WO1997044958A1 - Bored wall surface observation apparatus - Google Patents

Bored wall surface observation apparatus Download PDF

Info

Publication number
WO1997044958A1
WO1997044958A1 PCT/JP1997/001719 JP9701719W WO9744958A1 WO 1997044958 A1 WO1997044958 A1 WO 1997044958A1 JP 9701719 W JP9701719 W JP 9701719W WO 9744958 A1 WO9744958 A1 WO 9744958A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
image data
wall surface
data
memory
Prior art date
Application number
PCT/JP1997/001719
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitaka Matsumoto
Osamu Murakami
Original Assignee
Core Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Core Corp. filed Critical Core Corp.
Priority to AU27915/97A priority Critical patent/AU715836B2/en
Priority to CA002255820A priority patent/CA2255820A1/en
Publication of WO1997044958A1 publication Critical patent/WO1997044958A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to an apparatus for observing a hole wall surface, such as a borehole or a sewer pipe, which captures the wall surface of an underground hole and develops the image into an entire circumference image.
  • the hole wall surface observation device of the present invention performs a high-speed coordinate transformation when photographing a hole wall surface such as a borehole or a sewer pipe and developing the image into an omnidirectional image, so that the developed image around the hole wall surface can be obtained only with a still image.
  • the purpose of this is to make it easier to recognize and recognize the situation inside a moving hole such as water leakage by displaying it in a moving image. Disclosure of the invention
  • the configuration of the present invention is as follows.
  • An illumination device that illuminates the entire circumferential direction of the hole wall surface
  • a video camera that includes wide-angle imaging means and captures an image of the entire circumference of the hole wall surface illuminated by the lighting device from one viewpoint at a time, An azimuth meter that detects the direction of the video camera and outputs azimuth data of the captured image; Storage means;
  • Image data reading means for reading the entire circumference image data stored in the image memory with reference to the azimuth data in a spiral for each field;
  • Image data developing means for converting all-around image data read from the image memory with reference to a coordinate conversion table into expanded image data for each field;
  • Moving image display means for performing DZA conversion on the expanded image data for each field and outputting a video signal of a moving image
  • FIG. 1 is a configuration diagram of a hole wall surface observation device of the present invention.
  • FIG. 2 is an internal configuration diagram of the probe.
  • FIG. 3 is an example of a captured image of a hole wall surface.
  • FIG. 4 is a schematic projection view of a convex conical mirror.
  • FIG. 5 is a schematic diagram of photographing of a wide-angle lens.
  • FIG. 6 is a block diagram of the processing device.
  • FIG. 7 is a schematic diagram of digitized image data.
  • FIG. 8 is an interlaced scanning line diagram.
  • FIG. 9 is a schematic diagram of a developed image around the hole wall surface.
  • FIG. 1 shows a configuration diagram of a hole wall surface observation device embodying the present invention.
  • the hole wall observation device consists of a probe 1 that observes the hole wall surface, a wire 2 that suspends the probe 1, a winch 3 that pulls the wire 2, and moves the probe 1 up and down.
  • Cable 4 for transmitting observation data 1)
  • Processing unit 5 for inputting observation data of probe 1 for image processing
  • Display unit 6 for displaying the image processing result of processing unit 5 on the TV screen
  • Processing unit And a storage device 7 for storing image processing results.
  • FIG. 2 shows an internal configuration diagram of the probe 1.
  • the probe 1 is composed of a video camera 1 1 that captures an image of the entire circumference of the submerged wall, a control device 12 that is connected to the video camera 11 and controls the video camera 1], and a video camera 11 A compass 13 that detects the direction of 1 and outputs the orientation data of the captured image, an illumination lamp 14 that is attached to the outer periphery of the video camera 11 and illuminates the entire circumference of the hole wall, and a video camera It is composed of a convex circular mirror 15 as a wide-angle photographing means, which is arranged in front of the optical axis 1 and projects the entire peripheral image of the hole wall surface irradiated by the illumination lamp 14 on a mirror surface.
  • the probe wall observation device of the present invention inserts the probe 1 into the hole and illuminates the entire circumference of the hole wall with the illumination lamp 14.
  • a indicates a diagonal crack formed on the hole wall
  • b indicates a horizontal crack
  • c indicates a vertical crack.
  • FIG. 4 shows a schematic projection view of the convex conical mirror 15.
  • the convex conical mirror 15 is trapezoidal when viewed from the side, and its mirror surface is inclined by 45 °, and the light reflected on the mirror surface of the convex conical mirror 15 turns 90 ° and converges on the lens surface of the video camera 11.
  • the video camera 11 can take an image of the entire circumference of the hole wall in the range r in the figure at once from one viewpoint.
  • FIG. 6 shows a block diagram of the processing device 5 for processing the observation data of the probe 1.
  • the processing device 5 decomposes the video signal of the video camera 11 into R, G, and B signals by an RGB decoder 51, and converts it into digital image data by an AZD converter 52.
  • the digitized image data is stored in the image memory 54 for each frame by the write memory data controller 53 as a collection of pixels as shown in FIG.
  • a screen composed of 262.5 lines is transmitted 60 frames per second, and the second image scanning line is swept between the scanning lines of the first image. (Interlaced scanning).
  • FIG. 8 shows a scanning diagram of this interlaced system.
  • the interlaced method displays a screen (one frame) with 525 scanning lines by combining two fields, an odd field shown on the left side of the figure and an even field shown on the right side.
  • this method draws 22.5 lines in the first 1/60 seconds, 22.5 lines in the next 1Z60 seconds, and completes 52.5 lines in these two times Screen.
  • the contents of the image memory 54 are read out by the readout memory address controller 55 at a rate of 6 times per second in accordance with the vertical and horizontal synchronization signals for each field.
  • the data of the odd field and the even field are alternately read many times at a speed of 0 times.
  • the reading of the image memory 54 is performed before the next frame updates the previous frame, that is, every 1/30 second per cycle.
  • the image data is spirally read out under the control of the coordinate conversion table 56 while referring to the azimuth data of the captured image output from the compass 13.
  • the reason why the image data is read in a spiral shape is that the scanning line on the TV screen is inclined as shown in FIG. 813 ⁇ 4.
  • the image data By reading out the image data according to the inclination of the scanning line, it is displayed on the TV screen. To correct the misalignment when displaying, and display a high-fidelity screen.
  • the image of the hole wall surface read in a spiral shape becomes a trapezoidal figure due to the difference between the inner and outer circumferences, and is corrected by the coordinate conversion table 56 performed simultaneously with the reading of the image data. Convert to and expand.
  • the image data developed into the rectangular figure is converted into an analog signal by the D / A converter 57, and the video signal is output through the RGB matrix circuit 58.
  • the position of the convex circular mirror 15 also changes every moment. Therefore, when the entire circumference image of the hole wall reflected on the mirror surface of the convex conical mirror 15 captured by the video camera 11 is processed at high speed and coordinate-transformed for each frame, the result is that the continuous hole wall The entire circumference developed image is displayed as a moving image.
  • the moving distance of the video camera 11 is measured by a rotary encoder (not shown) attached to the winch 3, and the pulse generated by the rotary encoder is used as a trigger to write.
  • the image data 54 is controlled by the memory data controller 53, The image data is written to the image memory 54 and stored.
  • the image memory 54 stores all image data to be taken while moving the video camera 11 at a distance equal to the distance between both eyes. For example, when the distance between both eyes is 65 mm, one frame of image data is stored every time the video camera 11 moves 1 mm, and at least 65 frames of image data are stored at a time.
  • the write memory data controller 53 stores images stored in the image memory 54 at once.
  • the image memory 54 is controlled so that the image data newly stored is added to the oldest image data every time the video camera 11 moves while the number of image data is kept constant.
  • the position interval between the newly added image data and the oldest image data is always equal to the binocular interval.
  • the image data stored in the image memory 54 is stored in the image memory 54 by the memory address controller 55 in accordance with the vertical and horizontal synchronizing signals for each field in the same manner as in the previous embodiment.
  • the data of the odd and even fields are alternately read many times at a rate of 60 times per second.
  • the reading of the image memory 54 is performed by alternately switching the read address, assembling the image data to be newly added and the oldest image data, and reading them alternately in a time-division manner.
  • the interval between the binocular parallaxes can be arbitrarily adjusted by changing the readout address of the left and right image data to be combined.
  • the two images, the newest image and the oldest image in the image memory 54, are rotated 90 degrees each and turned sideways. Then, right and left parallax images are obtained.
  • the stereoscopic image reproduces a space with depth before and after the display surface by separately presenting two 2D images with binocular disparity to the left and right eyes.
  • left and right parallax images are simultaneously presented on a CRT for the left and right eyes or a liquid crystal display to display a stereoscopic image.
  • a stereoscopic image can be stereoscopically viewed even if the left and right parallax images are not completely simultaneous and have a time delay of about 10 Omsec or less.
  • 60 images are presented per second, so each image is presented approximately every 16.7 msec. Therefore, the left and right parallax images are alternately displayed on a single TV screen in a time-sharing manner, and the stereoscopic vision is made possible by observing the TV screen with shutter glasses that alternately open and close the left and right eyes. Become.
  • the left and right sides displayed on one TV screen using complementary colored glasses or polarized glasses may be separately presented.
  • the hole wall surface observation device of the present invention performs high-speed coordinate conversion when photographing a hole wall surface such as a boring hole or groundwater and developing the image into a full-circumference image, so that not only a still image but also a moving image Display as an image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Image Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

An apparatus for displaying an all-around development image of a bored wall surface not only by a still image but also by a dynamic image by carrying out coordinate transformation at a high speed when the wall surface of a hole made by boring or a hole through which underground water flows is photographed and then developed into an all-around image. The digitalized image data are stored in each frame of an image memory by a memory data controller, and the data in odd-number fields and even-number fields of the image memory are read out alternately many times at a rate of 60 fields per second by a read memory address controller in accordance with vertical and horizontal synchronizing signals. During this time, the image data are read spirally by controlling a coordinate transformation table with reference to the directional data on the photographed image outputted from a direction indicator. The image data developed into a square diagram are converted into analog signals by a D/A converter, and picture signals are outputted through a RGB matrix circuit.

Description

明 細 書  Specification
孔壁面観測装置 技術分野  Hole wall observation device Technical field
ダムの建設や地下空洞掘削などの際にはボーリング孔を明けて建設地点の地質 調査を行う。 本発明はこのようなボーリング孔や下水道管など地中の孔壁面を撮 影して全周画像に展開する孔壁面観測装置に関する。 背景技術  When constructing a dam or excavating an underground cavity, drill a borehole and conduct a geological survey of the construction site. The present invention relates to an apparatus for observing a hole wall surface, such as a borehole or a sewer pipe, which captures the wall surface of an underground hole and develops the image into an entire circumference image. Background art
ボーリング孔や下水道管などは、 地圧や地盤沈下などにより孔壁面の一部に変 形や亀裂力生じ、 この部分から地下水などカ孔内に侵入したり、 流水が地中に漏 れたりすることがある。  Boring holes and sewer pipes are deformed or cracked on a part of the hole wall due to ground pressure or land subsidence, etc., from which they penetrate groundwater or other pores, or runoff leaks into the ground. Sometimes.
このため、 ボーリング孔や下水道管の孔壁面の状況をつぶさに観測して正確な 漏水位置を検出することが重要になる力 従来の観測装置は静止画像だけで観測 データを表示していたため、 fl^壁面にできた漏水箇所などを発見するのが困難で めった。  For this reason, it is important to closely observe the state of the borehole and the sewer pipe wall surface to accurately detect the location of the leak. Conventional observation equipment displayed observation data only with still images, so fl ^ It was difficult to find water leaks on the wall.
本発明の孔壁面観測装置は、 ボーリング孔や下水道管などの孔壁面を撮影して 全周画像に展開する際の座標変換を高速に行つて孔壁面の全周展開画像を静止画 像だけでなく動画像で表示することにより、 漏水など動きのある孔内の状況を容 易に認、識できるようにすることを目的になされたものである。 発明の開示  The hole wall surface observation device of the present invention performs a high-speed coordinate transformation when photographing a hole wall surface such as a borehole or a sewer pipe and developing the image into an omnidirectional image, so that the developed image around the hole wall surface can be obtained only with a still image. The purpose of this is to make it easier to recognize and recognize the situation inside a moving hole such as water leakage by displaying it in a moving image. Disclosure of the invention
本発明の構成は次のとおりである。  The configuration of the present invention is as follows.
孔壁面の全周方向を照射する照明装置と、  An illumination device that illuminates the entire circumferential direction of the hole wall surface,
広角撮影手段を備えて前記照明装置が照射する孔壁面の全周画像を一視点から 一度に撮影するビデオカメラと、 前記ビデオカメラの方向を検知して撮影画像の方位デー夕を出力する方位計と、 前記ビデオカメラの撮影した全周画像の映像信号を AZD変換して 1 フレーム 毎に画像メモリに記憶する画像データ記憶手段と、 A video camera that includes wide-angle imaging means and captures an image of the entire circumference of the hole wall surface illuminated by the lighting device from one viewpoint at a time, An azimuth meter that detects the direction of the video camera and outputs azimuth data of the captured image; Storage means;
前記方位データを参照して前記画像メモリに記憶した全周画像データを 1フィ 一ルド毎にスパイラル状に読出す画像データ読出手段と、  Image data reading means for reading the entire circumference image data stored in the image memory with reference to the azimuth data in a spiral for each field;
座標変換テーブルを参照して前記画像メモリから読出した全周画像データを 1 フィールド毎に展開画像データに変換する画像デー夕展開手段と、  Image data developing means for converting all-around image data read from the image memory with reference to a coordinate conversion table into expanded image data for each field;
前記展開画像データを 1フィールド毎に D ZA変換して動画像の映像信号を出 力する動画像表示手段と、  Moving image display means for performing DZA conversion on the expanded image data for each field and outputting a video signal of a moving image;
を備え、  With
前記ビデオカメラが撮影した孔壁面の全周画像を展開画像に変換して動画像表 示することを特徴とする孔壁面観測装置である。 図面の簡単な説明  An apparatus for observing a hole wall surface, wherein an entire circumference image of the hole wall surface captured by the video camera is converted into a developed image and displayed as a moving image. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の孔壁面観測装置の構成図である。 第 2図は、 プローブの内 部構成図である。 第 3図は、 孔壁面の撮影画像の例である。 第 4図は、 凸面円錐 鏡の投影模式図である。 第 5図は、 広角レンズの撮影模式図である。 第 6図は、 処理装置のブロック図である。 第 7図は、 デジタル化した画像データの模式図で ある。 第 8図は、 インターレース方式の走査線図である。 第 9図は、孔壁面の全 周展開画像の模式図である。 発明を実施するための最良の形態  FIG. 1 is a configuration diagram of a hole wall surface observation device of the present invention. FIG. 2 is an internal configuration diagram of the probe. FIG. 3 is an example of a captured image of a hole wall surface. FIG. 4 is a schematic projection view of a convex conical mirror. FIG. 5 is a schematic diagram of photographing of a wide-angle lens. FIG. 6 is a block diagram of the processing device. FIG. 7 is a schematic diagram of digitized image data. FIG. 8 is an interlaced scanning line diagram. FIG. 9 is a schematic diagram of a developed image around the hole wall surface. BEST MODE FOR CARRYING OUT THE INVENTION
以下に図面を参照して本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 1図に、 本発明を実施した孔壁面観測装置の構成図を示す。 FIG. 1 shows a configuration diagram of a hole wall surface observation device embodying the present invention.
5 孔壁面観測装置は、 孔壁面を観測するプローブ 1と、 プローブ 1を吊り下げる ワイヤ 2と、 ワイヤ 2を牽引してプローブ 1を昇降するウィンチ 3と、 プローブ 1の観測デー夕を伝送するケーブル 4と、 プローブ 1の観測データを入力して画 像処理する処理装置 5と、 処理装置 5の画像処理結果を T V画面に表示する表示 装置 6と、 処理装置 5の画像処理結果を記憶する記憶装置 7とで構成する。 5 The hole wall observation device consists of a probe 1 that observes the hole wall surface, a wire 2 that suspends the probe 1, a winch 3 that pulls the wire 2, and moves the probe 1 up and down. Cable 4 for transmitting observation data 1) Processing unit 5 for inputting observation data of probe 1 for image processing, Display unit 6 for displaying the image processing result of processing unit 5 on the TV screen, Processing unit And a storage device 7 for storing image processing results.
第 2図に、 プローブ 1の内部構成図を示す。 プローブ 1は、 子し壁面の全周画像 を撮影するビデオカメラ 1 1と、 ビデオカメラ 1 1に接続してビデオカメラ 1 ] を制御する制御装置 1 2と、 ビデオカメラ 1 1に取付けビデオ力メラ 1 1の方向 を検知して撮影画像の方位データを出力する方位計 1 3と、 ビデオカメラ 1 1の レンズ外周に取付けて孔壁面の全周方向を照射する照明ランプ 1 4と、 ビデオ力 メラ 1 1の光軸正面に配置して照明ランプ 1 4が照射する孔壁面の全周画像を鏡 面に映す広角撮影手段としての凸面円維鏡 1 5とで構成する。  FIG. 2 shows an internal configuration diagram of the probe 1. The probe 1 is composed of a video camera 1 1 that captures an image of the entire circumference of the submerged wall, a control device 12 that is connected to the video camera 11 and controls the video camera 1], and a video camera 11 A compass 13 that detects the direction of 1 and outputs the orientation data of the captured image, an illumination lamp 14 that is attached to the outer periphery of the video camera 11 and illuminates the entire circumference of the hole wall, and a video camera It is composed of a convex circular mirror 15 as a wide-angle photographing means, which is arranged in front of the optical axis 1 and projects the entire peripheral image of the hole wall surface irradiated by the illumination lamp 14 on a mirror surface.
本発明の子し壁面観測装置は以上のような構成で、 プローブ 1を孔内に挿入し、 照明ランプ 1 4で孔壁面の全周方向を照射する。  With the above configuration, the probe wall observation device of the present invention inserts the probe 1 into the hole and illuminates the entire circumference of the hole wall with the illumination lamp 14.
これにより、 第 3図に示すような、 ドーナツ状の 3 6 0 ° 方向の全周画像が凸 面円錐鏡 1 5の鏡面に映り、 これをビデオカメラ 1 1で撮影する。  As a result, as shown in FIG. 3, a donut-shaped 360 ° -direction image of the entire circumference is reflected on the mirror surface of the convex conical mirror 15, which is photographed by the video camera 11.
図中、 aは孔壁面にできた斜方向の割れ目、 bは水平方向の割れ目、 cは縦方 向の割れ目を示す。  In the figure, a indicates a diagonal crack formed on the hole wall, b indicates a horizontal crack, and c indicates a vertical crack.
この凸面円錐鏡 1 5の鏡面に映る全周画像は、 プローブ 1力孔内を降下すると き画像の中心に向けて収縮するように見える。  The entire circumference image reflected on the mirror surface of the convex conical mirror 15 appears to contract toward the center of the image when descending in the probe 1 force hole.
第 4図に、 凸面円錐鏡 1 5の投影模式図を示す。  FIG. 4 shows a schematic projection view of the convex conical mirror 15.
凸面円錐鏡 1 5は側面視台形で鏡面が 4 5 ° 傾斜し、 凸面円錐鏡 1 5の鏡面に 反射する光が 9 0 ° 方向転換してビデオカメラ 1 1のレンズ面に集まる。  The convex conical mirror 15 is trapezoidal when viewed from the side, and its mirror surface is inclined by 45 °, and the light reflected on the mirror surface of the convex conical mirror 15 turns 90 ° and converges on the lens surface of the video camera 11.
これによりビデオカメラ 1 1は、 図中 rの範囲の孔壁面の全周画像を一視点か ら一度に撮影することができる。  As a result, the video camera 11 can take an image of the entire circumference of the hole wall in the range r in the figure at once from one viewpoint.
孔壁面の全周画像を一視点から一度に撮影するためには、 第 5図に示すように、 ビデオカメラ 1 ]に広角レンズ Lを取付けて前方の孔壁面を撮影してもよい。 この場合、 ビデオカメラ 1 1が撮影する画像範囲は、 図中 rの範囲となる。 第 6図に、 プローブ 1の観測デー夕を処理する処理装置 5のブロック図を示す。 処理装置 5は、 ビデオカメラ 1 1のビデオ信号を R G Bデコーダ 5 1で R、 G、 B信号に分解した後、 AZD変換器 5 2でデジタルの画像データに変換する。 デジタル化した画像データは、 書込みメモリデータコントローラ 5 3によって、 第 7図に示すような画素の集台として、 1フレーム毎に画像メモリ 5 4に記憶す ο In order to photograph the entire circumference image of the hole wall surface from one viewpoint at a time, as shown in FIG. In this case, the image range captured by the video camera 11 is the range r in the figure. FIG. 6 shows a block diagram of the processing device 5 for processing the observation data of the probe 1. The processing device 5 decomposes the video signal of the video camera 11 into R, G, and B signals by an RGB decoder 51, and converts it into digital image data by an AZD converter 52. The digitized image data is stored in the image memory 54 for each frame by the write memory data controller 53 as a collection of pixels as shown in FIG.
N T S C方式では、 走査線が 2 6 2. 5本で構成される画面を 1秒間に 6 0枚 伝送し、 1枚目の画像の走査線間に 2枚目の画像走査線が掃弓 Iされるインターレ ース (飛び越し走査) 方式を用いている。  In the NTSC system, a screen composed of 262.5 lines is transmitted 60 frames per second, and the second image scanning line is swept between the scanning lines of the first image. (Interlaced scanning).
第 8図に、 このインターレース方式の走査線図を示す。  FIG. 8 shows a scanning diagram of this interlaced system.
インターレース方式は、 図の左側に示す奇数フィールドと、 右側に示す偶数フ ィ一ルドの 2つのフィールドを合わせて 5 2 5本の走査線による画面 (1フレー ム) を表示する。  The interlaced method displays a screen (one frame) with 525 scanning lines by combining two fields, an odd field shown on the left side of the figure and an even field shown on the right side.
すなわち、 この方式では最初の 1 / 6 0秒で 2 6 2. 5本、 次の 1 Z 6 0秒で 2 6 2. 5本の走査線を画き、 この 2回で 5 2 5本の完成した画面とする。  In other words, this method draws 22.5 lines in the first 1/60 seconds, 22.5 lines in the next 1Z60 seconds, and completes 52.5 lines in these two times Screen.
画像メモリ 5 4に 1フィールド分の画像データが記憶されると、 読出しメモリ アドレスコントローラ 5 5によって、 1フィールド毎に垂直、 水平の同期信号に 合わせて、 画像メモリ 5 4の内容を 1秒間に 6 0回の速さで奇数フィールドと偶 数フィールドのデータを交互に何回も読出す。  When image data for one field is stored in the image memory 54, the contents of the image memory 54 are read out by the readout memory address controller 55 at a rate of 6 times per second in accordance with the vertical and horizontal synchronization signals for each field. The data of the odd field and the even field are alternately read many times at a speed of 0 times.
この画像メモリ 5 4の読出しは、 次のフレームが前のフレームを更新する前、 すなわち、 1サイクル 1 / 3 0秒毎に行う。  The reading of the image memory 54 is performed before the next frame updates the previous frame, that is, every 1/30 second per cycle.
このとき、 方位計 1 3が出力する撮影画像の方位データを参照しながら座標変 換テーブル 5 6の制御によつて画像データをスパイラル状に読出す。  At this time, the image data is spirally read out under the control of the coordinate conversion table 56 while referring to the azimuth data of the captured image output from the compass 13.
画像データをスパイラル状に読出すのは、 第 81¾に示すように、 T V画面の走 査線が傾斜しているためである。  The reason why the image data is read in a spiral shape is that the scanning line on the TV screen is inclined as shown in FIG. 81¾.
この走査線の傾斜に合せて画像デー夕を読出すことにより、 T V画面に表示す るときの位置ずれを補正して高忠実度な画面を表示する。 By reading out the image data according to the inclination of the scanning line, it is displayed on the TV screen. To correct the misalignment when displaying, and display a high-fidelity screen.
スパイラル状に読出した孔壁面の画像は、 内周と外周の差によって台形図形と なる力く、 画像データの読出しと同時に行う座標変換テーブル 5 6の補正によって、 第 9図に示すような方形図形に変換して展開する。  The image of the hole wall surface read in a spiral shape becomes a trapezoidal figure due to the difference between the inner and outer circumferences, and is corrected by the coordinate conversion table 56 performed simultaneously with the reading of the image data. Convert to and expand.
そして、 この方形図形に展開した画像データを D/A変換器 5 7でアナログ信 号に変換し、 R G Bマトリックス回路 5 8を通して映像信号を出力する。  Then, the image data developed into the rectangular figure is converted into an analog signal by the D / A converter 57, and the video signal is output through the RGB matrix circuit 58.
プローブ 1を一定速度で降下させると、 凸面円維鏡 1 5の位置も刻々と変化す る。 従って、 ビデオカメラ 1 1が撮影する凸面円錐鏡 1 5の鏡面に映る孔壁面の 全周画像を高速に処理して 1フレーム毎に座標変換して表示すると、 結果的に連 続した孔壁面の全周展開画像が動画像で表示されることになる。  When the probe 1 is lowered at a constant speed, the position of the convex circular mirror 15 also changes every moment. Therefore, when the entire circumference image of the hole wall reflected on the mirror surface of the convex conical mirror 15 captured by the video camera 11 is processed at high speed and coordinate-transformed for each frame, the result is that the continuous hole wall The entire circumference developed image is displayed as a moving image.
このような動画像が、 2次元画像ではなく、 奥行きのある 3次元の立体画像に 見えれば、 さらに見やすい。  If such a moving image looks like a three-dimensional image with depth rather than a two-dimensional image, it is easier to see.
そこで次に孔壁面の全周展開画像を立体的な動画像で表示する例を説明する。 この例では 1台のビデオカメラを移動し、 移動前後の 2位置の画像から立体画 像を得る。  Therefore, an example in which the entire circumference developed image of the hole wall surface is displayed as a three-dimensional moving image will be described next. In this example, one video camera is moved, and a stereoscopic image is obtained from images at two positions before and after the movement.
ビデオカメラ 1 1が一定距離 (例えば l mm) を移動する毎に、 1 フレームの 画像データを第 7図に示す画素の集合として画像メモリ 5 4に記憶する。 ビデオ カメラ 1 1の移動距離はウィンチ 3に併設するロータリーエンコーダ (図示省略) で計測し、 このロータリーエンコーダの発生するパルスをトリガ一にして書込み メモリデータコントローラ 5 3により画像メモリ 5 4を制御し、 画像データを画 像メモリ 5 4に書き込み記憶する。  Each time the video camera 11 moves a fixed distance (for example, l mm), one frame of image data is stored in the image memory 54 as a set of pixels shown in FIG. The moving distance of the video camera 11 is measured by a rotary encoder (not shown) attached to the winch 3, and the pulse generated by the rotary encoder is used as a trigger to write. The image data 54 is controlled by the memory data controller 53, The image data is written to the image memory 54 and stored.
画像メモリ 5 4は、 ビデオカメラ 1 1カ両眼間隔に等しい距離を移動する間に 撮影する画像データを、 すべて記憶する。 例えば、 両眼間隔を 6 5 mmとした場 合、 ビデオカメラ 1 1力 1 mm移動する毎に 1フレームの画像デー夕を記憶し、 少なくとも 6 5フレームの画像データを一度に言己憶する。  The image memory 54 stores all image data to be taken while moving the video camera 11 at a distance equal to the distance between both eyes. For example, when the distance between both eyes is 65 mm, one frame of image data is stored every time the video camera 11 moves 1 mm, and at least 65 frames of image data are stored at a time.
書込みメモリデータコントローラ 5 3は、 画像メモリ 5 4に一度に記憶する画 像データの数を一定として、 ビデオカメラ 1 1が移動する毎に新たに記憶する画 像データを一番古い画像データに上書して追加するように、 画像メモリ 5 4を制 御する。 このように画像データを画像メモリ 5 4に記憶すると、 新たに追加する 画像データと一番古い画像データとの位置間隔が常に両眼間隔に等しくなる。 そして画像メモリ 5 4に記憶された画像デ一夕は、 前記実施例と同様に、 メモ リアドレスコントローラ 5 5によって、 1フィールド毎に垂直、 水平の同期信号 に合わせて、 画像メモリ 5 4の内容を 1秒間に 6 0回の速さで奇数フィールドと 偶数フィールドのデータを交互に何回も読出す。 The write memory data controller 53 stores images stored in the image memory 54 at once. The image memory 54 is controlled so that the image data newly stored is added to the oldest image data every time the video camera 11 moves while the number of image data is kept constant. When the image data is stored in the image memory 54 in this manner, the position interval between the newly added image data and the oldest image data is always equal to the binocular interval. The image data stored in the image memory 54 is stored in the image memory 54 by the memory address controller 55 in accordance with the vertical and horizontal synchronizing signals for each field in the same manner as in the previous embodiment. The data of the odd and even fields are alternately read many times at a rate of 60 times per second.
その際、 画像メモリ 5 4の読出しは、 読出しアドレスを交互に切換えて新たに 追加する画像データと一番古い画像データを組台せ、 時分割で交互に読出す。 このとき、 組合せる左右の画像データの読出しァドレスを変更することにより、 両眼視差の間隔を任意に調整することができる。  At that time, the reading of the image memory 54 is performed by alternately switching the read address, assembling the image data to be newly added and the oldest image data, and reading them alternately in a time-division manner. At this time, the interval between the binocular parallaxes can be arbitrarily adjusted by changing the readout address of the left and right image data to be combined.
ボーリング孑しの観察のようにビデオ力メラ 1 1が縦方向に移動する場合は、 画 像メモリ 5 4の一番新しい画像と一番古い画像の 2画像をそれぞれ 9 0度回転し て横向きに直して左右の有視差画像を得る。  If the video camera 11 moves vertically as in the case of bowling moss, the two images, the newest image and the oldest image in the image memory 54, are rotated 90 degrees each and turned sideways. Then, right and left parallax images are obtained.
立体画像は、 両眼視差を持つ 2枚の 2次元画像を左右眼へ別々に分離提示する ことにより、 表示面の前後に奥行きのある空間を再現する。  The stereoscopic image reproduces a space with depth before and after the display surface by separately presenting two 2D images with binocular disparity to the left and right eyes.
このため、 一般に、 左右眼用の C R Tまたは液晶ディスプレイに左右の視差画 像を同時に提示して立体画像を表示する。  For this reason, in general, left and right parallax images are simultaneously presented on a CRT for the left and right eyes or a liquid crystal display to display a stereoscopic image.
立体画像は、 また、 左右の視差画像が完全に同時でなく 1 0 O m秒程度以内の 時間遅れがあっても、 立体視が可能であることが知られている。 N T S C方式で は毎秒 6 0枚の画像が提示されるので、 約 1 6. 7 m秒毎に各画像が提示される ことになる。 従って、 1台の T V画面に時分割で左右の視差画像を交互に表示し、 これに対応して左右の眼を交互に開閉するシャッタめがねでこの T V画面を観察 することにより立体視力〈可能となる。  It is known that a stereoscopic image can be stereoscopically viewed even if the left and right parallax images are not completely simultaneous and have a time delay of about 10 Omsec or less. In the NTSSC method, 60 images are presented per second, so each image is presented approximately every 16.7 msec. Therefore, the left and right parallax images are alternately displayed on a single TV screen in a time-sharing manner, and the stereoscopic vision is made possible by observing the TV screen with shutter glasses that alternately open and close the left and right eyes. Become.
この他、 補色めがねや偏光めがねを用いて 1台の T V画面に表示される左右の 視差画像を分離提示してもよい。 In addition, the left and right sides displayed on one TV screen using complementary colored glasses or polarized glasses The parallax images may be separately presented.
このように孔壁面の全周画像を立体視できれば、 孔壁面の奥行きが分かるので、 従来の装置に比べてよりリアルに孔壁面の状況を把握することができ、 従来は発 見するのが困難であった孔壁面にできた亀裂などの問題箇所を容易に発見するこ とができるという利点がある。 産業上の利用可能性  In this way, if the entire circumference image of the hole wall surface can be stereoscopically viewed, the depth of the hole wall surface can be known, so that the state of the hole wall surface can be grasped more realistically than with the conventional device, and it is difficult to find in the past. However, there is an advantage that a problem spot such as a crack formed on the hole wall surface can be easily found. Industrial applicability
本発明の孔壁面観測装置は、 ボーリング孔や地下水などの孔壁面を撮影して全 周画像に展開する際の座標変換を高速に行って孔壁面の全周展開画像を静止画像 だけでなく動画像で表示する。  The hole wall surface observation device of the present invention performs high-speed coordinate conversion when photographing a hole wall surface such as a boring hole or groundwater and developing the image into a full-circumference image, so that not only a still image but also a moving image Display as an image.
また、 T V画面の走査線の傾斜に合せてスパイラル伏に画像デ一夕を読出すこ とにより、 位置ずれを補正して高忠実度な画面を表示する。  In addition, by reading the image data spirally in accordance with the inclination of the scanning line of the TV screen, the position shift is corrected and a high-fidelity screen is displayed.
従って、 本発明によれば、 動きのある漏水箇所などを容易に発見できると共に、 画面上の位置も正確に認、識できる。  Therefore, according to the present invention, it is possible to easily find a moving leaking point and the like, and also to accurately recognize and recognize the position on the screen.

Claims

請求の範囲 The scope of the claims
1. 孔壁面の全周方向を照射する照明装置と、 1. A lighting device that illuminates the entire circumference of the hole wall,
広角撮影手段を備えて前記照明装置が照射する孔壁面の全周画像を一視点から 一度に撮影するビデオカメラと、  A video camera including wide-angle photographing means and photographing the entire peripheral image of the hole wall surface illuminated by the lighting device from one viewpoint at a time,
前記ビデオカメラの方向を検知して撮影画像の方位データを出力する方位計と、 前記ビデオカメラの撮影した全周画像の映像信号を AZD変換して] フレーム 毎に画像メモリに記憶する画像データ記憶手段と、  An azimuth meter that detects the direction of the video camera and outputs azimuth data of a captured image; and an image data storage that performs AZD conversion of a video signal of an all-around image captured by the video camera and stores it in an image memory for each frame. Means,
前記方位デ一タを参照して前記画像メモリに記憶した全周画像デー夕を 1 フィ ールド毎にスパイラル状に読出す画像デ一夕読出手段と、  Image data reading means for reading the entire circumference image data stored in the image memory in a spiral manner for each field with reference to the azimuth data,
座標変換テーブルを参照して前記画像メモリから読出した全周画像データを 1 フィ一ルド毎に展開画像データに変換する画像データ展開手段と、  Image data expanding means for converting all-around image data read from the image memory with reference to a coordinate conversion table into expanded image data for each field;
前言己展開画像データを 1フィールド毎に D/ A変換して動画像の映像信号を出 力する動画像表示手段と、  Moving image display means for performing D / A conversion of the self-developed image data for each field and outputting a video signal of the moving image;
を備え、 With
前記ビデオカメラが撮影した孔壁面の全周画像を展開画像に変換して動画像表 示することを特徴とする孔壁面観測装置。  A perforated wall surface observation apparatus, which converts a perimeter image of a perforated wall surface captured by the video camera into a developed image and displays a moving image.
PCT/JP1997/001719 1996-05-23 1997-05-22 Bored wall surface observation apparatus WO1997044958A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU27915/97A AU715836B2 (en) 1996-05-23 1997-05-22 Hole wall surface observing apparatus
CA002255820A CA2255820A1 (en) 1996-05-23 1997-05-22 Bored wall surface observation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/151650 1996-05-23
JP15165096A JPH09312835A (en) 1996-05-23 1996-05-23 Hole wall face observation device

Publications (1)

Publication Number Publication Date
WO1997044958A1 true WO1997044958A1 (en) 1997-11-27

Family

ID=15523214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001719 WO1997044958A1 (en) 1996-05-23 1997-05-22 Bored wall surface observation apparatus

Country Status (4)

Country Link
JP (1) JPH09312835A (en)
AU (1) AU715836B2 (en)
CA (1) CA2255820A1 (en)
WO (1) WO1997044958A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3728535B2 (en) * 2003-07-17 2005-12-21 関西電力株式会社 In-pipe defect dimension measurement system and method
JP5264623B2 (en) * 2009-06-05 2013-08-14 日鐵住金建材株式会社 Measuring device fixing device for surveying inner wall of shaft

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198272A (en) * 1986-02-26 1987-09-01 Central Res Inst Of Electric Power Ind Borehole television camera equipment
JPH04368594A (en) * 1991-06-17 1992-12-21 Nichiboo:Kk Camera device for borehole inside wall
JPH06292204A (en) * 1993-04-05 1994-10-18 Electric Power Dev Co Ltd Shade processing system for bore hole television camera equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198272A (en) * 1986-02-26 1987-09-01 Central Res Inst Of Electric Power Ind Borehole television camera equipment
JPH04368594A (en) * 1991-06-17 1992-12-21 Nichiboo:Kk Camera device for borehole inside wall
JPH06292204A (en) * 1993-04-05 1994-10-18 Electric Power Dev Co Ltd Shade processing system for bore hole television camera equipment

Also Published As

Publication number Publication date
AU2791597A (en) 1997-12-09
CA2255820A1 (en) 1997-11-27
AU715836B2 (en) 2000-02-10
JPH09312835A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
CN109544679A (en) The three-dimensional rebuilding method of inner wall of the pipe
CN104935915B (en) Imaging device, 3-D imaging system and three-D imaging method
US20050168568A1 (en) Displaying a wide field of view video image
US5717455A (en) System and method for three dimensional image acquisition and processing of a borehole wall
CN101968603A (en) Stereoscopic imaging apparatus and stereoscopic imaging method
JP2007529960A (en) 3D information acquisition and display system for personal electronic devices
CN102783143A (en) Vehicle surroundings monitoring device
KR20120125073A (en) Method and Apparatus for Generating Omnidirectional 3D Image using Line Scan Camera
JPH03141932A (en) Method and device for obtaining and displaying x-ray image for stereo-view observation
JPH11341518A (en) Multi-viewpoint simultaneous observation type horizontal layout stereoscopic image display system
JP3137928B2 (en) Perforated parallax image display device
JP2849313B2 (en) Image recording and playback device
WO1997044958A1 (en) Bored wall surface observation apparatus
JPH11257953A (en) Tunnel wall surface observing apparatus
JPH11164292A (en) Image generating device, image presentation device, image generating method and image synthetic method
JP3206874B2 (en) Image system for remote construction support
WO2009020381A1 (en) Apparatus and method for three-dimensional panoramic image formation
JPH11341517A (en) Horizontal layout stereoscopic image display system
JP3087236B2 (en) Stereoscopic image synthesis display device
RU2650088C1 (en) Method of panoramic stereoscopic shooting
JPH01210594A (en) Method and apparatus for producing pit wall developing image
JPH03100613A (en) Parallax image photographing device for entire bore hole wall
JPH09107561A (en) Automatic selection device of two cameras, method of automatic selection of two cameras and its application
JP3055649B2 (en) Image system for remote construction support
CN208353467U (en) A kind of pan-shot image real time transfer synthesis system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2255820

Country of ref document: CA

Ref country code: CA

Ref document number: 2255820

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase