WO1998000894A2 - Optisches halbleiterbauelement mit tiefem rippenwellenleiter - Google Patents

Optisches halbleiterbauelement mit tiefem rippenwellenleiter Download PDF

Info

Publication number
WO1998000894A2
WO1998000894A2 PCT/EP1997/003585 EP9703585W WO9800894A2 WO 1998000894 A2 WO1998000894 A2 WO 1998000894A2 EP 9703585 W EP9703585 W EP 9703585W WO 9800894 A2 WO9800894 A2 WO 9800894A2
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
ridge
semiconductor component
optical
optical semiconductor
Prior art date
Application number
PCT/EP1997/003585
Other languages
English (en)
French (fr)
Other versions
WO1998000894A3 (de
Inventor
Kaspar Dütting
Edgar Kühn
Original Assignee
Alcatel Alsthom Compagnie Generale D'electricite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Alsthom Compagnie Generale D'electricite filed Critical Alcatel Alsthom Compagnie Generale D'electricite
Priority to US09/029,722 priority Critical patent/US6181722B1/en
Priority to EP97936626A priority patent/EP0847606A2/de
Priority to JP10503855A priority patent/JPH11511911A/ja
Publication of WO1998000894A2 publication Critical patent/WO1998000894A2/de
Publication of WO1998000894A3 publication Critical patent/WO1998000894A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12097Ridge, rib or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3421Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers layer structure of quantum wells to influence the near/far field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3428Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers layer orientation perpendicular to the substrate

Definitions

  • the invention relates to an optical semiconductor element according to patent claim 1.
  • Optical semiconductor components are used in digital optical communication e.g. used as transmitter or receiver components and coupled to optical waveguides of a carrier plate or to optical fibers.
  • optical semiconductor components with a deep ribbed waveguide are used in the transmission of messages for the highest bit repetition frequencies, since they have the highest frequency bandwidth compared to optical semiconductor components with other types of waveguides due to their low electrical capacity.
  • a deep rib waveguide is an optical waveguide which is formed from a mesa-shaped rib resting on a substrate and contains waveguide layers in the rib which have a higher refractive index than the substrate.
  • the rib contains optically active semiconductor layers and thus a zone which contains the transition from p-doped to n-doped semiconductor material.
  • the rib a few ⁇ m wide, is laterally surrounded by electrically non-conductive material with a significantly lower refractive index, e.g. Air or polyimide.
  • a flat rib waveguide is understood to mean an optical waveguide in which at least some of the existing waveguide layers are below a mesa-shaped rib that is a few ⁇ m wide is arranged.
  • the optically active semiconductor layers are not part of the rib, as a result of which the zone which contains the transition from p-doped to n-doped semiconductor material is not laterally limited to the rib which is a few ⁇ m wide.
  • the mode field of the light wave in the semiconductor component is expanded adiabatically along the direction of light propagation.
  • waveguides are used in optical semiconductor components which have a transition region in which the waveguide or individual layers of the waveguide lie in the lateral direction, that is the direction in the substrate plane perpendicular to the direction of light propagation, or in the vertical direction, that is the direction perpendicular taper or widen to the substrate plane, along a longitudinal direction of the waveguide.
  • a transition area is also called a taper.
  • a vertical taper denotes a transition region in which the layer thickness of a semiconductor layer increases or decreases
  • a lateral taper denotes a transition region in which the width of a waveguide increases or decreases along a longitudinal direction.
  • the semiconductor component described has a higher capacitance than semiconductor components with a deeply etched rib waveguide, in particular in the actively operated transition region.
  • higher modes than the basic mode are excited in a rib waveguide, in which the mode field adaptation is carried out mainly by an actively operated lateral taper, so that such a waveguide loses unimodality.
  • the object of the invention is to provide an optical semiconductor component which is suitable for the highest transmission rates and which enables a loss-free coupling to an optical fiber or an optical waveguide.
  • FIGS. 1 to 4. Two exemplary embodiments of an optical semiconductor component according to the invention are described below with reference to FIGS. 1 to 4. Show it:
  • FIG. 2 shows the same section as FIG. 1 and additionally the qualitative course of the mode field of a light wave guided in the waveguide on both sides of a transition area
  • Figure 3 is a plan view of the semiconductor device of the first embodiment and Figure 4 is a plan view of a semiconductor device in a second embodiment.
  • An optical semiconductor component has a deep rib waveguide with a first waveguide core arranged on a substrate.
  • the first waveguide core has one or more optically active semiconductor layers.
  • a first transition region serves to adapt the mode field of a light wave guided in the rib waveguide to the mode field of a light wave in an optical fiber or an optical waveguide located on a carrier plate.
  • a basic idea of the invention is to use a lateral taper to adapt the mode field of a light wave guided in the rib waveguide; this is a layer whose layer thickness decreases in the first transition region along a longitudinal direction of the rib waveguide, but this lateral taper is independent of the layer thickness structuring of the one or more optically active semiconductor layers.
  • the rib waveguide contains a second waveguide core, the layer thickness of which decreases in the first transition region in order to adapt the mode field along the longitudinal direction.
  • An advantage of the invention is that the adaptation of the mode field in the first transition region is independent of a variation in the layer thickness of the first waveguide core along the longitudinal direction of the rib waveguide. Since the energy band gap of the optically active semiconductor layers is determined by their layer thickness and material composition, the adaptation of the mode field is independent of the energy band gap of the optically active semiconductor layers.
  • the optical semiconductor component can be active, i.e. controlled light-amplifying or light-absorbing waveguide areas and passive, i.e. Have light-transmitting waveguide areas.
  • FIG. 1 shows a section through an optical semiconductor component BEI according to the invention in a first exemplary embodiment.
  • the section runs perpendicular to the plane of a substrate SUB along a longitudinal direction L of a deep rib waveguide RIDGE.
  • the deep rib waveguide RIDGE is arranged on the substrate SUB and contains, applied one above the other, a buffer layer BUF, a first waveguide core MQW, a second waveguide core BULK, a cover layer DS and a metal contact layer MK.
  • the first and the second waveguide core MQW, BULK each have a refractive index that is greater than the refractive indices of the cover layer DS, the buffer layer BUF and the substrate SUB. As a result, a light wave is mainly guided in the two waveguide cores MQW, BULK.
  • the first waveguide core MQW contains one or more optically active semiconductor layers.
  • Optically active semiconductor layers represent the transition from p-doped to n-doped semiconductor material and are distinguished by the fact that they interact with a light wave guided in the ribbed waveguide RIDGE. Electron transitions between the valence and conduction bands of the one or more optically active semiconductor layers are induced, either in the form of absorption or induced emission of light. A light wave is thereby amplified or absorbed, the amplification or attenuation factor being adjustable by selecting an injection current or an applied voltage.
  • the one or more optically active semiconductor layers are preferably a semiconductor layer package with a multi-quantum well structure, that is a semiconductor layer package made of semiconductor layers with alternating large and small bandgap energy.
  • Band gap energy is to be understood as the energetic difference between the valence band and the conduction band of the material from which the layer consists.
  • the layer thickness of the second waveguide core BULK decreases along the longitudinal direction L of the rib waveguide RIDGE. This causes the mode field of a light wave guided in the fin waveguide to be widened.
  • the increase in the second waveguide core BULK along the longitudinal direction L of the rib waveguide RIDGE is done steadily.
  • the light wave guided in the ridge waveguide RIDGE is then scattered and absorbed particularly little in the first transition region UBL.
  • the increase in the layer thickness of the second waveguide core BULK along the longitudinal direction L of the rib waveguide RIDGE can be linear, as in the first exemplary embodiment, or, for example, exponential.
  • the course of the mode field of a light wave guided in the ribbed waveguide RIDGE is drawn qualitatively on both sides of the first transition region UBL.
  • the amount of the electric field vector of the light wave is plotted in the longitudinal direction L of the rib waveguide RIDGE and a position coordinate perpendicular to the substrate plane.
  • the mode field of the light wave is widened by the decrease in the layer thickness of the second waveguide core BULK. The reason for this is that the light wave is no longer guided in the waveguide core BULK tapering along the first transition region UBL and more and more escapes into the surrounding semiconductor material of cover layer DS, substrate SUB and buffer layer PUF.
  • the optical semiconductor component BEI in the first exemplary embodiment has an end face F from which light signals emerge or through which light signals can enter the optical semiconductor component BEI.
  • An optical fiber or an optical waveguide located on a carrier plate can be coupled to this end face F.
  • the second waveguide core BULK is designed in such a way that its layer thickness decreases along the longitudinal direction L of the rib waveguide RIDGE towards the end face F.
  • the layer thickness of the individual semiconductor layers of the multi-quantum well structure decreases in a second transition region UB2 along the longitudinal direction L of the rib waveguide RIDGE.
  • the layer thickness of the individual semiconductor layers decreases in the same direction in which the layer thickness of the second waveguide core BULK also decreases.
  • the energy pool of a mutli-quantum well structure and thus the wavelength at which the multi-quantum well structure is optically active depends essentially on the layer thickness of its individual semiconductor layers. Due to the decrease in the layer thickness of the individual semiconductor layers in the transition region UB2, the wavelength at which the multi-quantum well structure is optically active shifts to shorter wavelengths.
  • the optical semiconductor component BEI has an active waveguide region AKT, in which the semiconductor layers have a greater layer thickness, and a passive waveguide region PAS, in which the semiconductor layers have a smaller layer thickness.
  • a metal contact layer MK is only applied to the rib waveguide RIDGE in the active waveguide region AKT.
  • the second transition region UB2 is advantageously arranged such that it overlaps at least partially with the first transition region UB1. As a result, the overall length of the semiconductor component BEI is shorter. However, it is advantageous if the second transition region UB2 is arranged in the longitudinal direction L partially in front of or in the front part of the first transition region UBl, since the active waveguide region AKT, which must be operated by injecting a current, does not then cover the entire first Transition area UBl extends, whereby the power requirement is reduced and the electrical capacity is reduced.
  • an optical semiconductor component according to the invention is that the adaptation of the mode field of a light wave in the first transition region UBL of the semiconductor component is independent of a change in the energy band gap of the optically active semiconductor layers or the multi-quantum well structure. As a result, it can be achieved that an optical semiconductor component according to the invention operates independently of polarization, i.e. that it processes light signals with different polarization directions in the same way.
  • substrate SUB, buffer layer BUF and cover layer DS consist of a semiconductor of the III / V connection type, such as InP or G ⁇ As.
  • the two waveguide cores MQW, BULK consist of ternary or quaternary mixed crystals from elements of main groups III and V, such as InGaAsP, InGaAs or InGaAlP.
  • compounds of elements of main groups II and VI, IV and IV or I and VII are also suitable for the semiconductor component, depending on the wavelength at which the semiconductor component is to operate.
  • the optical semiconductor component BEI according to the invention has, in addition to minimized coupling losses when coupled to an optical fiber or an optical waveguide of a carrier plate, the additional advantage that an adjustment between the semiconductor component and the fiber or carrier plate is simplified, since higher adjustment tolerances are permissible for a low-loss coupling in conventional optical semiconductor components with a deep rib waveguide.
  • the coupling losses only increase by about 1 dB.
  • no microlenses are required when coupling to an optical fiber and simple single-mode optical fibers with a flat end can be used.
  • FIG. 3 shows a top view of the semiconductor component BEI in the first exemplary embodiment.
  • the substrate SUB can be seen, on which the deep ridge waveguide RIDGE lies.
  • the RIDGE rib waveguide has the shape of a mesa stripe.
  • the layer thickness of the second waveguide core BULK decreases along the longitudinal direction L.
  • the layer thickness of the individual layers of the multi-quantum well structure of the first waveguide core MQW decreases in the longitudinal direction L, as a result of which the rib waveguide RIDGE has an active AKT and a passive PAS waveguide region.
  • the width of the rib waveguide RIDGE increases along the longitudinal direction L towards the end face F. This causes an additional expansion of the mode field of a light wave guided in the RIDGE rib waveguide, in particular in the lateral direction.
  • the third transition region UB3 is arranged such that it is at least largely behind the second transition region UB2 in the longitudinal direction L and partially overlaps with the first transition region UB1.
  • the third transition region UB3, in which the rib waveguide RIDGE widens laterally, is located completely or at least largely in the passive waveguide region PAS, and no modes of higher order can be excited as a result, even with strong lateral broadening.
  • the RIDGE rib waveguide is therefore single-mode.
  • the particular advantage of the broadening of the RIDGE ribbed waveguide is that an emerging light wave with a suitable dimensioning of the broadening has a symmetrical mode field, as a result of which coupling losses are minimized.
  • FIG. 4 shows a top view of an optical semiconductor component BE2 according to the invention in a second exemplary embodiment. It has the same vertical layer structure shown in FIG. 1 as the semiconductor component BE I in the first exemplary embodiment.
  • the substrate SUB is shown with the deep ridge waveguide RIDGE arranged thereon.
  • the layer thickness of the second waveguide core BULK decreases along the longitudinal direction L.
  • the layer thickness of the individual layers of the multi-quantum well structure of the first waveguide core MQW decreases in the longitudinal direction L, as a result of which the rib waveguide RIDGE has an active AKT and a passive PAS waveguide region.
  • the rib waveguide RIDGE has a termination in the form of an integrated cylindrical lens LENS on its end face F.
  • the base area of this integrated cylindrical lens LENS can be hyperbolic, parabolic or in the form of a circular segment.
  • the LENS cylinder lens causes an additional expansion of the mode field of the light wave.
  • the mode field of the emerging light wave is symmetrical, ie that the emerging light wave creates a circular light spot instead of an elliptical one. Coupling losses are minimal in this version with a symmetrical mode field.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

In der digitalen optischen Nachrichtenübertragung werden optische Halbleiterbauelemente eingesetzt, die einen Übergangsbereich zur Aufweitung des Modenfeldes einer Lichtwelle aufweisen, um Kopplungsverluste bei der Ankopplung an eine optische Faser oder einen optischen Wellenleiter einer Trägerplatte zu vermindern. Ein optisches Halbleiterbauelement (BE1; BE2) enthält auf einem Substrat (SUB) angeordnet einen tiefen Rippenwellenleiter (RIDGE) mit einer Deckschicht (DS). Der Rippenwellenleiter (RIDGE) hat einen ersten (MQW) und einen zweiten (BULK) Wellenleiterkern. Der erste Wellenleiterkern (MQW) enthält eine oder mehrere optisch aktive Halbleiterschichten. In einem ersten Übergangsbereich (UB1) nimmt die Schichtdicke des zweiten Wellenleiterkernes (BULK) entlang einer Längsrichtung (L) des Rippenwellenleiters (RIDGE) ab. Dadurch weicht eine in dem optischen Halbleiterbauelement (BE1; BE2) geführte Lichtwelle in das den Wellenleiterkern umgebende Halbleitermaterial von Deckschicht (DS) und Substrat (SUB) aus, wodurch ihr Modenfeld aufgeweitet wird.

Description

Optisches Hαlbleiterbαuelement mit tiefem Rippenwellenleiter
Die Erfindung betrifft ein optisches Hαlbleiterbαuelement gemäß Patentanspruch 1 .
Optische Halbleiterbauelemente werden in der digitalen optischen Nachrichtenübertragung z.B. als Sender- oder Empfängerbauelemente eingesetzt und an optische Wellenleiter einer Trägerplatte oder an optische Fasern angekoppelt. Insbesondere werden optische Halbleiterbauelemente mit tiefem Rippenwellenleiter in der Nachrichtenübertragung für höchste Bitfolgefrequenzen eingesetzt, da sie aufgrund ihrer niedrigen elektrischen Kapazität im Vergleich zu optischen Halbleiterbauelementen mit anderen Wellenleitertypen über die höchste Frequenzbandbreite verfügen.
Ein tiefer Rippenwellenleiter ist ein optischer Wellenleiter, der aus einer einem Substrat aufliegenden, mesaförmigen Rippe gebildet ist und in der Rippe Wellenleiterschichten enthält, die einen höheren Brechungsindex aufweisen als das Substrat. Insbesondere bei aktiv, d. h. gesteuert Licht absorbierend oder verstärkend betriebenen, tiefen Rippenwellenleitern enthält die Rippe optisch aktive Halbleiterschichten und damit eine Zone, welche den Übergang von p- dotiertem zu n-dotiertem Halbleitermaterial enthält. Die einige μm breite Rippe ist seitlich von elektrisch nichtleitendem Material mit deutlich kleinerem Brechungsindex umgeben, wie z.B. Luft oder Polyimid.
Im Gegensatz dazu wird unter einem flachen Rippenwellenleiter ein optischer Wellenleiter verstanden, bei dem zumindest ein Teil der vorhandenen Wellenleiterschichten unterhalb einer einige μm breiten mesaförmigen Rippe angeordnet ist. Insbesondere bei aktiv betriebenen, flachen Rippenwellenleitern sind die optisch aktiven Halbleiterschichten nicht Teil der Rippe, wodurch die Zone, die den Übergang von p-dotiertem zu n-dortiertem Halbleitermaterial enthält, seitlich nicht auf die einige μm breite Rippe begrenzt ist.
Damit eine in einem optischen Halbleiterbauelement geführte Lichtwelle möglichst verlustfrei in einen optischen Wellenleiter oder in eine optische Faser eingekoppelt wird, ist es notwendig, daß das Modenfeld der Lichtwelle in dem Halbleiterbauelement an das Modenfeld einer Lichtwelle in dem optischen Wellenleiter oder der optischen Faser angepaßt ist. Dazu wird das Modenfeld der im Halbleiterbauelement geführten Lichtwelle entlang der Lichtausbreitungsrichtung adiabatisch aufgeweitet.
Zur Anpassung des Modenfeldes werden in optischen Halbleiterbauelementen Wellenleiter verwendet, die einen Übergangsbereich aufweisen, in welchem sich der Wellenleiter oder einzelne Schichten des Wellenleiters in lateraler Richtung, das ist die Richtung in Substratebene senkrecht zur Lichtausbreitungsrichtung, oder in vertikaler Richtung, das ist die Richtung senkrecht zur Substratebene, entlang einer Längsrichtung des Wellenleiters verjüngen oder aufweiten. Ein solcher Übergangsbereich wird auch als Taper bezeichnet. Insbesondere bezeichnet ein vertikaler Taper einen Übergangsbereich, in welchem die Schichtdicke einer Halbleiterschicht zu- oder abnimmt und ein lateraler Taper einen Übergangsbereich, in welchem die Breite eines Wellenleiters entlang einer Längsrichtung zu- oder abnimmt.
In dem Artikel "Compact InGaAsP / InP laser diodes with integrated mode expander for efficient coupling to flat-ended singlemode fibre" (T. Brenner et al, Electron. Lett Vol.31 No.7 1 995, S. 1443- 1445) ist ein optisches Halbleiterbauelement mit flachem Rippenwellenleiter beschrieben. Es enthält eine optisch aktive Wellenleiterschicht sowie einen auf dieser Wellenleiterschicht angeordneten Rippenwellenleiter. Die Schichtdicke der optisch aktiven Wellenleiterschicht nimmt in einem Übergangsbereich entlang einer Längsrichtung des Rippenwellenleiters in Richtung einer Austrittsfacette des Bauelementes ab und der Rippenwellenleiter weitet sich lateral in Richtung der Austrittsfacette auf. Der Rippenwellenleiter einschließlich das Übergαngsbereiches sind mit Elektroden ausgerüstet und werden durch Anlegen einer Spannung aktiv betrieben.
Das beschriebene Halbleiterbauelement weist eine höhere Kapazität auf, als Halbleiterbauelemente mit tief geätztem Rippenwellenleiter, insbesondere in dem aktiv betriebenen Übergangsbereich. Zudem werden in einem Rippenwellenleiter, in welchem die Modenfeldanpassung hauptsächlich durch einen aktiv betriebenen lateralen Taper erfolgt, höhere Moden als der Grundmode angeregt, so daß ein solcher Wellenleiter die Einmodigkeit verliert.
Aufgabe der Erfindung ist es, ein optisches Halbleiterbauelement anzugeben, welches für höchste Übertragungsraten geeignet ist und eine möglichst verlustfreie Kopplung an eine optische Faser oder einen optischen Wellenleiter ermöglicht.
Die Aufgabe wird gelöst durch die Merkmale des Patentanspruchs 1 . Vorteilhafte Ausgestaltungen sind den abhängigen Patenansprϋchen zu entnehmen.
Anhand der Figuren 1 bis 4 werden nachfolgend zwei Ausführungsbeispiele eines erfindungsgemäßen optischen Halbleiterbauelementes beschrieben. Es zeigen:
Figur 1 einen Schnitt durch ein erfindungsgemäßes optisches
Halbleiterbauelement in einem ersten Ausführungsbeispiel entlang einer Längsrichtung eines Wellenleiters senkrecht zu der Substratebene,
Figur 2 denselben Schnitt wie Figur 1 sowie zusätzlich den qualitativen Verlauf des Modenfeldes einer in dem Wellenleiter geführten Lichtwelle auf beiden Seiten eines Übergangsbereiches,
Figur 3 eine Draufsicht auf das Halbleiterbauelement des ersten Ausführungsbeispiels und Figur 4 eine Draufsicht auf ein Halbleiterbauelement in einem zweiten Ausführungsbeispiel.
Ein erfindungsgemäßes optisches Halbleiterbauelement hat auf einem Substrat angeordnet einen tiefen Rippenwellenleiter mit einem ersten Wellenleiterkern. Der erste Wellenleiterkern besitzt eine oder mehrere optisch aktive Halbleiterschichten. Ein erster Übergangsbereich dient dazu, das Modenfeld einer in dem Rippenwellenleiter geführten Lichtwelle an das Modenfeld einer Lichtwelle in einer optischen Faser oder einem auf einer Trägerplatte befindlichen optischen Wellenleiter anzupassen. Eine Grundidee der Erfindung ist, zur Anpassung des Modenfeldes einer in dem Rippenwellenleiter geführten Lichtwelle einen lateralen Taper zu verwenden, das ist eine Schicht, deren Schichtdicke in dem ersten Übergangsbereich entlang einer Längsrichtung des Rippenwellenleiters abnimmt, diesen lateralen Taper jedoch unabhängig von der Schichtdickenstrukturierung der einen oder mehrerem optisch aktiven Halbleiterschichten auszuführen. Dazu enthält der Rippenwellenleiter einen zweiten Wellenleiterkern, dessen Schichtdicke in dem ersten Übergangsbereich zur Anpassung des Modenfeldes entlang der Längsrichtung abnimmt.
Ein Vorteil der Erfindung besteht darin, daß die Anpassung des Modenfeldes in dem ersten Übergangsbereich unabhängig von einer Variation der Schichtdicke des ersten Wellenleiterkernes entlang der Längsrichtung des Rippenwellenleiters ist. Da die Energiebandlϋcke der optisch aktiven Halbleiterschichten durch deren Schichtdicke und Materialzusammensetzung bestimmt ist, ist die Anpassung des Modenfeldes unabhängig von der Energiebandlücke der optisch aktiven Halbleiterschichten. Dadurch kann das optische Halbleiterbauelement aktive, d.h. gesteuert lichtverstärkende oder lichtabsorbierende Wellenleiterbereiche und passive, d.h. Licht unverstärkt weiterleitende Wellenleiterbereiche haben.
In Figur 1 ist ein Schnitt durch ein erfindungsgemäßes optisches Halbleiterbauelement BEI in einem ersten Ausführungsbeispiel gezeigt. Der Schnitt verläuft senkrecht zu der Ebene eines Substrates SUB entlang einer Längsrichtung L eines tiefen Rippenwellenleiters RIDGE. Der tiefe Rippenwellenleiter RIDGE ist auf dem Substrat SUB angeordnet, und enthält übereinander aufgebracht eine Pufferschicht BUF, einen ersten Wellenleiterkern MQW, einen zweiten Wellenleiterkern BULK, eine Deckschicht DS und eine Metallkontaktschicht MK.
Der erste und der zweite Wellenleiterkern MQW, BULK weisen jeweils einen Brechungsindex auf, der größer ist, als die Brechungsindices der Deckschicht DS, der Pufferschicht BUF und des Substrates SUB. Dadurch wird eine Lichtwelle haupsächlich in den beiden Wellenleiterkernen MQW, BULK geführt.
Der erste Wellenleiterkern MQW enthält eine oder mehrere optisch aktive Halbleiterschichten. Optisch aktive Halbleiterschichten stellen den Übergang von p-dotiertem zu n-dotiertem Halbleitermaterial dar und zeichnen sich dadurch aus, daß sie mit einer in dem Rippenwellenleiter RIDGE geführten Lichtwelle in Wechselwirkung treten. Dabei werden Elektronenübergänge zwischen Valenz- und Leitungsband der einen oder mehreren optisch aktiven Halbleiterschichten induziert, entweder in Form von Absorption oder induzierter Emission von Licht. Eine Lichtwelle wird dadurch verstärkt oder absorbiert, wobei der Verstärkungs- bzw. Abschwächungsfaktor durch Wahl eines Injektionsstromes bzw. einer angelegten Spannung einstellbar ist.
Vorzugsweise handelt es sich bei den einen oder mehreren optisch aktiven Halbleiterschichten um ein Halbleiterschichtpaket mit Multi-Quantumwell- Struktur, das ist ein Halbleiterschichtpaket aus Halbleiterschichten mit abwechselnd einer großen und einer kleinen Bandabstandsenergie. Unter Bandabstandsenergie ist dabei der energetische Unterschied zwischen Valenz- und Leitungsband des Materials, aus dem die Schicht besteht zu verstehen.
In einem ersten Übergangsbereich UBl nimmt die Schichtdicke des zweiten Wellenleiterkernes BULK entlang der Längsrichtung L des Rippenwellenleiters RIDGE ab. Dies bewirkt, daß das Modenfeld einer in dem Rippenwellenleiter geführten Lichtwelle aufgeweitet wird.
Von besonderem Vorteil ist es, wenn die Zunahme des zweiten Wellenleiterkernes BULK entlang der Längsrichtung L des Rippenwellenleiters RIDGE stetig erfolgt. Die in dem Rippenwellenleiter RIDGE geführte Lichtwelle wird dann in dem ersten Übergangsbereich UBl besonders wenig gestreut und absorbiert. Die Zunahme der Schichtdicke des zweiten Wellenleiterkemes BULK entlang der Längsrichtung L des Rippenwellenleiters RIDGE kann wie in dem ersten Ausführungsbeispiel linear erfolgen oder beispielsweise aber exponentiell.
In Figur 2 ist zusätzlich zu dem Schnitt aus Figur 1 der Verlauf des Modenfeldes einer in dem Rippenwellenleiter RIDGE geführten Lichtwelle auf beiden Seiten des ersten Übergangsbereiches UBl qualitativ gezeichnet. Dabei ist in der Längsrichtung L des Rippenwellenleiters RIDGE beispielsweise der Betrag des elektrischen Feldvektors der Lichtwelle aufgetragen und senkrecht zur Substratebene eine Ortskoordinate. Aus den gezeigten Diagrammen wird deutlich, daß das Modenfeld der Lichtwelle durch die Abnahme der Schichtdicke des zweiten Wellenleiterkernes BULK aufgeweitet wird. Der Grund dafür liegt darin, daß die Lichtwelle in dem sich entlang des ersten Übergangsbereiches UBl verjüngenden Wellenleiterkern BULK nicht mehr geführt wird und mehr und mehr in das umgebende Halbleitermaterial von Deckschicht DS, Substrat SUB und Bufferschicht PUF ausweicht.
Das optische Halbleiterbauelement BEI im ersten Ausführungsbeispiel weist eine Stirnseite F auf, aus der Lichtsignale austreten oder durch welche Lichtsignale in das optische Halbleiterbauelement BEI eintreten können. An dieser Stirnseite F ist eine optische Faser oder ein auf einer Trägerplatte befindlicher optischer Wellenleiter ankoppelbar. Zu diesem Zweck ist der zweite Wellenleiterkem BULK so ausgebildet, daß dessen Schichtdicke entlang der Längsrichtung L des Rippenwellenleiters RIDGE zu der Stirnseite F hin abnimmt.
In einer besonders vorteilhaften Ausführung der Erfindung nimmt die Schichtdicke der einzelnen Halbleiterschichten der Multi-Quantumwell-Struktur in einem zweiten Übergangsbereich UB2 entlang der Längsrichtung L des Rippenwellenleiters RIDGE ab. Die Abnahme der Schichtdicke der einzelnen Halbleiterschichten erfolgt in derselben Richtung, in der auch die Schichtdicke des zweiten Wellenleiterkernes BULK abnimmt. Die Energiebαndlϋcke einer Mutli-Quαntumwell-Struktur und damit die Wellenlänge, bei der die Multi-Quantumwell-Struktur optisch aktiv ist, hängt wesentlich von der Schichtdicke ihrer einzelnen Halbleiterschichten ab. Durch die Abnahme der Schichtdicke der einzelnen Halbleiterschichten in dem Übergangsbereich UB2 verschiebt sich die Wellenlänge, bei der die Multi- Quantumwell-Struktur optisch aktiv ist, zu kürzen Wellenlängen. Dadurch ist es möglich, einen Teil des Rippenwellenleiters passiv, d. h. Licht unverstärkt weiterleitend, zu betreiben. Das optische Halbleiterbauelement BEI weist einen aktiven Weilenleiterbereich AKT, in dem die Halbleiterschichten eine größere Schichtdicke haben, und einen passiven Wellenleiterbereich PAS, in dem die Halbleiterschichten eine kleinere Schichtdicke haben, auf. Eine Metallkontaktschicht MK ist nur in dem aktiven Wellenleiterbereich AKT auf dem Rippenwellenleiter RIDGE aufgebracht.
Vorteilhafterweise ist der zweite Übergangsbereich UB2 so angeordnet, daß er zumindest teilweise mit dem ersten Übergangsbereich UBl überlappt. Dadurch wird eine insgesamt kürzere Baulänge des Halbleiterbauelementes BEI erreicht. Es ist jedoch von Vorteil, wenn der zweite Übergangsbereich UB2 in der Längsrichtung L teilweise vor oder im vorderen Teil des ersten Übergangsbereiches UBl angeordnet ist, da der aktive Wellenleiterbereich AKT, der durch Injektion eines Stromes betrieben werden muß, sich dann nicht über den ganzen ersten Übergangsbereich UBl erstreckt, wodurch der Strombedarf reduziert und die elektrische Kapazität verringert ist.
Der besondere Vorteil eines erfindungsgemäßen optischen Halbleiterbauelementes liegt darin, daß die Anpassung des Modenfeldes einer Lichtwelle in dem ersten Übergangsbereich UBl des Halbleiterbauelementes unabhängig ist von einer Änderung in der Energiebandlücke der optisch aktiven Halbleiterschichten bzw. der Multi-Quantumwell-Struktur. Dadurch ist vor allem erreichbar, daß ein erfindungsgemäßes optisches Halbleiterbauelement polarisationsunabhängig arbeitet, d.h. daß es Lichtsignale mit unterschiedlicher Polarisationsrichtung in gleicher weise verarbeitet.
Im ersten Ausfϋhrungsbeispiel bestehen Substrat SUB, Pufferschicht BUF und Deckschicht DS aus einem Halbleiter vom lll/V- Verbindungstyp, wie InP oder GαAs. Die beiden Wellenleiterkerne MQW, BULK bestehen aus ternären oder quatemären Mischkristallen aus Elementen der Hauptgruppen III und V, wie InGaAsP, InGaAs oder InGaAlP. Es eignen sich für das Halbleiterbauelement jedoch auch Verbindungen jeweils aus Elementen der Haupgruppen II und VI, IV und IV oder I und VII, je nachdem, bei welcher Wellenlänge das Halbleiterbauelement arbeiten soll.
Das erfindungsgemäße optische Halbleiterbauelement BEI weist neben minimierten Kopplungsverlusten bei einer Ankopplung an eine optische Faser oder einen optischen Wellenleiter einer Trägerplatte den zusätzlichen Vorteil auf, daß eine Justierung zwischen Halbleiterbauelement und Faser bzw. Trägerplatte vereinfacht ist, da für eine verlustarme Kopplung höhere Justiertoleranzen zulässig sind als bei herkömmlichen optische Halbleiterbauelementen mit tiefem Rippenwellenleiter. So erhöhen sich bei dem Halbleiterbauelement BEI beispielsweise bei einer Dejustierung von 2 μm die Kopplungsverluste nur um etwa 1 dB. Desweiteren sind bei der Ankopplung an eine optische Faser keine Mikrolinsen erforderlich und es können einfache einmodige optische Fasern mit flachem Ende verwendet werden.
In Figur 3 ist eine Draufsicht auf das Halbleiterbauelement BEI des ersten Ausführungsbeispiels dargestellt. Es ist das Substrat SUB zu sehen, dem der tiefe Rippenwellenleiter RIDGE aufliegt. Der Rippenwellenleiter RIDGE hat die Form eines Mesastreifens.
In dem ersten Übergangsbereich UBl nimmt die Schichtdicke des zweiten Wellenleiterkemes BULK entlang der Längsrichtung L ab. In dem zweiten Übergangsbereich UB2 nimmt die Schichtdicke der einzelnen Schichten der Multi-Quantumwell-Struktur des ersten Wellenleiterkemes MQW in der Längsrichtung L ab, wodurch der Rippenwellenleiter RIDGE einen aktiven AKT und einen passiven PAS Wellenleiterbereich aufweist. In einem dritten Übergangsbereich nimmt die Breite des Rippenwellenleiters RIDGE entlang der Längsrichtung L zu der Stirnseite F hin zu. Dies bewirkt eine zusätzliche Aufweitung des Modenfeldes einer im Rippenwellenleiter RIDGE geführten Lichtwelle, insbesondere in lateraler Richtung. Der dritte Übergαngsbereich UB3 ist so angeordnet, daß er sich in der Längsrichtung L zumindest größtenteils hinter dem zweiten Übergangsbereich UB2 befindet und mit dem ersten Übergangsbereich UBl teilweise überlappt. Somit befindet sich der dritte Übergangsbereich UB3, in welchem sich der Rippenwellenleiter RIDGE lateral verbreitert, vollständig oder zumindest größtenteils in dem passiven Wellenleiterbereich PAS und es können dadurch auch bei starker lateraler Verbreiterung keine Moden höherer Ordnung angeregt werden. Der Rippenwellenleiter RIDGE ist somit einmodig.
Der besondere Vorteil der Verbreiterung des Rippenwellenleiters RIDGE liegt darin, daß eine austretende Lichtwelle bei geeigneter Dimensionierung der Verbreiterung ein symmetrisches Modenfeld hat, wodurch Kopplungsverluste minimiert sind.
Figur 4 zeigt eine Draufsicht auf ein erfindungsgemäßes optisches Halbleiterbauelement BE2 in einem zweiten Ausführungsbeispiel. Es weist dieselbe in Figur 1 dargestellte vertikale Schichtstruktur auf, wie das Halbleiterbauelement BE I im ersten Ausführungsbeispiel. Dargestellt ist das Substrat SUB mit dem darauf angeordneten tiefen Rippenwellenleiter RIDGE.
In dem ersten Übergangsbereich UBl nimmt die Schichtdicke des zweiten Wellenleiterkernes BULK entlang der Längsrichtung L ab. In dem zweiten Übergangsbereich UB2 nimmt die Schichtdicke der einzelnen Schichten der Multi-Quantumwell-Struktur des ersten Wellenleiterkernes MQW in der Längsrichtung L ab, wodurch der Rippenwellenleiter RIDGE einen aktiven AKT und einen passiven PAS Wellenleiterbereich aufweist.
Der Rippenwellenleiter RIDGE weist an seiner Stirnseite F einen Abschluß in Form einer integrierten Zylinderlinse LENS auf. Die Grundfläche dieser integrierten Zylinderlinse LENS kann hyperbolisch, parabolisch oder in Form eines Kreissegmentes ausgebildet sein.
Der besondere Vorteil dieser Ausführung liegt darin, daß durch die Zylinderlinse LENS eine zusätzliche Aufweitung des Modenfeldes der Lichtwelle bewirkt wird. Mit einer geeigneten Form der Grundfläche der Zylinderlinse LENS läßt sich erreichen, daß das Modenfeld der austretenden Lichtwelle symmetrisch ist, d. h. daß die austretende Lichtwelle einen kreisrunden Lichtfleck erzeugt, anstelle eines elliptischen. Kopplungsverluste sind in dieser Ausführung mit symmetrischem Modenfeld minimal.

Claims

Patentansprüche
1 . Optisches Halbleiterbauelement (BEI ; BE2), das ein Substrat (SUB) und einen auf dem Substrat (SUB) angeordneten tiefen Rippenwellenleiter (RIDGE) mit einer Deckschicht (DS) hat, bei dem
- der Rippenwellenleiter (RIDGE) einen ersten (MQW) und einen zweiten (BULK) Wellenleiterkem enthält, deren Brechungsindices jeweils größer sind, als die Brechungsindices der Deckschicht (DS) und des Substrates (SUB),
- der erste Wellenleiterkern (MQW) eine oder mehrere optisch aktive Halbleiterschichten enthält und
- die Schichtdicke des zweiten Wellenleiterkemes (BULK) in einem ersten Übergangsbereich (UBl ) entlang einer Längsrichtung (L) des Rippenwellenleiters (RIDGE) abnimmt.
2. Optisches Halbleiterbaύelement (BEI ; BE2) gemäß Anspruch 1 , dadurch gekennzeichnet, daß es eine Stirnseite (F) für ein- oder austretende Lichtsignale aufweist und die Schichtdicke des zweiten Wellenleiterkemes (BULK) entlang der Längsrichtung (L) des Rippenwellenleiters zu der Stirnseite (F) hin abnimmt.
3. Optisches Halbleiterbauelement (BEI ; BE2) gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Abnahme der Schichtdicke des zweiten Wellenleiterkemes (BULK) stetig erfolgt.
4. Optisches Hαlbleiterbαuelement (BE I ; BE2) gemäß Anspruch 1 , dadurch gekennzeichnet, daß es sich bei den einen oder mehren optisch aktiven Halbleiterschichten des ersten Wellenleiterkemes (MQW) um ein Halbleiterschichtpaket mit Multi-Quantumwell-Struktur handelt.
5. Optisches Halbleiterbauelement (BEI ; BE2) gemäß Anspruch 4, dadurch gekennzeichnet, daß die Dicke einzelner Schichten des Halbleiterschichtpaketes des ersten Wellenleiterkernes (MQW) in einem zweiten Übergangsbereich (UB2) entlang derselben Richtung (L) abnimmt, entlang der die Abnahme der Schichtdicke des zweiten Wellenleiterkernes (BULK) erfolgt.
6. Optisches Halbleiterbauelement (BEI ; BE2) gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Breite des Rippenwellenleiters (RIDGE) in einem dritten Übergangsbereich (UB3) entlang derselben Richtung (L) zunimmt, entlang der die Abnahme der Schichtdicke des zweiten Wellenleiterkernes (BULK) erfolgt.
7. Optisches Halbleiterbauelement (BEI ; BE2) gemäß Anspruch 2, dadurch gekennzeichnet, daß der Rippenwellenleiter (RIDGE) an der Stirnseite (F) einen Abschluß (LENS) in Form einer integrierten Zylinderlinse aufweist mit hyperbolischer, parabolischer oder kreissegmentförmiger Grundfläche.
PCT/EP1997/003585 1996-06-28 1997-06-26 Optisches halbleiterbauelement mit tiefem rippenwellenleiter WO1998000894A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/029,722 US6181722B1 (en) 1996-06-28 1997-06-26 Optical semiconductor component with a deep ridged waveguide
EP97936626A EP0847606A2 (de) 1996-06-28 1997-06-26 Optisches halbleiterbauelement mit tiefem rippenwellenleiter
JP10503855A JPH11511911A (ja) 1996-06-28 1997-06-26 ディープリッジ型ウェーブガイドを有する光半導体構成要素

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19626113.9 1996-06-28
DE19626113A DE19626113A1 (de) 1996-06-28 1996-06-28 Optisches Halbleiterbauelement mit tiefem Rippenwellenleiter

Publications (2)

Publication Number Publication Date
WO1998000894A2 true WO1998000894A2 (de) 1998-01-08
WO1998000894A3 WO1998000894A3 (de) 1998-02-19

Family

ID=7798379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/003585 WO1998000894A2 (de) 1996-06-28 1997-06-26 Optisches halbleiterbauelement mit tiefem rippenwellenleiter

Country Status (5)

Country Link
US (1) US6181722B1 (de)
EP (1) EP0847606A2 (de)
JP (1) JPH11511911A (de)
DE (1) DE19626113A1 (de)
WO (1) WO1998000894A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181722B1 (en) 1996-06-28 2001-01-30 Alcatel Optical semiconductor component with a deep ridged waveguide
EP1202085A2 (de) * 2000-10-27 2002-05-02 Thales Verfahren zum Herstellen eines optischen Wellenleiters und Kopplungsvorrichtung mit einem solchen Leiter
US6890912B2 (en) 2000-07-21 2005-05-10 Mark B. Lyles Sunscreen formulations containing nucleic acids
WO2015104836A1 (ja) * 2014-01-10 2015-07-16 富士通株式会社 光半導体素子及びその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2967737B2 (ja) * 1996-12-05 1999-10-25 日本電気株式会社 光半導体装置とその製造方法
US7164818B2 (en) * 2001-05-03 2007-01-16 Neophontonics Corporation Integrated gradient index lenses
US6253015B1 (en) * 2000-02-08 2001-06-26 Corning Incorporated Planar waveguides with high refractive index
US20030044118A1 (en) * 2000-10-20 2003-03-06 Phosistor Technologies, Inc. Integrated planar composite coupling structures for bi-directional light beam transformation between a small mode size waveguide and a large mode size waveguide
US6873638B2 (en) * 2001-06-29 2005-03-29 3M Innovative Properties Company Laser diode chip with waveguide
US6922508B2 (en) * 2001-08-17 2005-07-26 Fujitsu Limited Optical switching apparatus with adiabatic coupling to optical fiber
US8538208B2 (en) * 2002-08-28 2013-09-17 Seng-Tiong Ho Apparatus for coupling light between input and output waveguides
US7426328B2 (en) * 2002-08-28 2008-09-16 Phosistor Technologies, Inc. Varying refractive index optical medium using at least two materials with thicknesses less than a wavelength
US7303339B2 (en) * 2002-08-28 2007-12-04 Phosistor Technologies, Inc. Optical beam transformer module for light coupling between a fiber array and a photonic chip and the method of making the same
US10359569B2 (en) * 2016-05-09 2019-07-23 Huawei Technologies Co., Ltd. Optical waveguide termination having a doped, light-absorbing slab

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0641049A1 (de) * 1993-08-31 1995-03-01 Fujitsu Limited Optischer Halbleitervorrichtung und Herstellungsverfahren

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0498170B1 (de) * 1991-02-08 1997-08-27 Siemens Aktiengesellschaft Integriert optisches Bauelement für die Kopplung zwischen unterschiedlich dimensionierten Wellenleitern
JPH0794833A (ja) * 1993-09-22 1995-04-07 Mitsubishi Electric Corp 半導体レーザおよびその製造方法
DE4412254A1 (de) * 1994-04-07 1995-10-12 Hertz Inst Heinrich Optisches Koppelglied und Verfahren zu dessen Herstellung
WO1995031741A1 (de) * 1994-05-18 1995-11-23 Siemens Aktiengesellschaft Halbleiterbauelement mit verzweigtem wellenleiter
JPH08116135A (ja) * 1994-10-17 1996-05-07 Mitsubishi Electric Corp 導波路集積素子の製造方法,及び導波路集積素子
DE19626113A1 (de) 1996-06-28 1998-01-02 Sel Alcatel Ag Optisches Halbleiterbauelement mit tiefem Rippenwellenleiter
DE19626130A1 (de) * 1996-06-28 1998-01-08 Sel Alcatel Ag Optisches Halbleiterbauelement mit tiefem Rippenwellenleiter
JPH10221572A (ja) * 1997-02-07 1998-08-21 Fujitsu Ltd 光装置
US6052397A (en) * 1997-12-05 2000-04-18 Sdl, Inc. Laser diode device having a substantially circular light output beam and a method of forming a tapered section in a semiconductor device to provide for a reproducible mode profile of the output beam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0641049A1 (de) * 1993-08-31 1995-03-01 Fujitsu Limited Optischer Halbleitervorrichtung und Herstellungsverfahren

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRENNER T ET AL: "COMPACT INGAASP/INP LASER DIODES WITH INTEGRATED MODE EXPANDER FOR EFFICIENT COUPLING TO FLAT-ENDED SINGLEMODE FIBRES" ELECTRONICS LETTERS, Bd. 31, Nr. 17, 17.August 1995, Seiten 1443-1445, XP000528969 in der Anmeldung erw{hnt *
EL YUMIN S ET AL: "MONOLITHIC INTEGRATION OF GAINASP/INP COLLIMATING GRIN LENS WITH TAPERED WAVEGUIDE ACTIVE REGION" PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE AND RELATED MATERIALS, HOKKAIDO, MAY 9 - 13, 1995, Nr. CONF. 7, 9.Mai 1995, INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, Seiten 721-724, XP000630704 *
SATZKE K ET AL: "Ultrahigh-bandwidth (42 GHz) polarisation-independent ridge waveguide electroabsorption modulator based on tensile strained InGaAsP MQW" ELECTRONICS LETTERS, 9 NOV. 1995, UK, Bd. 31, Nr. 23, ISSN 0013-5194, Seiten 2030-2032, XP002049133 *
See also references of EP0847606A2 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181722B1 (en) 1996-06-28 2001-01-30 Alcatel Optical semiconductor component with a deep ridged waveguide
US6890912B2 (en) 2000-07-21 2005-05-10 Mark B. Lyles Sunscreen formulations containing nucleic acids
EP1202085A2 (de) * 2000-10-27 2002-05-02 Thales Verfahren zum Herstellen eines optischen Wellenleiters und Kopplungsvorrichtung mit einem solchen Leiter
FR2816064A1 (fr) * 2000-10-27 2002-05-03 Thomson Csf Procede de realisation d'un guide d'onde, notamment optique, et dispositif de couplage optique comportant un tel guide
EP1202085A3 (de) * 2000-10-27 2002-10-30 Thales Verfahren zum Herstellen eines optischen Wellenleiters und Kopplungsvorrichtung mit einem solchen Leiter
WO2015104836A1 (ja) * 2014-01-10 2015-07-16 富士通株式会社 光半導体素子及びその製造方法
JPWO2015104836A1 (ja) * 2014-01-10 2017-03-23 富士通株式会社 光半導体素子及びその製造方法
US9698570B2 (en) 2014-01-10 2017-07-04 Fujitsu Limited Optical semiconductor element and method of manufacturing the same

Also Published As

Publication number Publication date
US6181722B1 (en) 2001-01-30
EP0847606A2 (de) 1998-06-17
DE19626113A1 (de) 1998-01-02
JPH11511911A (ja) 1999-10-12
WO1998000894A3 (de) 1998-02-19

Similar Documents

Publication Publication Date Title
EP0498170B1 (de) Integriert optisches Bauelement für die Kopplung zwischen unterschiedlich dimensionierten Wellenleitern
EP0284910B1 (de) Integriert-optische Anordnung für die bidirektionale optische Nachrichten- oder Signalübertragung
DE4328777B4 (de) Optische Filtervorrichtung
DE60212344T2 (de) Mittels elektroabsorption modulierter laser mit asymmetrischem wellenleiter
EP0187198B1 (de) Verfahren zur Herstellung einer integriert - optischen Anordnung
DE60123427T2 (de) Photonischer integrierter detektor mit mehreren asymmetrischen wellenleitern
WO1998000894A2 (de) Optisches halbleiterbauelement mit tiefem rippenwellenleiter
DE60014969T2 (de) Halbleiterlaservorrichtung mit einer divergierenden region
WO1998000738A1 (de) Optisches halbleiterbauelement mit tiefem rippenwellenleiter
DE60028743T2 (de) Optischer koppelpunktschalter mit vertical gekoppelter wellenleiterstruktur
EP0925520A1 (de) Anordnung zum aneinanderkoppeln von wellenleitern
EP0309744A2 (de) Anordnung mit einem flächig sich erstreckenden Dünnfilmwellenleiter
EP0495202B1 (de) Anordnung zum Umwandeln einer optischen Welle kleiner Fleckweite in eine Welle grösserer Fleckweite
DE69814650T2 (de) Anordnung zur optischen verstärkung und kopplung nach dem multimoden-interferenz-prinzip und deren anwendungen
DE69730872T2 (de) Laservorrichtung
DE102013223499B4 (de) Breitstreifenlaser und Verfahren zum Herstellen eines Breitstreifenlasers
EP0948752B1 (de) Optoelektronischer modul
DE60201464T2 (de) Halbleiterlaser
EP0257531A2 (de) Optische Resonatormatrix
DE3626702C2 (de)
EP0768740B1 (de) Optoelektronisches Bauelement mit kodirektionaler Modenkopplung
DE4034000C1 (de)
EP0812431B1 (de) Integriert optischer wellenleiter mit einer einen steuerbaren komplexen brechungsindex aufweisenden wellenleitenden schicht
DE60018418T2 (de) Kompensation des Brechungsindexes von aufgeputschtem InP
DE4338606C2 (de) Gewinngekoppelte Laserdiode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 503855

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997936626

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997936626

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09029722

Country of ref document: US

WWR Wipo information: refused in national office

Ref document number: 1997936626

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997936626

Country of ref document: EP