WO1997047614A1 - Verfahren zur herstellung von epoxiden aus olefinen und wasserstoffperoxid - Google Patents

Verfahren zur herstellung von epoxiden aus olefinen und wasserstoffperoxid Download PDF

Info

Publication number
WO1997047614A1
WO1997047614A1 PCT/EP1997/002816 EP9702816W WO9747614A1 WO 1997047614 A1 WO1997047614 A1 WO 1997047614A1 EP 9702816 W EP9702816 W EP 9702816W WO 9747614 A1 WO9747614 A1 WO 9747614A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen peroxide
titanium
epoxides
olefins
oxidation catalyst
Prior art date
Application number
PCT/EP1997/002816
Other languages
English (en)
French (fr)
Inventor
Georg Heinrich Grosch
Ulrich Müller
Michael Schulz
Norbert Rieber
Harald WÜRZ
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU30932/97A priority Critical patent/AU3093297A/en
Publication of WO1997047614A1 publication Critical patent/WO1997047614A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids

Definitions

  • the present invention relates to an improved process for the production of epoxides from olefins and hydrogen peroxide using an oxidation catalyst based on titanium or vanadium silicates with a zeolite structure.
  • the epoxidation of ethylene, propene, allyl chloride, 2-butene, 1 octene, 1 t ⁇ decene, mesityl oxide, isoprene, cyclooctene and cyclohexene is by means of 36 wt. % aqueous H 2 O 2 in the presence of a titanium silicalite which is in powdered form or with a particle size distribution of 25 to 60 mesh (corresponding to a sieve mesh size of 0.25 mm to about 0.7 mm) in an autoclave carried out.
  • titanium silicalites which can be present as powders, spheres, extrudates or monoliths, in combination with special anthrahydrochmon / anthrachmon redox systems for the epoxidation of olefins such as propene by means of oxygen, which is converted to H 2 O 2 as an intermediate , can use.
  • the titanium silicalites can contain 1 to 99% by weight of binders such as silicon or aluminum oxide.
  • the object of the present invention was therefore to provide a simple and efficient epoxidation process for olefins which no longer has the disadvantages of the prior art. Accordingly, a process for the production of epoxides from olefins and hydrogen peroxide using an oxidation catalyst based on titanium or vanadium silicates with a zeolite structure and in the absence of an anthrahydroquinone / anthraquinone redox system was found, which is characterized in that the oxidation catalyst has been formed by solidifying shaping processes.
  • all methods for a corresponding shaping can be used as solidifying shaping processes, as are generally customary for catalysts.
  • Processes are preferred in which the shaping takes place by extrusion in conventional extruders, for example to form strands with a diameter of usually 1 to 10 mm, in particular 2 to 5 mm.
  • the extrusion is advantageously preceded by a mixing or kneading process.
  • a calcination step is carried out after the extrusion.
  • the strands obtained are comminuted, preferably into granules or grit with a particle diameter of 0.5 to 5 mm, in particular 0.5 to 2 mm. This granulate or grit and also shaped catalyst bodies produced in another way contain practically no finer-grained fractions than those with a minimum particle diameter of 0.5 mm.
  • the shaped oxidation catalyst used contains up to 10% by weight of binder, based on the total mass of the catalyst.
  • binder contents are 0.1 to 7% by weight, in particular 1 to 5% by weight.
  • all compounds used for such purposes are suitable as binders; Compounds, in particular oxides, of silicon, aluminum, boron, phosphorus, zirconium and / or titanium are preferred.
  • Silicon dioxide is of particular interest as a binder, it being possible for the SiO 2 as silica sol or in the form of tetraalkoxysilanes to be introduced into the shaping step.
  • Oxides of magnesium and beryllium and clays for example montmorillonite, kaolin, bentonite, halloysite, dickite, nacrite and ananxite, can also be used as binders.
  • Auxiliaries for the solidifying shaping processes include, for example, extrusion aids for extrusion; a common extrusion aid is methyl cellulose. Such agents are generally completely burned in a subsequent calcination step.
  • the shaped oxidation catalysts produced in this way have a high mass-specific activity and a hardness and abrasion resistance that is sufficient for all implementation procedures and reactor types.
  • the shaped oxidation catalysts are based on titanium or vanadium silicates with a zeolite structure.
  • Zeolites are known to be crystalline aluminosilicates with ordered channel and cage structures, the pore openings of which are in the range of micropores which are smaller than 0.9 nm.
  • the network of such zeolites is composed of Si0 4 and A10 4 tetrahedra, which are connected via common oxygen bridges.
  • Zeolites are now also known which do not contain aluminum and in which titanium (Ti) is used instead of Si (IV) in the silicate lattice. These titanium zeolites, in particular those with a MFI-type crystal structure, and possibilities for their production are described, for example in EP-A 311 983 or EP-A 405 978.
  • silicon and titanium such materials can also contain additional elements such as Contain aluminum, zirconium, tin, iron, cobalt, nickel, gallium, boron or small amounts of fluorine.
  • the titanium of the zeolite can be partially or completely replaced by vanadium.
  • the molar ratio of titanium and / or vanadium to the sum of silicon plus titanium and / or vanadium is generally in the range from 0.01: 1 to 0.1: 1.
  • Titanium zeolites with an MFI structure are known for being able to be identified via a certain pattern when determining their X-ray diffraction images and additionally via a framework vibration band in the infrared region (IR) at about 960 cm -1 and are thus different from alkali metal titanates or crystalline and amorphous Differentiate Ti0 2 phases.
  • IR infrared region
  • the titanium is mentioned, and also vanadium zeolites are prepared by reacting an aqueous mixture of a SiO 2 source, a titanium or vanadium source such as titanium dioxide or a vanadium oxide and a corresponding stickstoffhalti ⁇ gen organic base ( "Template connection”), for example tetrapropyl - ammonium hydroxide, optionally with the addition of alkali metal compounds, in a pressure vessel at elevated temperature for a period of several hours or a few days, the crystalline product being formed. This is filtered off, washed, dried and baked at elevated temperature to remove the organic nitrogen base.
  • a SiO 2 source for example titanium dioxide or a vanadium oxide
  • a corresponding stickstoffhalti ⁇ gen organic base "Template connection”
  • tetrapropyl - ammonium hydroxide for example tetrapropyl - ammonium hydroxide
  • the titanium or the vanadium is present at least partially within the zeolite structure in varying proportions with four, five or six-fold coordination.
  • a repeated washing treatment with sulfuric acid hydrogen peroxide solution can follow, after which the titanium or vanadium zeolite powder must be dried and fired again; this can be followed by treatment with alkali metal compounds in order to convert the zeolite from the H form into the cation form.
  • the titanium or vanadium zeolite powder thus produced is then shaped as described above in the sense of the present invention.
  • Preferred titanium or vanadium zeolites are those with a pentasil zeolite structure, in particular the types with X-ray assignment to the BEA, MOR, TON, MTW, FER, MFI, MEL or MFI / MEL mixed structure. Zeolites of this type are described, for example, in W.M. Meier and D.H. Olson, "Atlas of Zeolite Strueture Types", Butterworths, 2nd Ed., London 1987. Titanium-containing zeolites with the structure of ZSM-48, ZSM-12, ferrierite or ⁇ -zeolite and mordenite are also conceivable for the present invention.
  • the process according to the invention for the preparation of epoxides can in principle be carried out with all customary reaction procedures and in all customary reactor types, for example in a suspension procedure or in a fixed bed arrangement. You can work continuously or discontinuously. However, the epoxidation is preferably carried out in a fixed bed apparatus.
  • the epoxidation according to the invention is expediently carried out in the liquid phase with aqueous hydrogen peroxide, which usually has a concentration of 10 to 50% by weight.
  • the process is advantageously carried out at a temperature of from -20 to 70 ° C., in particular from -5 to 50 ° C., at a pressure of 1 to 10 bar and in the presence of solvents.
  • Alcohols for example methanol, ethanol, isopropanol or tert, are suitable as solvents.
  • the olefin used can be any organic compound which contains at least one ethylenically unsaturated double bond.
  • the olefin preferably contains 2 to 30 carbon atoms. There may be more than one ethylenically unsaturated double bond, for example in dienes or trienes.
  • the olefin can additionally contain functional groups such as halogen atoms, carboxyl groups, carboxylic ester functions, hydroxyl groups, ether bridges, sulfide bridges, carbonyl functions, cyano groups, nitro groups or amino groups.
  • Typical examples of such olefins are ethylene, propene, 1-butene, ice and trans-2-butene, 1, 3-butadiene, pentenes, isoprene,
  • the process of the invention is particularly suitable for the epoxidation of propene to propylene oxide.
  • the oxidation catalysts have a high mass-specific activity, which does not decrease significantly in the course of time, and a sufficient hardness and abrasion resistance, which makes them particularly interesting for use in fixed bed apparatus
  • binder ie a maximum of 10% by weight
  • binders usually such catalysts contain up to 45 20% by weight of binder.
  • Such high binder contents impressive ⁇ pregnant naturally the activity of Katalysatores.
  • Another advantage is that no additional cost-intensive or costly auxiliary substances such as anthrahydroquinone / anthraquinone redox systems have to be used in the process according to the invention.
  • the sealed autoclave (anchor stirrer, 200 rpm) was brought to a reaction temperature of 175 ° C. at a heating rate of 3 ° / min. The reaction was complete after 92 hours.
  • the cooled reaction mixture (white suspension) was centrifuged off and washed neutral with water several times. The solid obtained was dried at 110 ° C. in the course of 24 hours (weight 149 g).
  • the pure white product had a Ti content of 1.5% by weight and a residual alkali content below 100 ppm.
  • the yield on SiO 2 used was 97%.
  • the crystallites had a size of 0.05-0.25 ⁇ m and the product showed a typical band at approx. 960 cm 1 in the IR.
  • titanium silicalite from Example 1 1000 g were mixed in a mixture of 6 liters of 5% by weight sulfuric acid and 600 g of 30% by weight
  • titanium silicalite from Example 2 950 g were in 6 1 of a 10 1 wt. -% sodium acetate solution suspended in water and boiled under reflux for 20 min, after which the titanium silicalite was filtered off with suction. This process was repeated two more times. The titanium silicalite treated in this way was then suspended in 6 l of water, boiled under reflux for 30 minutes and suction filtered. This process was also repeated. The titanium silicalite was then dried at 150 ° C and calcined at 500 ° C.
  • Example 4 45 ml of methanol and 1.5 g of shaped titanium silicalite (grit with a diameter between 0.5 mm and 1 mm) from Example 4 were introduced into a 250 ml glass autoclave and the suspension was stirred with a magnetic stirrer. The sealed glass autoclave was then cooled to -30 ° C. and 20.2 g of propene were pressed on. The glass autoclave was then heated to 0 ° C. and 32.5 g of 30 wt. % hydrogen peroxide solution was metered in. The reaction mixture was stirred at 0 ° C. under autogenous pressure for 5 h. The catalyst was then centrifuged off and the propylene oxide content was determined by gas chromatography. The propylene oxide content was 7.9% by weight.
  • Example 5 45 ml of methanol and 1.5 g of shaped titanium silicalite (grit with a diameter between 0.5 mm and 1 mm) from Example 5 were introduced into a 250 ml glass autoclave and the suspension was stirred with a magnetic stirrer. The sealed glass autoclave was then cooled to -30 ° C. and 21.0 g of propene were pressed on. The glass autoclave was then heated to 0 ° C. and 31.0 g of 30 wt. % hydrogen peroxide solution was metered in. The reaction mixture was stirred for 5 hours at 0 ° C. under autogenous pressure. The catalyst was then centrifuged off and the propylene oxide content was determined by gas chromatography. The propylene oxide content was 6.9% by weight.
  • the centrifuged catalyst was washed with 10 ml of methanol 10, centrifuged again and refilled with 45 ml of methanol in the glass autoclave.
  • the sealed glass autoclave was then cooled to -30 ° C. and 20.4 g of propene were pressed on.
  • the glass autoclave was then heated to 0 ° C. and 26.0 g of 30 wt. % hydrogen peroxide solution was metered in.
  • the reaction mixture was stirred for 24 hours at 0 ° C. under autogenous pressure.
  • the catalyst was then centrifuged off and the content of propylene oxide was determined by gas chromatography. The propylene oxide content was 9.6% by weight.
  • the catalyst which had been centrifuged off again, was washed with 10 ml of methanol, centrifuged again and again filled with 45 ml of methanol in the glass autoclave.
  • the sealed glass autoclave was then cooled to -30 ° C. and 19.7 g of propene were pressed on.
  • the glass autoclave was then heated to 0 ° C. and 31.5 g

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Verfahren zur Herstellung von Epoxiden aus Olefinen und Wasserstoffperoxid unter Verwendung eines Oxidationskatalysators auf Basis von Titan- oder Vanadiumsilikaliten mit Zeolith-Struktur und in Abwesenheit eines Anthrahydrochinon/Anthrachinon-Redoxsystems, dadurch gekennzeichnet, daß der Oxidationskatalysator durch verfestigende Formgebungsprozesse geformt worden ist.

Description

Verfahren zur Herstellung von Epoxiden aus Olefinen und Wasser stoffperoxid
Beschreibung
Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur Herstellung von Epoxiden aus Olefinen und Wasserstoffperoxid unter Verwendung eines Oxidationskatalysators auf Basis von Titan oder Vanadiumsilikaliten mit Zeolith-Struktur.
Verfahren zur Herstellung von Epoxiden aus Olefinen und wäßrigem Wasserstoffperoxid unter Verwendung von Titansilikaliten als Epoxidierungskatalysatoren sind aus der EP-Λ 100 119 (1) und der US A 5 384 418 bzw. US-A 5 463 090 (2) bekannt.
Gemäß (1) wird die Epoxidierung von Ethylen, Propen, Allyl chlorid, 2 -Buten, 1 Octen, 1 Tπdecen, Mesityloxid, Isopren, Cycloocten und Cyclohexen mittels 36 gew. %ιgem wäßrigem H2O2 m Gegenwart eines Titansilikalits, welcher m gepulverter Form oder mit einer Teilchengroßenverteilung von 25 bis 60 mesh (ent¬ sprechend einer Siebmaschenweite von 0,25 mm bis ca. 0,7 mm) vor liegt, in einem Autoklaven durchgeführt.
Aus (2) ist bekannt, daß man Titansilikalite, welche als Pulver, Kugeln, Extrudate oder Monolithe vorliegen können, in Kombination mit speziellen Anthrahydrochmon/Anthrachmon-Redoxsystemen zur Epoxidierung von Olefinen wie Propen mittels Sauerstoff, welcher intermediär zu H2O2 umgewandelt wird, verwenden kann. Die Titan- silikalite können 1 bis 99 Gew. -% an Bindemitteln wie Silicium oder Aluminiumoxid enthalten.
Derartige aus dem Stand der Technik bekannte Epoxidierungsver- fahren weisen jedoch Nachteile auf. Bei Verwendung von nicht ge formten Epoxidierungskatalysatoren wie in (1) sind diese zu fein kornig, so daß sie mechanische Probleme, beispielsweise bei deren Abtrennung, verursachen. Auch ist die Verwendung zusätzlicher Hilfsmittel wie der Anthrahydrochinon/Anthrachmon-Redoxsysteme in (2) oft unerwünscht, da solche Hilfsmittel zusätzlich Kosten und Aufwand verursachen.
Aufgabe der vorliegenden Erfindung war es daher, eine einfaches und effizientes Epoxidierungsverfahren von Olefinen bereitzu stellen, das die Nachteile des Standes der Technik nicht mehr aufweist. Demgemäß wurde ein Verfahren zur Herstellung von Epoxiden aus Olefinen und Wasserstoffperoxid unter Verwendung eines Oxida¬ tionskatalysators auf Basis von Titan- oder Vanadiumsilikaliten mit Zeolith-Struktur und in Abwesenheit eines Anthrahydrochinon/ Anthrachinon-Redoxsystems gefunden, welches dadurch gekennzeich¬ net ist, daß der Oxidationskatalysator durch verfestigende Form¬ gebungsprozesse geformt worden ist.
Als verfestigende Formgebungsprozesse können im Prinzip alle Me- thoden zur einer entsprechenden Formung verwendet werden, wie sie bei Katalysatoren allgemein üblich sind. Bevorzugt werden Pro¬ zesse, bei denen die Formgebung durch Extrusion in üblichen Ex¬ trudern, beispielsweise zu Strängen mit einem Durchmesser von üblicherweise 1 bis 10 mm, insbesondere 2 bis 5 mm, erfolgt. Wer- den Bindemittel und/oder Hilfsmittel benötigt, ist der Extrusion zweckmäßigerweise ein Mischungs- oder Knetprozeß vorgeschaltet. Gegebenenfalls erfolgt nach der Extrusion noch ein Kalzinierungs - schritt. Die erhaltenen Stränge werden gewünschtenfalls zerklei¬ nert, vorzugsweise zu Granulat oder Splitt mit einem Partikel- durchmesεer von 0,5 bis 5 mm, insbesondere 0,5 bis 2 mm. Dieses Granulat oder dieser Splitt und auch auf anderem Wege erzeugte Katalysatorformkörper enthalten praktisch keine feinkörnigeren Anteile als solche mit 0, 5 mm Mindestpartikeldurchmesser.
In einer bevorzugten Ausführungsform enthält der eingesetzte ge¬ formte Oxidationskatalysator bis zu 10 Gew. -% Bindemittel, bezogen auf die Gesamtmasse des Katalysators. Besonders bevor¬ zugte Bindemittelgehalte sind 0,1 bis 7 Gew.-%, insbesondere 1 bis 5 Gew.-%. Als Bindemittel eignen sich im Prinzip alle für derartige Zwecke eingesetzte Verbindungen; bevorzugt werden Verbindungen, insbesondere Oxide, des Siliciums, Aluminiums, Bors, Phosphors, Zirkoniums und/oder Titans. Von besonderem In¬ teresse als Bindemittel ist Siliciumdioxid, wobei das Siθ2 aLs Kieselεol oder in Form von Tetraalkoxysilanen in den Formgebungs- schritt eingebracht werden kann. Auch als Bindemittel verwendbar sind Oxide des Magnesiums und Berylliums sowie Tone, z.B. Mont- morillonite, Kaoline, Bentonite, Halloysite, Dickite, Nacrite und Ananxite.
Als Hilfsmittel für die verfestigenden Formgebungsprozesse sind beispielsweise Verstrangungshilfεmittel für die Extrusion zu nennen, ein übliches Verstrangungshilfsmittel ist Methyl- cellulose. Derartige Mittel werden in der Regel in einem nach¬ folgenden Kalzinierungsschritt vollständig verbrannt. Die so hergestellten geformten Oxidationskatalysatoren weisen eine hohe massenspezifische Aktivität und eine für alle Umset- zungsfahrweisen und Reaktortypen ausreichende Härte und Abrieb- festigkeit auf.
Die beschriebenen geformten Oxidationskatalysatoren sind im Prin¬ zip aus der Schrift (2) bekannt.
Die geformten Oxidationskatalysatoren basieren auf Titan- oder Vanadiumsilikaliten mit Zeolith-Struktur. Zeolithe sind bekann¬ termaßen kristalline Alumosilikate mit geordneten Kanal- und Kä¬ figstrukturen, deren Porenöffnungen im Bereich von Mikroporen, die kleiner als 0,9 nm sind, liegen. Das Netzwerk solcher Zeo¬ lithe ist aufgebaut aus Si04- und A104-Tetraedern, die über ge- meinsame Sauerstoffbrücken verbunden sind. Eine Übersicht der be¬ kannten Strukturen findet sich beispielsweise bei W.M. Meier und D.H. Olson, "Atlas of Zeolite Strueture Types", Butterworth, 2nd Ed. , London 1987.
Es sind nun auch Zeolithe bekannt, die kein Aluminium enthalten und bei denen im Silikatgitter anstelle des Si(IV) teilweise Titan als Ti(IV) steht. Diese Titanzeolithe, insbesondere solche mit einer Kristallstruktur vom MFI-Typ, sowie Möglichkeiten zu ihrer Herstellung sind beschrieben, beispielsweise in der EP-A 311 983 oder der EP-A 405 978. Außer Silizium und Titan kön¬ nen solche Materialien auch zusätzliche Elemente wie Aluminium, Zirkonium, Zinn, Eisen, Kobalt, Nickel, Gallium, Bor oder geringe Mengen an Fluor enthalten.
Im beschriebenen Oxidationskatalysator kann das Titan des Zeo- liths teilweise oder vollständig durch Vanadium ersetzt sein. Das molare Verhältnis von Titan und/oder Vanadium zur Summe aus Sili- cium plus Titan und/oder Vanadium liegt in der Regel im Bereich von 0,01:1 bis 0,1:1.
Titanzeolithe mit MFI-Struktur sind dafür bekannt, daß sie über ein bestimmtes Muster bei der Bestimmung ihrer Röntgenbeugungs - aufnahmen sowie zusätzlich über eine Gerüstschwingungsbande im Infrarotbereich (IR) bei etwa 960 cm-1 identifiziert werden können und sich damit von Alkalimetalltitanaten oder kristallinen und amorphen Ti02-Phasen unterscheiden.
Typischerweise stellt man die genannten Titan- und auch Vanadium- zeolithe dadurch her, daß man eine wäßrige Mischung aus einer Siθ2-Quelle, einer Titan- bzw. Vanadium-Quelle wie Titandioxid bzw. einem entsprechenden Vanadiumoxid und einer stickstoffhalti¬ gen organischen Base ("Schablonen-Verbindung" ) , z.B. Tetrapropyl - ammoniumhydroxid, gegebenenfalls noch unter Hinzufügen von Alkalimetallverbindungen, in einem Druckbehälter unter erhöhter Temperatur im Zeitraum mehrerer Stunden oder einiger Tage um¬ setzt, wobei das kristalline Produkt entsteht. Dieses wird ab- filtriert, gewaschen, getrocknet und zur Entfernung der organi¬ schen Stickstoffbase bei erhöhter Temperatur gebrannt. In dem so erhaltenen Pulver liegt das Titan bzw. das Vanadium zumindest teilweise innerhalb des Zeolithgerüsts in wechselnden Anteilen mit vier-, fünf- oder sechsfacher Koordination vor. Zur Verbesse- rung des katalytischen Verhaltens kann sich noch eine mehrmalige Waschbehandlung mit schwefelsaurer Wasserstoffperoxidlösung an¬ schließen, worauf das Titan- bzw. Vanadiumzeolith-Pulver erneut getrocknet und gebrannt werden muß; daran kann sich eine Behand¬ lung mit Alkalimetallverbindungen anschließen, um den Zeolith von der H-Form in die Kation-Form zu überführen. Das so hergestellte Titan- bzw. Vanadiumzeolith-Pulver wird dann im Sinne der vorlie¬ genden Erfindung wie oben beschrieben geformt.
Bevorzugte Titan- oder Vanadiumzeolithe sind solche mit Pentasil- Zeolith-Struktur, insbesondere die Typen mit röntgenographischer Zuordnung zur BEA-, MOR- , TON-, MTW- , FER- , MFI- , MEL- oder MFI/ MEL-Mischstruktur. Zeolithe dieses Typs sind beispielsweise in W.M. Meier und D.H. Olson, "Atlas of Zeolite Strueture Types", Butterworths, 2nd Ed., London 1987, beschrieben. Denkbar sind für die vorliegende Erfindung weiterhin titanhaltige Zeolithe mit der Struktur des ZSM-48, ZSM-12, Ferrierit oder ß-Zeolith und des Mor- denits .
Das erfindungsgemäße Verfahren zur Herstellung von Epoxiden kann im Prinzip mit allen üblichen Umsetzungsfahrweisen und in allen üblichen Reaktortypen durchgeführt werden, beispielsweise in Sus¬ pensionsfahrweise oder in einer Festbettanordnung. Man kann kontinuierlich oder diskontinuierlich arbeiten. Vorzugsweise wird die Epoxidierung jedoch in einer Festbettapparatur durchgeführt.
Die erfindungsgemäße Epoxidierung wird zweckmäßigerweise in flüs¬ siger Phase mit wäßrigem Wasserstoffperoxid, welches üblicher¬ weise eine Konzentration von 10 bis 50 Gew. -% aufweist, durchge¬ führt. Man arbeitet vorteilhafterweise bei einer Temperatur von -20 bis 70°C, insbesondere -5 bis 50°C, bei einem Druck von 1 bis 10 bar und in Gegenwart von Lösungsmitteln. Als Lösungsmittel eignen sich Alkohole, z.B. Methanol, Ethanol, iso-Propanol oder tert. -Butanol oder Mischungen hieraus, und insbesondere Wasser. Man kann auch Mischungen der genannten Alkohole mit Wasser ein- setzen. Das eingesetzte Olefin kann eine beliebige organische Verbindung sein, die mindestens eine ethylenisch ungesättigte Doppelbindung enthält. Sie kann aliphatischer, aromatischer oder cycloali- phatischer Natur sein, sie kann aus einer linearen oder einer 5 verzweigten Struktur bestehen. Vorzugsweise enthält das Olefin 2 bis 30 C-Atome. Mehr als eine ethylenisch ungesättigte Doppelbin¬ dung kann vorhanden sein, so etwa in Dienen oder Trienen. Das Olefin kann zusätzlich funktioneile Gruppe wie Halogenatome, Carboxylgruppen, Carbonesterfunktionen, Hydroxylgruppen, Ether- 10 brücken, Sulfidbrücken, Carbonylfunktionen, Cyanogruppen, Nitro- gruppen oder Aminogruppen enthalten.
Typische Beispiele für derartige Olefine sind Ethylen, Propen, 1-Buten, eis- und trans-2-Buten, 1, 3 -Butadien, Pentene, Isopren,
15 Hexene, Octene, Nonene, Decene, Undecene, Dodecene, Cyclopenten, Cyclohexen, Dicyclopentadien, Methylencyclopropan, Vinylcyclo- hexan, Vinylcyclohexen, Allylchlorid, Acrylsäure, Methacrylsäure, Crotonsäure, Vinylessigsäure, Allylalkohol, Alkylacrylate, Alkyl - methacrylate, Ölsäure, Linolsäure, Linolensäure, Ester und Glyce-
20 ride derartiger ungesättigter Fettsäuren, Styrol, α-Methylstyrol, Divinylbenzol, Inden und Stilben. Auch Mischungen der genannten Olefine können nach dem erfindungsgemäßen Verfahren epoxidiert werden.
25 Das erfindungsgemäße Verfahren eignet sich in besonderem Maße für die Epoxidierung von Propen zu Propylenoxid.
Das erfindungsgemäße Verfahren zur Herstellung von Epoxiden sowie die darin verwendeten geformten Oxidationskatalysatoren weisen
30 eine Reihe von Vorteilen auf. Wie schon erwähnt besitzen die Oxidationskatalysatoren eine hohe massenspezifische Aktivität, welche sich auch im Laufe der Zeit nicht wesentlich vermindert, und eine ausreichende Härte und Abriebfestigkeit, was sie ins¬ besondere für den Einsatz in Festbettapparaturen interessant
35 macht. Dadurch, daß die Katalysatorformkörper keine klein- und kleinstteiligen Anteile besitzen, welche durch Rückhaltungsef¬ fekte negative Einflüsse ausüben können, ist das Neben- und Fol¬ geproduktspektrum bei der Epoxidierung gering und eine damit ver¬ bundene Aktivitätsminderung über die Zeit praktisch nicht fest-
40 stellbar.
Auch von Vorteil ist der nur geringe Anteil an benötigtem Binde¬ mittel, d.h. maximal 10 Gew. -%, im geformten Oxidationskataly¬ sator, üblicherweise enthalten solche Katalysatoren bis zu 45 20 Gew. -% an Bindemittel. Derart hohe Bindemittelgehalte beein¬ trächtigen naturgemäß die Aktivität des Katalysatores. Weiterhin ist von Vorteil, daß keine zusätzlichen kosteninten¬ siven oder Aufwand verursachenden Hilfsstoffe wie Anthrahydro- chinon/Anthrachinon-Redoxsysteme beim erfindungsgemäßen Verfahren mitverwendet werden müssen.
Die nachfolgenden Beispiele sollen die Herstellung der Katalysatoren sowie die erfindungsgemäße Epoxidierung erläutern, ohne daß dadurch jedoch eine Beschränkung zu verstehen wäre.
Beispiel 1
In einem Vierhalskolben (2 1 Inhalt) wurden 455 g Tetraethyl - orthosilikat vorgelegt und aus einem Tropftrichter innerhalb von 30 min mit 15 g Tetraisopropylorthotitanat unter Rühren (250 U/min, Blattrührer) versetzt. Es bildete sich eine farblose, klare Mischung. Abschließend versetzte man mit 800 g einer 20 gew.-%igen Tetrapropylammoniumhydroxid-Lösung (Alkaligehalt < 10 ppm) und rührte noch eine Stunde nach. Bei 90°C bis 100°C wurde das aus der Hydrolyse gebildete Alkoholgemisch (ca. 450 g) abdestilliert. Man füllte mit 1,5 1 deionisiertem Wasser auf und gab das mittlerweile leicht opaque Sol in einen 2,5 1 fassenden Rührautoklaven aus Edelstahl.
Mit einer Heizrate von 3°/min wurde der verschlossene Autoklav (Ankerrührer, 200 U/min) auf eine Reaktionstemperatur von 175°C gebracht. Nach 92 Stunden war die Reaktion beendet. Das erkaltete Reaktionsgemisch (weiße Suspension) wurde abzentrifugiert und mehrfach mit Wasser neutral gewaschen. Der erhaltene Feststoff wurde bei 110°C innerhalb von 24 Stunden getrocknet (Auswaage 149 g) .
Abschließend wurde unter Luft bei 550°C in 5 Stunden das im Zeoli- then noch verbliebene Templat abgebrannt (Kalzinierungsverlust: 14 Gew.-%) .
Das reinweiße Produkt hatte nach naßchemischer Analyse einen Ti -Gehalt von 1,5 Gew.-% und einen Gehalt an Restalkali unterhalb 100 ppm. Die Ausbeute auf eingesetztes Siθ2 betrug 97 %. Die Kri - stallite hatten eine Größe von 0,05 - 0,25 μm und das Produkt zeigte im IR eine typische Bande bei ca. 960 cm 1.
Beispiel 2
1000 g Titansilikalit aus Beispiel 1 wurden in einer Mischung aus 6 1 einer 5 gew.-%igen Schwefelsäure und 600 g 30 gew.-%iger
Wasserstoffperoxidlösung suspendiert und bei 80°C 2h lang gerührt. Danach wurde der so behandelte Titansilikalit abgesaugt und wei- tere dreimal wie beschrieben behandelt. Danach wurde der Titansi¬ likalit in 6 1 Wassersuspendiert, bei 80°C 2h lang gerührt und abgesaugt. Dieser Vorgang wurde einmal wiederholt. Danach wurde der so behandelte Festkörper bei 150°C getrocknet und anschließend 5 bei 500°C 5h lang unter Luft kalziniert.
Beispiel 3
950g Titansilikalit aus Beispiel 2 wurden in 6 1 einer 10 1 gew. -%igen Natriumacetatlösung in Wasser suspendiert und für 20 min unter Rückfluß gekocht, danach wurde der Titansilikalit abgesaugt. Dieser Vorgang wurde noch zweimal wiederholt. An¬ schließend wurde der so behandelte Titansilikalit in 6 1 Wasser suspendiert, 30 min unter Rückfluß gekocht und abgesaugt. Auch 15 dieser Vorgang wurde wiederholt. Der Titansilikalit wurde dann bei 150°C getrocknet und bei 500°C kalziniert.
Beispiel 4
20 100g Titansilikalit aus Beispiel 3 wurden mit 5 g Methylcellulose trocken gemischt. Dieses Gemisch wurde im Kneter unter Zugabe von 95 ml Wasser verdichtet und bei einem Preßdruck von 30 bar zu Strängen mit 2 mm Durchmesser verarbeitet. Diese Stränge wurden über Nacht bei 110°C getrocknet und bei 500°C 5h lang kalziniert.
25 Die Seitendruckfestigkeit der Stränge ohne Binder betrug 9,5 N.
Beispiel 5
100g Titansilikalit aus Beispiel 3 wurden mit 5g Methylcellulose 30 trocken gemischt. Dieses Gemisch wurde im Kneter unter Zugabe von 70 ml Wasser und 12,5g ammoniumstabilisiertem Kiesesol (Ludox® AS-40, DuPont, 40 Gew. -% Si02) verdichtet und bei einem Preßdruck von 30 bar zu Strängen mit 2 mm Durchmesser verarbei¬ tet. Diese Stränge wurden über Nacht bei 110°C getrocknet und bei 35 500°C 5h lang kalziniert. Die Seitendruckfestigkeit der Stränge mit 4,8 Gew. -% an Binder betrug 22,5 N.
Vergleichsbeispiel A
40 120g Titansilikalit aus Beispiel 3 wurden mit 6g Methylcellulose trocken gemischt. Dieses Gemisch wurde im Kneter unter Zugabe von 40 ml Wasser und 60g Ludox AS-40 verdichtet und bei einem Preß- druck von 30 bar zu Strängen mit 2 mm Durchmesser verarbeitet. Diese Stränge wurden über Nacht bei 110°C getrocknet und bei 500°C
45 5h lang kalziniert. Die Druckfestigkeit der Stränge mit 20 Gew. -% an Binder betrug 36,7 N. Beispiel 6
In einen 250 ml Glasautoklaven wurden 45 ml Methanol und 1,5 g geformter Titansilikalit (Splitt mit einem Durchmesser zwischen 0,5 mm und 1 mm) aus Beispiel 4 eingefüllt und die Suspension wurde mit einem Magnetruhrer gerührt. Der verschlossene Glasauto¬ klav wurde danach auf -30°C abgekühlt und 20,2 g Propen wurden aufgepreßt. Danach wurde der Glasautoklav auf 0°C erwärmt und 32,5g 30 gew. -%ige Wasserstoffperoxidlösung wurden zudosiert. Die Reaktionsmischung wurde 5 h bei 0°C unter Eigendruck gerührt. Da¬ nach wurde der Katalysator abzentrifugiert und der Gehalt an Propylenoxid gaschromatographisch bestimmt. Der Gehalt an Propylenoxid betrug 7,9 Gew.-%.
Beispiel 7
In einen 250 ml Glasautoklaven wurden 45 ml Methanol und 1,5 g geformter Titansilikalit (Splitt mit einem Durchmesser zwischen 0,5 mm und 1 mm) aus Beispiel 5 eingefüllt und die Suspension wurde mit einem Magnetruhrer gerührt. Der verschlossene Glaεauto- klav wurde danach auf -30°C abgekühlt und 21,0 g Propen wurden aufgepreßt. Danach wurde der Glasautoklav auf 0°C erwärmt und 31,0 g 30 gew. -%ige Wasserstoffperoxidlösung wurden zudosiert. Die Reaktionsmischung wurde 5h bei 0°C unter Eigendruck gerührt. Danach wurde der Katalysator abzentrifugiert und der Gehalt an Propylenoxid gaschromatographisch bestimmt. Der Gehalt an Propylenoxid betrug 6,9 Gew.-%.
Vergleichsbeispiel B
In einen 250 ml Glasautoklaven wurden 45 ml Methanol und 1,5 g geformter Titansilikalit (Splitt mit einem Durchmesser zwischen 0,5 mm und 1 mm) aus Vergleichsbeispiel A eingefüllt und die Sus¬ pension wurde mit einem Magnetruhrer gerührt. Der verschlossene Glasautoklav wurde danach auf -30°C abgekühlt und 20,2 g Propen wurden aufgepreßt. Danach wurde der Glasautoklav auf 0°C erwärmt und 38,3 g 30 gew. -%ige Wasserstoffperoxidlösung wurden zudosiert. Die Reaktionsmischung wurde 5h bei 0°C unter Eigendruck gerührt. Danach wurde der Katalysator abzentrifugiert und der Gehalt an Propylenoxid gaschromatographisch bestimmt. Der Gehalt an Propylenoxid betrug nur 0,9 Gew.-%.
Vergleichsbeispiel C
In einen 250 ml Glasautoklaven wurden 45 ml Methanol und 1,5 g nicht geformter Titansilikalit aus Beispiel 3 eingefüllt und die Suspension mit einem Magnetruhrer gerührt. Der verschlossene Glasautoklav wurde danach auf -30°C abgekühlt und 23,2 g Propen wurden aufgepreßt. Danach wurde der Glasautoklav auf 0°C erwärmt und 34,0 g 30 gew. -%ιge Wasserstoffperoxidlosung wurden zudosiert. Die Reaktionsmischung wurde 24h bei 0°C unter Eigen- 5 druck gerührt. Danach wurde der Katalysator abzentrifugiert und der Gehalt an Propylenoxid gaschromatographisch bestimmt. Der Gehalt an Propylenoxid betrug 12,6 Gew.-%.
Der abzentrifugierte Katalysator wurde mit 10 ml Methanol 10 gewaschen, erneut abzentrifugiert und mit 45 ml Methanol wieder in den Glasautoklaven gefüllt. Der verschlossene Glasautoklav wurde danach auf -30°C abgekühlt und 20,4 g Propen wurden aufge¬ preßt. Danach wurde der Glasautoklav auf 0°C erwärmt und 26,0 g 30 gew. -%ιge Wasserstoffperoxidlosung wurden zudosiert. Die Reak- 15 tionsmischung wurde 24 h bei 0°C unter Eigendruck gerührt. Danach wurde der Katalysator abzentrifugiert und der Gehalt an Propylen oxid gaschromatographiεch bestimmt. Der Gehalt an Propylenoxid betrug 9,6 Gew. %.
20 Der erneut abzentrifugierte Katalysator wurde mit 10 ml Methanol gewaschen, wiederum abzentrifugiert und mit 45 ml Methanol wieder m den Glaεautoklaven gefüllt. Der verschlossene Glasautoklav wurde danach auf -30°C abgekühlt und 19,7 g Propen wurden aufge¬ preßt. Danach wurde der Glasautoklav auf 0°C erwärmt und 31,5 g
25 30 gew. -%ιge Wasserstoffperoxidlosung wurden zudosiert. Die Reak¬ tionsmischung wurde 22,5 h bei 0°C unter Eigendruck gerührt. Da¬ nach wurde der Katalysator abzentrifugiert und der Gehalt an Propylenoxid gaschromatographisch bestimmt. Der Gehalt an Propylenoxid betrug 7,8 Gew.-%.
30
Beispiel 8
In em doppelwandiges Druck-Reaktionsrohr aus Glas (Innendurch¬ messer 17 mm, Lange 200 mm) wurden 10 g Katalysator-Strange aus 35 Beispiel 4 eingefüllt. Mit einer Kreislaufpumpe wurde der Reaktor in aufsteigender Fahrweise mit Methanol geflutet, wobei zunächst 150 ml des Losungsmittels in geradem Durchgang gefahren wurden, um evtl. noch anhaftenden Katalysatorstaub zu entfernen.
40 Danach schaltete man den Losungsmittelstrom als Rückführung mit einem Volumenstrom von ca. 5000 ml/h und kühlte den Reaktor mittels eines angeschlossenen Kryostaten auf eine Kuhlmittel-Tem peratur von ca. 0-5°C.
45 Mittels eines direkt unter dem Reaktorzufluß angeordneten Bega sungsruhrers wurde Propen druckgeregelt bei 5 bis 7 bar zuge fahren und innerhalb einer Stunde wurden über eine weitere Pumpe 1900 ml Wasserstoffperoxid (30 Gew.-% in Wasser) dem Kreislauf- Methanol zugesetzt.
Nach ca. 3 Stunden wurde mittels einer Probeschleife das Lösungs- mittel analysiert. Die gaschromatographische Analyse zeigte einen Gehalt von 1,3 Gew.-% Propylenoxid entsprechend einer Ausbeute von 0,54 Mol. Die Lösungsmittelmenge im Umlauf betrug nach Reak¬ tionsende ca. 3400 g.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Epoxiden aus Olefinen und Wasserstoffperoxid unter Verwendung eines Oxidationskatalysa¬ tors auf Basis von Titan- oder Vanadiumsilikaliten mit Zeo¬ lith-Struktur und in Abwesenheit eines Anthrahydrochinon/ Anthrachinon-Redoxsystems, dadurch gekennzeichnet, daß der Oxidationεkatalysator durch verfestigende Formgebungsprozesse geformt worden ist.
2. Verfahren zur Herstellung von Epoxiden aus Olefinen und Wasserstoffperoxid nach Anspruch 1, dadurch gekennzeichnet, daß der geformte Oxidationskatalysator einen Mindestpartikel- durchmesser von 0,5 mm aufweist.
3. Verfahren zur Herstellung von Epoxiden aus Olefinen und Wasserstoffperoxid nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, daß der geformte Oxidationskatalysator bis zu 10 Gew. -% Bindemittel, bezogen auf die Gesamtmasse des Kata¬ lysators, enthält.
4. Verfahren zur Herstellung von Epoxiden aus Olefinen und Wasserstoffperoxid nach Anspruch 3, dadurch gekennzeichnet, daß der geformte Oxidationskatalysator als Bindemittel
Verbindungen des Siliciums, Aluminiums, Bors, Phosphors, Zir¬ koniums und/oder Titans enthält.
5. Verfahren zur Herstellung von Epoxiden aus Olefinen und Wasserεtoffperoxid nach den Ansprüchen 1 bis 4, dadurch ge¬ kennzeichnet, daß die Epoxidierung in einer Festbettapparatur durchgeführt.
6. Verfahren zur Herstellung von Propylenoxid aus Propen und Wasserstoffperoxid nach den Ansprüchen 1 bis 5.
PCT/EP1997/002816 1996-06-13 1997-05-30 Verfahren zur herstellung von epoxiden aus olefinen und wasserstoffperoxid WO1997047614A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU30932/97A AU3093297A (en) 1996-06-13 1997-05-30 Process for producing epoxides from olefines and hydrogen peroxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1996123611 DE19623611A1 (de) 1996-06-13 1996-06-13 Verfahren zur Herstellung von Epoxiden aus Olefinen und Wasserstoffperoxid
DE19623611.8 1996-06-13

Publications (1)

Publication Number Publication Date
WO1997047614A1 true WO1997047614A1 (de) 1997-12-18

Family

ID=7796862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/002816 WO1997047614A1 (de) 1996-06-13 1997-05-30 Verfahren zur herstellung von epoxiden aus olefinen und wasserstoffperoxid

Country Status (3)

Country Link
AU (1) AU3093297A (de)
DE (1) DE19623611A1 (de)
WO (1) WO1997047614A1 (de)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307072B2 (en) 1999-12-24 2001-10-23 Nippon Shokubai Co., Ltd. Method for production of oxygen-containing organic compound
EP1247805A1 (de) * 2001-03-05 2002-10-09 Degussa AG Verfahren zur epoxidierung von olefinen
WO2002085513A2 (de) * 2001-03-02 2002-10-31 Basf Aktiengesellschaft Formkörper und verfahren zu dessen herstellung
CN1095464C (zh) * 1998-12-09 2002-12-04 中国石油化工集团公司 丙烯用双氧水氧化连续生产环氧丙烷的工艺流程
US6596881B2 (en) 2001-06-13 2003-07-22 Degussa Ag Process for the epoxidation of olefins
US6596883B2 (en) 2001-08-23 2003-07-22 Degussa Ag Process for the epoxidation of olefins
US6600055B2 (en) 2001-06-13 2003-07-29 Degussa Ag Process for the epoxidation of olefins
US6608219B2 (en) 2001-06-13 2003-08-19 Degussa Ag Process for the epoxidation of olefins
US6610865B2 (en) 2001-08-15 2003-08-26 Degussa Ag Process for the epoxidation of olefins
US6617465B2 (en) 2001-01-08 2003-09-09 Degussa Ag Process for the epoxidation of olefins
US6624319B2 (en) 2000-02-07 2003-09-23 Degussa Ag Process for the epoxidation of olefins
US6646141B2 (en) 2000-02-07 2003-11-11 Degussa Ag Process for the epoxidation of olefins
US6670492B2 (en) 2000-02-07 2003-12-30 Degussa Ag Process for the expoxidation of olefins
US6699812B2 (en) * 1997-11-27 2004-03-02 Solvay Sa Epoxidation catalyst, its use and epoxidation process in the presence of this catalyst
US6720436B2 (en) 2002-03-18 2004-04-13 Degussa Ag Process for the epoxidation of olefins
US6749668B2 (en) 2001-06-18 2004-06-15 Degussa Ag Process for the recovery of combustible components of a gas stream
US6838572B2 (en) 2002-09-30 2005-01-04 Degussa Ag Process for the epoxidation of olefins
US7141683B2 (en) 2002-05-02 2006-11-28 Degussa Ag Process for the epoxidation of olefins
US7169945B2 (en) 2002-11-26 2007-01-30 Degussa Ag Process for the epoxidation of olefins
US7722847B2 (en) 2002-09-30 2010-05-25 Evonik Degussa Gmbh Aqueous hydrogen peroxide solutions and method of making same
US10100024B2 (en) 2014-07-29 2018-10-16 Evonik Degussa Gmbh Process for the epoxidation of an olefin
US10125108B2 (en) 2015-04-28 2018-11-13 Evonik Degussa Gmbh Process for the epoxidation of propene

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19723751A1 (de) 1997-06-06 1998-12-10 Basf Ag Formkörper und Verfahren zu dessen Herstellung
JP4335445B2 (ja) * 1998-04-08 2009-09-30 ビーエーエスエフ ソシエタス・ヨーロピア 金属酸化物ゾルを使用した成形体の製造方法、成形体、そのアルケンオキシドを製造する際の使用
DE19857137A1 (de) 1998-12-11 2000-06-15 Bayer Ag Integriertes Verfahren zur Herstellung von Epoxiden aus Olefinen
DE19939416A1 (de) 1999-08-20 2001-02-22 Basf Ag Verfahren zur Herstellung eines kristallinen, zeolithischen Feststoffs
EP1122249A1 (de) 2000-02-02 2001-08-08 SOLVAY (Société Anonyme) Verfahren zur Herstellung von Oxyranen
EP1129991A1 (de) 2000-03-02 2001-09-05 Degussa AG Verfahren zur Herstellung eines titanhaltigen Zeolithen
EP1129992A1 (de) 2000-03-02 2001-09-05 Degussa AG Verfahren zur Herstellung eines titanhaltigen Zeolithen
EP1138387A1 (de) 2000-03-29 2001-10-04 Degussa AG Verfahren zur Herstellung eines Titansilicalitformkörpers
EP1138386A1 (de) 2000-03-29 2001-10-04 Degussa AG Verfahren zur Herstellung eines Titansilicalitformkörpers
DE10135296A1 (de) 2001-07-19 2003-01-30 Basf Ag Verfahren zur Herstellung von Propylenoxid
EP1285915A1 (de) * 2001-08-16 2003-02-26 Degussa AG Kontinuierliches Verfahren zur Herstellung von Epoxiden aus Olefinen und Wasserstoffperoxid
CN103172535A (zh) * 2013-03-15 2013-06-26 华东师范大学 一种环己酮肟的液相固定床制备方法
WO2015029055A1 (en) * 2013-08-30 2015-03-05 Süd-Chemie India Pvt Ltd. An abbreviated process to custom-make titanium silicate based catalysts with variegated physico-chemical properties

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0200260A2 (de) * 1985-04-23 1986-12-10 ENICHEM SYNTHESIS S.p.A. Katalysator auf Basis von Silicium und Titanium, der eine hohe mechanische Festigkeit hat
EP0230949A2 (de) * 1986-01-28 1987-08-05 ENIRICERCHE S.p.A. Verfahren zur Epoxydation von olefinischen Verbindungen
US5214168A (en) * 1992-04-30 1993-05-25 Arco Chemical Technology, L.P. Integrated process for epoxide production
EP0568336A2 (de) * 1992-04-30 1993-11-03 ARCO Chemical Technology, L.P. Epoxidationsverfahren mit titanreichen Silikatkatalysatoren
EP0573887A2 (de) * 1992-06-06 1993-12-15 BASF Aktiengesellschaft Verfahren zur Epoxierung von Olefinen mit Peroxiden und Titanzeolithen
US5374747A (en) * 1993-12-23 1994-12-20 Arco Chemical Technology, L.P. Epoxidation process and catalyst therefore
US5384418A (en) * 1994-01-25 1995-01-24 Arco Chemical Technology, L.P. Integrated process for epoxide production
US5412122A (en) * 1993-12-23 1995-05-02 Arco Chemical Technology, L.P. Epoxidation process
US5463090A (en) * 1994-10-27 1995-10-31 Arco Chemical Technology, L.P. Integrated process for epoxide production
EP0712852A1 (de) * 1994-11-16 1996-05-22 ARCO Chemical Technology, L.P. Verfahren zur Titansilikat-katalysierten Epoxidierung
US5523426A (en) * 1995-01-04 1996-06-04 Arco Chemical Technology, L.P. Integrated process for epoxidation
EP0732327A1 (de) * 1995-03-15 1996-09-18 ARCO Chemical Technology, L.P. Integriertes Epoxidationsverfahren
EP0743094A1 (de) * 1995-05-18 1996-11-20 ARCO Chemical Technology, L.P. Regenerierung eines titaniumenthaltenden Molekularsiebes
EP0757044A1 (de) * 1995-08-01 1997-02-05 Degussa Ag Verfahren zur Regenerierung eines Katalysators

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0200260A2 (de) * 1985-04-23 1986-12-10 ENICHEM SYNTHESIS S.p.A. Katalysator auf Basis von Silicium und Titanium, der eine hohe mechanische Festigkeit hat
EP0230949A2 (de) * 1986-01-28 1987-08-05 ENIRICERCHE S.p.A. Verfahren zur Epoxydation von olefinischen Verbindungen
US5214168A (en) * 1992-04-30 1993-05-25 Arco Chemical Technology, L.P. Integrated process for epoxide production
EP0568336A2 (de) * 1992-04-30 1993-11-03 ARCO Chemical Technology, L.P. Epoxidationsverfahren mit titanreichen Silikatkatalysatoren
EP0573887A2 (de) * 1992-06-06 1993-12-15 BASF Aktiengesellschaft Verfahren zur Epoxierung von Olefinen mit Peroxiden und Titanzeolithen
US5412122A (en) * 1993-12-23 1995-05-02 Arco Chemical Technology, L.P. Epoxidation process
US5374747A (en) * 1993-12-23 1994-12-20 Arco Chemical Technology, L.P. Epoxidation process and catalyst therefore
US5384418A (en) * 1994-01-25 1995-01-24 Arco Chemical Technology, L.P. Integrated process for epoxide production
US5463090A (en) * 1994-10-27 1995-10-31 Arco Chemical Technology, L.P. Integrated process for epoxide production
EP0712852A1 (de) * 1994-11-16 1996-05-22 ARCO Chemical Technology, L.P. Verfahren zur Titansilikat-katalysierten Epoxidierung
US5523426A (en) * 1995-01-04 1996-06-04 Arco Chemical Technology, L.P. Integrated process for epoxidation
EP0732327A1 (de) * 1995-03-15 1996-09-18 ARCO Chemical Technology, L.P. Integriertes Epoxidationsverfahren
EP0743094A1 (de) * 1995-05-18 1996-11-20 ARCO Chemical Technology, L.P. Regenerierung eines titaniumenthaltenden Molekularsiebes
EP0757044A1 (de) * 1995-08-01 1997-02-05 Degussa Ag Verfahren zur Regenerierung eines Katalysators

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699812B2 (en) * 1997-11-27 2004-03-02 Solvay Sa Epoxidation catalyst, its use and epoxidation process in the presence of this catalyst
CN1095464C (zh) * 1998-12-09 2002-12-04 中国石油化工集团公司 丙烯用双氧水氧化连续生产环氧丙烷的工艺流程
US6307072B2 (en) 1999-12-24 2001-10-23 Nippon Shokubai Co., Ltd. Method for production of oxygen-containing organic compound
US6670492B2 (en) 2000-02-07 2003-12-30 Degussa Ag Process for the expoxidation of olefins
US6646141B2 (en) 2000-02-07 2003-11-11 Degussa Ag Process for the epoxidation of olefins
US6624319B2 (en) 2000-02-07 2003-09-23 Degussa Ag Process for the epoxidation of olefins
US6617465B2 (en) 2001-01-08 2003-09-09 Degussa Ag Process for the epoxidation of olefins
WO2002085513A2 (de) * 2001-03-02 2002-10-31 Basf Aktiengesellschaft Formkörper und verfahren zu dessen herstellung
WO2002085513A3 (de) * 2001-03-02 2003-02-27 Basf Ag Formkörper und verfahren zu dessen herstellung
EP1247805A1 (de) * 2001-03-05 2002-10-09 Degussa AG Verfahren zur epoxidierung von olefinen
WO2002085873A1 (en) * 2001-03-05 2002-10-31 Degussa Ag Process for the epoxidation of olefins
US6596881B2 (en) 2001-06-13 2003-07-22 Degussa Ag Process for the epoxidation of olefins
US6608219B2 (en) 2001-06-13 2003-08-19 Degussa Ag Process for the epoxidation of olefins
US6600055B2 (en) 2001-06-13 2003-07-29 Degussa Ag Process for the epoxidation of olefins
US6749668B2 (en) 2001-06-18 2004-06-15 Degussa Ag Process for the recovery of combustible components of a gas stream
US6610865B2 (en) 2001-08-15 2003-08-26 Degussa Ag Process for the epoxidation of olefins
US6596883B2 (en) 2001-08-23 2003-07-22 Degussa Ag Process for the epoxidation of olefins
US6720436B2 (en) 2002-03-18 2004-04-13 Degussa Ag Process for the epoxidation of olefins
US7141683B2 (en) 2002-05-02 2006-11-28 Degussa Ag Process for the epoxidation of olefins
US6838572B2 (en) 2002-09-30 2005-01-04 Degussa Ag Process for the epoxidation of olefins
US7722847B2 (en) 2002-09-30 2010-05-25 Evonik Degussa Gmbh Aqueous hydrogen peroxide solutions and method of making same
US7981391B2 (en) 2002-09-30 2011-07-19 Evonik Degussa Gmbh Aqueous hydrogen peroxide solutions and method of making same
US7169945B2 (en) 2002-11-26 2007-01-30 Degussa Ag Process for the epoxidation of olefins
US10100024B2 (en) 2014-07-29 2018-10-16 Evonik Degussa Gmbh Process for the epoxidation of an olefin
US10125108B2 (en) 2015-04-28 2018-11-13 Evonik Degussa Gmbh Process for the epoxidation of propene

Also Published As

Publication number Publication date
AU3093297A (en) 1998-01-07
DE19623611A1 (de) 1997-12-18

Similar Documents

Publication Publication Date Title
WO1997047614A1 (de) Verfahren zur herstellung von epoxiden aus olefinen und wasserstoffperoxid
EP0904151B1 (de) Oxidationskatalysator und verfahren zur herstellung von epoxiden aus olefinen, wasserstoff und sauerstoff unter verwendung des oxidationskatalysators
EP0991469B1 (de) Formkörper und verfahren zu dessen herstellung
EP1071506B1 (de) Verfahren zur herstellung eines formkörpers unter verwendung eines metalloxidsols, formkörper, seine verwendung bei der herstellung eines alkenoxids
DE69704869T2 (de) Verfahren zur direkten oxidation von olefinen zu olefinoxiden
EP0996501B1 (de) Verfahren zur regenerierung eines zeolith-katalysators
EP0772491B1 (de) Oxidationskatalysator, und oxidationsverfahren unter verwendung des oxidationskatalysators
EP0986526B1 (de) Verfahren zur oxidation einer mindestens eine c-c-doppelbindung aufweisenden organischen verbindung
DE69430234T2 (de) Epoxidierungsverfahren und Katalysator dafür
DE60110640T3 (de) Katalysator für epoxidierungen und verfahren zu dessen herstellung
WO1997047613A1 (de) Verfahren zur herstellung von epoxiden aus olefinen und wasserstoffperoxid oder hydroperoxiden unter verwendung eines zeolith-oxidationskatalysators
DE60002285T2 (de) Verfahren zur Herstellung von zeolithischen Katalysatoren
WO1997031711A1 (de) Netzkatalysator auf basis von titan- oder vanadiumzeolithen und inerten netzgeweben zur beschleunigung von oxidationsreaktionen
WO2004099166A1 (de) Verfahren zur herstellung von propylenoxid
EP0885206A1 (de) Edelmetallfreie katalysatorzusammensetzung
WO1997025143A1 (de) Oxidationskatalysator mit einem gehalt an lanthanoidmetallen, verfahren zu seiner herstellung und oxidationsverfahren unter verwendung des oxidationskatalysators
EP1232007B1 (de) Verfahren zur herstellung eines oxids
EP1368118B1 (de) Formkörper und verfahren zu dessen herstellung
EP0573887B1 (de) Verfahren zur Epoxierung von Olefinen mit Peroxiden und Titanzeolithen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR CA CN CZ GE HU IL JP KR LT LV MX NO NZ PL RO SG SI SK TR UA US AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: CA

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 98501128

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase