WO1997044869A1 - Method and device for manufacturing optical element mounting module - Google Patents

Method and device for manufacturing optical element mounting module Download PDF

Info

Publication number
WO1997044869A1
WO1997044869A1 PCT/JP1997/001708 JP9701708W WO9744869A1 WO 1997044869 A1 WO1997044869 A1 WO 1997044869A1 JP 9701708 W JP9701708 W JP 9701708W WO 9744869 A1 WO9744869 A1 WO 9744869A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
substrate
manufacturing
alignment
optical
Prior art date
Application number
PCT/JP1997/001708
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitada Oshida
Masahito Ijuin
Hideo Sotokawa
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO1997044869A1 publication Critical patent/WO1997044869A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements

Definitions

  • the present invention relates to a method and an apparatus for manufacturing an optical element mounted module.
  • the present invention relates to a method and an apparatus for manufacturing an optical element mounting module having an optical element mounted on a substrate, such as a semiconductor laser, a light receiving element, and an optical waveguide.
  • the mounted module is mounted on a substrate with high precision and efficiency.
  • the present invention relates to a method and an apparatus for manufacturing an optical element-mounted module capable of performing the above-described steps.
  • optical communication In recent years, the application of optical communication to homes and offices has been rapidly advanced. Such broad application and development of optical communication will be the key to the realization of an information society. In the development of such optical communication, the core of optical communication technology is
  • the first method is as follows. The method shown in the flowchart of FIG. 0 was adopted.
  • the alignment mark 23 (A 2) which has a fixed positional relationship with the light-emitting part, is formed at the stage of semiconductor laser production, and the alignment mark 23 (A 2) is also fixed when forming the optical waveguide on the substrate.
  • the alignment marks 13 (A 1) having the positional relationship of are formed. These two marks are formed on the semiconductor laser and the substrate, respectively, and are formed in, for example, the shape of a “mouth” having different dimensions as shown in FIG. 6, and the distance between the two marks is equal. Keep it in check. If the substrate is a material that transmits infrared light, such as Si, a semiconductor laser can be mounted on the Si substrate, and two I pairs of marks can be detected from behind using an infrared microscope.
  • the semiconductor laser is aligned by rotation and translation so that the marks on the left coincide with each other, and mounted at the stage where they coincide.
  • the semiconductor laser is a mounted optical element
  • the solder vapor deposited on the substrate surface and the bottom surface of the semiconductor laser is placed in a heating furnace to obtain electrical conductivity and thermal conductivity. Bonding and bonding by melting.
  • an object of the present invention is to provide a method and an apparatus for accurately mounting and fixing an optical element with high yield on a substrate of an optical element mounting module used for optical communication and the like. Disclosure of the invention
  • the present invention employs the following means in order to solve the above problems. That is, a fixed relation to the reference position on the substrate, or at least one first optical element mounted on the substrate and a second optical element on this substrate, or this substrate and a fixed position The second not on the substrate in relation
  • the first optical element is limited to a desired portion including at least a part of the back surface of the first optical element, and the substrate or the first
  • the first optical element is fixed to the substrate by supplying the energy necessary for the fixing through the second optical element.
  • the desired portion is limited to a region within the back surface of the first optical element. Further, the desired portion is a portion that does not include the second optical element or the third optical element on the substrate.
  • a member that absorbs the energy required for fixing is arranged, and the energy required for fixing passing through the optical element or the substrate is provided. Partially heated by absorption and fixed.
  • a solder material or a polymer adhesive is used, and the energy is an electromagnetic wave such as infrared light or far infrared light. This energy is sound waves.
  • a method for making the position of the first optical element and the second optical element on the substrate, or the second optical element not on the substrate in a fixed positional relationship with the substrate, a desired constant relation As the first alignment mark A1 formed on the substrate or the alignment mark A1 on the second optical element on the substrate or the third optical element not on the substrate which has a fixed relationship with the substrate.
  • Each alignment mark A2 formed on the back surface of the first optical element is detected by the alignment detecting optical system through the substrate or the i-th optical element, and aligned.
  • the first optical element is limited to a desired portion including at least a part of the back surface, and energy required for fixing is supplied through the substrate or the first optical element.
  • the energy is light
  • the light energy is supplied through the alignment detecting optical system. At this time, the light is infrared light or far infrared light.
  • the substrate When fixing the substrate, the substrate is limited to a desired portion including at least a part of the back surface of the first optical element, and energy required for the fixing is supplied through the substrate or the first optical element. Then, the first optical element is fixed, and after the fixing, the alignment state between the substrate and the first optical element is inspected using this alignment detection optical system. If there is a misalignment as a result of this inspection, the desired energy is supplied again to release the fixation, realignment is performed, the alignment is performed again, and the fixation is performed again. Further, the detection by the alignment detecting optical system, the alignment and the supply of the light energy for the fixing are performed almost simultaneously.
  • the first optical element is two or more different optical elements 0 1, 0 2,..., And after mounting the two or more optical elements on the substrate, the amount required for fixing each mounted optical element is determined.
  • the optical elements 0 1, 0 2,... are fixed to the substrate. In addition, this individual energy supply can take place simultaneously or in parallel.
  • the displacement caused by aligning the substrate and at least one optical element mounted on it and then putting it in a heating furnace and heating the whole is limited to the part that is fixed by taking the above measures. It does not occur by heating.
  • This fixation holds the optical element and the substrate or the second optical element on the substrate in a fixed position.
  • the above-described light energy is supplied through an alignment detection optical system that realizes this setting. Immediately after realization, fixation becomes possible, and the problem of displacement due to conventional fixed heating is almost eliminated.
  • the fixation position can be checked immediately after fixation. The desired energy is supplied again, the fixation is released, and the realignment and refixation become possible.
  • FIG. 1 is an embodiment of an apparatus for manufacturing an optical mounting module on which a semiconductor laser is mounted
  • FIG. 2 is an embodiment of a mask used in the embodiment of FIG. 1
  • FIG. 4 is a diagram showing an embodiment of an apparatus for manufacturing an optical mounting module in which an alignment system and an infrared irradiation system are separated.
  • FIG. 4 is an embodiment of an apparatus for manufacturing an optical mounting module for fixing a semiconductor laser and a photodiode.
  • FIG. 5 is a diagram of an embodiment of a manufacturing apparatus of an optical mounting module for performing fixation via fine particles
  • FIG. 6 is a diagram of an embodiment of an alignment pattern
  • FIG. Fig. 8 is an example of fixing using ultrasonic waves.
  • Fig. 8 is an example of fixing using ultraviolet rays.
  • Fig. 9 is fixing with an ultraviolet curing adhesive with beads interposed.
  • FIG. 10 shows a conventional optical device. Is a flowchart illustrating a fixing method. BEST MODE FOR CARRYING OUT THE IN
  • FIG. 1 shows an embodiment of the present invention, wherein 1 is a substrate, 2 is a first optical element mounted on the substrate, what is indicated by a two-dot chain line is energy supply means 3, and what is indicated by a broken line is This is the alignment optical system 4.
  • the substrate 1 is fixed to a substrate holding means 101 such as a vacuum suction chuck, and the optical element 2 is also fixed to an optical element holding means 201 such as a vacuum suction chuck. Relative positioning is performed by 4 and the position adjusting means 102,202.
  • the substrate 1 is fixed to a desired visual field position of the optical system by the position adjusting means 102 using the alignment optical system 4.
  • the alignment mark 13 formed in advance on the substrate is set at a desired position in the field of view of the alignment detection system.
  • the optical element holding means 201 such as a vacuum chuck
  • the optical element holding means 201 is moved by the position adjusting means 202 in the X and y directions so that the position of the optical element holding means 201 coincides with the center position of the alignment marks 13 and 13 'on the substrate detected by the alignment optical system.
  • the semiconductor laser 31 serving as the light source of the energy supply means 3 is turned on.
  • the energy supply means 3 converts the laser light emitted from the light source 31 into a parallel light or a convergent light by the lens 32, and is similar to a desired portion including at least a part of the back surface of the optical element used for fixing the optical element.
  • Figure Irradiation is performed on a mask 33 having a Sekiguchi 331 and a light shielding portion 332 shown in FIG.
  • the mask 33 has an imaging relationship with the alignment mark on the upper surface of the substrate or the soldering surface 12 by the lenses 34 and 46, the beam splitter 35 and the polarizing beam splitter 44. .
  • the laser beam passing through the opening 33 1 of the mask 33 forms an image of the opening 33 1 on the soldering surface 12.
  • the thin film of Cr and Ni absorbs infrared light well, so that only the soldering surface 12 to be heated is heated, and the Au and Sn solder on it is heated. Melt and fix.
  • Reference numeral 41 denotes an illumination light source for detecting an alignment, which is a halogen lamp.
  • the light emitted from the halogen lamp 4 1 is guided by the fiber 4 2, and the light emitted from the fiber is positioned by the lens 4 3 so that the exit end of the fiber 4 2 forms an image on the pupil of the lens 4 6.
  • the light passing through the lens 43 passes through the polarizing beam splitter 44 and the quarter-wave plate 45 to illuminate the alignment marks 13 and 23 of the substrate 1 and the optical element 2. On the substrate and the optical element, two are drawn at intervals enough to enter the visual field.
  • the illuminated alignment mark reflects the illuminating light, and the reflected light passes through a lens 46, a 1/4 wavelength plate 45, a polarizing beam splitter 44, a beam splitter 35, and a lens 47.
  • the light enters the CCD image sensor 48.
  • Reference numeral 49 denotes a monitor of the imaging pattern.
  • the monitor is provided with two alignment marks 13 'and 23' of the substrate and the optical element at the above-mentioned intervals at the stage shown in FIG. Each center is displayed in a state where they match.
  • the soldering surface 12 of the board and the soldering surface 22 of the optical element are 1 2 ′ and 2 2 ′ on the monitor 49 (however, 2 2 ′ is hidden by 1 2 ′ and cannot be seen). ing. After visually or automatically detecting that the alignment is accurate, a laser beam is emitted, and only the surface to be soldered is irradiated with the laser beam. Perform
  • the positions of the openings 33 of the mask 33 with respect to the alignment marks 13 and 23 may need to be changed depending on the model.
  • the position of the opening 33 I of the mask may be changed by the mask driving mechanism 33, or the mask 33 may be changed.
  • a large mask opening is used and the position and shape of the soldering surfaces 12 and 22 are changed so that the image of the mask opening includes the soldering surfaces 12 and 22, such a mask can be obtained.
  • Soldering is possible without changing the disk or the position.
  • irradiating an excessively large area causes thermal deformation, so the area is limited to the area inside the back surface of the optical element.
  • irradiating light to this optical element may cause the fixed element to come off. A portion other than the first optical element and containing no optical element is irradiated.
  • control circuit 5 controls the intensity and irradiation time of the laser beam according to the solder material, the bonding area, and the thermal conductivity and heat capacity of the adherend.
  • FIG. 3 shows another embodiment of the present invention, in which the same reference numerals as those in FIG. 1 denote the same components or components having the same functions.
  • the bonding of the optical element 2 to the substrate 1 is performed by an infrared semiconductor laser below the substrate.
  • An infrared image of a mask 33 having an opening pattern almost similar to the solder pattern 12 By irradiating only the turn 12 portion, the solder is heated, melted, and bonded as described above with little heating of the peripheral portion.
  • the alignment optical system is located above the irradiation optical system, and the red light passes through an optical element suction holder 201 ′ made of transparent glass and an optical element 2 such as a semiconductor laser that transmits infrared light. Alignment is detected by external light.
  • Reference numeral 41 denotes a halogen lamp
  • light passing through the fiber 42 passes through the lens 43, passes through the infrared light transmission filter, passes through the beam splitter 44, and passes through the objective lens 46 with an optical element. And irradiate the alignment patterns 23 and 13 on the substrate.
  • the reflected light passes through the objective lens 46 and forms an image on the CCD image sensor 48.
  • the control circuit 5 determines the positional deviation between the two patterns, and the optical element and the substrate are positioned at the correct positions by the mechanisms 202 and 102 for relatively positioning the substrate.
  • FIG. 4 shows another embodiment of the present invention in which two optical elements are bonded in parallel almost simultaneously.
  • a rectangle indicated by a dotted line is a dotted line portion in FIG. 1 or an alignment optical system having a configuration and a function of the alignment optical system in FIG. 2, and an alternate long and short dash line represents its optical axis.
  • Reference numeral 2 denotes a semiconductor laser and reference numeral 2 'denotes a photodiode. These optical elements are mounted on a substrate 1 and bonded.
  • the semiconductor laser 2 needs to be positioned with respect to the optical waveguide 6 with an accuracy of about 0.1 ⁇ m, but the accuracy of the photodiode is one digit or less. Therefore, the photodiode can be mounted at the reference position on the board by the holding and control mechanisms 201 'and 202'. On the other hand, the semiconductor laser is aligned using the alignment detection system 4.
  • Thin films 12 and 22 of Cr and Ni are previously deposited on the substrate at the bonding portion of the semiconductor laser 2 and the lower surface of the element, and a fixed diameter made of glass or a resin having a high melting point is interposed therebetween.
  • Au containing beads with There is Sn solder 30.
  • solder members made of the same material and composition as a semiconductor laser.
  • no bead is included because the height accuracy is not strict.
  • a thermosetting adhesive may be used instead of solder.
  • Infrared lasers 31 and 3I ' are located at the positions corresponding to these two bonded parts, and the emitted infrared rays (heat rays) pass through the infrared transmitting lenses 32, 34' and 36 and should be bonded. Irradiated through the substrate at some places.
  • an infrared-transmitting mask 33 ' is used so that only the desired bonding portion between the two optical elements is irradiated with infrared light.
  • This mask has a light-shielding portion 332 and infrared-transmitting portions 331 and 331 ′, and the transmitting portion forms an image on the bonding portions 12 and 12 ′ on the substrate by the lens 36. It is now. For this reason, the portion to be heated is limited to 12 and 12 '.
  • the alignment of the semiconductor laser 2 to the substrate 1 is performed by the alignment system 4, and the accurate positioning of the photodiode 2 ′ to the substrate 1 is performed by the chuck 210 ′. And the transport fine adjustment mechanism 202 '.
  • the alignment of the two elements is performed almost in parallel, and when the alignment is completed, the semiconductor lasers 31 and 31 'emit light almost simultaneously under the control of the control circuit 5'.
  • the emission wavelength of the semiconductor lasers 31 and 31 'for heating is changed, or the emission time or emission intensity is changed. It is controlled by the control circuit 5 '.
  • the alignment and the heating are performed at the same time, but the time is slower, but it may be more advantageous to perform the alignment in a time series.
  • one of the light transmitting portions 331 and 331 'of the mask 33' is made to reflect or transmit a part of the incident light. It is a good idea to balance the amount of light.
  • the opening of the mask 3 3 ′ 3 3 1, 3 3 Is fixed at a fixed position, but when there are many types of manufactured products, a variety of masks can be automatically replaced at high speed, or a two-dimensional optical modulator using liquid crystal instead of a mask is used. It can also be used to respond to variations in the irradiation pattern and the number of irradiation points. In this case, it is needless to say that a plurality of semiconductor lasers for heating are prepared so that the semiconductor laser can be moved to some extent.
  • FIG. 5 is another embodiment of the present invention, and is an enlarged explanatory view of a case where the alignment optical system and the heating optical system for bonding described in FIG. 1 are performed by the same optical system.
  • FIG. 5 is a diagram illustrating the method of soldering with beads described in FIG. 4 in further detail.
  • alignment patterns 23 and 23 ′ shown in detail in FIG. 6 are made of irregularities or an infrared ray absorbing material.
  • an Ni-Cr pattern 22 for bonding is formed in a fixed positional relationship with the pattern 23.
  • Au-Sn solder material and beads are adhered on the Ni-Cr pattern.
  • alignment patterns 13 and 13 ′ and Ni—Cr pattern 12 for bonding are similarly formed on substrate 1.
  • the N i — C r pattern absorbs relatively infrared light, but in order to further improve the infrared absorption efficiency, a material 120 with good adhesion to the substrate and good absorption of infrared light should be placed between the substrate 1 and the pattern 12. May be configured.
  • the mounting element and the substrate configured as described above are irradiated with infrared alignment light 400 transmitted through the substrate, the alignment is detected as described above, and the mounting light is adjusted while the in-plane direction is aligned by the position control system. Lower the device so that it contacts the substrate.
  • the alignment irradiate the bonding infrared ray 300 as described above, and the pattern 12 is heated, and the Au-Sn301 that is in contact is melted and pressed slightly from above. With this heating, Bonded while maintaining the gap determined by the diameter of the dose 302. Since the thickness of the bonding patterns 22, 12, and (120) are known in advance with an accuracy of about 0.01 ⁇ , the direction perpendicular to the substrate surface is the same as the direction in the substrate surface. In addition, they can be accurately aligned and bonded.
  • FIG. 7 shows another embodiment of the present invention, in which the optical element 2D is bonded to the substrate 1 by ultrasonic heating after being aligned with the optical waveguide 6 on the substrate 1.
  • the ultrasonic wave source 103, the ultrasonic lens 38, and the ultrasonic wave propagation medium 381, such as water the ultrasonic waves are intensively applied only to the bonding portion of the mounted optical element. Since a material that absorbs the ultrasonic wave, heats, and cures and adheres is previously attached between the mounted optical element 2D and the substrate 1, the material is bonded and fixed by the ultrasonic heating.
  • FIG. 8 shows an optical element manufacturing method of the present invention.
  • 1A is an optical element mounting substrate, which is made of a material such as glass that transmits ultraviolet light.
  • the semiconductor laser 2 and the optical waveguide 6 are mounted on this substrate.
  • the light emitted from the semiconductor laser passes through the gradient index lens 2 L and is introduced into the optical waveguide 6.
  • the lens 2L needs to be positioned in the plane of the substrate and in a direction perpendicular to the substrate and bonded to the substrate.
  • an adhesive 301A and a bead 302 having a constant diameter are adhered to the bottom surface of the lens 2L, and an alignment (not shown) is performed in the in-plane direction of the substrate.
  • the present invention is not limited to such an optical element.
  • the present invention can be applied to any optical device such as an optical fiber, an optical switch, an optical demultiplexing device, an optical multiplexing device, a wave plate, a polarizer, a band-pass filter, or a wavelength separating mirror.
  • an optical element such as a semiconductor laser, a semiconductor light receiving element, an optical fiber, or an optical switch is mounted on a substrate, and when an optical module is manufactured, between the mounted elements or between these mounted elements. It is now possible to accurately and stably align and fix the optical axis between the device thus fabricated and an optical device such as an optical waveguide manufactured on a substrate.
  • the aligned positional relationship which has been a problem in the past, is generally heated for bonding. Since it did not break down, the mounted optical element could be fixed accurately and stably.

Abstract

A method and device used for accurately mounting and fixing an optical element on and to the substrate of an optical element mounting module used for optical communication, etc., at a high yield. The optical element is mounted on the substrate in a fixed positional relation with respect to an optical element already mounted on the substrate or on a fixed position on the substrate and fixed to the substrate by irradiating a bonding material, such as solder, etc., existing between the element and substrate with bonding energy by limiting the irradiating position to the bonding position. In addition, an alignment detecting optical system and another optical system for supplying the bonding energy of infrared rays, etc., are provided so that the element can be bonded to the substrate immediately after alignment. Therefore, a high-quality module which hardly fluctuates in optical characteristic can be manufactured at a low cost with a high yield.

Description

明 細 書  Specification
光素子搭載モジュールの製造方法及び製造装置 技術分野 TECHNICAL FIELD The present invention relates to a method and an apparatus for manufacturing an optical element mounted module.
この発明は、 半導体レーザ、 光受光素子、 光導波路等の、 光素子を基 板上に搭載した光素子搭載モジュールの製造方法及び製造装置に係り、 特に搭載モジュールを精度高く、 効率良く基板に搭載することを可能と する光素子搭載モジュールの製造方法及び製造装置に関する。  The present invention relates to a method and an apparatus for manufacturing an optical element mounting module having an optical element mounted on a substrate, such as a semiconductor laser, a light receiving element, and an optical waveguide. In particular, the mounted module is mounted on a substrate with high precision and efficiency. The present invention relates to a method and an apparatus for manufacturing an optical element-mounted module capable of performing the above-described steps.
背景技術 Background art
近年、,光通信を各家庭やオフィスにまで適用することが急速に進めら れている。 このような光通信の広範な適用発展は、 情報化社会実現の鍵 を握ることになる。 このような光通信の発展には、 光通信技術の中心の In recent years, the application of optical communication to homes and offices has been rapidly advanced. Such broad application and development of optical communication will be the key to the realization of an information society. In the development of such optical communication, the core of optical communication technology is
1つである光素子搭載モジュールを、 如何に高精度に歩留ま り高く、 高 効率で安価に生産できるかが光通信の広範な普及に不可欠となる。 従来、 例えば半導体レーザ素子を、 これを搭載する基板上に形成され た光導波路に対し位置合わせし、 半導体レーザ出射光を光導波路に導入 可能にした光素子搭載モジュールを生産するには、 第 1 0図のフローチ ヤートに示す方法が採用されていた。 It is indispensable for the widespread spread of optical communication how to produce a high-precision, high-efficiency, high-efficiency module with one optical element mounted module. Conventionally, for example, in order to produce an optical device mounted module in which a semiconductor laser device is positioned with respect to an optical waveguide formed on a substrate on which the semiconductor laser device is mounted so that light emitted from the semiconductor laser can be introduced into the optical waveguide, the first method is as follows. The method shown in the flowchart of FIG. 0 was adopted.
半導体レーザを生産する段階で発光部に対して一定の位置関係にある 合わせマーク 2 3 ( A 2 ) を形成しておき、 また光導波路を基板上に形 成する際にも導波路に対し一定の位置関係にある合わせマーク 1 3 ( A 1 ) を形成しておく。 これら半導体レーザ及び基板上にそれぞれ形成さ れるマークをそれぞれ 2つにし、 第 6図に示すように互いに寸法の異な る例えば 「口」 の字状にしておき、 それぞれの 2つのマークの間隔は等 しく しておく。 基板が S i のように赤外光を通過する材料の場合、 半導 体レーザを S i基板に搭載し、 裏から赤外線顕微鏡で 2つの I対のマ一 クを検出することができるので、 この左おのマークをともに一致するよ うに、 例えば半導体レーザを回転と平行移動により位置合わせし、 一致 した段階で搭載する。 一旦搭載した後、 半導体レーザが搭載光素子の場 合には導電性と、 熱伝導性を得るために、 基板面と半導体レーザの底面 に予め形成されている半田蒸着膜を、 加熱炉に入れて溶かすことにより 接合、 接着する。 The alignment mark 23 (A 2), which has a fixed positional relationship with the light-emitting part, is formed at the stage of semiconductor laser production, and the alignment mark 23 (A 2) is also fixed when forming the optical waveguide on the substrate. The alignment marks 13 (A 1) having the positional relationship of are formed. These two marks are formed on the semiconductor laser and the substrate, respectively, and are formed in, for example, the shape of a “mouth” having different dimensions as shown in FIG. 6, and the distance between the two marks is equal. Keep it in check. If the substrate is a material that transmits infrared light, such as Si, a semiconductor laser can be mounted on the Si substrate, and two I pairs of marks can be detected from behind using an infrared microscope. For example, the semiconductor laser is aligned by rotation and translation so that the marks on the left coincide with each other, and mounted at the stage where they coincide. Once mounted, if the semiconductor laser is a mounted optical element, the solder vapor deposited on the substrate surface and the bottom surface of the semiconductor laser is placed in a heating furnace to obtain electrical conductivity and thermal conductivity. Bonding and bonding by melting.
上記の従来の光素子搭載モジュールの製作法では、 半導体レーザと光 導波路の相対的な位置合わせを 1対の 2つのァライメン トマークを用い て行う。 このマークの形成されている基板面内の 2方向に対しては正確 なァライメン 卜検出及び位置合わせ制御が実行される。 上記面内 2方向 のァライメン 卜検出、 並びに合わせ調整の精度は、 ほぼ目標の ±◦ . 1 〜◦ . 2 μ mを達成できている力 、 光素子は単に基板に搭載するだけで 加熱炉に入れて溶かすため加熱の際に位置ずれが生じ、 最終的に加熱後 固定された段階で、 位置合わせ精度が ± 0 . 5 μ πι以上になることがし ばしばあり、 不良品となっていた。  In the above-described conventional method of manufacturing an optical element mounting module, relative alignment between the semiconductor laser and the optical waveguide is performed using a pair of two alignment marks. Accurate alignment detection and alignment control are performed in two directions on the substrate surface where the mark is formed. The accuracy of the alignment detection and alignment adjustment in the above two directions within the plane is almost the target of ± 1 .2 to 2 .mu.m. In this case, misalignment occurs during heating because of melting.The positioning accuracy is sometimes more than ± 0.5 μπι at the final fixing stage after heating. Was.
従って、 本発明は、 光通信等に用いる光素子搭載モジュールの基板に、 光素子を正確に歩留ま り高く搭載し、 固定する方法及びその装置を提供 することを目的とする。 発明の開示  Accordingly, an object of the present invention is to provide a method and an apparatus for accurately mounting and fixing an optical element with high yield on a substrate of an optical element mounting module used for optical communication and the like. Disclosure of the invention
本発明は上記の課題を解決するため、 以下に示す手段を講じている。 すなわち、 基板上の基準位置に対して一定の関係にするか、 もしくは 基板上に搭載する少なくとも 1個の第 1 の光素子とこの基板上にある第 2の光素子、 またはこの基板と一定位置関係にある基板上にない第 2の 光素子との位置を所望の一定の関係にして、 第 1の光素子を固定する際 に、 第 1の光素子の裏面の少なく とも一部を含む所望の部分に限定し、 基板もしくは第 1の光素子を通してこの固定に必要なエネルギを供給す ることによってこの基板に第 1の光素子を固定する。 またこの際上記所 望の部分は第 1の光素子の裏面内の領域に限定する。 さらに、 上記所望 の部分は上記第 2の光素子或いは上記基板上の第 3の光素子を含まない 部分で有るようにする。 The present invention employs the following means in order to solve the above problems. That is, a fixed relation to the reference position on the substrate, or at least one first optical element mounted on the substrate and a second optical element on this substrate, or this substrate and a fixed position The second not on the substrate in relation When fixing the first optical element by setting the position with the optical element to a desired constant relationship, the first optical element is limited to a desired portion including at least a part of the back surface of the first optical element, and the substrate or the first The first optical element is fixed to the substrate by supplying the energy necessary for the fixing through the second optical element. At this time, the desired portion is limited to a region within the back surface of the first optical element. Further, the desired portion is a portion that does not include the second optical element or the third optical element on the substrate.
上記所望部分の第 1の光学素子の裏面、 もしくは上記所望部分に対向 する基板面には上記固定に必要なエネルギを吸収する部材を配置し、 光 素子もしくは基板を通過した固定に必要なエネルギを吸収することによ り部分加熱され、 固定する。 この固定には半田材もしくは高分子接着剤 を用い、 上記エネルギは赤外光もしくは遠赤外光等の電磁波とする。 ま たこのエネルギは音波とする。  On the back surface of the first optical element in the desired portion or on the substrate surface facing the desired portion, a member that absorbs the energy required for fixing is arranged, and the energy required for fixing passing through the optical element or the substrate is provided. Partially heated by absorption and fixed. For this fixing, a solder material or a polymer adhesive is used, and the energy is an electromagnetic wave such as infrared light or far infrared light. This energy is sound waves.
上記の第 1 の光素子と該基板上の第 2の光素子、 もしくは該基板と一 定位置関係にある基板上にない第 2の光素子との位置を所望の一定の関 係にする方法として、 基板上に形成された第 1 のァライメン トマーク A 1、 あるいは基板上の第 2の光素子または基板と一定関係に有る基板上 にない第 3の光素子に有るァライメン 卜マーク A 1 と第 1の光素子の裏 面上に形成されたそれぞれのァラィメントマーク A 2を基板或いは第 i の光素子を通してァライメント検出光学系で検出し、 位置合わせする。 上記第 1の光素子を固定する際に、 第 1の光素子の裏面の少なく とも 一部を含む所望の部分に限定し、 基板もしくは第 1の光素子を通してこ の固定に必要なエネルギを供給する方法は、 上記エネルギは光であリ、 この光エネルギを上記ァライメン 卜検出光学系を通して供給する。 この 際上記光は赤外光もしくは遠赤外光とする。  A method for making the position of the first optical element and the second optical element on the substrate, or the second optical element not on the substrate in a fixed positional relationship with the substrate, a desired constant relation. As the first alignment mark A1 formed on the substrate or the alignment mark A1 on the second optical element on the substrate or the third optical element not on the substrate which has a fixed relationship with the substrate. Each alignment mark A2 formed on the back surface of the first optical element is detected by the alignment detecting optical system through the substrate or the i-th optical element, and aligned. When fixing the first optical element, the first optical element is limited to a desired portion including at least a part of the back surface, and energy required for fixing is supplied through the substrate or the first optical element. In the method, the energy is light, and the light energy is supplied through the alignment detecting optical system. At this time, the light is infrared light or far infrared light.
上記ァライメント検出光学系で検出し、 位置合わせする第 1の光素子 を固定する際に、 第 1の光素子の裏面の少なく とも一部を含む所望の部 分に限定し、 基板もしくは第 1の光素子を通して該固定に必要なェネル ギを供給することによって該基板に第 1の光素子を固定し、 固定後上記 基板と第 1の光素子とのァライメン ト状態をこのァライメン 卜検出光学 系を用いて検査する。 この検査の結果ァライメン 卜ずれが生じている場 合、 再度所望のエネルギを供給して固定を解除し、 再びァライメン 卜し、 再び位置合わせをし、 再固定する。 また、 上記ァライメン ト検出光学系 による検出、 並びに位置合わせと上記固定のための光エネルギの供給と をほぼ同時に行う。 First optical element that is detected and aligned by the alignment detection optical system When fixing the substrate, the substrate is limited to a desired portion including at least a part of the back surface of the first optical element, and energy required for the fixing is supplied through the substrate or the first optical element. Then, the first optical element is fixed, and after the fixing, the alignment state between the substrate and the first optical element is inspected using this alignment detection optical system. If there is a misalignment as a result of this inspection, the desired energy is supplied again to release the fixation, realignment is performed, the alignment is performed again, and the fixation is performed again. Further, the detection by the alignment detecting optical system, the alignment and the supply of the light energy for the fixing are performed almost simultaneously.
第 1の光素子は 2つ以上の異なる光素子 0 1 、 0 2、 …であり、 該 2 つ以上の光素子を上記基板に搭載後、 それぞれの搭載光素子の固定に必 要な量の個別のエネルギ供給を行うことにより、 光素子 0 1 、 0 2 、 ·· · を基板に固定する。 さらにこの個別のエネルギ供給は同時、 並行的に行 われる。  The first optical element is two or more different optical elements 0 1, 0 2,..., And after mounting the two or more optical elements on the substrate, the amount required for fixing each mounted optical element is determined. By individually supplying energy, the optical elements 0 1, 0 2,... Are fixed to the substrate. In addition, this individual energy supply can take place simultaneously or in parallel.
基板とこの上に搭載する少なく とも 1 つの光素子をァライメン トした 後加熱炉に入れて全体を加熱することにより生じていた位置ずれは、 上 記手段を講じることによリ固定する部分に限定して加熱することにより 生じなくなる。  The displacement caused by aligning the substrate and at least one optical element mounted on it and then putting it in a heating furnace and heating the whole is limited to the part that is fixed by taking the above measures. It does not occur by heating.
即ち、 基板上の光素子を所望の位置に設定した後、 基板もしくは光素 子を通して固定部に限定して固定に必要なエネルギを供給することによ り、 固定部分のみを加熱し、 全体の変位を生じることなく、 固定できる c このエネルギとして電磁波または音波を利用することにより、 基板また は光素子中をこれらの波のエネルギを伝播させ、 基板と光素子の間に挟 まれた位置に有る固定部の固定部剤を集中的に加熱することにより、 全 体の変位を生じることなく、 固定できる。 That is, after setting the optical element on the substrate at a desired position, by supplying the energy required for fixing only to the fixed part through the substrate or the optical element, only the fixed part is heated, and the whole is heated. displacement without causing, by utilizing the fixed can c electromagnetic or sonic as this energy, the substrate or in the optical element to propagate energy of these waves, there in pressed or the position between the substrate and the optical element By intensively heating the fixing agent in the fixing portion, the fixing can be performed without causing the entire displacement.
この固定は光素子と基板或いは基板上の第 2の光素子等とを一定の位 置関係に設定し、 この位置設定が成立している時に固定されるべきであ るカ 、 本発明ではこの設定を実現するァライメン卜検出光学系を通して 上記の光エネルギを供給することにより、 ァライメン ト実現直後に、 固 定が可能になリ、 従来の固定加熱に伴う位置ずれの問題はほとんどなく なる。 またこのように、 ァライメント検出系を通して固定のためのエネ ルギ供給が可能になれば、 固定直後に、 固定位置状態を即座にチェック することができ、 万が一固定時に位置ずれが生じても、 即座に再度所望 のエネルギを供給し、 固定を解除し、 再ァライメント、 再固定が可能と なる。 更に固定箇所が複数箇所あり、 例えば固定対象が異なり、 固定の ための材料が異なっていても、 個々の固定箇所に対して最適なエネルギ を選択し、 エネルギを照射することによって、 各個所を順次もしくは、 同時に確実に固定することが可能になる。 図面の簡単な説明 This fixation holds the optical element and the substrate or the second optical element on the substrate in a fixed position. In the present invention, the above-described light energy is supplied through an alignment detection optical system that realizes this setting. Immediately after realization, fixation becomes possible, and the problem of displacement due to conventional fixed heating is almost eliminated. In addition, if energy can be supplied for fixation through the alignment detection system, the fixation position can be checked immediately after fixation. The desired energy is supplied again, the fixation is released, and the realignment and refixation become possible. Furthermore, even if there are a plurality of fixing points, for example, the fixing object is different and the material for fixing is different, the optimum energy is selected for each fixing point and the energy is irradiated, so that each point is sequentially Or, it can be securely fixed at the same time. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 半導体レーザを搭載する光搭載モジュールの製造装置の一 実施例図であり、 第 2図は、 第 1 図の実施例に用いるマスクの一実施例 図であり、 第 3図は、 ァライメント系と赤外照射系を別にした光搭載モ ジュールの製造装置の一実施例図であり、 第 4図は、 半導体レーザとフ オ トダイォードを固定する光搭載モジュールの製造装置の一実施例図で あり、 第 5図は、 微小粒子を介した固定を行う光搭載モジュールの製造 装置の一実施例図であり、 第 6図は、 ァライメン 卜パターンの一実施例 図であり、 第 7図は、 超音波を用いて固定する一実施例図であり、 第 8 図は、 紫外線を用いて固定する一実施例図であり、 第 9図は、 ビーズを 介在させ紫外線硬化型接着剤で固定する一実施例図であり、 第 1 0図は. 従来の光素子搭載、 固定方法を示すフローチャート図である。 発明を実施するための最良の形態 FIG. 1 is an embodiment of an apparatus for manufacturing an optical mounting module on which a semiconductor laser is mounted, FIG. 2 is an embodiment of a mask used in the embodiment of FIG. 1, and FIG. FIG. 4 is a diagram showing an embodiment of an apparatus for manufacturing an optical mounting module in which an alignment system and an infrared irradiation system are separated. FIG. 4 is an embodiment of an apparatus for manufacturing an optical mounting module for fixing a semiconductor laser and a photodiode. FIG. 5 is a diagram of an embodiment of a manufacturing apparatus of an optical mounting module for performing fixation via fine particles, FIG. 6 is a diagram of an embodiment of an alignment pattern, and FIG. Fig. 8 is an example of fixing using ultrasonic waves. Fig. 8 is an example of fixing using ultraviolet rays. Fig. 9 is fixing with an ultraviolet curing adhesive with beads interposed. FIG. 10 shows a conventional optical device. Is a flowchart illustrating a fixing method. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明 する。  The present invention will be described in more detail with reference to the accompanying drawings.
第 1図は本発明の実施例であり、 1は基板、 2は基板上に搭載する第 1の光素子、 2点鎖線で示したものはエネルギ供給手段 3であり、 破線 で示したものはァライメン 卜光学系 4である。 基板 1は例えば真空吸着 チヤック等の基板保持手段 1 0 1 に固定され、 光素子 2はやはり真空吸 着チヤック等の光素子保持手段 2 0 1 に固定され、 後に詳細に説明する ァライメン卜光学系 4と位置調整手段 1 0 2, 2 0 2により相対的な位 置合わせが行われる。  FIG. 1 shows an embodiment of the present invention, wherein 1 is a substrate, 2 is a first optical element mounted on the substrate, what is indicated by a two-dot chain line is energy supply means 3, and what is indicated by a broken line is This is the alignment optical system 4. The substrate 1 is fixed to a substrate holding means 101 such as a vacuum suction chuck, and the optical element 2 is also fixed to an optical element holding means 201 such as a vacuum suction chuck. Relative positioning is performed by 4 and the position adjusting means 102,202.
即ち、 基板 1が位置調整手段 1 0 2により、 ァライメント光学系 4を 用い、 この光学系の所望の視野位置に固定される。 この位置では基板上 に予め形成されているァライメントマーク 1 3がァライメン ト検出系の 視野の所望の位置に来るようにする。 次に第 1 の光素子を真空チヤック 等の光素子保持手段 2 0 1 で吸着させた状態で、 この光素子の固定面に 予め描画されていたァライメン 卜マーク 2 3および 2 3 ' の中心位置が ァライメン 卜光学系で検出されている基板上のァライメントマ一ク 1 3 および 1 3 ' の中心位置と一致するように、 光素子保持手段 2 0 1 を位 置調整手段 2 0 2により X y方向に制御し、 また必要に応じて Z軸を中 心とする回転制御を行い、 位置調整し、 z方向に、 半田付け面である C rと N i の薄い膜とその上に A uと S nの半田材が乗せられたパターン 1 2と 2 2が接触する程度まで近付ける。  That is, the substrate 1 is fixed to a desired visual field position of the optical system by the position adjusting means 102 using the alignment optical system 4. At this position, the alignment mark 13 formed in advance on the substrate is set at a desired position in the field of view of the alignment detection system. Next, in a state where the first optical element is adsorbed by the optical element holding means 201 such as a vacuum chuck, the center positions of the alignment marks 23 and 23 'previously drawn on the fixed surface of this optical element. The optical element holding means 201 is moved by the position adjusting means 202 in the X and y directions so that the position of the optical element holding means 201 coincides with the center position of the alignment marks 13 and 13 'on the substrate detected by the alignment optical system. And, if necessary, rotation control with the Z axis as the center, adjust the position, and in the z direction, the thin films of Cr and Ni that are the soldering surfaces and Au and S The patterns 12 and 22 on which the n solder material is placed are brought close to each other until they come into contact with each other.
中心位置が一致すれば、 エネルギ供給手段 3の光源である半導体レー ザ 3 1 を点灯する。 エネルギ供給手段 3は光源 3 1と光源より出射した レーザ光をレンズ 3 2により平行光、 もしくは収束光にし、 光素子の固 定に用いる光素子の裏面の少なくとも一部を含む所望の部分に相似な図 2に示す関口 3 3 1 と遮光部 3 3 2を有するマスク 3 3に照射する。 こ のマスク 3 3はレンズ 3 4と 4 6およびビームスプリ ッタ 3 5および偏 光ビームスプリ ッタ 4 4により基板上面のァライメン トマ一クあるいは 半田付け面 1 2と結像関係になっている。 従ってマスク 3 3の開口 3 3 1 を通ったレーザ光は開口 3 3 1 の像を半田付け面 1 2 に結像する。 こ の結果、 C r と N i の薄い膜が赤外光を良く吸収することにより、 加熱 したい半田付け面 1 2のみが加熱され、 その上に乗った A uと S nの半 田剤が溶けて接着固定する。 If the center positions match, the semiconductor laser 31 serving as the light source of the energy supply means 3 is turned on. The energy supply means 3 converts the laser light emitted from the light source 31 into a parallel light or a convergent light by the lens 32, and is similar to a desired portion including at least a part of the back surface of the optical element used for fixing the optical element. Figure Irradiation is performed on a mask 33 having a Sekiguchi 331 and a light shielding portion 332 shown in FIG. The mask 33 has an imaging relationship with the alignment mark on the upper surface of the substrate or the soldering surface 12 by the lenses 34 and 46, the beam splitter 35 and the polarizing beam splitter 44. . Therefore, the laser beam passing through the opening 33 1 of the mask 33 forms an image of the opening 33 1 on the soldering surface 12. As a result, the thin film of Cr and Ni absorbs infrared light well, so that only the soldering surface 12 to be heated is heated, and the Au and Sn solder on it is heated. Melt and fix.
次にァライメント検出系について説明する。 4 1はァライメン卜検出 のための照明光源であり、 ハロゲンランプである。 ハロゲンランプ 4 1 を出射した光はフアイバ 4 2で導かれ、 ファイバを出射した光はレンズ 4 3によりファイバ 4 2の出射端がレンズ 4 6の瞳に結像するようにレ ンズ 4 3を位置付ける。 レンズ 4 3を通った光は偏光ビ一ムスプリ ッタ 4 4、 1 / 4波長板 4 5を通り基板 1及び光素子 2のァライメントマ一 ク 1 3および 2 3を照明する。 基板及び光素子にはそれぞれ 2個ずっ視 野内に入る程度の間隔で描画されている。 照明されたァライメントマ一 クは照明光を反射し、 反射光はレンズ 4 6、 1ノ 4波長板 4 5、 偏光ビ —ムスプリ ッタ 4 4、 ビ一ムスプリ ッタ 3 5、 レンズ 4 7を通り、 C C D撮像素子 4 8に入射する。 4 9はこの撮像パターンのモニタであり、 ァライメントが終了した段階では、 第 1図に示すようにモニタには基板 及び光素子のァライメン トマーク 1 3 ' と 2 3 ' が 2個ずつ上記の間隔 でそれぞれの中心が一致する状態で表示されている。 この時基板の半田 付け面 1 2と光素子の半田付け面 2 2は、 モニタ 4 9上では 1 2 ' 及び 2 2 ' (但し、 2 2 ' は 1 2 ' に隠れて見えない) となっている。 この ようにァライメン卜が正確にできていることを目視或いは自動で検出し た後、 レーザ光を出射し、 半田付け面のみにレーザ光を照射し、 半田付 けを行う。 Next, the alignment detection system will be described. Reference numeral 41 denotes an illumination light source for detecting an alignment, which is a halogen lamp. The light emitted from the halogen lamp 4 1 is guided by the fiber 4 2, and the light emitted from the fiber is positioned by the lens 4 3 so that the exit end of the fiber 4 2 forms an image on the pupil of the lens 4 6. . The light passing through the lens 43 passes through the polarizing beam splitter 44 and the quarter-wave plate 45 to illuminate the alignment marks 13 and 23 of the substrate 1 and the optical element 2. On the substrate and the optical element, two are drawn at intervals enough to enter the visual field. The illuminated alignment mark reflects the illuminating light, and the reflected light passes through a lens 46, a 1/4 wavelength plate 45, a polarizing beam splitter 44, a beam splitter 35, and a lens 47. The light enters the CCD image sensor 48. Reference numeral 49 denotes a monitor of the imaging pattern. When the alignment is completed, the monitor is provided with two alignment marks 13 'and 23' of the substrate and the optical element at the above-mentioned intervals at the stage shown in FIG. Each center is displayed in a state where they match. At this time, the soldering surface 12 of the board and the soldering surface 22 of the optical element are 1 2 ′ and 2 2 ′ on the monitor 49 (however, 2 2 ′ is hidden by 1 2 ′ and cannot be seen). ing. After visually or automatically detecting that the alignment is accurate, a laser beam is emitted, and only the surface to be soldered is irradiated with the laser beam. Perform
第 1図の実施例では常にァライメン トマ一クが検出できているので、 半田付け後に、 正しく半田付けが実行されたか否かをモニタによって目 視或いは自動で検出することが可能である。 万が一ずれていれば、 レー ザ光を再び所望の量だけ照射し、 ハンダによる固定を解除し、 再びァラ ィメン卜を行い、 再度所望の量のレーザ照射で固定する。  In the embodiment shown in FIG. 1, since the alignment mark is always detected, it is possible to visually or automatically detect whether or not the soldering has been correctly performed after the soldering by using a monitor. If there is any deviation, irradiate the desired amount of laser light again, release the fixation by the solder, perform the alignment again, and fix again with the desired amount of laser irradiation.
マスク 3 3の開口の形状ゃァライメン トマーク 1 3 、 2 3に対する位 置は、 機種が代われば変更が必要な場合が生じる。 このような場合には マスク駆動機構 3 3 ◦によりマスクの開口 3 3 I の位置を変えること、 或いはマスク 3 3を変更すれば良い。 またある程度大きなマスク開口に しておき、 半田付け面 1 2や 2 2の位置や形状が変わって、 マスク開口 の結像が半田付け面 1 2や 2 2を含むようにしておけば、 このようなマ スクの変更や位置の変更を行わなくても半田付けが可能となる。 しかし、 あま り大きな領域を照射すると熱変形が発生するため光素子の裏面内の 領域に限定する。 特に既に基板上に第 1の光素子以外の光素子が搭載さ れている場合には、 この光素子にまで光を照射すると、 せっかく固定さ れているものが外れる可能性が有るため、 この第 1の光素子以外の光素 子を含まない部分を照射する。  The positions of the openings 33 of the mask 33 with respect to the alignment marks 13 and 23 may need to be changed depending on the model. In such a case, the position of the opening 33 I of the mask may be changed by the mask driving mechanism 33, or the mask 33 may be changed. In addition, if a large mask opening is used and the position and shape of the soldering surfaces 12 and 22 are changed so that the image of the mask opening includes the soldering surfaces 12 and 22, such a mask can be obtained. Soldering is possible without changing the disk or the position. However, irradiating an excessively large area causes thermal deformation, so the area is limited to the area inside the back surface of the optical element. In particular, when an optical element other than the first optical element is already mounted on the substrate, irradiating light to this optical element may cause the fixed element to come off. A portion other than the first optical element and containing no optical element is irradiated.
マスク 3 3は液晶ディスプレイのような空間変調器を用いれば、 任意 のパターンをソフ トで製作することが可能となる。 また半田の材料や接 着面積、 被接着物の熱伝導率や熱容量に応じて、 レーザ光の強度や照射 時間を制御回路 5で制御する。  If a spatial modulator such as a liquid crystal display is used for the mask 33, an arbitrary pattern can be manufactured by software. In addition, the control circuit 5 controls the intensity and irradiation time of the laser beam according to the solder material, the bonding area, and the thermal conductivity and heat capacity of the adherend.
第 3図は本発明の他の実施例であリ、 第 1図の部品番号と同じ番号は 同一物或いは同一機能を有するものを表す。 光素子 2の基板 1への接着 は基板の下方にある赤外光半導体レーザによって行われる。 半田のパタ ーン 1 2とほぼ相似の開口パターンを有するマスク 3 3の赤外線像がパ ターン 1 2部分に限定されて照射されることにより、 周辺部をほとんど 加熱することなく前述のように半田が加熱、 溶融され、 接着される。 第 3図ではァライメン ト光学系が照射光学系とは別に上方にあり、 透明な ガラスからできている光素子吸着ホルダ 2 0 1 ' および赤外線光を透過 する半導体レーザ等の光素子 2を通して、 赤外光でァライメン ト検出さ れる。 4 1はハロゲンランプであり、 ファイバ 4 2を通った光はレンズ 4 3を通過し、 赤外光透過フィルタを通り、 ビ一ムスプリ ッタ 4 4を通 過し、 対物レンズ 4 6で光素子及び基板上のァラィメン トパターン 2 3 及び 1 3を照射する。 反射光は対物レンズ 4 6 を通り C C D撮像素子 4 8に結像される。 この信号を元に制御回路 5で両パターンの位置ずれが 求められ、 光素子、 及び基板を相対的に位置決めする機構 2 0 2と 1 0 2により正しい位置に位置決めされる。 FIG. 3 shows another embodiment of the present invention, in which the same reference numerals as those in FIG. 1 denote the same components or components having the same functions. The bonding of the optical element 2 to the substrate 1 is performed by an infrared semiconductor laser below the substrate. An infrared image of a mask 33 having an opening pattern almost similar to the solder pattern 12 By irradiating only the turn 12 portion, the solder is heated, melted, and bonded as described above with little heating of the peripheral portion. In FIG. 3, the alignment optical system is located above the irradiation optical system, and the red light passes through an optical element suction holder 201 ′ made of transparent glass and an optical element 2 such as a semiconductor laser that transmits infrared light. Alignment is detected by external light. Reference numeral 41 denotes a halogen lamp, and light passing through the fiber 42 passes through the lens 43, passes through the infrared light transmission filter, passes through the beam splitter 44, and passes through the objective lens 46 with an optical element. And irradiate the alignment patterns 23 and 13 on the substrate. The reflected light passes through the objective lens 46 and forms an image on the CCD image sensor 48. Based on this signal, the control circuit 5 determines the positional deviation between the two patterns, and the optical element and the substrate are positioned at the correct positions by the mechanisms 202 and 102 for relatively positioning the substrate.
第 4図は 2つの光素子をほぼ同時に平行に接着する本発明の他の実施 例である。 点線で示した矩形は第 1図の点線部分或いは第 2図のァライ メント光学系の構成、 機能を有するァライメン 卜光学系であり、 1点鎖 線はその光軸を表している。  FIG. 4 shows another embodiment of the present invention in which two optical elements are bonded in parallel almost simultaneously. A rectangle indicated by a dotted line is a dotted line portion in FIG. 1 or an alignment optical system having a configuration and a function of the alignment optical system in FIG. 2, and an alternate long and short dash line represents its optical axis.
2は半導体レーザ、 2 ' はフォ トダイオードであリ、 これら光素子を 基板 1 に搭載し、 接着する。 光導波路 6に対し、 半導体レーザ 2は 0 . 1 μ m程度の精度で位置合わせする必要があるが、 フォ 卜ダイォードは 1桁以上精度が緩い。 そのためフォ トダイオードはその保持、 制御機構 である 2 0 1 ' および 2 0 2 ' により基板上の基準位置に搭載可能であ る。 他方半導体レーザはァライメン ト検出系 4を用いて位置合わせがな される。  Reference numeral 2 denotes a semiconductor laser and reference numeral 2 'denotes a photodiode. These optical elements are mounted on a substrate 1 and bonded. The semiconductor laser 2 needs to be positioned with respect to the optical waveguide 6 with an accuracy of about 0.1 μm, but the accuracy of the photodiode is one digit or less. Therefore, the photodiode can be mounted at the reference position on the board by the holding and control mechanisms 201 'and 202'. On the other hand, the semiconductor laser is aligned using the alignment detection system 4.
半導体レーザ 2の接着部の基板上および素子下面には、 C rと N i の 薄い膜 1 2および 2 2があらかじめ蒸着されており、 その間にはガラス もしくは高融点の樹脂から成る一定の径を有するビーズを含んだ A uと S nの半田 3 0がある。 他方フォ トダイオード 2 ' の接着部の基板及び 素子下面には半導体レーザど同様の材料と構成の半田用の部材が有る。 但しフォ トダイオード 2 ' の場合には高さ精度が厳しくないため、 ビー ズは含まれていない。 フォ トダイォードの場合には半田に変えて熱硬化 性の接着剤を用いても良い。 これら 2か所の接着部に対応する位置に赤 外線レーザ 3 1 と 3 I ' が有り、 出射した赤外線 (熱線) は赤外線透過 レンズ 3 2、 3 4' 及び 3 6を通り、 接着すべき 2か所を基板を通して 照射される。 この際 2つの光素子の所望の接着部のみに赤外線が照射さ れるように、 赤外線透過のマスク 3 3 ' を用いる。 このマスクは遮光部 3 3 2と赤外線透過部 3 3 1および 3 3 1 ' を有し、 この透過部がレン ズ 3 6により基板上の接着部 1 2及び 1 2 ' に結像するようになつてい る。 このため、 加熱される部分は 1 2及び 1 2 ' に限定される。 Thin films 12 and 22 of Cr and Ni are previously deposited on the substrate at the bonding portion of the semiconductor laser 2 and the lower surface of the element, and a fixed diameter made of glass or a resin having a high melting point is interposed therebetween. Au containing beads with There is Sn solder 30. On the other hand, on the substrate at the bonding portion of the photodiode 2 ′ and on the lower surface of the element, there are solder members made of the same material and composition as a semiconductor laser. However, in the case of the photodiode 2 ', no bead is included because the height accuracy is not strict. In the case of a photo diode, a thermosetting adhesive may be used instead of solder. Infrared lasers 31 and 3I 'are located at the positions corresponding to these two bonded parts, and the emitted infrared rays (heat rays) pass through the infrared transmitting lenses 32, 34' and 36 and should be bonded. Irradiated through the substrate at some places. At this time, an infrared-transmitting mask 33 'is used so that only the desired bonding portion between the two optical elements is irradiated with infrared light. This mask has a light-shielding portion 332 and infrared-transmitting portions 331 and 331 ′, and the transmitting portion forms an image on the bonding portions 12 and 12 ′ on the substrate by the lens 36. It is now. For this reason, the portion to be heated is limited to 12 and 12 '.
次に 2か所の接着方法を説明する。 まず、 制御回路 5 ' を用いて、 半 導体レーザ 2の基板 1への位置合わせを上記ァライメント系 4で行い、 またフォ トダイオード 2 ' の基板 1への正確な位置出しをチャック 2 0 1 ' 及び搬送微調機構 2 0 2 ' により行う。 両素子の位置合わせはほぼ 並行して行われ、 それが終了すると、 制御回路 5 ' の制御により、 半導 体レーザ 3 1 および 3 1 ' がほぼ同時に発光される。 接着する 2つの光 素子の接着材料、 面積、 また各光素子の耐熱特性を考慮して、 加熱用の 半導体レーザ 3 1 , 3 1 ' の発光波長を変えたり、 発光時間、 或いは発 光強度が制御回路 5 ' により、 制御される。  Next, two bonding methods will be described. First, using the control circuit 5 ′, the alignment of the semiconductor laser 2 to the substrate 1 is performed by the alignment system 4, and the accurate positioning of the photodiode 2 ′ to the substrate 1 is performed by the chuck 210 ′. And the transport fine adjustment mechanism 202 '. The alignment of the two elements is performed almost in parallel, and when the alignment is completed, the semiconductor lasers 31 and 31 'emit light almost simultaneously under the control of the control circuit 5'. Considering the adhesive material and area of the two optical elements to be bonded and the heat resistance of each optical element, the emission wavelength of the semiconductor lasers 31 and 31 'for heating is changed, or the emission time or emission intensity is changed. It is controlled by the control circuit 5 '.
上記実施例では同時に位置合わせ及び加熱が行われているが、 時間は 遅くなるが、 時系列で行った方が有利な場合も有る。 また 2か所への光 (熱) 供給量が著しく異なる場合にはマスク 3 3 ' の光透過部 3 3 1 と 3 3 1 ' の一方を入射光の一部を反射したり透過するようにして、 光量 のバランスを採ると良い。 またマスク 3 3 ' の開口都 3 3 1 、 3 3 は一定の位置に固定されているが、 製造製品の品種が多い場合には多種 類のマスクを自動的に高速に交換可能にしたり、 マスクに変わって液晶 等を用いた 2次元光変調器を用いて、 任意の照射パターンや照射箇所数 の変動に対応することも可能である。 この場合、 加熱用の半導体レーザ は複数個用意し、 ある程度の場所の移動を可能にすることは云うまでも ない。 In the above embodiment, the alignment and the heating are performed at the same time, but the time is slower, but it may be more advantageous to perform the alignment in a time series. When the amount of light (heat) supplied to the two places is significantly different, one of the light transmitting portions 331 and 331 'of the mask 33' is made to reflect or transmit a part of the incident light. It is a good idea to balance the amount of light. The opening of the mask 3 3 ′ 3 3 1, 3 3 Is fixed at a fixed position, but when there are many types of manufactured products, a variety of masks can be automatically replaced at high speed, or a two-dimensional optical modulator using liquid crystal instead of a mask is used. It can also be used to respond to variations in the irradiation pattern and the number of irradiation points. In this case, it is needless to say that a plurality of semiconductor lasers for heating are prepared so that the semiconductor laser can be moved to some extent.
第 5図は本発明の他の実施例であり、 第 1図で説明したァライメン ト 光学系と接着のための加熱の光学系を同一の光学系で行うものの拡大説 明図である。 また第 4図で説明したビーズ入りの半田方法を更に詳細に 説明する図である。  FIG. 5 is another embodiment of the present invention, and is an enlarged explanatory view of a case where the alignment optical system and the heating optical system for bonding described in FIG. 1 are performed by the same optical system. FIG. 5 is a diagram illustrating the method of soldering with beads described in FIG. 4 in further detail.
基板 1 に搭載する半導体レーザ 2の接着する底面には、 第 6図に詳細 を示すァライメン卜用パターン 2 3及び 2 3 ' が、 凹凸もしくは、 赤外 線吸収材で構成されている。 またこのパターン 2 3と一定の位置関係に ある接着用の N i 一 C rパターン 2 2が形成されている。 またこの N i 一 C rパターンの上には A u— S n半田材とビーズが付着されている。 他方基板 1には同様にァライメントパターン 1 3および 1 3 ' と接着用 の N i — C rノ ターン 1 2が形成されている。 N i — C rパターンは比 較的赤外線を吸収するが、 更に赤外線吸収効率を向上するために基板へ の接着性が良く赤外線を良く吸収する材料 1 2 0を基板 1 とパターン 1 2の間に構成しても良い。  On the bottom surface of the semiconductor laser 2 to be mounted on the substrate 1, alignment patterns 23 and 23 ′ shown in detail in FIG. 6 are made of irregularities or an infrared ray absorbing material. Also, an Ni-Cr pattern 22 for bonding is formed in a fixed positional relationship with the pattern 23. Au-Sn solder material and beads are adhered on the Ni-Cr pattern. On the other hand, alignment patterns 13 and 13 ′ and Ni—Cr pattern 12 for bonding are similarly formed on substrate 1. The N i — C r pattern absorbs relatively infrared light, but in order to further improve the infrared absorption efficiency, a material 120 with good adhesion to the substrate and good absorption of infrared light should be placed between the substrate 1 and the pattern 12. May be configured.
このように構成された搭載素子と基板に、 基板を透過する赤外線のァ ライメント光 4 0 0を照射し、 前述のァライメン ト検出し、 位置制御系 で面内方向を位置合わせしつつ、 搭載光素子を下方に下し、 基板と接触 する程度にする。 位置合わせした後、 前述したように接着用の赤外線 3 0 0を照射すれば、 パターン 1 2が加熱され、 接触している、 A u— S n 3 0 1が溶けだし、 上方から若干加圧しながらこの加熱をすれば、 ビ ーズ 3 0 2の径で決まるギヤップを保って接着される。 接着のためのパ ターン 2 2 、 1 2 、 ( 1 2 0 ) はあらかじめ厚さが 0 . 0 1 μ πι程度の 精度で分かっているため、 基板面内の方向同様、 基板面に垂直な方向に も正確に位置合わせされて接着することができる。 The mounting element and the substrate configured as described above are irradiated with infrared alignment light 400 transmitted through the substrate, the alignment is detected as described above, and the mounting light is adjusted while the in-plane direction is aligned by the position control system. Lower the device so that it contacts the substrate. After the alignment, irradiate the bonding infrared ray 300 as described above, and the pattern 12 is heated, and the Au-Sn301 that is in contact is melted and pressed slightly from above. With this heating, Bonded while maintaining the gap determined by the diameter of the dose 302. Since the thickness of the bonding patterns 22, 12, and (120) are known in advance with an accuracy of about 0.01 μππ, the direction perpendicular to the substrate surface is the same as the direction in the substrate surface. In addition, they can be accurately aligned and bonded.
第 7図は本発明の他の実施例であり、 基板 1上の光導波路 6に位置合 わせした後、 光素子 2 Dを基板 1 に超音波加熱によリ接着するものであ る。 超音波発生源 1 0 3、 超音波レンズ 3 8、 および水等の超音波伝播 媒材 3 8 1 を用いて、 搭載光素子の接着部に限定して超音波を集中照射 する。 搭載光素子 2 Dと基板 1 の間には超音波を吸収して加熱し硬化接 着する材料があらかじめ付着されているので、 超音波の加熱により、 接 着、 固定される。  FIG. 7 shows another embodiment of the present invention, in which the optical element 2D is bonded to the substrate 1 by ultrasonic heating after being aligned with the optical waveguide 6 on the substrate 1. Using the ultrasonic wave source 103, the ultrasonic lens 38, and the ultrasonic wave propagation medium 381, such as water, the ultrasonic waves are intensively applied only to the bonding portion of the mounted optical element. Since a material that absorbs the ultrasonic wave, heats, and cures and adheres is previously attached between the mounted optical element 2D and the substrate 1, the material is bonded and fixed by the ultrasonic heating.
第 8図は本発明の光素子製造方法である。 1 Aは光素子搭載基板であ り、 紫外線を透過するガラス等の材料から成っている。 この基板には半 導体レーザ 2及び光導波路 6が搭載されている。 半導体レーザを出射し た光は屈折率分布型のレンズ 2 Lを透過して光導波路 6に導入される。 このためレンズ 2 Lは基板の面内と基板に垂直な方向に位置合わせされ て基板に接着する必要がある。 レンズ 2 Lの底面には第 9図に示すよう に接着剤 3 0 1 Aと一定の径を有するビーズ 3 0 2が接着されておリ、 基板面内方向のァライメント (図示せず) を実施した後、 面と直角方向 に上から加圧しながら、 基板下方から紫外線を照射し、 接着剤を紫外線 硬化させる。 この紫外線硬化は水銀ランプ 3 1 ' から出射した紫外線を レンズ 3 4 " で集め、 マスク 3 3 " に当て、 透過光がマスクのパターン が搭載屈折率分布型レンズ 2 Lの底面にレンズ 3 6 " によリ結像するよ うにする。 このようにすることにより、 接着部以外に紫外線を当てず、 他の部品にダメージを与えることなく、 所望の搭載光素子を基板に固定 することができる。 以上説明した実施例では光モジュール基板に搭載した光素子として、 半導体レーザ、 フォ トダイオード、 屈折率分布型レンズを例として説明 した力 、 本発明はこのような光素子に限定されるものではなく、 光ファ ィバ、 光スィ ッチ、 光分波素子、 光合波素子、 波長板、 偏光器、 バンド パスフィルタ、 或いは波長分離ミラー等如何なる光素子にも適用できる ことは云うまでもない。 産業上の利用可能性 FIG. 8 shows an optical element manufacturing method of the present invention. 1A is an optical element mounting substrate, which is made of a material such as glass that transmits ultraviolet light. The semiconductor laser 2 and the optical waveguide 6 are mounted on this substrate. The light emitted from the semiconductor laser passes through the gradient index lens 2 L and is introduced into the optical waveguide 6. For this reason, the lens 2L needs to be positioned in the plane of the substrate and in a direction perpendicular to the substrate and bonded to the substrate. As shown in Fig. 9, an adhesive 301A and a bead 302 having a constant diameter are adhered to the bottom surface of the lens 2L, and an alignment (not shown) is performed in the in-plane direction of the substrate. Then, ultraviolet light is irradiated from below the substrate while applying pressure from above in the direction perpendicular to the surface, and the adhesive is cured by ultraviolet light. In this UV curing, the ultraviolet rays emitted from the mercury lamp 3 1 ′ are collected by the lens 34 ”and applied to the mask 33”, and the transmitted light is mounted on the mask pattern. By doing so, a desired mounted optical element can be fixed to the substrate without irradiating ultraviolet rays to portions other than the adhesive portion and without damaging other components. In the above-described embodiment, the power described with the semiconductor laser, the photodiode, and the gradient index lens as examples of the optical element mounted on the optical module substrate, the present invention is not limited to such an optical element. Needless to say, the present invention can be applied to any optical device such as an optical fiber, an optical switch, an optical demultiplexing device, an optical multiplexing device, a wave plate, a polarizer, a band-pass filter, or a wavelength separating mirror. Industrial applicability
以上説明したように、 本発明によれば基板上に半導体レーザ、 半導体 受光素子、 光ファイバ、 光スィッチ等の光素子を搭載し、 光モジュール を製作する際に、 搭載した素子間、 或いはこれら搭載した素子と基板上 に製作された光導波路等の光素子間の光軸を正確にかつ安定に位置合わ せし、 固定することが可能になった。  As described above, according to the present invention, an optical element such as a semiconductor laser, a semiconductor light receiving element, an optical fiber, or an optical switch is mounted on a substrate, and when an optical module is manufactured, between the mounted elements or between these mounted elements. It is now possible to accurately and stably align and fix the optical axis between the device thus fabricated and an optical device such as an optical waveguide manufactured on a substrate.
特に、 光素子を基板等に固定するときに行うァライメン トとこれに続 いて行う固定の間に時間を設けないため、 また従来問題となっていたァ ライメントした位置関係を接着のための全体加熱によリ崩すようなこと がなくなつたため、 正確に安定に搭載光素子を固定することが可能にな つた。  In particular, since there is no time between the alignment performed when the optical element is fixed to a substrate or the like and the subsequent fixing, the aligned positional relationship, which has been a problem in the past, is generally heated for bonding. Since it did not break down, the mounted optical element could be fixed accurately and stably.
その結果、 歩留ま りが高く、 安価に、 光モジュールを製作することが 可能になり、 光通信技術等の発展に寄与する。  As a result, it is possible to manufacture an optical module at a high yield and at a low cost, contributing to the development of optical communication technology and the like.

Claims

請 求 の 範 囲 The scope of the claims
. 基板上に少なく とも 1個の光素子を搭載した光素子モジュールの製 造方法において、 In a method of manufacturing an optical element module having at least one optical element mounted on a substrate,
所定の基準位置に対して前記光素子を設置し、  Installing the optical element for a predetermined reference position,
前記光素子を固定する際、 前記光素子の裏面の少なくとも一部を含 む所望の部分に前記基板あるいは前記光素子を通して必要なエネルギ を供給することによって前記基板に前記光素子を固定することを特徴 とする光素子搭載モジュールの製造方法。  When fixing the optical element, fixing the optical element to the substrate by supplying necessary energy through the substrate or the optical element to a desired portion including at least a part of the back surface of the optical element. A method for manufacturing an optical element mounting module.
. 請求の範囲 1記載の光素子搭載モジュールの製造方法において、 前 記基板あるいは前記光素子を通して必要なエネルギを供給する光素子 の裏面の部分は、 前記基板と前記光素子を固定する部分にほぼ限定さ れることを特徴とする光素子搭載モジュールの製造方法。2. The method for manufacturing an optical element mounted module according to claim 1, wherein a portion of the back surface of the substrate or the optical element that supplies necessary energy through the optical element is substantially equal to a portion where the substrate and the optical element are fixed. A method for manufacturing an optical element mounting module, which is limited.
. 請求の範囲 1記載の光素子搭載モジュールの製造方法において、 前 記基板あるいは前記光素子を通して必要なエネルギを供給する光素子 の裏面の部分あるいは該光素子の裏面に対向する基板面に、 エネルギ を吸収する部材を用いたことを特徴とする光素子搭載モジュールの製 造方法。 2. The method for manufacturing an optical element mounted module according to claim 1, wherein the substrate or the back surface of the optical element for supplying necessary energy through the optical element or a substrate surface facing the rear surface of the optical element has energy. A method for manufacturing an optical element mounting module, comprising using a member that absorbs light.
. 前記基板と前記光素子との固定には半田材もしくは高分子接着剤を 用い、 前記エネルギは電磁波であることを特徴とする請求の範囲 1記 載の光素子搭載モジュールの製造方法。2. The method for manufacturing an optical element mounted module according to claim 1, wherein the substrate and the optical element are fixed using a solder material or a polymer adhesive, and the energy is an electromagnetic wave.
. 前記電磁波は、 赤外光もしくは遠赤外光であることを特徴とする請 求の範囲 4記載の光素子搭載モジュールの製造方法。 5. The method of claim 4, wherein the electromagnetic waves are infrared light or far-infrared light.
. 前記基板と前記光素子との固定には半田材もしくは高分子接着剤を 用い、 前記エネルギは音波であることを特徴とする請求の範囲 1記載 の光素子搭載モジュールの製造方法。  2. The method for manufacturing an optical element mounting module according to claim 1, wherein the substrate and the optical element are fixed using a solder material or a polymer adhesive, and the energy is a sound wave.
. 請求の範囲 1記載の光素子搭載モジュールの製造方法において、 前 記所定の基準位置に対して、 前記光素子を設置する方法として、 前記 基準位置を表すァライメントマ一ク A 1 と前記光素子の裏面上に形成 されたァライメン 卜マーク A 2とを基板あるいは光素子を通してァラ ィメント検出系で検出し、 位置合わせする方法を用いたことを特徴と する光素子搭載モジュールの製造方法。The method for manufacturing an optical element mounted module according to claim 1, wherein As a method of installing the optical element with respect to the predetermined reference position, an alignment mark A1 representing the reference position and an alignment mark A2 formed on the back surface of the optical element are attached to a substrate or an optical element. A method for manufacturing an optical element mounted module, characterized by using a method of detecting and positioning by means of an alignment detection system through the process.
. 請求の範囲 7記載の光素子搭載モジュールの製造方法において、 前 記エネルギを電磁波とし、 前記ァライメン ト検出系を通して供給する ことを特徴とする光素子搭載モジュールの製造方法。  8. The method for manufacturing an optical element mounted module according to claim 7, wherein the energy is converted into an electromagnetic wave and supplied through the alignment detection system.
9 . 請求の範囲 7又は 8記載の光素子搭載モジュールの製造方法におい て、 必要なエネルギを供給して前記光素子を前記基板に固定し、 前記 光素子と前記基板とのァラィメント状態を前記ァライメン ト検出系を 用いて検査することを特徴とする光素子搭載モジュールの製造方法。 9. The method for manufacturing an optical element mounted module according to claim 7 or 8, wherein the required energy is supplied to fix the optical element to the substrate, and the alignment state between the optical element and the substrate is set to the alignment. A method for manufacturing an optical element mounted module, wherein the inspection is performed using a detection system.
1 0 . 請求の範囲 9記載の光素子搭載モジュールの製造方法において、 前記ァライメン卜状態を前記ァライメン 卜検出系を用いて検査した結 果、 光素子と基板とにずれが生じている場合、 再度所定のエネルギを 供給して再度位置合わせすることを特徴とする光素子搭載モジュール の製造方法。 10. The method of manufacturing an optical element mounted module according to claim 9, wherein, as a result of inspecting the alignment state using the alignment detection system, if the optical element and the substrate are misaligned, the alignment is repeated. A method for manufacturing an optical element mounted module, comprising supplying predetermined energy and performing realignment.
1 1 . 請求の範囲 7記載の光素子搭載モジュールの製造方法において、 前記ァライメン卜検出系、 基板と光素子との位置合わせ、 及びエネル ギの供給とをほぼ同時に行なうことを特徴とする光素子搭載モジユー ルの製造方法。  11. The method for manufacturing an optical element mounted module according to claim 7, wherein the alignment detection system, the alignment between the substrate and the optical element, and the supply of energy are performed almost simultaneously. The method of manufacturing the mounting module.
1 2 . 請求の範囲 1記載の光素子搭載モジュールの製造方法において、 複数の光素子を基板上に搭載し、 それぞれに必要なエネルギを供給す ることを特徴とする光素子搭載モジュールの製造方法。  12. The method for manufacturing an optical element mounted module according to claim 1, wherein a plurality of optical elements are mounted on a substrate and required energy is supplied to each of the plurality of optical elements. .
1 3 . 光素子を保持する光素子保持手段と、 13. Optical element holding means for holding an optical element;
基板を保持する基板保持手段と、 前記保持手段で保持された光素子と基板の相対的な位置関係を変化 させ、 所定の関係にする位置調整手段と、 Substrate holding means for holding a substrate, Position adjusting means for changing a relative positional relationship between the optical element and the substrate held by the holding means to make a predetermined relationship;
前記光素子の裏面の少なくとも一部に前記光素子あるいは基板を通 して必要なエネルギを供給するエネルギ供給手段と  Energy supply means for supplying necessary energy to at least a part of the back surface of the optical element through the optical element or the substrate;
を備えたことを特徴とする光素子搭載モジュールの製造装置。 An apparatus for manufacturing an optical element mounted module, comprising:
PCT/JP1997/001708 1996-05-21 1997-05-21 Method and device for manufacturing optical element mounting module WO1997044869A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12537496A JP3817777B2 (en) 1996-05-21 1996-05-21 Manufacturing method of optical element mounting module
JP8/125374 1996-05-21

Publications (1)

Publication Number Publication Date
WO1997044869A1 true WO1997044869A1 (en) 1997-11-27

Family

ID=14908558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001708 WO1997044869A1 (en) 1996-05-21 1997-05-21 Method and device for manufacturing optical element mounting module

Country Status (2)

Country Link
JP (1) JP3817777B2 (en)
WO (1) WO1997044869A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868588B (en) * 2018-03-08 2023-04-11 湖北工业株式会社 Optical fiber module and method for manufacturing the same
JP7394083B2 (en) * 2021-03-11 2023-12-07 京セラSoc株式会社 laser equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230050A (en) * 1990-06-22 1992-08-19 Internatl Business Mach Corp <Ibm> Apparatus and method for passive alignment, fixing method of object, method and apparatus for alignment of object, and batch manufacturing method
JPH0743565A (en) * 1993-07-27 1995-02-14 Nec Corp Structure and method for coupling optical semiconductor element and optical waveguide
JPH0851254A (en) * 1994-08-09 1996-02-20 Fujitsu Ltd Assembly and assembly device of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230050A (en) * 1990-06-22 1992-08-19 Internatl Business Mach Corp <Ibm> Apparatus and method for passive alignment, fixing method of object, method and apparatus for alignment of object, and batch manufacturing method
JPH0743565A (en) * 1993-07-27 1995-02-14 Nec Corp Structure and method for coupling optical semiconductor element and optical waveguide
JPH0851254A (en) * 1994-08-09 1996-02-20 Fujitsu Ltd Assembly and assembly device of semiconductor device

Also Published As

Publication number Publication date
JP3817777B2 (en) 2006-09-06
JPH09312440A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
JP2009536361A (en) Printed circuit board device having optoelectronic device and optical waveguide
CN104765248A (en) Imprint apparatus, imprint method and method of manufacturing article
KR19980042321A (en) Lighting apparatus, exposure apparatus provided with lighting apparatus, and semiconductor device manufacturing method
WO1997044869A1 (en) Method and device for manufacturing optical element mounting module
JPH11121517A (en) Device and method for mounting semiconductor device
JP2007187871A (en) Polymer optical waveguide and method for manufacturing same
JP4307897B2 (en) Joining method, joining apparatus, and component joining apparatus using the joining apparatus
US11719903B2 (en) Systems, methods, and devices for assembling lenses and waveguides
JPH10325917A (en) Optical receiver and its manufacture
JPH0969543A (en) Bonder
JPH0915448A (en) Optical fiber connector and its production
JP4127986B2 (en) Alignment fixing method and alignment fixing device
JP3944615B2 (en) Laser-assisted processing equipment
JPS63127541A (en) Method of bonding chip
JPH0996730A (en) Optical element mounted module, optical element mounting method and optical system composed of optical element mounted module
JP4581279B2 (en) Manufacturing method of optical module
JPH05150145A (en) Method for making laser light incident on optical fiber
TWI811542B (en) Photoelectric sensor, measuring method of resin transmittance in laser resin welding, laser resin welding method, laser processing device
JPH08156320A (en) Led printer head and manufacture thereof
JPH0716028B2 (en) Optical device manufacturing method
JPH07181350A (en) Optical interconnector and its manufacture
JPH08286070A (en) Method for manufacture of optical fiber array used for optical fiber array/optical integrated circuit connection assembly
JP2021180221A (en) Component mounting device and component mounting method
KR20050003370A (en) Magento-optic head assembling method, mo head and mo disk unit
JP2004020450A (en) Method for measuring optical axis, angle, and pattern of radiation of radiation light source

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA