JP3055649B2 - Image system for remote construction support - Google Patents

Image system for remote construction support

Info

Publication number
JP3055649B2
JP3055649B2 JP6290957A JP29095794A JP3055649B2 JP 3055649 B2 JP3055649 B2 JP 3055649B2 JP 6290957 A JP6290957 A JP 6290957A JP 29095794 A JP29095794 A JP 29095794A JP 3055649 B2 JP3055649 B2 JP 3055649B2
Authority
JP
Japan
Prior art keywords
image
images
pair
construction
perspective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6290957A
Other languages
Japanese (ja)
Other versions
JPH08144328A (en
Inventor
良和 宮内
俊文 佐藤
素久 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP6290957A priority Critical patent/JP3055649B2/en
Publication of JPH08144328A publication Critical patent/JPH08144328A/en
Application granted granted Critical
Publication of JP3055649B2 publication Critical patent/JP3055649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Operation Control Of Excavators (AREA)
  • Processing Or Creating Images (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は遠隔施工支援用画像シス
テムに関し、とくに設計形状を表す一対の設計画像と現
状を表す一対の操作画像とを重ね合わせた二眼視立体重
畳画像により遠隔施工作業を支援する画像システムに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remote construction support image system, and more particularly to a remote construction work using a binocular stereoscopic superimposed image obtained by superimposing a pair of design images representing a design shape and a pair of operation images representing the current state. The present invention relates to an image system that supports

【0002】[0002]

【従来の技術】制御技術等の進歩に伴い、人の立入りが
禁止される区域や人の侵入が困難な区域で作業を行なう
場合に、十分に離れた操作室から作業機械(以下重機と
ういことがある)を遠隔操作することにより施工域内の
作業を行なうことがある。例えば図2に示すような施工
域11において、施工対象1の映像や画像(以下、画像と
いう)を監視しながら重機2を遠隔操作し、施工対象1
に対する土工事等を遠隔施工することが実際に行なわれ
ている。
2. Description of the Related Art With the advance of control technology and the like, when working in an area where entry of persons is prohibited or an area where entry of persons is difficult, a work machine (hereinafter referred to as a heavy machine) is required from a sufficiently distant operation room. May be performed in the construction area by remote control. For example, in the construction area 11 as shown in FIG. 2, the heavy equipment 2 is remotely operated while monitoring the video or image (hereinafter, referred to as an image) of the construction object 1, and
It is actually practiced to remotely carry out earth works and the like for the construction.

【0003】[0003]

【発明が解決しようとする課題】従来の一般の土工事で
は、施工域11内に施工対象1の設計形状を示す縄をいわ
ゆる丁張として設置し、その丁張を目安として作業を進
めている。しかし遠隔施工を行なうような施工域11には
丁張の設置が極めて難しく、単に施工対象1の画像のみ
によっては設計形状と比較しながら施工することができ
ないことが多い。従って遠隔操作による施工では、従来
の丁張を用いた施工に比し、作業効率が低下し且つ施工
品質も劣りがちとなる問題点があった。
In the conventional general earth work, a rope indicating the design shape of the construction object 1 is installed in the construction area 11 as a so-called tenter, and the work is carried out using the tenter as a guide. . However, it is extremely difficult to install a tenter in the construction area 11 where remote construction is performed, and in many cases, construction cannot be performed while comparing with a design shape only with the image of the construction object 1 alone. Therefore, the work by remote control has a problem that the work efficiency is reduced and the work quality tends to be inferior to the work using the conventional tenting.

【0004】従って本発明の目的は、遠隔施工において
丁張に代え、撮像機による施工域の画像と設計形状の透
視図との立体重畳画像が使われる遠隔施工用画像システ
ムを提供するにある。
Accordingly, it is an object of the present invention to provide an image system for remote construction in which a three-dimensional superimposed image of an image of a construction area by a camera and a perspective view of a design shape is used instead of tenting in remote construction.

【0005】[0005]

【課題を解決するための手段】図1の実施例を参照する
に本発明の遠隔施工支援用画像システムは、施工対象1
が含まれる施工域11に対し任意視点から任意光軸の透視
図Ipが出力できる三次元コンピュータグラフィックの設
計図Igを作図し、施工対象1と施工域11内の三次元座標
が既知の複数の視標8とを位置・姿勢計測装置付き施工
用重機上の所定位置に搭載した一対の撮像機5により異
なる所定撮影向きから撮影して左右一対の三次元操作画
像IwL及びIwRを作成し、設計図Ig上へ三次元コンピュー
タグラフィックにより各視標8を作図し、視標8を作図
した設計図Igから各撮像機5の撮影位置を視点とし且つ
その撮像機5の撮影向きを光軸とする左右一対の透視図
IpL及びIpRを出力し、左透視図IpL及び右透視図IpR上の
各視標8の像と左三次元操作画像IwL及び右三次元操作
画像IwR上の対応視標8の像とが重なるように各透視図I
pL及びIpRを拡大縮小又は回転して左右一対の透視設計
画像IdL及びIdRを作成し、左透視設計画像IdL及び右透
視設計画像IdRと左三次元操作画像IwL及び右三次元操作
画像IwRとをそれぞれ重ね合わせることにより左右一対
の二眼視立体重畳画像IsL及びIsRを作成してなるもので
ある。
Referring to the embodiment of FIG. 1, the remote construction support image system of the present invention
Draw the blueprint I g of 3D computer graphics can output perspective view I p of any optical axis from an arbitrary viewpoint with respect to construction area 11 that contains the three-dimensional coordinates in the construction zone 11 and construction target 1 is known Construction with position / posture measuring device with multiple targets 8
, Taken from different predetermined photographing direction by the pair of imaging device 5 mounted on a predetermined position to create a pair of three-dimensional operation image I wL and I wR on use heavy machinery, the three-dimensional computer graphic on blueprints I g draw each optotype 8, a pair of right and left perspective view of the optical axis of the photographing direction of the view point the shooting position of the imaging device 5 from the blueprint I g that plot the target 8 and the imaging device 5
Outputs I pL and I pR, corresponding optotype 8 on the left perspective I pL and right perspective image and a left three-dimensional operation image I of each optotype 8 on I pR wL and right three-dimensional operation image I wR Each perspective view I so that the image of
pL and I pR are scaled or rotated to create a pair of left and right perspective design images I dL and I dR , a left perspective design image I dL and a right perspective design image I dR , a left three-dimensional operation image I wL and a right tertiary it is made to create a pair of left and right binocular vision stereo superimposed image I sL and I sR by superimposing the original operation image I wR respectively.

【0006】[0006]

【作用】図2に示す宅地造成域等の施工域11内における
区画No.12の法面を施工対象1とし、重機2の遠隔操作
により施工対象1を遠隔施工する場合について本発明の
作用を説明する。図1に示す施工対象1は、完成前の区
画No.12の法面を表す。図1及び図2に示す重機2には
次の各機器が取付けられている。
[Action] The operation of the present invention is applied to the case where the slope of section No. 12 in the construction area 11 such as the residential land development area shown in FIG. explain. Construction object 1 shown in FIG. 1 represents the slope of section No. 12 before completion. The following equipment is mounted on the heavy equipment 2 shown in FIGS.

【0007】(1)一対の撮像機5:施工対象1を撮影す
る。操作室3の操作員はこの撮像機5の出力画像を監視
しながら遠隔操作を行なう。一対の出力画像が二眼視立
体画像となるように、両撮像機5はステレオ方式で設置
する。すなわち重機2が水平となるときに重機2上の一
対の所定水平位置に各撮像機5を所定向きで固定し、両
撮像機5の光学的条件を同一とする。 (2)衛星測量装置22:例えばGPS(Global Positionin
g System)の利用により重機2の地球表面上の座標を計
測する。 (3)姿勢計測装置23:重機2の方位及び傾きを計測す
る。 (4)送信装置6及び24:撮像機5の出力画像の画像送信
機6及び各撮像機5の座標位置や撮影向きの送信装置24
を含む。
[0007] (1) A pair of imaging devices 5: The construction object 1 is photographed. The operator in the operation room 3 performs a remote operation while monitoring the output image of the imaging device 5. Both imaging devices 5 are installed in a stereo system so that a pair of output images becomes a binocular stereoscopic image. That is, when the heavy equipment 2 is horizontal, the respective imaging devices 5 are fixed at a pair of predetermined horizontal positions on the heavy equipment 2 in a predetermined direction, and the optical conditions of the two imaging devices 5 are the same. (2) Satellite surveying device 22: For example, GPS (Global Positionin)
g System) is used to measure the coordinates of the heavy equipment 2 on the earth's surface. (3) Attitude measurement device 23: Measures the azimuth and inclination of heavy equipment 2. (4) Transmitting devices 6 and 24: image transmitting device 6 of the output image of image capturing device 5 and transmitting device 24 of the coordinate position and shooting direction of each image capturing device 5
including.

【0008】また図1の遠隔操作室3には、送信装置6
及び24から受信する受信装置10及び26と、施工域11の三
次元コンピュータグラフィックによる設計図(以下、グ
ラフィック設計図ということがある)Igを記憶する記憶
手段18と、操作用ディスプレイ14とを有する遠隔監視手
段が備えられている。グラフィック設計図Igは、例えば
従来技術に属する三次元CADにより施工域11内の必要
な点の座標を基準点4(図2の区画No.16内の点)に対
する相対座標として入力し、且つ基準点4の対地三次元
座標の決定により作成することができる。グラフィック
設計図Igにより施工域11内の各点の完成後の三次元座標
が定まるので、グラフィック設計図Igの座標系に任意の
視点と光軸とを定めれば、完成後の施工域11に対する透
視図Ipが出力できる。図1の符号19は指定された視点及
び光軸に基づきグラフィック設計図Igから透視図Ipを出
力する透視図出力手段を示し、その一例は三次元コンピ
ュータグラフィックの座標計算及びグラフィック処理を
行なうグラフィックコンピュータである。
In the remote control room 3 shown in FIG.
, 24, a storage means 18 for storing a three-dimensional computer graphic design drawing (hereinafter sometimes referred to as a graphic design drawing) Ig of the construction area 11, and an operation display 14. Remote monitoring means. For the graphic design diagram Ig , for example, the coordinates of necessary points in the construction area 11 are input as relative coordinates with respect to the reference point 4 (point in section No. 16 in FIG. 2) by three-dimensional CAD belonging to the prior art, and It can be created by determining the three-dimensional coordinates of the reference point 4 with respect to the ground. Since the three-dimensional coordinates after completion of each point in the construction zone 11 by the graphic design diagram I g is determined, it is determined and an arbitrary viewpoint and the optical axis in the coordinate system of the graphics design diagram I g, construction area after completion A perspective view Ip for 11 can be output. Reference numeral 19 of FIG. 1 shows a perspective view output means for outputting a perspective I p from the graphic design diagram I g based on viewpoint and optical axis are specified, one example of which performs coordinate calculations and graphic processing of the three-dimensional computer graphic It is a graphic computer.

【0009】重機2の一対の撮像機5により、施工域11
内の施工対象1と施工域11内の三次元座標が既知の複数
の視標8とを含む左右一対の操作画像IwL及びIwRを撮影
する。操作画像IwRの一例を図3(A)に示す。視標8は
例えば図5の例に示すように重機2に取付けることがで
き、この場合は衛星測量装置22により計測した重機2の
対地三次元座標と重機2上の視標8の取付け位置とから
各視標8の三次元座標が定まる。但し本発明で用いる視
標8は図5の実施例に限定されない。
The construction area 11 is controlled by the pair of imaging machines 5 of the heavy equipment 2.
A pair of left and right operation images I wL and I wR including a construction target 1 in the inside and a plurality of targets 8 whose three-dimensional coordinates in the construction area 11 are known. An example of the operation image I wR is shown in FIG. The target 8 can be attached to the heavy equipment 2 as shown in the example of FIG. 5, for example. In this case, the three-dimensional coordinates of the heavy equipment 2 with respect to the ground measured by the satellite surveying device 22 and the mounting position of the target 8 on the heavy equipment 2 , The three-dimensional coordinates of each target 8 are determined. However, the target 8 used in the present invention is not limited to the embodiment shown in FIG.

【0010】各撮像機5で撮影した操作画像IwLとIwR
画像送信機6により操作室3の画像受信機10へ伝送す
る。また衛星測量装置22の計測値と重機2上の取付け位
置とから各撮像機5の撮影位置を算出し、姿勢計測装置
23の測定値と重機2上の取付け姿勢とから各撮像機5の
撮影向きを算出し、算出した撮影位置及び向きを送信装
置24から操作室3の受信装置26へ伝送する。但し送信装
置24から衛星測量装置22及び姿勢計測装置23の計測値の
みを送信し、操作室3において受信した計測値に基づき
各撮像機5の撮影位置及び向きの算出を行なってもよ
い。なお図5のように視標8を重機2に取付けた場合
は、各視標8の三次元座標も送信装置24から受信装置26
へ伝送する。
[0010] The operation images I wL and I wR taken by each image pickup device 5 are transmitted by the image transmitter 6 to the image receiver 10 in the operation room 3. Further, the photographing position of each image pickup device 5 is calculated from the measured value of the satellite surveying device 22 and the mounting position on the heavy equipment 2, and the posture measuring device is used.
The imaging direction of each imaging device 5 is calculated from the measured value of 23 and the mounting posture on the heavy equipment 2, and the calculated imaging position and orientation are transmitted from the transmission device 24 to the reception device 26 of the operation room 3. However, only the measured values of the satellite surveying device 22 and the attitude measuring device 23 may be transmitted from the transmitting device 24, and the photographing position and the orientation of each imaging device 5 may be calculated based on the measured values received in the operation room 3. When the optotypes 8 are attached to the heavy equipment 2 as shown in FIG. 5, the three-dimensional coordinates of each optotype 8 are also transmitted from the transmitting device 24 to the receiving device 26.
Transmit to

【0011】視標8の三次元座標と各撮像機5の撮影位
置及び向きを操作室3の透視図出力手段19へ入力する。
透視図出力手段19は記憶手段18のグラフィック設計図Ig
を読み出し、入力した各三次元座標に基づいて三次元コ
ンピュータグラフィックにより視標8を作図をグラフィ
ック設計図Ig上に作図する。次に視標8を作図したグラ
フィック設計図Igから、各撮像機5の撮影位置を視点と
し且つその撮影向きを光軸とする左右一対の透視図IpL
及びIpRを作成する。透視図IpRの一例を図3(B)に示
す。図3(B)から分るように透視図IpL及びIpRは視標8
の像を含む。
The three-dimensional coordinates of the target 8 and the photographing position and orientation of each imaging device 5 are input to the perspective view output means 19 of the operation room 3.
The perspective view output means 19 is a graphic design drawing I g of the storage means 18.
Reading, plotting plotting the target 8 by the three-dimensional computer graphics on a graphical design diagram I g based on the three-dimensional coordinates inputted. Then from the graphic design diagram I g that plot the target 8, and the viewpoint of the photographing position of the image pickup device 5 and the pair of left and right perspective I pL of the photographing direction to the optical axis
And create an I pR . An example of the perspective view IpR is shown in FIG. As can be seen from FIG. 3 (B), the perspective views I pL and I pR correspond to the target 8
Including the image.

【0012】透視図出力手段19で作成した一対の透視図
IpL及びIpRを、画像受信機10で受信した一対の操作画像
IwL及びIwRと共に画像合成手段20へ入力する。画像合成
手段20は左透視図IpLと左操作画像IwLとから左重畳画像
IsLを作成し、右透視図IpRと右操作画像IwRとから右重
畳画像IsRを作成する。図3を参照して右重畳画像IsR
作成方法を説明するに、先ず右透視図IpR(図3(B))
上の各視標8の像と右操作画像IwR(図3(A))上の対
応視標8の像とが重なるように右透視図IpRを拡大縮小
又は回転し、図3(C)に示す右透視設計画像IdRを作成
する。次に右透視設計画像IdRの各視標8の像と右操作
画像IwR上の対応視標8の像とを重ね合わせることによ
り、図3(D)に示す右重畳画像IsRを作成する。左重畳
画像IsLの作成方法も同様である。
A pair of perspective views created by the perspective view output means 19
I pL and I pR , a pair of operation images received by the image receiver 10
It is input to the image synthesizing means 20 together with I wL and I wR . The image synthesizing means 20 converts the left perspective view I pL and the left operation image I wL into a left superimposed image.
Create an I sL, creating a right superimposed image I sR from a right perspective I pR and right operation image I wR. Referring to FIG. 3, a method of creating the right superimposed image IsR will be described. First, a right perspective view IpR (FIG. 3B)
The right perspective view I pR is scaled or rotated so that the image of each target 8 above and the image of the corresponding target 8 on the right operation image I wR (FIG. 3 (A)) overlap, and FIG. A right perspective design image IdR shown in FIG. By then the superposition of the image of the corresponding optotype 8 on the image of the optotype 8 right perspective design image I dR and right operation image I wR, create a right superimposed image I sR shown in FIG. 3 (D) I do. The same applies to the method of creating the left superimposed image IsL .

【0013】好ましくは視標8の数を3以上とし、操作
画像IwR(又はIwL)上の3以上の視標8の像と透視設計
画像IdR(又はIdL)上の3以上の対応視標8の像とを重
ね合わせることにより重畳画像IsR(又はIsL)を作成す
る。また各視標8の像の識別を容易にするため、各視標
8を異なる色としてもよい。なお図1に示すように一対
の画像合成手段20を設ければ、左右一対の重畳画像IsL
及びIsRを同時に作成することができる。
Preferably, the number of the targets 8 is three or more, and three or more images of the targets 8 on the operation image I wR (or I wL ) and three or more images on the perspective design image I dR (or I dL ). A superimposed image I sR (or I sL ) is created by superimposing the image of the corresponding target 8. In addition, in order to facilitate identification of the image of each optotype 8, each optotype 8 may have a different color. If a pair of image combining means 20 is provided as shown in FIG. 1, a pair of left and right superimposed images IsL
And IsR can be created simultaneously.

【0014】一対の操作画像IwL及びIwRを二眼視立体画
像として撮影することにより、一対の重畳画像IsL及びI
sRも二眼視立体画像とすることができる。例えば図4に
示すように一対の重畳画像IsL及びIsRを高速度で切替え
ながら操作用ディスプレイ14に交互に表示し、画像の切
替と同期して左眼及び右眼が交互に閉鎖される液晶シャ
ッター眼鏡16を介して液晶ディスプレイ14を見ることに
より、左右一対の重畳画像IsL及びIsRを立体視すること
が可能である。但し重畳画像IsL及びIsRの立体視方法は
図4の液晶ディスプレイ方式に限定されず、例えば従来
技術に属する二色眼鏡方式や偏光方式等により立体視す
ることも可能である。この重畳画像IsL及びIsRを用いて
遠隔操作を行なえば、作業対象1の設計画像と作業状況
を示す操作画像を重ね合わせて作業状態を確認すること
ができるので、遠隔施工において丁張に代る作業指標が
示されることとなり、従来の丁張を用いた施工作業と同
様の作業効率と施工品質が期待できる。
By photographing a pair of operation images I wL and I wR as a binocular stereoscopic image, a pair of superimposed images IsL and I
sR can also be a binocular stereoscopic image. For example displayed alternately in the operation display 14 while switching the pair of superimposed images I sL and I sR at high speed as shown in FIG. 4, the left eye and the right eye are alternately closed in synchronism with the switching of the image by viewing the liquid crystal display 14 through the liquid crystal shutter glasses 16 can be viewed stereoscopically pair of superimposed image I sL and I sR. However stereoscopic method superimposed image I sL and I sR is not limited to a liquid crystal display system of FIG. 4, it is also possible to stereoscopically by a two-colored glasses method or polarization method or the like belonging to the prior art. By performing the remote operation using the superimposed image I sL and I sR, it is possible to check the working state by superimposing operation image showing the working status and the design image work object 1, the felling of trees at a remote construction An alternative work index will be shown, and the same work efficiency and construction quality as the construction work using the conventional tenting can be expected.

【0015】こうして本発明の目的である「遠隔施工に
おいて丁張に代え、撮像機による施工域の画像と設計形
状の透視図との立体重畳画像が使われる遠隔施工用画像
システムの提供」が達成できる。
In this manner, the object of the present invention is to achieve "providing an image system for remote construction in which a three-dimensional superimposed image of an image of a construction area by a camera and a perspective view of a design shape is used instead of tenting in remote construction". it can.

【0016】[0016]

【実施例】図4の実施例では、画像合成手段20で作成し
た左及び右の二眼視立体重畳画像IsL及びIsRを画像コン
トローラ15に入力し、例えば1/60秒程度の高速度で交互
に切替えながら操作用ディスプレイ14に時分割表示し、
画像コントローラ15の画像切替と同期して左眼及び右眼
が交互に閉鎖される液晶シャッター眼鏡16を介して操作
用ディスプレイ14を見ることにより、重畳画像IsL及びI
sRを立体視している。このように人間の眼が切替を感じ
ない程度の高速度で画像を切替える方法は例えばテレビ
映像のインターレース方式として公知であり、テレビ映
像の一方を左重畳画像IsLとし他方を右重畳画像IsRとす
ることにより従来のテレビ受像機による立体画像表示も
可能である。また例えば120Hz程度の超高速度で開閉を
行なう液晶シャッター眼鏡16を用い、更に高速度で画像
を切替えることも可能である。
In the embodiment of EXAMPLES 4, enter the left and right binocular vision stereo superimposed image I sL and I sR created by the image combining unit 20 to the image controller 15, for example, high speed of approximately 1/60 second Time-divisionally displayed on the operation display 14 while switching alternately with
By viewing the operation display 14 through the liquid crystal shutter glasses 16 in which the left and right eyes are alternately closed in synchronization with the image switching of the image controller 15, the superimposed images IsL and I
I am stereoscopically viewing sR . Such a method of switching images at such a high speed that the human eye does not feel the switching is known as, for example, an interlacing method of television images, in which one of the television images is a left superimposed image I sL and the other is a right superimposed image I sR. By doing so, a stereoscopic image display by a conventional television receiver is also possible. It is also possible to use liquid crystal shutter glasses 16 that open and close at a very high speed of, for example, about 120 Hz, and to switch images at a higher speed.

【0017】図5(A)は、パワーシャベルである重機2
に本発明の遠隔施工支援用画像システムを適用した実施
例を示す。但し本発明の適用対象はパワーシャベルに限
定されない。図5(A)の重機2には視標杆8aとその視標
杆8aの重機2に対する相対位置を移動させ得る視標位置
制御装置9とが取付けられており、視標杆8aに間隔S1、
S2、及びS3を隔てて4つの視標8が取付けられている
(図5(D)参照)。但し視標8の数は図示例に限定され
ず、複数であれば足りる。視標位置制御装置9は、例え
ば図5(B)及び図5(C)に示すように、重機2に固定の
支持テーブル9tと、その支持テーブル9t上で摺動可能な
前後移動板9aと左右移動板9bと上下移動素子9cとを有す
る位置決めユニットと、上下移動素子9cに一端が固定さ
れた支持アーム9dとを備える。位置決めユニットの動作
を監視することにより支持アーム9dの他端に固定した視
標杆8aの重機2に対する相対位置、即ち視標8の相対位
置を定めることができる。この視標8の相対位置と衛星
測量装置22の測定値とから視標8の対地三次元座標を求
める。
FIG. 5A shows a heavy equipment 2 which is a power shovel.
An embodiment in which the remote construction support image system of the present invention is applied is shown below. However, the application object of the present invention is not limited to the power shovel. The heavy equipment 2 of FIG. 5 (A) is provided with a target rod 8a and a target position control device 9 capable of moving the relative position of the target rod 8a with respect to the heavy equipment 2, and the target rod 8a has an interval S1,
Four optotypes 8 are attached across S2 and S3 (see FIG. 5D). However, the number of the optotypes 8 is not limited to the illustrated example, and a plurality is sufficient. The target position control device 9 includes a support table 9t fixed to the heavy equipment 2 and a front-rear movable plate 9a slidable on the support table 9t, as shown in FIGS. 5B and 5C, for example. The positioning unit includes a left and right moving plate 9b and a vertically moving element 9c, and a support arm 9d having one end fixed to the vertically moving element 9c. By monitoring the operation of the positioning unit, the relative position of the target rod 8a fixed to the other end of the support arm 9d with respect to the heavy equipment 2, that is, the relative position of the target 8 can be determined. The three-dimensional coordinates of the target 8 with respect to the ground are obtained from the relative position of the target 8 and the measurement value of the satellite surveying device 22.

【0018】[0018]

【発明の効果】以上説明したように本発明の遠隔施工支
援用画像システムは、三次元コンピュータグラフィック
の設計図が作図された施工域内の施工対象についての一
対の操作画像と、前記設計図から作成された前記操作画
像と同一視点の一対の透視設計画像とを重ね合わせて一
対の二眼視立体重畳画像を作成するので、以下の顕著な
効果を奏する。
As described above, the image system for remote construction support of the present invention is created from a pair of operation images of a construction object in a construction area where a three-dimensional computer graphic design drawing is drawn, and the design drawing. Since the paired binocular stereoscopic superimposed images are created by superimposing the operation image and the pair of perspective design images having the same viewpoint, the following remarkable effects are obtained.

【0019】(イ)遠隔施工の操作画像に設計画像を作業
指標として重畳表示することができるので、遠隔施工に
おける施工効率を従来の丁張を用いた場合と同程度にま
で高めることが期待できる。 (ロ)また施工対象の状態を常に完成後の状態と比べるこ
とができるので、遠隔施工における施工品質の向上が期
待できる。
(A) Since the design image can be superimposed and displayed as a work index on the operation image of the remote construction, the construction efficiency in the remote construction can be expected to be increased to about the same level as when using the conventional tenting. . (B) Since the state of the construction target can always be compared with the state after completion, improvement in construction quality in remote construction can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明の一実施例の説明図であるFIG. 1 is an explanatory diagram of one embodiment of the present invention.

【図2】は、遠隔操作の施工対象を示す説明図である。FIG. 2 is an explanatory view showing a construction subject of remote operation.

【図3】は、重畳画像の作成方法の説明図である。FIG. 3 is an explanatory diagram of a method of creating a superimposed image.

【図4】は、二眼視立体重畳画像の立体視の説明図であ
る。
FIG. 4 is an explanatory diagram of stereoscopic viewing of a binocular stereoscopically superimposed image.

【図5】は、本発明の他の実施例の説明図であるFIG. 5 is an explanatory view of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 施工対象 2 重機 3 操作室 4 基準点 5 撮像機 6 画像送信機 8 視標 8a 視標杆 9 視標位置制御装置 9t 支持テーブル 9a 前後移動板 9b 左右移動板 9c 上下移動素子 9d 支持アーム 10 画像受信機 11 施工域 14 操作用ディスプレイ 15 画像コントローラ 16 液晶シャッター眼鏡 18 記憶手段 19 透視図出力手段 20 画像合成手段 22 衛星測量装置 23 姿勢計測装置 24 送信装置 26 受信装置 Ig 三次元コンピュータグラフィック設計図 Iw 操作画像 Ip 透視図 Id 透視設計画像 Is 重畳画像。DESCRIPTION OF SYMBOLS 1 Construction target 2 heavy equipment 3 operation room 4 reference point 5 image pickup device 6 image transmitter 8 optotype 8a optotype rod 9 optotype position control device 9t support table 9a front and back moving plate 9b left and right moving plate 9c vertical moving element 9d support arm 10 image Receiver 11 Construction area 14 Operation display 15 Image controller 16 Liquid crystal shutter glasses 18 Storage means 19 Perspective view output means 20 Image synthesis means 22 Satellite surveying equipment 23 Attitude measuring equipment 24 Transmitting equipment 26 Receiving equipment Ig 3D computer graphic design I w operation image I p perspective view I d perspective design image Is s superimposed image.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−272282(JP,A) 特開 平6−113340(JP,A) (58)調査した分野(Int.Cl.7,DB名) E02F 9/20 H04N 7/18 G06T 15/00 - 17/50 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-272282 (JP, A) JP-A-6-113340 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) E02F 9/20 H04N 7/18 G06T 15/00-17/50

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】施工対象が含まれる施工域に対し任意視点
から任意光軸の透視図が出力できる三次元コンピュータ
グラフィックの設計図を作図し、前記施工対象と前記施
工域内の三次元座標が既知の複数の視標とを位置・姿勢
計測装置付き施工用重機上の所定位置に搭載した一対の
撮像機により異なる所定撮影向きから撮影して左右一対
三次元操作画像を作成し、前記設計図上へ三次元コン
ピュータグラフィックにより前記各視標を作図し、前記
視標を作図した設計図から前記各撮像機の撮影位置を視
点とし且つその撮像機の撮影向きを光軸とする左右一対
の透視図を出力し、前記左及び右の透視図上の各視標の
像と前記左及び右の三次元操作画像上の対応視標の像と
が重なるように前記各透視図を拡大縮小又は回転して左
右一対の透視設計画像を作成し、前記左及び右の透視設
計画像と前記左及び右の三次元操作画像とをそれぞれ重
ね合わせることにより左右一対の二眼視立体重畳画像を
作成してなる遠隔施工支援用画像システム。
1. A design drawing of a three-dimensional computer graphic capable of outputting a perspective view of an arbitrary optical axis from an arbitrary viewpoint with respect to a construction area including a construction object, wherein said construction object and three-dimensional coordinates in said construction area are known. Position / orientation with multiple targets
A pair of left and right three-dimensional operation images are created by photographing from different predetermined photographing directions by a pair of image pickup machines mounted at predetermined positions on the heavy equipment for construction with a measuring device, and the respective views are displayed on the design drawing by three-dimensional computer graphics. A target is drawn, and a pair of left and right perspective views are output from the design drawing in which the target is drawn, with the shooting position of each of the imaging devices as the viewpoint and the shooting direction of the imaging device as the optical axis. Each of the perspective views is scaled or rotated so that the image of each target on the perspective view and the corresponding target image on the left and right three-dimensional operation images are overlapped to create a pair of left and right perspective design images. And a left and right perspective design image and the left and right three-dimensional operation images are superimposed on each other to create a pair of left and right binocular stereoscopic superimposed images.
【請求項2】請求項1の画像システムにおいて、前記視
標の数を3以上としてなる遠隔施工支援用画像システ
ム。
2. The image system according to claim 1, wherein the number of the targets is three or more.
【請求項3】請求項1又は2の画像システムにおいて、
前記左及び右の二眼視立体重畳画像を所定高速度で交互
に切替えながら操作用ディスプレイに表示し、液晶シャ
ッター眼鏡を介して前記操作用ディスプレイを見ること
により前記二眼視立体重畳画像を立体視してなる遠隔施
工支援用画像システム。
3. The image system according to claim 1, wherein
The left and right binocular stereoscopic superimposed images are alternately switched at a predetermined high speed and displayed on an operation display, and the binocular stereoscopic superimposed image is stereoscopically viewed by looking at the operation display through liquid crystal shutter glasses. An image system for remote construction support that you can see.
【請求項4】複数の可動視標と、前記各視標と施工対象
とを所定位置で異方向から撮影して左右一対の三次元
作画像を作成する一対の撮像機と、前記各視標の対地三
次元座標及び各撮像機の撮影位置を計測する衛星測量装
置と、前記各撮像機の撮影向きを計測する姿勢計測装置
と、前記三次元操作画像と三次元座標と撮影位置及び向
きを送信する送信装置とを有し、前記施工対象を含む施
工域内を移動する遠隔施工用重機; 前記送信装置から受信する受信装置と、前記施工域に対
し任意視点から任意光軸の透視図が出力できる三次元コ
ンピュータグラフィックの設計図を記憶する記憶手段
と、操作用ディスプレイとを設けた遠隔監視手段; 前記各視標の三次元座標と各撮像機の撮影位置及び撮影
向きを入力し、前記記憶手段から前記設計図を読み出
し、前記設計図上へ三次元コンピュータグラフィックに
より前記各視標を作図し、前記視標を作図した設計図か
ら前記各撮像機の撮影位置を視点とし且つその撮像機の
撮影向きを光軸とする左右一対の透視図を出力する透視
図出力手段; 前記一対の三次元操作画像及び前記一対の透視図を入力
し、左及び右の透視図上の各視標の像と左及び右の操作
画像上の対応視標の像とが重なるように前記各透視図を
拡大縮小又は回転して左右一対の透視設計画像を作成
し、左及び右の透視設計画像と左及び右の三次元操作画
像とを重ね合わせることにより左右一対の二眼視立体重
畳画像を作成する画像合成手段; 並びに前記左及び右の二眼視立体重畳画像を所定高速度
で交互に切替えながら前記操作用ディスプレイに表示す
る画像コントローラを備え、液晶シャッター眼鏡を介し
て前記操作用ディスプレイを見ることにより前記二眼視
立体重畳画像を立体視してなる遠隔施工支援用画像シス
テム。
4. A plurality of movable targets, and a pair of imagers for photographing each of the targets and a construction object from different directions at predetermined positions to create a pair of left and right three-dimensional operation images. A satellite surveying device that measures the three-dimensional coordinates of the optotypes and the shooting position of each imaging device, a posture measurement device that measures the shooting direction of each imaging device, and the three-dimensional operation image and three-dimensional coordinates. A heavy equipment for remote construction having a transmitting device for transmitting a shooting position and an orientation, and moving in a construction area including the construction object; a receiving device for receiving from the transmitting device; and an arbitrary optical axis for the construction area from an arbitrary viewpoint. Storage means for storing a design drawing of a three-dimensional computer graphic capable of outputting a perspective view of the object, and remote monitoring means provided with an operation display; three-dimensional coordinates of each of the optotypes, and a photographing position and a photographing direction of each imaging device. Input from the storage means. Read the schematic drawing, draw each of the optotypes on the design drawing by three-dimensional computer graphics, and take the shooting position of each of the imaging devices as a viewpoint from the design drawing that draws the optotype, and set the shooting direction of the imaging device. Perspective view output means for outputting a pair of left and right perspective views having an optical axis; inputting the pair of three-dimensional operation images and the pair of perspective views, and forming images of respective targets on the left and right perspective views, and The perspective views are scaled or rotated to create a pair of left and right perspective design images so that the corresponding optotype images on the right operation image overlap, and the left and right perspective design images and the left and right tertiary Image synthesizing means for creating a pair of left and right binocular stereoscopic superimposed images by superimposing with the original operation image; and the operation display while alternately switching the left and right binocular stereoscopic superimposed images at a predetermined high speed. Image control Comprising a chromatography La, remote installation support image system comprising stereoscopically the binocular vision stereo superimposed image by viewing the operation display through the liquid crystal shutter glasses.
【請求項5】請求項4の画像システムにおいて、前記可
動視標の数を3以上としてなる遠隔施工支援用画像シス
テム。
5. An image system according to claim 4, wherein the number of said movable targets is three or more.
【請求項6】請求項4又は5の画像システムにおいて、
前記複数の可動視標を前記重機に取付けた1本の可動視
標杆に固定してなる遠隔施工支援用画像システム。
6. The image system according to claim 4, wherein
An image system for remote construction support, wherein the plurality of movable targets are fixed to one movable target rod attached to the heavy equipment.
JP6290957A 1994-11-25 1994-11-25 Image system for remote construction support Expired - Fee Related JP3055649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6290957A JP3055649B2 (en) 1994-11-25 1994-11-25 Image system for remote construction support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6290957A JP3055649B2 (en) 1994-11-25 1994-11-25 Image system for remote construction support

Publications (2)

Publication Number Publication Date
JPH08144328A JPH08144328A (en) 1996-06-04
JP3055649B2 true JP3055649B2 (en) 2000-06-26

Family

ID=17762657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6290957A Expired - Fee Related JP3055649B2 (en) 1994-11-25 1994-11-25 Image system for remote construction support

Country Status (1)

Country Link
JP (1) JP3055649B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3344902B2 (en) * 1996-10-11 2002-11-18 鹿島建設株式会社 Remote operation support image system for construction mobile

Also Published As

Publication number Publication date
JPH08144328A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
US5175616A (en) Stereoscopic video-graphic coordinate specification system
Kim et al. A helmet mounted display for telerobotics
US7427996B2 (en) Image processing apparatus and image processing method
AU2017404218B2 (en) Display system, display method, and remote operation system
US4791478A (en) Position indicating apparatus
JP4952995B2 (en) Image display system, image display method, and image display program
US20040066555A1 (en) Method and apparatus for generating stereoscopic images
US20060018509A1 (en) Image generation device
WO2015048906A1 (en) Augmented reality system and method for positioning and mapping
JP3206874B2 (en) Image system for remote construction support
JPH0795621A (en) Image recording and reproducing device
JP3055649B2 (en) Image system for remote construction support
JP3425402B2 (en) Apparatus and method for displaying stereoscopic image
JPH10232111A (en) Finder
JPH0634343A (en) Multiple view point three-dimensional image input device, image synthesizing device, and image output device
Robinson et al. Real time depth measurement in a stereoscopic television display
JP3014336B2 (en) Remote construction support image system
WO2012035927A1 (en) Remote video monitoring system
JP3344902B2 (en) Remote operation support image system for construction mobile
JP3087236B2 (en) Stereoscopic image synthesis display device
WO2023228331A1 (en) Remote machine operation system, visual presentation device, visual presentation method, and program
JP2022053421A (en) Display system, display method, and program for remote control
CA2022706C (en) Stereoscopic video-graphic coordinate specification system
JPH06245233A (en) Stereoscopic display device capable of presenting plane picture
Milgram et al. Stereoscopic Video+ Superimposed Computer Stereographics: Applications in Teleoperation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees