error force is likely to occur, and the defect rate of the product may increase rapidly. Therefore, it was necessary to replace the cradle with high frequency during a short operation period. As described above, the bonding apparatus must be stopped every time the cradle is replaced, which makes continuous operation for a long period of time difficult and increases the labor required for maintenance of the apparatus.
また従来の半導体部品載置用受台においては金属母材と被覆層との接 合強度が弱いため、 被覆層の剥離が生じ易く、 この剥離によって粉塵が 発生し、 製品である半導体部品に付着してその特性を劣化させ半導体部 品の製造歩留りを低下させるという問題点もあつた。 In addition, in the conventional pedestal for mounting semiconductor components, since the bonding strength between the metal base material and the coating layer is weak, the coating layer is easily peeled off, and this separation generates dust and adheres to the semiconductor component product. As a result, there is also a problem that the characteristics are deteriorated and the manufacturing yield of semiconductor parts is reduced.
さらに従来のボンディ ング装置のように、 黒色の金属めつき層を形成 した受台を使用した場合には、 リ一ドフレームが受台上に搬送される際 にリードフレーム下面にめっきされている銀 (A g) などのろう材成分 が受台の鉄系金属成分と金属間接合を起こす結果、 受台とリ一ドフレー ムとが固着し、 リードフレームが曲がったり変形するおそれがある。 こ の状態でワイヤーボンディング操作を実施するとボンディ ングワイヤが 変形し、 いずれにしても接合不良が增大する問題点があつた。 Furthermore, when a pedestal with a black metal plating layer is used as in a conventional bonding device, the lead frame is plated on the lower surface of the lead frame when the lead frame is transported onto the pedestal. As a result of brazing filler metal such as silver (Ag) forming an intermetallic connection with the iron-based metal component of the cradle, the cradle and the lead frame may adhere to each other, and the lead frame may be bent or deformed. If the wire bonding operation is performed in this state, the bonding wire is deformed, and in any case, there is a problem that the bonding failure is increased.
上記のような問題点を低減する対策として、 例えば実公平 6— 1 0 6 8 4号公報に記載されるように、 ステンレス鋼母材の表面に A 1 9 03 一 T i o2 系のセラミックスから成る絶縁性被膜を形成した受台を使用 したボンディング装置が開示されている。 し力、しな力 ら、 上記問題点を 解決するに至ってはいなかった。 As a countermeasure to reduce the above problem, for example, the actual fair 6 1 0 6 8 as described in 4 JP-surface A 1 9 0 3 one T io 2 based ceramics stainless steel base metal Discloses a bonding apparatus using a pedestal on which an insulating film made of an insulating film is formed. However, they did not solve the above problems.
本発明は上記の問題点を解決するためになされたものであり、 被覆層 の接合強度および耐摩耗性が良好であり、 粉塵の発生付着を低減でき、
良質な半導体部品を高 、製造歩留りで量産することが可能な半導体部品 固定治具を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and has a good bonding strength and abrasion resistance of a coating layer, can reduce generation and adhesion of dust, It is an object of the present invention to provide a jig for fixing a semiconductor component capable of mass-producing high-quality semiconductor components at a high production yield.
また本発明は耐摩耗性が良好であり、被覆物の剥離による粉塵の発生 付着を低減でき、 さらにボンディングの際等にリ一ド等の座標位置を正 確に認識することが可能な半導体部品載置用受台およびその受台を使用 したボンディ ング装置を提供することを他の目的とする。 Further, the present invention provides a semiconductor component having good abrasion resistance, capable of reducing generation and adhesion of dust due to peeling of a coating, and capable of accurately recognizing a coordinate position such as a lead at the time of bonding or the like. Another object is to provide a mounting pedestal and a bonding device using the pedestal.
発明の開示 Disclosure of the invention
上記目的を達成するため本発明に係る半導体部品固定治具および半導 体部品載置用受台は、 金属母材表面にクロム酸化物を主成分とする被覆 層力形成されていることを特徵とする。 In order to achieve the above object, the semiconductor component fixing jig and the semiconductor component mounting pedestal according to the present invention are characterized in that a coating layer mainly composed of chromium oxide is formed on the surface of a metal base material. And
またクロム酸化物力壞ィ匕第二クロム (C r 2 03 ) であることを特徴 とする。 さらにクロム酸化物は、 平均粒径が 0. 1〜0. 5 mの酸化 第二クロム (C r 2 03 ) 微粒子であることを特徴とする。 またこのク ム酸化物を主成分とする被覆層は深レ、暗緑色を呈している。 Also characterized in that the chromium oxide power壞I匕第dichromate (C r 2 0 3). Furthermore chromium oxide, wherein the average particle diameter of 0. 1 to 0. 5 m of chromic oxide (C r 2 0 3) is particulate. The coating layer containing this oxide as a main component has a deep color and a dark green color.
さらに被覆層は、 表面粗さが最大高さ (Rmax ) 基準で 5 以上で ある金属母材表面に形成すること力好まい、。 具体的には、 被覆層を形 成する前に、 金属母材表面をブラスト処理等により Rmax基準で 5 以上となるように粗く し、 この後に被覆層を形成する。 このように金属 母材表面を Rmax基準で 5 m以上と粗くすることにより、 被覆層との 接合強度を高めると同時に、 被覆層形成後の半導体部品固定治具ゃ受台 の表面粗さをも粗くすることができる。 但し、 Rmax基準での表面粗さ が 1 0 mを超えると被覆層を均一に形成しにくくなるため、 1 0 m 以下であること力《好ましい。 Further, the coating layer is preferably formed on the surface of a metal base material having a surface roughness of 5 or more on the basis of the maximum height (Rmax). Specifically, before forming the coating layer, the surface of the metal base material is roughened by blasting or the like so that it becomes 5 or more on the basis of Rmax, and thereafter, the coating layer is formed. By making the surface of the metal base material as rough as 5 m or more based on Rmax in this way, the bonding strength with the coating layer is increased, and the surface roughness of the semiconductor component fixing jig and the pedestal after the coating layer is formed is also reduced. Can be coarse. However, if the surface roughness on the basis of Rmax exceeds 10 m, it becomes difficult to form a uniform coating layer, so that the force is preferably 10 m or less.
ここで詳細には、 金属母材が鉄系金属である場合、 金属母材とクロム
酸化物を主成分とする被覆層との間に、 鉄化合物とクロム酸化物との反 応層を形成すること力好ましい。 この反応層の形成により、 クロム酸化 物を主成分とする被覆層との接合強度をさらに強固なものとすることが できる。 なお、 本発明での "金属母材表面にクロム酸化物を主成分とす る被覆層が形成されている" とは、 この反応層を介して形成されていて も本発明の範囲内であることは言うまでもない。 また金属母材表面には、 界面が明確か否かは別として実質的には反応層と、 クロム酸化物を主成 分とする被覆層との二層の被覆層が形成されていることとなる。 Here, in detail, when the metal base material is an iron-based metal, the metal base material and chromium It is preferable to form a reaction layer of an iron compound and chromium oxide between the coating layer containing oxide as a main component. By forming this reaction layer, the bonding strength with the coating layer containing chromium oxide as a main component can be further increased. In the present invention, "the coating layer mainly composed of chromium oxide is formed on the surface of the metal base material" is within the scope of the present invention even if it is formed via this reaction layer. Needless to say. In addition, the metal base material surface has a coating layer consisting essentially of a reaction layer and a coating layer mainly composed of chromium oxide, whether or not the interface is clear. Become.
上記半導体部品固定治具は、 半導体素子を接合するリードフレームを 押圧固定するためのリードフレーム押えや半導体素子を吸着により固定 する吸着筒に好適である。 また上記半導体部品載置用受台は半導体部品 を摺動自在に載置する受台として好適である。 なお、 上記半導体部品載 置用受台はボンディング装置に使用されるものの他、 半導体部品を移動 する際等の載置に使用されるものであってもよいことは言うまでもない。 また本発明に係るボンディング装置は、 半導体部品載置用受台上に載 置された半導体部品の電極とリードとを接続するボンディ ング装置にお いて、 上記半導体部品載置用受台は金属母材表面にクロム酸化物を主成 分とする被覆層カ《形成されたものであることを特徴とする。 The semiconductor component fixing jig is suitable for a lead frame retainer for pressing and fixing a lead frame to which a semiconductor element is joined, and a suction cylinder for fixing a semiconductor element by suction. The above-mentioned pedestal for mounting semiconductor components is suitable as a pedestal for slidably mounting semiconductor components. Needless to say, the above-mentioned pedestal for mounting a semiconductor component may be used not only for a bonding device but also for mounting a semiconductor component when moving. Further, the bonding apparatus according to the present invention is a bonding apparatus for connecting an electrode and a lead of a semiconductor component mounted on a semiconductor component mounting pedestal, wherein the semiconductor component mounting pedestal is a metal motherboard. It is characterized in that a coating layer mainly composed of chromium oxide is formed on the material surface.
ここで上言己金属母材としては、 特に限定されず、 汎用の構造用鋼材や ステンレス鋼などの耐食耐熱鋼や各種鉄系合金, 炭素鋼, チタン合金, アルミニウム合金, インコネル等力使用できる。 Here, the above-mentioned metal base material is not particularly limited, and general-purpose structural steel materials, corrosion-resistant heat-resistant steels such as stainless steels, various iron-based alloys, carbon steels, titanium alloys, aluminum alloys, and Inconel can be used.
また、 上記クロム酸化物を主成分とする被覆層は、 例えば以下のよう な手順で形成することができる。 すなわち、 クロム酸 (C r 0。 ) 水溶 液またはスラリー (泥滎) を予め表面処理した鉄系金属等の金属母材表 面に塗布したり、 浸漬したりすることによって金属母材表面にクロム酸 水溶液またはスラリーを付着させる。
次に 4 0 0〜 6 0 0 ^程度の低温度で加熱焼成することにより水分が 蒸発すると同時に、 酸化クロムと金属母材の表層とが化学反応して生成 した反応層と、 平均粒径が 0. 1〜0. 5 // mの微粒子からなるクロム 酸化物 (酸化第二クロム : C r 2 03 ) を主成分とする被覆層が形成さ れる。 The coating layer containing chromium oxide as a main component can be formed, for example, by the following procedure. In other words, a chromic acid (Cr0.) Aqueous solution or slurry (slurry) is applied to the surface of a metal base material such as an iron-based metal that has been surface-treated in advance, or is immersed in the metal base material to immerse it. Apply acid solution or slurry. Next, by heating and baking at a low temperature of about 400 to 600 ^, water evaporates, and at the same time, the reaction layer formed by the chemical reaction between chromium oxide and the surface layer of the metal base material has an average particle size of . 0.1 to 0 5 // chromium oxide consisting of particles of m (chromic oxide: C r 2 0 3) coating layer mainly composed of are formed.
これら被覆層の厚さは、 反応層とクロム酸化物を主成分とする被覆層 とを合計して 1〜 5 ^ mが望まし 、0 被覆層の厚さが 1 μ m未満の場合 は、 固定治具の絶縁性および耐摩耗性が低下する。 反応層とクロム酸化 物を主成分とする被覆層とが、後述するようなセラミ ックス微細粒子や フレークを添加 ·含有されていない場合には、 被覆層が 5 // mを超える と、 逆に被覆層厚の均一性カ われ、 密着性, 接合強度も低下してしま う。 同様な理由によりさらに 1〜3 μ mの範囲が好まし 、。 The total thickness of these coating layers is preferably 1 to 5 ^ m in total of the reaction layer and the coating layer containing chromium oxide as a main component, and 0 if the thickness of the coating layer is less than 1 μm, The insulation and abrasion resistance of the fixing jig decrease. If the reaction layer and the coating layer mainly composed of chromium oxide do not contain or contain ceramic fine particles or flakes as described below, conversely, if the coating layer exceeds 5 // m, The uniformity of the coating layer thickness is reduced, and the adhesion and bonding strength are also reduced. For similar reasons, a further 1-3 μm range is preferred.
一方、 クロム酸 (C r 2 03 ) 水溶液中にアルミナ (A 1 2 03 :) , シリカ (S i 09 ) , Z n On などのセラミ ックス微細粒子やフレーク を添加することにより被覆層の特性 (接合強度, 表面硬さ) を一段と向 上させることができる。 具体的には、 金属母材表面に形成される被覆層 (反応層とクロム酸化物を主成分とする被覆層) が前記セラミックス微 細粒子, フレークを 3 0〜- 5 O w t %含有することになるように添加量 を調整することが望ましい。 但し、 このように A 1 2 03 などのセラミ ックス 粒子, フレークを添加した場合には、 被覆雇の厚さは 1 5〜 8 0 jumの範囲が好ましい。 On the other hand, chromic acid (C r 2 0 3) of alumina in an aqueous solution (A 1 2 0 3 :), silica (S i 0 9), coated by adding ceramic box fine particles or flakes, such as Z n O n The characteristics (bonding strength, surface hardness) of the layer can be further improved. Specifically, the coating layer (reaction layer and coating layer mainly composed of chromium oxide) formed on the surface of the metal base material should contain 30 to -5 O wt% of the ceramic fine particles and flakes. It is desirable to adjust the amount of addition so that However, ceramic box particles such Thus A 1 2 0 3, in the case of adding the flake thickness of the coating employment in a range of 1. 5 to 8 0 jum is preferred.
上記被覆層の厚さが 1 5 m未満では、 接合強度を向上させる効果に 乏しく、 また逆に 8 O mを超えるとクロム酸化物 (およびセラミック ス微細粒子, フレーク) を主成分とする被覆層自身の強度が弱くなるた め、 最終的に密着強度, 接合強度が低下することとなるためである。 同 様の理由により、 さらに 2 0〜6 0 / mの範囲力く望ましい。
このようにセラミックス微細粒子等を含有する被覆層は、 上記のほか 以下のような製法によって形成してもよい。 すなわち、 セラミックス微 細粒子を含有する水溶液またはスラリ一を母材金属表面に塗布して温度 5 0 0 - 6 0 0 °Cに加熱焼成して多孔質のセラミックス層を形成した後 に、 クロム酸 (C r〇3 ) 水溶液またはスラリーをセラミックス層に含 浸させて温度 5 0 0〜6 0 crcで加熱焼結して形成してもよい。 If the thickness of the coating layer is less than 15 m, the effect of improving the bonding strength is poor, while if it exceeds 8 Om, the coating layer containing chromium oxide (and ceramic fine particles, flakes) as the main component This is because their own strength is weakened, and eventually the adhesion strength and bonding strength are reduced. For the same reason, a force in the range of 20 to 60 / m is more desirable. The coating layer containing the ceramic fine particles and the like may be formed by the following manufacturing method in addition to the above. That is, an aqueous solution or slurry containing fine ceramic particles is applied to the surface of the base metal and heated to a temperature of 500 to 600 ° C. to form a porous ceramic layer. (C R_〇 3) an aqueous solution or slurry may be allowed immersed containing the ceramic layer formed by heat sintering at a temperature 5 0 0~6 0 crc a.
なお、 上記原料液の塗布 ·含浸操作および焼結操作が 1回のみである 場合には被覆層内に微小な気孔力残存し易いため、 通常は上記水溶液の 塗布 ·含浸操作および焼成操作を 1 0回程度繰り返すとよい。 被覆層の 厚さは上記塗布 ·含浸操作および焼成操作の繰り返し回数を制御するこ とによって調整できる。 In addition, when the application / impregnation operation and the sintering operation of the above-mentioned raw material liquid are performed only once, minute pore force tends to remain in the coating layer. It is good to repeat about 0 times. The thickness of the coating layer can be adjusted by controlling the number of repetitions of the application / impregnation operation and the baking operation.
上記のように形成した被覆層は、 金属母材に対して高 L、接合強度を有 し、 高硬度, 無気孔で耐摩耗性, 低摩擦性, 耐熱性などに優れている。 ちなみにステンレス鋼を金属母材とした場合の表面硬さは、 やや金属母 材の硬さの影響を受け 5 0 0〜6 0 O H V ( 0. 1 ) である一方、 骨材 を含有する厚い被覆層の表面硬さは 1 5 0 0〜2 0 0 O H V ( 0. 1 ) と高く、 超硬合金と同程度の硬度が得られる。 The coating layer formed as described above has a high L and bonding strength with respect to the metal base material, and is excellent in high hardness, non-porosity, wear resistance, low friction, heat resistance, and the like. Incidentally, the surface hardness when stainless steel is used as the metal base material is slightly affected by the hardness of the metal base material, and is between 500 and 60 OHV (0.1), while the thick coating containing aggregate The surface hardness of the layer is as high as 150 to 200 OHV (0.1), and the same hardness as that of cemented carbide can be obtained.
また特に鉄系の金属母材を使用した場合には、 被覆層と金属母材との 界面に、 酸化クロムと金属 (鉄) とが化学反応して反応層が生成され、 この反応層の存在によって両者の接合強度が 7 0 Okgi/cm2 ( 6 8 M P a ) 以上となる。 In particular, when an iron-based metal base material is used, chromium oxide and a metal (iron) chemically react at the interface between the coating layer and the metal base material to form a reaction layer. As a result, the joint strength between them becomes 70 Okgi / cm 2 (68 MPa) or more.
さらに被覆層を構成するクロム酸化物 (C r 0 03 ) 微粒子の平均粒 径が 0. 1〜0. 5 程度と超微細であるため、 固体潤滑剤としての 作用が強い。 そのため、 表面粗さ (Rmax ) は多少大きくても摩擦係数 が小さくなり摺動特性を高める効果も顕著である。 特に水溶液から析出 させて被覆層を形成しているため、 構成粒子が超微細であり、 従来の溶
射法によって形成した多孔質セラミックス被膜と異なり耐食性ゃ耐摩耗 性が不足することはない。 Further, since the chromium oxide constituting the coating layer average particle diameter of (C r 0 0 3) particles is from 0.1 to 0.5 degrees and ultrafine, strong action as a solid lubricant. Therefore, even if the surface roughness (Rmax) is somewhat large, the coefficient of friction is small and the effect of improving the sliding characteristics is remarkable. In particular, since the coating layer is formed by precipitation from an aqueous solution, the constituent particles are super fine, Unlike porous ceramic coatings formed by the injection method, corrosion resistance and wear resistance are not insufficient.
また被覆層の表面部が緻密に形成されるため耐熱性および耐熱衝撃性 に優れ、 繰り返しの熱サイクルが半導体部品固定治具ゃ受台に作用した 場合においても、 被覆層の剥離を引き起こすことが少なく、 剥離による 発塵も少ない。 In addition, since the surface of the coating layer is densely formed, it has excellent heat resistance and thermal shock resistance, and may cause peeling of the coating layer even when repeated heat cycles act on the semiconductor component fixing jig and the pedestal. Low dusting due to peeling.
さらに被覆層は、 硫酸などの酸性溶液、 アンモニア水などの塩基性溶 液およびアルコール, アセトン, ガソリンなどの有機溶剤に対しても優 れた耐食性を有しており、 過酷な棼囲気下においても優れた耐久性を有 している。 In addition, the coating layer has excellent corrosion resistance to acidic solutions such as sulfuric acid, basic solutions such as aqueous ammonia, and organic solvents such as alcohol, acetone, and gasoline. Has excellent durability.
このように被覆層を形成することにより、 金属母材の機能を大幅に高 めることができ、 特にダイボンダ装置の吸着筒やワイヤーボンディング 装置のリードフレーム押え, 受台ゃ固定治具の構成材またはヒータプレ 一ト等の摺動部の構成材として使用した場合に優れた効果が発揮される。 また被覆層は暗緑色を呈しているため、 半導体部品固定治具を前記ダ ィボンダ装置の吸着筒として使用した場台には、 または、 半導体部品載 置用受台をボンディ ング装置の部品受台として使用した場合には、 半導 体素子やリードと、 その背景部となる吸着筒ゃ受台とのコントラス卜が 高くなり、 T Vカメラなどのモニタ装置によつて半導体素子の形状およ びリードの位置が明瞭に認識される。 したがって、 モニタ装置による半 導体素子の認識ミスやリード等の座標位置の認識ミスが減少し、 半導体 部品を高い精度で組み立てることができる。 By forming the coating layer in this manner, the function of the metal base material can be greatly enhanced. In particular, the components of the suction cylinder of the die bonder device, the lead frame holder of the wire bonding device, and the pedestal ゃ fixing jig Also, when used as a constituent material of a sliding portion such as a heater plate, an excellent effect is exhibited. In addition, since the coating layer has a dark green color, the base where the semiconductor component fixing jig is used as the suction tube of the die bonder device is used, or the semiconductor component mounting pedestal is used as the bonding device component pedestal. When used as a semiconductor device, the contrast between the semiconductor element and the lead and the suction tube and the pedestal serving as the background of the semiconductor element and the lead increases, and the shape and lead of the semiconductor element and the lead are monitored by a monitor device such as a TV camera. Is clearly recognized. Therefore, the recognition error of the semiconductor element and the recognition error of the coordinate position of the lead and the like by the monitor device are reduced, and the semiconductor component can be assembled with high accuracy.
ここで本発明に係る半導体部品固定治具ゃ受台の金属母材自体に表面 粗さを調整する処理をせずに被覆層を形成すると、 被覆層は超微細なク ロム酸化物粒子から緻密に構成されているため、 固定治具ゃ受台の表面 粗さも金属母材の表面粗さと同様に、 Rmax基準で l〜2 i m、 と平滑
な表面となってしまう。 Here, when the coating layer is formed on the semiconductor component fixing jig according to the present invention without performing a process for adjusting the surface roughness on the metal base material itself of the pedestal, the coating layer is formed from ultra-fine chromium oxide particles and dense. The surface roughness of the fixing jig and the pedestal is the same as the surface roughness of the metal base material. Surface.
そこで、 本発明の半導体部品固定治具や受台は予め金属母材自体にブ ラスト処理などの目荒し処理を行なって金属母材自体の表面粗さ (Rma X ) を 5. O ^ m以上とした上で被覆層を形成すること力望ましい。 金 属母材の表面粗さを予め調整することにより、 被覆層を形成した本発明 の半導体部品固定治具ゃ受台の表面粗さ (Rmax ) は 3〜5 mで、 し かも均一な被覆層厚さとすることができ、 接合強度の向上の他、 使用時 に半導体製造装置内において発生した粉塵、 埃等を、 製品である半導体 部品側に付着させずに固定治具ゃ受台側に付着させること力可能となる。 したがって、 製品である半導体部品の粉塵等による汚染を効果的に防止 でき、 高品質の半導体部品を高 、製造歩留りで量産することができる。 上記構成に係る半導体部品固定治具ゃ受台によれば、 超微細なクロム 酸化物粒子から成る被覆層が金属母材表面に形成されているため、 固定 治具ゃ受台の絶縁性および耐摩耗性が良好であり、 かつ粉塵の発生 ·付 着を防止することができる。 したがって、 この固定治具ゃ受台をダイボ ンダ装置の吸着筒やワイヤ一ボンディング装置のリードフレーム押えや 受台, 摺動部品として使用した場合に、 不良が少なく良質な半導体部品 を高い製造歩留りで量産すること:^可能になる。 Therefore, the semiconductor component fixing jig and the pedestal of the present invention are subjected to roughening treatment such as blast treatment on the metal base material itself in advance to increase the surface roughness (Rma X) of the metal base material itself to 5.O ^ m or more. Then, it is desirable to form a coating layer. By adjusting the surface roughness of the metal base material in advance, the semiconductor component fixing jig of the present invention having the coating layer formed thereon has a surface roughness (Rmax) of 3 to 5 m, and a uniform coating. In addition to improving the bonding strength, dust and dirt generated in the semiconductor manufacturing equipment during use can be fixed on the fixture and pedestal side without adhering to the semiconductor component side of the product. Adhesive force is possible. Therefore, contamination of the semiconductor component, which is a product, due to dust or the like can be effectively prevented, and high-quality semiconductor components can be mass-produced with a high production yield. According to the semiconductor component fixing jig and the pedestal according to the above configuration, since the coating layer made of ultrafine chromium oxide particles is formed on the surface of the metal base material, the insulating property and the insulation resistance of the fixing jig and the pedestal are improved. It has good abrasion and can prevent the generation and adhesion of dust. Therefore, when this fixing jig and pedestal are used as suction cylinders of die bonders and as lead frame holders, pedestals, and sliding parts for wire-bonding equipment, high-quality semiconductor parts with few defects can be produced at a high production yield. Mass production: it becomes possible.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る半導体部品固定治具としての吸着筒を組み込ん だダイボンダ装置の一実施例であり、 要部となるダイ吸着部のみを拡大 して示す断面図である。 FIG. 1 is an embodiment of a die bonder device incorporating a suction cylinder as a semiconductor component fixing jig according to the present invention, and is an enlarged cross-sectional view showing only a die suction portion as a main part.
図 2は、 本発明に係る半導体部品固定治具としてのリ一ドフレーム押 えの一実施例を示す斜視断面図である。
図 3は、 本発明に係る半導体部品載置用受台の一実施例を示す断面図 図 4は、 図 3における IV部の拡大断面図である。 FIG. 2 is a perspective sectional view showing one embodiment of a lead frame press as a semiconductor component fixing jig according to the present invention. FIG. 3 is a cross-sectional view showing one embodiment of a semiconductor component mounting pedestal according to the present invention. FIG. 4 is an enlarged cross-sectional view of a portion IV in FIG.
図 5は、 本発明に係る半導体部品載置用受台の他の実施例を示す断面 図である。 FIG. 5 is a cross-sectional view showing another embodiment of the pedestal for mounting a semiconductor component according to the present invention.
図 6は、 ダイボンダ装置の構成例を示す斜視図である。 FIG. 6 is a perspective view showing a configuration example of the die bonder device.
図 7は、 図 6における吸着筒を拡大して示す斜視図である。 FIG. 7 is an enlarged perspective view showing the suction tube in FIG.
図 8は、 従来のダイボンダ装置のダイ吸着部を拡大して示す断面図で める。 FIG. 8 is an enlarged sectional view showing a die suction portion of a conventional die bonder device.
図 9は、 ボンディ ング装置の構成を概略的に示す平面図である。 図 1 0は、 ワイヤーボンディング装置のボンディングへッド部の構成 例を示す斜視図である。 FIG. 9 is a plan view schematically showing the configuration of the bonding device. FIG. 10 is a perspective view showing a configuration example of a bonding head part of a wire bonding apparatus.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
次に本発明の実施形態について添付図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings.
実施例 1〜5 Examples 1 to 5
表 1および図 1に示すように、 予めブラスト処理を行ない表面粗さ (Rmax ) を 7〜8 mとした機械構造用炭素鋼 (S 4 5 C) , 台金工 具鋼 ( S K D) およびステンレス鋼 (S U S 3 0 4) を金属母材とする 有底円筒状の吸着プレート 1 3 bをそれぞれ調製し、 各吸着プレート 1 3 b表面側にクロム酸 ( C r 03 ) 飽和水溶液 (実施例により S i 02 等の微細粒子を添加) を塗布する工程と、 温度 5 0 0 で焼成する工程 とを繰り返すことにより、 各吸着プレート 1 3 bの表面に、 表 1に示す 厚さを有する被覆層 1 3 aを形成した。 その結果、 表 1に示す実施例 1 〜5に係る半導体部品固定治具としての吸着筒 1 3 Aを調製した。 各吸
着筒 1 3 Aを S 4 5 C製の円筒状スリーブ 1 6 Aの上端開口部に嵌め込 むことにより、 図 7に示す形状を有する吸着筒が形成される。 なお吸着 筒 1 3 Aと円筒状スリーブ 1 6 Aを予め一体に形成してもよい。 As shown in Table 1 and Fig. 1, carbon steel for machine structural use (S45C), base metal tool steel (SKD), and stainless steel, which had been previously blasted and had a surface roughness (Rmax) of 7 to 8 m, (SUS 3 0 4) were each prepared to suction plate 1 3 b of the bottomed cylindrical shape having a metal matrix, by the suction plate 1 3 b surface chromic acid (C r 0 3) saturated aqueous (example a step of applying the S i 0 2 added fine particles, etc.), by repeating the step of calcining at a temperature of 5 0 0, each suction plate 1 3 b surface of the coating having a thickness shown in Table 1 Layer 13a was formed. As a result, adsorption cylinders 13A as semiconductor component fixing jigs according to Examples 1 to 5 shown in Table 1 were prepared. Each suck By fitting the tube 13A into the upper end opening of the cylindrical sleeve 16A made of S45C, an adsorption tube having the shape shown in FIG. 7 is formed. Note that the suction tube 13A and the cylindrical sleeve 16A may be integrally formed in advance.
比較例 1 Comparative Example 1
一方比較例 1として、 従来材料である機械構造用炭素鋼 ( S 4 5 C) を機械研肖咖ェして実施例 1と同一寸法を有する円筒キヤップ状の吸着 筒素体を形成し、 その素体のフィルム当接側表面に厚さ 1 0 mの亜鉛 めっきを施工して S 4 5 C製の吸着筒を多数用意した。 On the other hand, as Comparative Example 1, a carbon steel for machine structural use (S45C), which is a conventional material, was subjected to mechanical polishing to form a cylindrical cap-shaped adsorption cylinder body having the same dimensions as in Example 1. A large number of S45C adsorption cylinders were prepared by applying zinc plating with a thickness of 10 m to the surface of the element body on the film contact side.
そして実施例 1〜 5および比較例 1において調製した各吸着筒の被覆 層の接合強度 (ピール強度) を測定すると共に、 図 1に示すダイボンダ 装置の吸着筒 1 3 Aとして装着し、 1辺が 0. 3 5mniの S iペレットと リードフレームとの接合作業を連続的に 1 0 0万回実施した後における 各吸着筒のフィルム当接部の摺動による平均摩^!を測定し、 下記表 1 に示す結果を得た。
Then, while measuring the bonding strength (peel strength) of the coating layer of each adsorption cylinder prepared in Examples 1 to 5 and Comparative Example 1, the die was attached as the adsorption cylinder 13A of the die bonder shown in FIG. Average friction due to sliding of the film abutting part of each adsorption cylinder after 100,000 continuous operations of joining 0.3 mni Si pellets to the lead frame! Was measured, and the results shown in Table 1 below were obtained.
t t
リードフレーム 金属母材の 被 覆 層 被覆層の Lead frame Metal base material coating layer Coating layer
平均摩耗量 試 料 α 押えの 表面粗さ 種 類 厚 さ セラミ ックス微細粒子 接合強度 Average wear amount Sample α Surface roughness of presser type Type Thickness Ceramic fine particles Bonding strength
金属母材種類 Rnax ut) 種 類 含有率 (vol.X) (MP a) ( τη) 難例 6 S 45 C 7. 2 3 70 1. 7 Metal base metal type Rnax ut) Type Content (vol.X) (MPa) (τη) Difficult 6 S 45 C 7.2 3 70 1.7
C r2°3 C r 2 ° 3
実施例 7 SKD 7. 4 52 s i o2 32 94 0. 4 Example 7 SKD 7.44 52 sio 2 32 94 0.4
C r2°3 C r 2 ° 3
実施例 8 SKD 7. 3 45 S i 02 38 96 0. 5 Example 8 SKD 7.3 45 S i 0 2 38 96 0.5
C r2°3 C r 2 ° 3
¾SS例 9 SUS 304 7. 1 48 35 92 0. 6 ¾SS example 9 SUS 304 7.1 48 35 92 0.6
C r2°3 A l2°3 C r 2 ° 3 A l 2 ° 3
io SUS 304 7. 2 2. 8 72 1. 6 io SUS 304 7.2 2.8 72 1.6
C r2°3 C r 2 ° 3
比铰例 2 S 45 C 2. 0 めっき 10 めっき剥れで Comparative Example 2 S 45 C 2.0 plating 10 plating peeling
19 19
陡用中止 Discontinued
【¾1
表 1に示す結果から明らかなように、 実施例 1〜 5に係る半導体部品 固定治具としての吸着筒によれば、 従来材を使用した比較例 1の吸着筒 と比較して接合強度が高く、 摩耗量も少なく、 寿命が大幅に延伸される。 また、 モニタ装置における半導体ペレツ 卜の認識ミス発生率も大幅に低 减されるため、 製品^りを大幅に向上させることができる。 [¾1 As is clear from the results shown in Table 1, according to the suction tube as the jig for fixing the semiconductor components according to Examples 1 to 5, the bonding strength was higher than that of the suction tube of Comparative Example 1 using the conventional material. The wear amount is small, and the life is greatly extended. In addition, the rate of occurrence of recognition errors of the semiconductor pellet in the monitor device is significantly reduced, so that the product quality can be greatly improved.
また各吸着筒の耐摩耗性力優れ寿命力 伸される結果、 吸着筒を交換 するためにダイボンダ装置を高頻度で停止する必要がなくなり、 長期間 にわたつて装置を連続的に運転すること力《可能となり、 装置の保守 1¾ を大幅に簡素化し、 半導体等の製造効率を大幅に改善することができる。 次に本発明に係る半導体部品固定治具をワイヤーボンディング装置の リ一ドフレーム押えに適用した実施例について説明する。 In addition, as the wear resistance of each adsorption cylinder is improved and the service life is extended, it is not necessary to frequently stop the die bonder to replace the adsorption cylinder, and the ability to operate the equipment continuously for a long period of time 《It becomes possible, and the maintenance of the equipment 1¾ is greatly simplified, and the manufacturing efficiency of semiconductors etc. can be greatly improved. Next, an embodiment in which the semiconductor component fixing jig according to the present invention is applied to a lead frame holder of a wire bonding apparatus will be described.
実施例 6 ~ 1 0 Examples 6 to 10
表 2および図 2に示すように、 予めブラス卜処理を行ない表面粗さ (Rmax ) を 7〜8 mとした機械構造用炭素鋼 (S 4 5 C) , 合金工 具鋼 (S K D) およびステンレス鋼 (S U S 3 0 4 ) を金属母材 2 8と し、 ワイヤーボンディング操作用の開口部 2 6を有するリードフレーム 押え本体を調製した。 次に、 各リードフレーム押え本体表面にクロム酸 As shown in Table 2 and Fig. 2, carbon steel for machine structural use (S45C), alloy tool steel (SKD), and stainless steel with a surface roughness (Rmax) of 7 to 8 m that had been blasted in advance. Steel (SUS304) was used as a metal base material 28, and a lead frame press body having an opening 26 for wire bonding operation was prepared. Next, apply chromic acid to the surface of each lead frame
( C r 03 ) 飽和水溶液 (実施例?〜 9においてはセラミックス粒子を 含む。 ) を塗布する工程と、 温度 5 0 0 °Cで焼成する工程とを操り返す ことにより、 表 2に示す厚さを有し、 C r 03 から成る被覆層 2 9を形 成した。 その結果、 図 2に示すような実施例 6 ~ 1 0に係る半導体部品 固定治具としてのリードフレーム押え 2 4 aをそれぞれ製造した。 A step of applying a (. Containing ceramic particles in Examples? ~ 9) (C r 0 3) saturated aqueous by returning puppet and firing at a temperature 5 0 0 ° C, the thickness shown in Table 2 the a and forms the shape of the coating layer 2 9 consisting of C r 0 3 is. As a result, lead frame retainers 24a as jigs for fixing semiconductor components according to Examples 6 to 10 as shown in FIG. 2 were respectively manufactured.
比較例 2 Comparative Example 2
C r 2 0 から成る被覆層 2 9に代えて厚さ 1 0 /z mの亜船めつき層 を被覆層として形成した以外は実施例 6と同一条件で処理して比較例 2
に係る半導体部品固定治具としてのリードフレーム押えを製造した。 そして、 実施例 6〜1 0および比較例 2において製造した各リードフ レーム押えの被覆層の接合強度 (ピール?^) を測定すると共に、 図 1 0に示すワイヤーボンディング装置のリードフレーム押え 2 4として装 着し、 各リ一ドフレーム押えの耐摩耗性, 粉塵の発生量等の特性を測定 し、 比較評価して下記表 2に示す結果を得た。
C r 2 0 from instead of covering layer 2 9 composed thickness 1 0 / zm nitrous ship plated layer except for forming a coating layer is treated under the same conditions as in Example 6 Comparative Example 2 The lead frame holder as a semiconductor component fixing jig according to the above was manufactured. Then, the bonding strength (peel? ^) Of the coating layer of each lead frame retainer manufactured in Examples 6 to 10 and Comparative Example 2 was measured, and the lead frame retainer 24 of the wire bonding apparatus shown in FIG. 10 was measured. After mounting, the characteristics of each lead frame holder, such as wear resistance and the amount of generated dust, were measured and compared and evaluated. The results shown in Table 2 below were obtained.
CO CO
金属母材の 被 覆 層 被覆層の Metal base metal coating layer Coating layer
吸着筒の 平均摩耗量 試 料 Na 表面粗さ 種 類 厚 さ セラミ ックス微細粒子 接合強度 Average wear amount of adsorption cylinder Sample Na Surface roughness Type Thickness Ceramic fine particles Bonding strength
金属母材種類 Metal base material type
Rnax ( ) 種 類 含有率 (vol.X) (MP a) ( zm) Rnax () Type Content (vol.X) (MPa) (zm)
S45C 7. 1 3. 0 70 1. 4 S45C 7.1.3.10 701.4
C r2°3 C r 2 ° 3
m 2 SKD 7. 4 2. 8 71 1. 2 m 2 SKD 7. 4 2. 8 71 1.2
C r2°3 C r 2 ° 3
例 3 SKD 7. 3 45 S i 02 30 94 0. 5 Example 3 SKD 7.3 45 S i 0 2 30 94 0.5
C r2°3 C r 2 ° 3
例 4 SUS 304 7. 5 2. 7 74 1. 4 Example 4 SUS 304 7. 5 2. 7 74 1. 4
C r2°3 C r 2 ° 3
例 5 SUS 304 7. 2 2. 5 73 1. 3 Example 5 SUS 304 7.2 2.5 73 1.3
C r2°3 C r 2 ° 3
めっき剥れで 比校例 1 S 45 C 2. 1 亜鉛めつき 10 22 1 S 45 C 2.1 Zinc plating 10 22
使用中止 Discontinued
¾】2
上記表 2に示す結果から明らかなように、 微細な C r 03粒子から成 り、 緻密で高硬度の被覆層を形成した各実施例に係るリ一ドフレーム押 えによれば、 従来材を使用した比較例 2の押えと比較して被覆層との接 合強度が高く剥れを発生しない。 また、 リードフレームとの擦れによる 粉塵の発生量が大幅に減少するため、 半導体部品の製造歩留りを大幅に 向上させること力可能となつた。 ¾】 2 As is clear from the results shown in Table 2, Ri consists fine C r 0 3 particles, according to example Li one lead frame press according to each embodiment to form a coating layer of dense high hardness, conventional material Compared with the presser of Comparative Example 2 using, the bonding strength with the coating layer was higher and no peeling occurred. Also, since the amount of dust generated by rubbing with the lead frame is greatly reduced, it has become possible to significantly improve the production yield of semiconductor components.
次に本発明の半導体部品載置用受台をボンディング装置の受台に適用 した実施形態について添付図面を参照して説明する。 Next, an embodiment in which the semiconductor component mounting pedestal of the present invention is applied to a pedestal of a bonding apparatus will be described with reference to the accompanying drawings.
実施例 11~15 Examples 11 to 15
表 3および図 3に示すように、 予めブラスト処理を行い、 表面粗さ (Rmax ) を?〜 8 / mとした機械構造用炭素鋼 (S 45 C) , 合金工 具鋼 (SKD) およびステンレス鋼 (SUS 304) を金属母材とする 平板状の受台本体 111をそれぞれ調製し、 各受台本体 111の両面に クロム酸 (C r 03 )飽和水溶液 (実施例により S i 02微細粒子を添 加) を塗布する工程と、 温度 500°Cで焼成する工程とを繰り返すこと により、 各受台本体 111の両面に、 表 3に示す厚さを有する被覆層 1 12を形成した。 その結果、 表 3に示すような実施例 11〜15に係る 半導体部品載置用受台 113を調製した。 As shown in Table 3 and Fig. 3, blasting was performed in advance to determine the surface roughness (Rmax). A plate-shaped pedestal body 111 made of carbon steel for machine structural use (S 45 C), alloy tool steel (SKD) and stainless steel (SUS 304) with a metal base material of a step of applying the (added pressure to the S i 0 2 fine particles according to example) chromic acid (C r 0 3) saturated aqueous on both sides of the receiving base body 111, by repeating the step of calcining at a temperature of 500 ° C A coating layer 112 having a thickness shown in Table 3 was formed on both surfaces of each receiving main body 111. As a result, semiconductor component mounting pedestals 113 according to Examples 11 to 15 as shown in Table 3 were prepared.
各実施例に係る半導体部品載置用受台 113の被覆層 11'2は、 図 4 に示すように、 平均粒径が 0. 1〜0. 5 //H と超微細な酸化クロム (C rn 0。 ) 粒子から成る酸化クロム層 114と、 酸化クロムと金属 母材の鉄成分とが化学反応して生成した反応層 115とから構成されて いた。 As shown in FIG. 4, the coating layer 11'2 of the semiconductor component mounting pedestal 113 according to each example has an average particle size of 0.1 to 0.5 // H and an ultrafine chromium oxide (C r n 0.) It was composed of a chromium oxide layer 114 composed of particles and a reaction layer 115 formed by a chemical reaction between the chromium oxide and the iron component of the metal base material.
比較例 3〜5 Comparative Examples 3 to 5
—方比較例 3〜 5として、 表 3に示すように従来材料である 構造 用炭素鋼 (S45C) およびステンレス鋼 (SUS 304) を観研削
加工して実施例 1 1と同一寸法を有する平板状の受台本体を形成し、 そ の受台本体のリ一ドフレーム当接側表面に表 3に示す厚さを有するク口 ムめっき層 (比較例 3 ) , ニッケルめっき層 (比較例 4 ) , 亜鉛めつき 層 (比較例 5 ) を形成してそれぞれ比較例 3〜5に係る半導体部品載置 用受台を多数用意した。 As Comparative Examples 3 to 5, as shown in Table 3, conventional carbon steel for structural use (S45C) and stainless steel (SUS 304) were visually ground. This was processed to form a plate-shaped pedestal main body having the same dimensions as in Example 11, and a copper plating layer having a thickness shown in Table 3 on the surface of the pedestal main body on the lead frame contact side. (Comparative Example 3), a nickel plating layer (Comparative Example 4), and a zinc plating layer (Comparative Example 5) were formed, and a number of semiconductor component mounting pedestals according to Comparative Examples 3 to 5 were prepared.
そして各実施例および比較例において調製した各受台について、 被覆 層の接合強度をピール試験法によって測定した。 さらに各受台を図 9に 示すボンディング装置の半導体部品載置用受台 1 0 2として装着し、 各 受台の絶縁性, 耐摩耗性, 粉塵の発生量等の特性を測定し、 比較評価し た。 Then, the bonding strength of the coating layer was measured by the peel test method for each of the cradles prepared in the examples and the comparative examples. Furthermore, each pedestal was mounted as a pedestal 102 for mounting semiconductor components in the bonding equipment shown in Fig. 9, and the characteristics of each pedestal, such as insulation, abrasion resistance, and the amount of dust generated, were measured and compared. did.
すなわち、 連続的に 1 0 0万回のワイヤーボンディングを実施した場 合における、 ワイヤーの接合不良に起因する半導体部品の不良発生率お よび半導体部品載置用受台の平均摩耗量を測定して下記表 3に示す結果 を得た。
In other words, when 100,000 wire bondings were performed continuously, the failure rate of semiconductor components due to poor wire bonding and the average wear of the semiconductor component mounting pedestal were measured. The results shown in Table 3 below were obtained.
】 ¾3
上記表 3に示す結果から明らかなように、 微細な C r 03 粒子から成 り、 緻密で高硬度の被覆層を形成した各実施例に係る半導体部品載置用 受台によれば、 従来材を使用した各比較例の受台と比較してワイヤーの 接合不良に起因する不良部品の発生も少ない。 特に金属母材と被覆層と の接合強度が従来と比較して大幅に増加するため、 被覆層の剥離が殆ど なく、被覆層の剥離による粉塵の発生や発生した粉塵のリ一ドフレーム への付着が殆どない。 また、 各実施例に係る半導体部品載置用受台にお いて僅かに発生した粉塵はほとんど受台側へ付着されていることが観察 された。 すなわち、 リードフレームとの擦れによる粉塵の発生量, 付着 量が大幅に減少するため、 半導体部品の製造歩留りを大幅に向上させる ことが可能となった。 ] ¾3 As is clear from the results shown in Table 3, Ri consists fine C r 0 3 particles, according to the semiconductor component mounting cradle according to each embodiment to form a coating layer of dense high hardness, conventional The occurrence of defective parts due to poor wire bonding is less than that of the cradle of each comparative example using a material. In particular, since the bonding strength between the metal base material and the coating layer is greatly increased as compared with the conventional case, there is almost no peeling of the coating layer, and dust is generated due to the peeling of the coating layer and the generated dust is transferred to the lead frame. Almost no adhesion. In addition, it was observed that the dust slightly generated in the semiconductor component mounting pedestal according to each example was almost adhered to the pedestal side. In other words, the amount of dust generated and adhered by rubbing with the lead frame is greatly reduced, and it has become possible to significantly improve the production yield of semiconductor components.
実施例 1 6 Example 16
半導体素子 (I Cチップ) , リードフレームの形状等に応じて、 図 5 に示すように表面に凹部 1 1 6を形成した受台本体 1 1 1 aを使用した 点以外は上記実施例 1 1〜 1 5と同様に受台本体 1 1 1 aの表面に C r 2 03 微粒子から成る被覆層 1 1 2を形成して実施例 1 6に係る半導体 部品載置用受台 1 1 3 aを調製した。 The above examples 11 to 11 except that the pedestal main body 1 1 a with the concave portion 1 16 as shown in Fig. 5 was used according to the semiconductor element (IC chip), the shape of the lead frame, etc. Similarly to 15, a coating layer 1 12 made of Cr 2 O 3 particles is formed on the surface of the pedestal main body 1 1 1 a to form the semiconductor component mounting pedestal 1 1 3 a according to Example 16 Prepared.
そして凹部 1 1 6を形成した受台 1 1 3 aについても実施例 1 1〜1 5と同様に図 9に示すボンディング装置の受台 1 0 2として装着し、 そ の耐摩耗性, 寿命, 粉塵の発生量等の特性を測定した結果、 実施例 1 1 〜1 5と同等な値が得られた。 すなわち、 被覆層の剥れによる粉塵の発 生および粉塵のリ一ドフレームへの付着がほとんどなく、半導体部品の 汚損を効果的に低減することができた。 また被覆層の弒耗が少なく、 モ 二夕装置 (I T Vカメラ) によるリードの座標位置の認識動作において も誤差が少なく、 ワイヤーの接合位置不良などの不具合を大幅に低減す ること力可能となった。
産業上の利用可食 Then, as in the case of Examples 11 to 15, the pedestal 1 13a having the concave portion 1 16 was mounted as the pedestal 102 of the bonding apparatus shown in FIG. As a result of measuring characteristics such as the amount of generated dust, values equivalent to those of Examples 11 to 15 were obtained. That is, the generation of dust due to the peeling of the coating layer and the adhesion of the dust to the lead frame hardly occurred, and the contamination of the semiconductor component was effectively reduced. In addition, there is little wear on the coating layer, and there is little error in the operation of recognizing the coordinate position of the lead by the mobile device (ITV camera), making it possible to significantly reduce defects such as poor wire bonding positions. Was. Industrial use
以上説明の通り本発明に係る半導体部品固定治具および受台によれば、 超微細なク口ム酸化物粒子から成る被覆層が金属母材表面に形成されて いるため、 接合強度が高く、 取扱い部品の絶縁性および耐摩耗性が良好 であり、 力、つ粉塵の発生 ·付着を防止することができる。 したがって、 この半導体部品固定治具および受台をダイボンダ装置の吸着筒やワイヤ —ボンディング装置のリードフレーム押え, 受台, 摺動部の構成材とし て使用した場合に不良が少なく良質な半導体部品を高い製造歩留りで量 産することが可能になる。 As described above, according to the semiconductor component fixing jig and the pedestal according to the present invention, since the coating layer made of ultra-fine oxide particles is formed on the surface of the metal base material, the bonding strength is high, Good insulation and abrasion resistance of handling parts, and can prevent the generation and adhesion of force and dust. Therefore, when these semiconductor component fixing jigs and pedestals are used as components of suction frames and wires for die bonders, lead frame holders for dies, pedestals, and sliding parts, high quality semiconductor components with few defects can be obtained. Mass production with high production yields becomes possible.
さらに吸着筒やリードフレーム押えや受台を交換するためにダイボン ダ装置やワイヤーボンディ ング装置などの半導体製造装置を高頻度で停 止する必要がなくなり、 長期間に渡って装置を連続的に運転することが 可能となり、 装置の保守管理が大幅に簡素化され、 ひいては半導体製品 の製造効率を大幅に改善することができる。
In addition, it is not necessary to frequently stop semiconductor manufacturing equipment such as die bonders and wire bonding equipment to replace suction cylinders, lead frame holders, and receiving stands, so that equipment can be operated continuously for a long period of time. This greatly simplifies the maintenance and management of equipment, and can greatly improve the efficiency of manufacturing semiconductor products.
Claims
1. 金属母材表面にク口ム酸化物を主成分とする被覆層が形成されてい ることを特徴とする半導体部品固定治具。 1. A jig for fixing a semiconductor component, wherein a coating layer mainly composed of oxide oxide is formed on the surface of a metal base material.
2. クロム酸化物は酸化第二クロム (C r 2 03 ) であることを特徴と する請求の範囲第 1項記載の半導体部品固定治具。 2. Chromium oxide semiconductor component fixture range first claim of claim, which is a chromic oxide (C r 2 0 3).
3. クロム酸化物は平均粒径が 0. 1〜0. 5 の酸化第二クロム ( C r 2 03 ) 微粒子であることを特徴とする請求の範囲第 1項記載 の半導体部品固定治具。 3. Chromium oxide has an average particle size of 0.1 to 0.5 of chromic oxide (C r 2 0 3) semiconductor component fixture ranging first claim of claim, which is a fine .
4. 被覆層は暗緑色であることを特徵とする請求の範囲第 1項記載の半 導体部品固定治具。 4. The semiconductor component fixing jig according to claim 1, wherein the coating layer is dark green.
5. 被覆層は、 表面粗さが最大高さ (Rmax ) 基準で 5 m以上の金属 母材表面に形成したものであることを特徴とする請求の範囲第 1項記 載の半導体部品固定治具。 5. The semiconductor component fixing jig according to claim 1, wherein the coating layer is formed on the surface of the metal base material having a surface roughness of 5 m or more based on the maximum height (Rmax). Utensils.
6. 金属母材と被覆層との界面に、 鉄化合物とクロム酸化物との反応層 力形成されていることを特徴とする請求の範囲第 1項記載の半導体部 品固定治具。 6. The jig for fixing a semiconductor component according to claim 1, wherein a reaction layer of an iron compound and chromium oxide is formed at an interface between the metal base material and the coating layer.
7. 半導体部品固定治具が、 半導体素子を接合するリードフレームを押 圧固定するためのリ一ドフレーム押えであることを特徴とする請求の
範囲第 1項記載の半導体部品固定治具。 7. The semiconductor component fixing jig is a lead frame retainer for pressing and fixing a lead frame for joining a semiconductor element. The jig for fixing semiconductor parts according to claim 1.
8. 半導体部品固定治具が、 半導体素子を吸着により固定する吸着筒で あることを特徴とする請求の範囲第 1項記載の半導体部品固定治具。 8. The semiconductor component fixing jig according to claim 1, wherein the semiconductor component fixing jig is a suction tube for fixing a semiconductor element by suction.
9. 金属母材表面にクロム酸化物を主成分とする被覆層が形成されてい いることを特徴とする半導体部品載置用受台。 9. A cradle for mounting semiconductor components, characterized in that a coating layer mainly composed of chromium oxide is formed on the surface of the metal base material.
1 0. クロム酸化物は酸化第二クロム (C r n 03 ) であることを特徴 とする請求の範囲第 9項記載の半導体部品載置用受台。 1 0. chromium oxide chromic oxide (C r n 0 3) a semiconductor component mounting pedestal of claims 9 Claims, characterized in that.
1 . クロム酸化物は平均粒径が 0. 1〜0. 5 u mの酸化第二クロム ( C r。 Og ) 微粒子であることを特徴とする請求の範囲第 9項記載 の半導体部品載置用受台。 10. The chromium oxide according to claim 9, wherein the chromium oxide is fine particles of chromic oxide (Cr.Og) having an average particle size of 0.1 to 0.5 μm. Cradle.
1 2. 被覆層は暗緑色であることを特徴とする請求の範囲第 9項記載の 半導体部品載置用受台。 12. The pedestal for mounting a semiconductor component according to claim 9, wherein the coating layer is dark green.
1 3. 被覆層は、 表面粗さが最大高さ (Rmax ) 基準で 5. 以上 の金属母材表面に形成したものであることを特徴とする請求の範囲第 9項記載の半導体部品載置用受台。 10. The semiconductor component mounting device according to claim 9, wherein the coating layer is formed on the surface of the metal base material having a surface roughness of 5 or more based on the maximum height (Rmax). Cradle.
1 4. 金属母材と被覆層との間に、鉄化合物とクロム酸化物との反応層 が形成されていることを特徴とする請求の範囲第 9項記載の半導体部 品載置用受台。
10. The pedestal for mounting a semiconductor component according to claim 9, wherein a reaction layer of an iron compound and chromium oxide is formed between the metal base material and the coating layer. .
5 . 半導体部品載置用受台上に載置された半導体部品の電極とリ一ド とを接続するボンディ ング装置において、 上記半導体部品載置用受台 は金属母材表面にク口ム酸化物を主成分とする被覆層が形成されたも のであることを特徴とするボンディング装置。 6 . 被覆層は暗緑色であるとともに、 表面粗さ力最大高さ (Rraax ) 基準で 5 . m以上の金属母材表面に形成したものであることを特 徴とする請求の範囲第 1 5項記載のボンディ ング装置。
5. In a bonding apparatus for connecting an electrode and a lead of a semiconductor component mounted on a pedestal for mounting a semiconductor component, the pedestal for mounting the semiconductor component may be oxidized on a surface of a metal base material. A bonding apparatus comprising a coating layer mainly composed of an object. 6. The method according to claim 15, wherein the coating layer is dark green, and is formed on the surface of the metal base material having a surface roughness of 5 m or more based on the maximum surface roughness (Rraax). The bonding device according to the item.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970709930A KR100324857B1 (en) | 1996-07-08 | 1997-07-04 | Supporting fixture and bonding device for semiconductor component fixing jig and semiconductor component |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8178123A JP2883582B2 (en) | 1996-07-08 | 1996-07-08 | Receiving pedestal and bonding device for mounting semiconductor components |
JP8/178123 | 1996-07-08 | ||
JP8/182183 | 1996-07-11 | ||
JP18218396A JP2877761B2 (en) | 1996-07-11 | 1996-07-11 | Semiconductor component fixing jig |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998001902A1 true WO1998001902A1 (en) | 1998-01-15 |
Family
ID=26498407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1997/002335 WO1998001902A1 (en) | 1996-07-08 | 1997-07-04 | Semiconductor component fixing jig, table for placement of semiconductor component and bonding apparatus |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR100324857B1 (en) |
TW (1) | TW354414B (en) |
WO (1) | WO1998001902A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57154848A (en) * | 1981-03-20 | 1982-09-24 | Hitachi Ltd | Assembling device for semiconductor |
JPS63270366A (en) * | 1987-04-27 | 1988-11-08 | インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン | Method of adhering ceramic to metal and metallized ceramic substrate |
JPH0348231U (en) * | 1989-09-19 | 1991-05-08 | ||
JPH0446544U (en) * | 1990-08-21 | 1992-04-21 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1929A (en) * | 1841-01-09 | John wilder |
-
1997
- 1997-07-04 KR KR1019970709930A patent/KR100324857B1/en not_active IP Right Cessation
- 1997-07-04 WO PCT/JP1997/002335 patent/WO1998001902A1/en active IP Right Grant
- 1997-07-08 TW TW086109779A patent/TW354414B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57154848A (en) * | 1981-03-20 | 1982-09-24 | Hitachi Ltd | Assembling device for semiconductor |
JPS63270366A (en) * | 1987-04-27 | 1988-11-08 | インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン | Method of adhering ceramic to metal and metallized ceramic substrate |
JPH0348231U (en) * | 1989-09-19 | 1991-05-08 | ||
JPH0446544U (en) * | 1990-08-21 | 1992-04-21 |
Also Published As
Publication number | Publication date |
---|---|
TW354414B (en) | 1999-03-11 |
KR100324857B1 (en) | 2002-07-06 |
KR19990028608A (en) | 1999-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6475646B2 (en) | Lead frame and method of manufacturing the lead frame | |
CN1166957C (en) | Probe for testing semiconductor device and its manufacture method and probe device used thereof | |
KR102280653B1 (en) | Electronic part mounting substrate and method for producing same | |
CN1780533B (en) | Bonding apparatus using conductive material | |
JPH06342035A (en) | Semiconductor inspecting apparatus | |
KR101528030B1 (en) | Stud bump structure and method for manufacturing the same | |
US20170176495A1 (en) | Coated Probe Tips for Plunger Pins of an Integrated Circuit Package Test System | |
WO1998001902A1 (en) | Semiconductor component fixing jig, table for placement of semiconductor component and bonding apparatus | |
EP2167269B1 (en) | Wire bonding capillary tool having multiple outer steps | |
Kim et al. | Effects of metallization characteristics on gold wire bondability of organic printed circuit boards | |
JP2883582B2 (en) | Receiving pedestal and bonding device for mounting semiconductor components | |
JP2877761B2 (en) | Semiconductor component fixing jig | |
JP2004273541A (en) | Resin coater, method for filling underfiller, method for mounting semiconductor chip, semiconductor mounting board and electronic apparatus | |
WO1998034273A1 (en) | Ball arranging substrate for forming bump, ball arranging head, ball arranging device, and ball arranging method | |
Chew et al. | Silver sinter paste optimized for pressure sintering under air atmosphere on precious and non-precious metal surfaces with high reliable sintered | |
JP5188455B2 (en) | Vacuum suction nozzle assembly | |
JPS6366055B2 (en) | ||
KR100769111B1 (en) | Collet, die bonder, and chip pick-up method | |
JP2019179826A (en) | Mounting device and mounting method | |
CN116031169B (en) | Control method for thickness flatness of small chip solder | |
JP2004273540A (en) | Method for filling underfiller, equipment for filling underfiller, semiconductor mounting board and electronic apparatus | |
JPH0610684Y2 (en) | Bonding device | |
US10600756B1 (en) | Wire bonding technique for integrated circuit board connections | |
TW202309524A (en) | Test apparatus for semiconductor package | |
JP2001068839A (en) | Method and device for metal sphere layout |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 1019970709930 Country of ref document: KR |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): KR SG |
|
WWP | Wipo information: published in national office |
Ref document number: 1019970709930 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1019970709930 Country of ref document: KR |