WO1997047682A1 - Produit a base de polymere d'ethylene possedant une repartition de poids moleculaire etendue, et preparation et utilisation de ce produit - Google Patents

Produit a base de polymere d'ethylene possedant une repartition de poids moleculaire etendue, et preparation et utilisation de ce produit Download PDF

Info

Publication number
WO1997047682A1
WO1997047682A1 PCT/FI1997/000353 FI9700353W WO9747682A1 WO 1997047682 A1 WO1997047682 A1 WO 1997047682A1 FI 9700353 W FI9700353 W FI 9700353W WO 9747682 A1 WO9747682 A1 WO 9747682A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene polymer
molecular weight
preferentially
process according
blend
Prior art date
Application number
PCT/FI1997/000353
Other languages
English (en)
Inventor
Bengt Hagström
Aimo Sahila
Jari Äärilä
Original Assignee
Borealis Polymers Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borealis Polymers Oy filed Critical Borealis Polymers Oy
Priority to EP97925086A priority Critical patent/EP0902809A1/fr
Priority to AU30349/97A priority patent/AU3034997A/en
Publication of WO1997047682A1 publication Critical patent/WO1997047682A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms
    • C08L23/0815Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms with aliphatic 1-olefins containing one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/02Ziegler natta catalyst

Definitions

  • the invention relates to a process for the preparation of a solid ethylene polymer product, containing from 0.0 to 20% by weight of repeating units of a C3-C 10 ⁇ " olefm and having a broad molecular weight distribution.
  • the ethylene polymers having narrow molecular weight distribution are not satisfactory, because of the poor melt flow properties and poor processability. Therefore, different approaches have been suggested for manu ⁇ facturing polyethylenes having a broad molecular weight distribution.
  • One approach to widen the molecular weight distribution is to blend a low molecular weight ethyl- ene polymer with a high molecular weight ethylene polymer either mechanically or in solution. More than two ethylene polymers having different molecular weights can also be mixed together.
  • US 5,326,835 discloses a multi-stage - process for producing ethylene polymer having a bimodal and/or broad molecular weight distribution in a multi-step reaction sequence.
  • the first reaction step is performed in a loop reactor and one or more subsequent steps are performed in one or more gas phase reactors.
  • the molecular weight distribution can be controlled by using different concentrations of hydrogen chain transfer agent and co-monomer in different steps.
  • bimodal and multimodal distribution is generally and in connection with the present invention meant a broad molecular weight distribution produced by blending two or more polymer components with different molecular weights or by polymer ⁇ izing to different molecular weights in a process with two or more reactors in series.
  • Unimodal distribution is obtained with essentially only one molecular weight fraction.
  • the ethylene polymers produced up till now have not had entirely satisfactory properties. This applies for the processability properties in general, and for the melt strength of the unloaded polymer melt during processing in particular. The latter property is important eg. for bubble stability during film blowing and controlled orientation during extrusion, especially the extrusion of ethylene polymer film.
  • EP 0 700 769 discloses the treatment of polyethylene with a broad molecular weight distribution using oxygen or oxygen containing gas.
  • the feeding of oxygen into a melt porcessing apparatus is uncontrollable and does not result in broadened molecular weight distribution. See page 6, lines 15 and 16 of said EP application.
  • the oxidized polyethylene is preferentially prepared by chromium oxide catalyst.
  • an ethylene polymer product is produced, which contains from 0.0 to 20% by weight of repeating units of a C3-C10 ⁇ -olefms and has a broad molecular weight distribution.
  • step (b) the blend of step (a) is heated and melt processed into a molten ethylene polymer having a fourth average molecular weight and fourth molecular weight distribution; a stabilizer is optionally added in step (b), and
  • step (b) The process according to the invention is substantially characterized in that in the above step (b), the blend of step (a) is subjected to controlled free radical reactions so that the fourth average molecular weight is higher than, or approximately equal to, the third average molecular weight, and the fourth molecular weight distribution is broader than the third at least bimodal molecular weight distribution.
  • MFR Melt Flow Rate
  • Flow Rate Ratio (FRR m l/ m 2) is meant the ratio between the melt flow rate (MFR m l) measured at a standard temperature and witi standard die dimensions using a heavy load ( m l)and the melt flow rate (MFR m 2) measured at the same temperature with the same die dimensions using a light load (m2).
  • the heavy load ml is 21.6 kg and the light load m ⁇ is 5.0 kg or 2.16 kg (ISO H33).
  • step (b) of the claimed process the blend of step (a) is heated, melt processed into a molten ethylene polymer, and subjected to free radical reactions.
  • step (a) is subjected to free radical reactions to such an extent that me relative MFR5 decreases, that is -(MFR 5 - MFR 3 5):MFR 3 5, is from 5 to 100%, preferentially from 10 to 80%.
  • the upper limit is not to be interpreted as a limitation, but it has only a descriptive function, which is based on the experimental results obtained in connection with the present invention. Anyhow, it appears that the melt viscosity increases by several tens of per cent, which means that me controlled radical essentially lead to the combination of radical fragments into larger ethylene polymer molecules than before the free radical reactions. Indeed, it was very surprising that the subjection of an ethylene polymer having a bimodal or multimodal distribution to free radical reactions would lead to an increase of the molecular weight and thus to an increase in the melt strength and the mechanical properties of the product.
  • step (b) of the claimed process the blend of step (a) is preferentially subjected to controlled free radical reactions so that the relative broadening (increase) of the molecular weight distribution expressed as +(FRR ⁇ 2i/5 - FRR 3 2l/5):FRR 3 21/5 is from 5 to 100%, most preferentially from 10 to 80%.
  • the molecular weight distribution would be broadened by free radical reactions, since the above mentioned controlled rheology process for polypropylene led to a narrowing of the molecular weight distribution and the oxygenation of poly ⁇ ethylene did not influence it.
  • the upper limit of the disclosed flow rate ratios are not to be interpreted as limiting the scope of protection, but is only based on the embodiment of the examples.
  • Free radical reactions can be effected in many ways. Firstly, free radicals may be generated from initiators in diverse ways, among which thermal or photochemical intermolecular bond cleavage, redox reactions, and photochemical hydrogen abstraction are the most common, but other processes such as the use of ⁇ -radiation or electron beams find application. Free radicals can also be generated by means of reaction of the ethylene polymer blend by means of thermal decomposition with or without the presence of oxygen. Thermal treatment is a suitable method, especially if unstabilized polyethylene is used or if the used ethylene polymer is destabilized during the treatment.
  • diacylperoxides such as dibenzoyl peroxide BPO, di(2,4-dichloro- benzoyl) peroxide, diacetyl peroxide, dilauroyl peroxide, didecanoyl peroxide, diisononanoyl peroxide and succinic acid peroxide; commercial peroxy esters, such as di-terf-butyl diperoxyphthalate, tert-butyl perbenzoate, tert-but l peracetate, tert- amyl perbenzoate, 2,5-di(benzoylperoxy)-2,5-dimethylhexane, tert-butyl peroxyma- leic acid, ter/-butyl peroxyisobutyrate, tert-butyl peroxy-2-ethylhexanoate(tert-butyl peroctoate), /er/--
  • Preferred peroxy initiators are chosen from: 2,5-dimethyl-2,5-di(t ⁇ r/- butylper- oxy)hexyne-3; 2,5-dimethyl-2,5-di(ter/-butylperoxy)hexane; di-/er/-butyl peroxide; di-/er/-butylperoxyisopropyl benzene; /e/-/-butylcumy .peroxide; dicumylperoxide; 3,3,6,6,9,9-hexamethyl-l,2,4,5-tetracyclononane; 4,4-di-/er/-butyl peroxy-n-butyl- valerate; 1,1-di-t ⁇ rf-butyl peroxycyclohexane; /er/-butyl peroxybenzoate; dibenzoyl peroxide; di(2,4-dichlorobenzoyl)peroxide; di(p-chloro
  • radical generation can be controlled experimentally with normal work and without inventive skill. What the skilled person did not know was that it was possible to increase the molecular weight and broaden the molecular weight distribution thus improving the melt strength and mechamcal properties of bi- and multimodal ethylene polymers by controlled free radical reactions during melt processing. Uncontrolled free radical treatment leads to decomposition and smaller molecular weight polymer. Oxygenation leads to crosslinking and unchanged molecular weight and distribution thereof.
  • step (b) the heating and melt processing of step (b) is preferentially carried out at 180°C to 290°C, most preferentially from 200°C to 270°C.
  • the amount of generated radicals is naturally also dependent on the amount of initiators added to step (b) of the claimed process.
  • the preferential initial content of initiator or optionally content of initiator left after reaction with an added stabilizer is from 20 ppm to 2000 ppm, most preferentially from 50 ppm to 500 ppm, calculated on the weight of the blend of step (a). Later in step (b), of course, the content of initiator decreases as it decomposes into radicals.
  • the average heating and melt processing time in step (b) of the claimed process has much influence on the generation of free radicals. Depending on the other parameters used, it can vary very much.
  • the average heating and melt processing time in step (b) is preferentially from 0.1 min to 30 min and most preferentially from 0.5 min to 10 min.
  • the blend of step (a) is subjected to free radical reactions by means of free radical initiators.
  • free radical reactions can namely be induced merely by heating the polymer during step (b).
  • the temperature is preferentially from 220°C to 320°C, most preferentially from 240°C to 300°C.
  • the average heating and melt processing time in step (b) is from 0.1 min to 30 min, preferentially from 0.5 min to 10 min.
  • step (a) When generating radicals by means of thermal treatment, it is preferable to use an essentially unstabilized or lightly stabilized blend of step (a) as raw material for step (b) of the claimed process.
  • Stabilizers antioxidants, UV stabilizers and metal deactivators
  • the antioxidants protect polyolefins against oxidation by controlling molecular weight changes leading to loss of physical and mechamcal properties. Commonly the antioxidants are divided in two groups (primary and secondary antioxidants) according to their function in the polymer.
  • the secondary antioxidants reduce the unstable hydroperoxides to inert products. In combinations with primary antioxidants they give added stability to the polymer (synergism).
  • Antioxidants for polyolefins chemical structures Sterically hindered phenols:
  • Irganox PS 800 Irganox PS 802
  • the screeners are pigments absorbing or reflecting UV light. Carbon black and titanium dioxide are the most used.
  • UV absorbers are aromatic compounds which can absorb the UV energy and convert it into heat. They are effective in thick sections.
  • the free-radical scavengers inhibit the propagation through a combination of scavenging and terminating free radicals and decomposing hydroperoxides to harm ⁇ less products.
  • the hindered amine light stabilizers (HALS) belong to this group of UV stabilizers.
  • step (b) it is dependently of the antioxidant fed, preferential in step (b) to add from 0 to 500 ppm of a first stabilizer to the blend of step (a) essentially at the beginning of step (b) and to add from 400 to 1400 ppm of a second stabilizer to the molten ethylene polymer essentially at the end of step (b), the first and second stabilizers being equal or different.
  • the first stabilizer added in step (b) is a different stabilizer than the second stabilizer, most preferentially so, that the first stabilizer is a weak process stabilizer allowing radical reactions partially, whereas the second stabilizer is a strong process stabilizer essentially preventing radical reactions during melt pro- cessing.
  • step (a) of a first ethylene polymer and at least a second ethylene polymer is analyzed more closely.
  • the mixing can be a mechanical mixing of two or more granulates, but is preferentially a melt mixing.
  • step (a) is preferentially a mixing of two molten polymers e.g. by melt processing and compounding equipment such as an extruder.
  • the present invention relates to the molecular weight and its distribution controlling free radical reaction treatment of any bimodal or multimodal ethylene polymer.
  • the different ethylene polymers disclosed in step (a) of the present process can have the monomer composition of a homo- polymer or a copolymer.
  • the first ethylene polymer has a C3-C jo ⁇ -olefin repeating unit content of 0.0 to 10% by weight, calculated from the weight of the first ethylene polymer.
  • At least one ethylene polymer component of the blend formed in step (a) is an ethylene copolymer containing a small amount of another olefin.
  • the second ethylene polymer has a C3-C 10 ⁇ -olefin, preferentially 1-butene, or 1- hexene, repeating unit content from 1.0 to 25% by weight and most preferentially from 2.0 to 15% by weight.
  • the further ethylene polymer components can be either homo- polymers or copolymers.
  • step (a) is formed by mixing a first ethylene polymer and at least a second polymer
  • the proportion of the first ethylene polymer and the second, etc., ethylene polymer, the MFRl and MFR 2 of said ethylene polymers and the C3-C10 ct-olefin repeating unit content of said ethylene polymers are preferentially such that the MFR 3 21 of the blend obtained in step (a) is between 5 and 50 g/10 min, the-C3-C ⁇ o ⁇ -olefin repeating unit content of the blend from step (a) is from 0.2 to 20% by weight, preferentially 0.5 to 15% by weight, and the FRR 3 21/5 is between 10 and 40, most preferentially so that after step (b), the fourth molecular weight distribution is at least bimodal.
  • step (a) is very important when deterrnining the broadness of the molecular weight distribution of the final ethylene polymer product.
  • step (a) of ethylene polymer raw material for the controlled free radical reactions of step (b) by mixing a first, a second, etc. ethylene polymer was disclosed above.
  • Said raw material, i.e. blend of step (a) can also be prepared by performing a multi-step internal polymerization process. In the polymerization process several substeps are performed, in which the first, lower molecular weight ethylene polymer is prepared by polymerizing in a substep (ai), the second higher molecular weight ethylene polymer is prepared by polymerizing in a substep (a2), and optional further ethylene polymers are prepared by polymerizing in optional further substeps, whereby the ethylene polymer of each step is present in the following step.
  • each substep is such, that ethylene polymers are produced the average molecular weight of which differs so that the end product is bimodal or multimodal.
  • a temperature of 40°C to 120°C is used, and, independently, in substep (a2), a temperature of 60°C to 140°C is used.
  • the polymerizations are typically insertion polymerizations where Ziegler-Natta or single site polymerization catalyst systems are used.
  • a catalyst system is typically used, which is based on at least a tetra- valent titanium compound as procatalyst and an organoaluminum compound as cocatalyst.
  • procatalyst is preferentially based on titanium tetrachloride TiC i, magnesium chloride MgCl2, and an optional inert carrier and/or an optional electron donor compound
  • a typical cocatalyst is a trialkylaluminum compound.
  • Typical catalysts are e.g. prepared according to WO 91/12182 and WO 95/35323 which are herewith included by reference.
  • a preferential single site polymerization catalyst system is that based on a group 4 (IUPAC 1990) metal metallocene an alumoxane.
  • substeps (aj) and (a2) can be performed in any order, preferentially so that the catalyst system added to one substep catalyst system is also used in the next and other optional additional substeps.
  • the most convenient way to regulate the molecular weight during polymerization is to use hydrogen, which acts as a chain-transfer agent by intervening in the insertion step of the polymerization mechanism.
  • a hydrogen amount is used, leading to a melt index MFR ⁇ of the first ethylene polymer of from 50 to 2000 g/10 min., most preferentially from 100 to 1500 g/10 min., when substep (aj) is performed first.
  • the properties of the first, second etc. ethylene polymers forming the blend of step (a) also depend on the use of minor amounts of an ⁇ -olefin, which is not ethylene.
  • ⁇ -olefin which is not ethylene.
  • no or a small amount of C3-C 0 ⁇ -olefin is used, so that the first ethylene polymer has a C3-C10 ⁇ -olefin repeating unit content of 0.0 to 14
  • the second ethylene polymer has a C3-C10 ⁇ -olefin, preferentially 1-butene or 1-hexene, repeating unit content of from 1.0 to 25% by weight, preferentially from 2.0 to 15.0% by weight, of at least the second ethylene polymer.
  • the ratio between the first produced ethylene polymer, having the MFR 2 defined above, and the second produced ethylene polymer, having a lower MFR is between 20:80 and 80:20, preferentially between 20:80 and 60:40.
  • it is suitable to use more of the second ethylene polymer than the first ethylene polymer.
  • step (a) a blend of step (a) is produced, which is most suitable for the melt processing free radical reactions of step (b) and gives a useful final ethylene polymer product.
  • reaction temperature, catalyst system, portion of C3-C10 ⁇ -olefin, amount of hydrogen, and ratio between the first olefin polymer and the second olefin polymer produced are regulated so that MFR 3 2l of the blend of step (a) is between 5 and 50 g/10 min.
  • the C3-C 10 ⁇ -olefin repeating unit content of the blend of step (a) is from 0.2 to 20% by weight, preferentially from 0.5 to 15.0% by weight
  • the FFR 3 defined as MFR 3 2l/MFR 3 5 is between 10 and 40, preferentially so that after step (b), the fourth molecular weight distribution is at least bimodal, that is, bimodal or multimodal.
  • the present invention also relates to an ethylene polymer product and preferentially a film material product, which contains from 0.0 to 20% by weight of repeating units of a C3-C10 ⁇ -olefin and having a broad molecular weight distribution.
  • the ethylene polymer product is characterized by that it has been prepared by means of the above described process.
  • the ethylene polymer product according to the invention is very processable and has an extraordinary good melt strength. There ⁇ fore it is particularly suitable for extrusion applications and especially film blowing, cast-line extrusion, pipe-coating, extrusion coating, as well as in blow moulding applications.
  • the powder from the above polymerization was compounded with different peroxide contents on Werner & Pfleiderer ZSK-30 extruder.
  • the peroxide was 2,5- dimethyl-2,5-di(tert.butylperoxy)-hexane (Luperox 101) and it was added as a master batch in the same powder.
  • the master batch was made in a Papenmeyer mixer.
  • the samples were evaluated by measuring the melt flow and by blowing film on a lab scale Collin G.M.B.H. 30 D extruder.
  • the running conditions on film line were barrel temperature 170° ... 230°, screw speed 50 rpm, output 3.7 kg/h and frost line 300 mm.
  • the effective blow up ratio (BUReff) means the ratio between the bubble diameter and the narrowest diameter of the film neck.
  • the BUReff value is used to describe elasticity and bubble stability. The higher the BUReff value, the better is the film material.
  • the powder from the above polymerization was compounded on Werner & Pfleiderer ZSK-30 extruder without and with peroxide addition.
  • the peroxide was bis(tert.butylperoxyisopropyl)benzene (Perkadox 14S) and it was added as a master batch in the same powder.
  • the master batch was made in a Pappenmeyer mixer.
  • the shear thinning index (SHI) measured at low shear and at high shear is used to describe the broadness of molecular weight distribution. The larger the SHI, the broader is the distribution.
  • Example 3 (including comparative example)
  • Bimodal polyethene (C) was polymerized with Ziegler-Natta type catalyst prepared according to WO 95/35323 in one loop and one gas phase reactor which are operated in series.
  • the catalyst was prepolymerized before feeding into the loop reactor.
  • the prepolymerization degree was 130 g/g.
  • Ethene was polymerized with 1-butene and hydrogen in the gas phase reactor.
  • the production rate split of loop and gas phase reactors was 42% / 58%.
  • the final product MFR21 6.8 and density 945 kg/m 3 .
  • test materials were film blowed on Alpine film blowing line having 65 mm screw diameter.
  • the used blow up ratio was 3.5.
  • the neck height was 8 * die diameter and film thickness was 15 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paints Or Removers (AREA)

Abstract

Les produits à base de polymère d'éthylène qui possèdent une répartition de poids moléculaire bimodale ou multi-modale, présentent certes de bonnes propriétés mécaniques et d'aptitude au traitement, mais ces dernières demeurent toutefois insuffisantes. Ces produits à base de polymère d'éthylène bimodal ou multi-modal ont pu être améliorés en effectuant les étapes suivantes. (a) On forme tout d'abord un mélange comprenant les éléments suivants: un premier polymère d'éthylène qui possède un premier poids moléculaire moyen et une première répartition de poids moléculaire; et au moins un deuxième polymère d'éthylène qui possède un deuxième poids moléculaire moyen supérieur à celui du premier, ainsi qu'une deuxième répartition de poids moléculaire, ce qui permet d'obtenir un mélange possédant un troisième poids moléculaire moyen et une troisième répartition de poids moléculaire qui est au moins bimodale. On procède ensuite (b) au chauffage et à la fusion du mélange obtenu lors de l'étape (a), ceci de manière à obtenir un polymère d'éthylène fondu qui possède un quatrième poids moléculaire moyen et une quatrième répartition de poids moléculaire. On procède enfin (c) au refroidissement et à la solidification du polymère d'éthylène fondu de manière à obtenir le produit à base de polymère d'éthylène voulu. Lors de l'étape (b), le mélange obtenu au cours de l'étape (a) est soumis aux réactions régulées de radicaux libres, ceci de manière à ce que le quatrième poids moléculaire moyen soit supérieur ou à peu près égal au troisième, et à ce que la quatrième répartition de poids moléculaire soit plus étendue que la troisième qui est au moins bimodale.
PCT/FI1997/000353 1996-06-07 1997-06-06 Produit a base de polymere d'ethylene possedant une repartition de poids moleculaire etendue, et preparation et utilisation de ce produit WO1997047682A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP97925086A EP0902809A1 (fr) 1996-06-07 1997-06-06 Produit a base de polymere d'ethylene possedant une repartition de poids moleculaire etendue, et preparation et utilisation de ce produit
AU30349/97A AU3034997A (en) 1996-06-07 1997-06-06 Ethylene polymer product having a broad molecular weight distribution, its preparation and use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI962366A FI108452B (fi) 1996-06-07 1996-06-07 Etyleenipolymeerituote, jolla on leveõ moolimassajakauma, sen valmistus ja kõytt÷
FI962366 1996-06-07

Publications (1)

Publication Number Publication Date
WO1997047682A1 true WO1997047682A1 (fr) 1997-12-18

Family

ID=8546158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI1997/000353 WO1997047682A1 (fr) 1996-06-07 1997-06-06 Produit a base de polymere d'ethylene possedant une repartition de poids moleculaire etendue, et preparation et utilisation de ce produit

Country Status (4)

Country Link
EP (1) EP0902809A1 (fr)
FI (1) FI108452B (fr)
RU (1) RU2167900C2 (fr)
WO (1) WO1997047682A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949274A2 (fr) * 1998-04-06 1999-10-13 Borealis Polymers Oy Produit polymérique préparé avec un catalyseur comprenant une paire ionique
WO2001014122A1 (fr) * 1999-08-19 2001-03-01 Borealis Technology Oy Procede de fabrication de reservoir
EP1231238A1 (fr) * 2001-02-08 2002-08-14 Borealis Technology Oy Composition de polyethylene multimodale pour support de cable à fibres optiques
WO2003087199A1 (fr) * 2002-04-18 2003-10-23 Borealis Technology Oy Procede de radiotherapie de polymeres d'ethylene
US6870010B1 (en) 2003-12-01 2005-03-22 Univation Technologies, Llc Low haze high strength polyethylene compositions
WO2006107374A1 (fr) * 2005-03-31 2006-10-12 Exxonmobil Chemical Patents Inc. Procede permettant de selectionner des polyolefines en fonction de proprietes rheologiques
EP1739110A1 (fr) * 2005-06-30 2007-01-03 Borealis Technology Oy Composition de polyéthylène avec processabilité améliorée
US7193017B2 (en) 2004-08-13 2007-03-20 Univation Technologies, Llc High strength biomodal polyethylene compositions
US7288596B2 (en) 2003-12-22 2007-10-30 Univation Technologies, Llc Polyethylene compositions having improved tear properties
US7312279B2 (en) 2005-02-07 2007-12-25 Univation Technologies, Llc Polyethylene blend compositions
EP1985660A1 (fr) * 2007-04-25 2008-10-29 Borealis Technology Oy Tuyau comportant un polyéthylène résistant au développement des fissures extra lentes
EP2144955A1 (fr) * 2007-05-04 2010-01-20 Fina Technology, Inc. Résines à base de polyéthylène bimodal présentant une rigidité élevée et une résistance élevée à la craquelure sous l'effet de contraintes
WO2013101767A2 (fr) 2011-12-29 2013-07-04 Ineos Olefins & Polymers Usa, A Division Of Ineos Usa Llc Résines et compositions de polyéthylène haute densité bimodales à propriétés améliorées et leurs procédés de fabrication et d'utilisation
EP2995631A1 (fr) 2014-09-12 2016-03-16 Borealis AG Procédé de production de copolymères greffés à un squelette de polyoléfine
US11292156B2 (en) 2014-12-08 2022-04-05 Borealis Ag Process for producing pellets of copolymers of propylene

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2030993A1 (fr) * 2007-09-03 2009-03-04 INEOS Manufacturing Belgium NV Procédé de polymérisation de phase en suspension
EP2033976A1 (fr) * 2007-09-03 2009-03-11 INEOS Manufacturing Belgium NV Procédé de polymérisation de phase en suspension
EP2030994A1 (fr) * 2007-09-03 2009-03-04 INEOS Manufacturing Belgium NV Procédé de polymérisation de phase en suspension
EP2072588B1 (fr) * 2007-12-20 2012-10-10 Borealis Technology Oy Procédé pour le revêtement d'un tuyau à grand rendement utilisant un copolymère d'éthylène multimodal et tuyaux revêtus correspondants
EP2072586B1 (fr) * 2007-12-20 2020-11-11 Borealis Technology Oy Tuyaux revêtus dotés de propriétés mécaniques améliorées et procédé de fabrication correspondant
EP2072589A1 (fr) * 2007-12-20 2009-06-24 Borealis Technology Oy Procédé pour le revêtement d'un tuyau à grand rendement utilisant un copolymère d'éthylène multimodal et tuyaux revêtus correspondants
EP2072587B1 (fr) * 2007-12-20 2020-06-03 Borealis Technology Oy Tuyaux revêtus dotés de propriétés mécaniques améliorées à hautes températures et procédé de fabrication correspondant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0404552A2 (fr) * 1989-06-21 1990-12-27 Mobil Oil Corporation Procédé pour modifier les propriétés de transformation de mélanges de polyéthylène
US5405917A (en) * 1992-07-15 1995-04-11 Phillips Petroleum Company Selective admixture of additives for modifying a polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0404552A2 (fr) * 1989-06-21 1990-12-27 Mobil Oil Corporation Procédé pour modifier les propriétés de transformation de mélanges de polyéthylène
US5405917A (en) * 1992-07-15 1995-04-11 Phillips Petroleum Company Selective admixture of additives for modifying a polymer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FILE WPI, Derwent Accession No. 89-361152, NIPPON PETROCHEMICALS CO LTD, "Ethylene-Type Polymer Compsn. for Blow Moulding - Comprises Blend of High Mol. Wt. and Low Mol. Wt. Ethylene Type Polymers Together with Free Radical Polymerisation Initiator"; & JP,A,01 271 441, (30-10-89). *
FILE WPI, Derwent Accession No. 94-086089, MITSUBISHI PETROCHEMICAL CO LTD, "Polyethylene Resin Compsn. Prodn., for High Speed Inflation - by Kneading Compsn. Contg. Low and High Mol. Wt. Polyethylene"; & JP,A,06 009 788, (18-01-94). *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051646A1 (fr) * 1998-04-06 1999-10-14 Borealis Technology Oy Composant catalyseur de polymerisation d'olefines, sa preparation et son utilisation
EP0949274A2 (fr) * 1998-04-06 1999-10-13 Borealis Polymers Oy Produit polymérique préparé avec un catalyseur comprenant une paire ionique
EP0949274A3 (fr) * 1998-04-06 2007-10-03 Borealis Polymers Oy Produit polymérique préparé avec un catalyseur comprenant une paire ionique
US7569175B1 (en) 1999-08-19 2009-08-04 Borealis Technology Oy Container production process
WO2001014122A1 (fr) * 1999-08-19 2001-03-01 Borealis Technology Oy Procede de fabrication de reservoir
WO2002063345A2 (fr) * 2001-02-08 2002-08-15 Borealis Technology Oy Composition de resine polyethylene multimodale pour elements de support de fibre destines a des cables a fibres optiques
WO2002063345A3 (fr) * 2001-02-08 2002-12-05 Borealis Tech Oy Composition de resine polyethylene multimodale pour elements de support de fibre destines a des cables a fibres optiques
EP1231238A1 (fr) * 2001-02-08 2002-08-14 Borealis Technology Oy Composition de polyethylene multimodale pour support de cable à fibres optiques
WO2003087199A1 (fr) * 2002-04-18 2003-10-23 Borealis Technology Oy Procede de radiotherapie de polymeres d'ethylene
US6870010B1 (en) 2003-12-01 2005-03-22 Univation Technologies, Llc Low haze high strength polyethylene compositions
US7288596B2 (en) 2003-12-22 2007-10-30 Univation Technologies, Llc Polyethylene compositions having improved tear properties
US7560516B2 (en) 2003-12-22 2009-07-14 Univation Technologies, Llc Polyethylene compositions having improved tear properties
US7193017B2 (en) 2004-08-13 2007-03-20 Univation Technologies, Llc High strength biomodal polyethylene compositions
US7504055B2 (en) 2005-02-07 2009-03-17 Univation Technologies, Llc Polyethylene blend compositions
US7312279B2 (en) 2005-02-07 2007-12-25 Univation Technologies, Llc Polyethylene blend compositions
WO2006107374A1 (fr) * 2005-03-31 2006-10-12 Exxonmobil Chemical Patents Inc. Procede permettant de selectionner des polyolefines en fonction de proprietes rheologiques
US7642330B2 (en) 2005-03-31 2010-01-05 Exxonmobil Chemical Patents Inc. Method of selecting polyolefins based on rheological properties
WO2007003322A1 (fr) * 2005-06-30 2007-01-11 Borealis Technology Oy Composition a base de polyethylene presentant une aptitude au traitement amelioree
KR100903600B1 (ko) 2005-06-30 2009-06-18 보레알리스 테크놀로지 오와이. 개선된 가공성의 폴리에틸렌 조성물
EA016124B1 (ru) * 2005-06-30 2012-02-28 Бореалис Текнолоджи Ой Полиэтиленовая композиция с улучшенной технологичностью (варианты), способ ее получения и ее применение
US8097678B2 (en) 2005-06-30 2012-01-17 Borealis Technology Oy Outer sheath layer for power or communication cable
EP1739110A1 (fr) * 2005-06-30 2007-01-03 Borealis Technology Oy Composition de polyéthylène avec processabilité améliorée
WO2008131817A1 (fr) * 2007-04-25 2008-11-06 Borealis Technology Oy Tuyau comprenant du polyéthylène super-résistant à la propagation lente de craquelures
CN101668809B (zh) * 2007-04-25 2011-11-30 博里利斯技术公司 具有超慢裂纹生长阻力的聚乙烯型管材
EP1985660A1 (fr) * 2007-04-25 2008-10-29 Borealis Technology Oy Tuyau comportant un polyéthylène résistant au développement des fissures extra lentes
US8298639B2 (en) 2007-04-25 2012-10-30 Borealis Technology Oy Pipe comprising super slow crack growth resistant polyethylene
EP2144955A4 (fr) * 2007-05-04 2010-12-29 Fina Technology Résines à base de polyéthylène bimodal présentant une rigidité élevée et une résistance élevée à la craquelure sous l'effet de contraintes
EP2144955A1 (fr) * 2007-05-04 2010-01-20 Fina Technology, Inc. Résines à base de polyéthylène bimodal présentant une rigidité élevée et une résistance élevée à la craquelure sous l'effet de contraintes
US8138264B2 (en) 2007-05-04 2012-03-20 Fina Technology, Inc. Bimodal polyethylene resins that have high stiffness and high ESCR
WO2013101767A2 (fr) 2011-12-29 2013-07-04 Ineos Olefins & Polymers Usa, A Division Of Ineos Usa Llc Résines et compositions de polyéthylène haute densité bimodales à propriétés améliorées et leurs procédés de fabrication et d'utilisation
EP2995631A1 (fr) 2014-09-12 2016-03-16 Borealis AG Procédé de production de copolymères greffés à un squelette de polyoléfine
WO2016038177A1 (fr) 2014-09-12 2016-03-17 Borealis Ag Procédé de production de copolymères greffés sur un squelette de polyoléfine
US10392460B2 (en) 2014-09-12 2019-08-27 Borealis Ag Process for producing graft copolymers on polyolefin backbone
US11292156B2 (en) 2014-12-08 2022-04-05 Borealis Ag Process for producing pellets of copolymers of propylene

Also Published As

Publication number Publication date
FI962366A (fi) 1997-12-08
FI962366A0 (fi) 1996-06-07
FI108452B (fi) 2002-01-31
RU2167900C2 (ru) 2001-05-27
EP0902809A1 (fr) 1999-03-24

Similar Documents

Publication Publication Date Title
EP0902809A1 (fr) Produit a base de polymere d'ethylene possedant une repartition de poids moleculaire etendue, et preparation et utilisation de ce produit
US10787563B2 (en) Bimodal high-density polyethylene resins and compositions with improved properties and methods of making and using the same
US4390666A (en) Polyethylene blend composition
KR101559638B1 (ko) 고용융장력 프로필렌 폴리머의 제조 과정
US6300420B1 (en) Polypropylene composition with broad MWD
EP3765535B1 (fr) Résines de polyéthylène bimodal et tuyaux produits à partir de celles-ci
US20120245302A1 (en) Method for producing modified propylene polymer
US20120245297A1 (en) Modified propylene polymer
EP3559092B1 (fr) Procédé de fabrication de compositions polymères à base d'éthylène haute densité présentant une grande résistance à la fusion
EP1773892B2 (fr) Procede de production de compositions de polymere d'ethylene en plusieurs etapes
EP1461197A1 (fr) Individualisation par oxygene de resines de polyethylene
US20050012235A1 (en) Oxygen tailoring of polyethylene resins
AU2005277807A1 (en) Oxygen tailoring of polyethylene resins
CN102690395A (zh) 用于制备改性丙烯聚合物的方法
JP2009275123A (ja) 改質されたポリプロピレン系樹脂組成物及びその製造方法
US11117995B2 (en) Process for preparing high melt strength polypropylene
EP3962993B1 (fr) Système d additifs contenant un antioxydant et un stéarate de glycérol pour une couleur améliorée dans les résines de polyéthylène
EP4001325A1 (fr) Résine de polyéthylène pour séparateur de batterie secondaire, son procédé de fabrication, et séparateur l'utilisant
JP3694902B2 (ja) 改質ポリプロピレンおよび成形品
CN115073642B (zh) 高熔体强度聚丙烯树脂及其制备方法与应用
JPH0892326A (ja) 改質ポリプロピレンの製造法および成形品
EP2142577A1 (fr) Procédé de polymérisation fournissant du polyéthylène à propriétés optiques améliorées
EP4263631A1 (fr) Modification de terpolymère de polyéthylène
CN116355305A (zh) 薄膜用聚乙烯基础树脂组合物及其制备方法
JPH07309910A (ja) 改質ポリプロピレンの製造方法および成形品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997925086

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 98501244

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997925086

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1997925086

Country of ref document: EP