WO1997044717A1 - Procede numerique de regulation pour processus de regulation lineaires, s'utilisant notamment pour reguler rapidement et avec precision la position et la vitesse de rotation de moteurs electriques - Google Patents

Procede numerique de regulation pour processus de regulation lineaires, s'utilisant notamment pour reguler rapidement et avec precision la position et la vitesse de rotation de moteurs electriques Download PDF

Info

Publication number
WO1997044717A1
WO1997044717A1 PCT/EP1997/002627 EP9702627W WO9744717A1 WO 1997044717 A1 WO1997044717 A1 WO 1997044717A1 EP 9702627 W EP9702627 W EP 9702627W WO 9744717 A1 WO9744717 A1 WO 9744717A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
time
load
manipulated variable
settling time
Prior art date
Application number
PCT/EP1997/002627
Other languages
German (de)
English (en)
Inventor
Thomas Knauf
Original Assignee
Thomas Knauf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7795078&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997044717(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Thomas Knauf filed Critical Thomas Knauf
Publication of WO1997044717A1 publication Critical patent/WO1997044717A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path

Definitions

  • the invention is explained on the basis of a position control according to FIG. 1. It can be transferred analogously to other linear control processes, especially if the controlled variable results from the double integration of the manipulated variable over time.
  • the example of the position control is therefore not to be understood in a restrictive sense.
  • the motor 1 moves the load 2, the position of which is to be regulated.
  • the actual position of the load 2 is determined with a position measurement 3, for example by an incremental rotary encoder, and is reported to the controller 5 as a controlled variable 4.
  • controller 5 forms manipulated variable 8 in the form of a value for motor current 9.
  • the corresponding motor current is impressed on motor 1 by power amplifier 10. It causes a torque on the motor axis and thus an acceleration of the load 2, which shifts the load 2 into the target position.
  • Such control loops are state of the art (e.g. Ludwig Merz et al.: Basic course in control engineering, 9th edition, R. Oldenbourg Verlag, 1988, p. 268 and Hans-Jürgen Schaad: Practice of digital drive control, Franzis-Verlag, 1992, p 17).
  • the invention has for its object to develop a control method that avoids the disadvantages just mentioned and that can be characterized as accurate, fast, stable, free of overshoots, robust, energy-saving and simple.
  • the task is solved by the teaching of the claims.
  • FIGS 2 to 14 show an example of the temporal course of the three variables motor current (iMotor) »load speed (Vi st ) and distance of the load from the target (Si st - S So i ⁇ ) under different operating conditions:
  • Figure 2 New control principle under ideal conditions
  • Figure 3 Triangular speed profile
  • Figure 4 Course with negative starting speed
  • Figure 5 Course with positive starting speed
  • Figure 6 Constant "inertia” is 33% too high
  • Figure 7 Constant "inertia” is 33% set too low
  • Figure 8 Speed disturbed by external influences
  • Figure 9 The position is disturbed by external influences
  • Figure 10 From standstill to a positive top speed
  • Figure 11 Identical start and end speeds
  • Figure 12 Course at a negative top speed
  • Figure 13 Constant acceleration according to equation (11)
  • Figure 14 Linearly decreasing acceleration according to equation (12)
  • t a indicates the time that the system needs for the current control process to reach the target position.
  • the essential element of the new controller is therefore a time register (cf. FIG. 12 in FIG. 1) which provides the value t a for the calculation.
  • the time register must be initialized. There are basically two options:
  • t a is specified as part of the command variables by the control system (cf. FIG. 1, switch position "a"). This is recommended if the control system knows the point in time at which the load should have reached the target position, for example on machines that are subject to a certain work cycle. In the case of a multi-axis robot, the same value for t a can be specified for all axes. Axes that only have to travel a relatively short distance then carry out the movement accordingly smoothly, ie without jerks, with little wear and energy saving.
  • b) t a is determined automatically by the controller (cf. FIG. 1, switch position "b”). This procedure is recommended if the target position is to be reached as quickly as possible or if a conventional controller (eg PD controller) is to be replaced and the control system is therefore not prepared for communicating the arrival time t a .
  • the controller After initialization, the controller must constantly update the content of the time register 12, e.g. by the
  • Regulator reduces the settling time t a at regular intervals by the amount of the elapsed time.
  • the motor current I Mo t or is to be set so that the load acceleration determined with equation (4) results.
  • the motor current i that is engine load and the acceleration a La st are proportional to one another:
  • I M otor inertia xa load (5)
  • Equation (5) e.g. Equation (5) must be adapted accordingly if friction, spring or weight forces exert a significant influence or where a non-linear motor characteristic has to be compensated.
  • the controller must continuously re-evaluate equations (4) and (5) in real time and thereby continuously update the manipulated variable I motor . He can, for example, by a
  • Microcomputers can be realized, which executes this control algorithm cyclically or periodically.
  • the actually continuous course of the manipulated variable is approximated by a time-discrete, step-shaped course. The approximation is more successful the more the calculation is repeated.
  • a system-specific cycle time e.g. 500 ⁇ s
  • delay times in the control loop caused, among other things, by a dead time of the power amplifier, the inductance of the motor and the computing time for the control algorithm
  • instability arises for very small values of t a .
  • FIG 2 illustrates the effects of the control principle by the time course of the three variables motor current (IMotor) / speed (V actual ) and position error (S 1 ⁇ t - S S oi ⁇ ) is shown graphically.
  • the control algorithm leads to a linear time profile of the motor current IMotor (see equation (3)). It can be seen that the movement is symmetrical to the center (t a / 2) runs. The load is accelerated during the first half of the movement and decelerated again during the second half.
  • Control speed and good damping opposing requirements for which a compromise must be found by setting the control parameters.
  • the new control principle combines both requirements.
  • the control algorithm forces the path difference (Si st - S so n) and the speed Vj .st to disappear simultaneously at the time t a has elapsed .
  • the load therefore stands still in the target position and overshoot cannot occur.
  • I k amount of the motor current in the triangular
  • inertia I motor ⁇ t / ⁇ Vi St ) • It is therefore easily possible to expand the controller software so that the controller adjusts to the optimum Automatically sets the inertia value.
  • Inertia is the only adjustable control parameter.
  • several parameters have to be adjusted, which also influence each other.
  • Sufficient control properties are often only achieved with a high gain factor just below the vibration limit.
  • the PD / PID control then threatens to slide into instability if the ambient conditions change slightly.
  • the new control principle is much more robust, the settings for maintenance or commissioning can be carried out more easily and quickly.
  • Equation (3b) A special case is the pure position control, in which the speed in the target position V so n is not specified by the control system.
  • the terminal velocity V can thus n by rearranging Equation (3b) can be determined:
  • V is thus eliminated from the control algorithm.
  • any values can be used for k 2 .
  • Two cases are of particular practical importance:
  • equation (10) is simplified to:
  • the speed shows a linear course (Figure 13). This can be used to implement the triangular speed profile according to FIG. 3. Despite the unfavorable power loss (see above), this is advantageous if a high
  • the application revealed a fast, highly accurate, energy-saving, simple, stable and robust control process.
  • a test setup with a 1.3 KW servo motor confirms this.
  • the two controlled variables S actual and V 1 ⁇ t are recorded with an incremental encoder (4000 pulses / revolution).
  • An ordinary microcomputer takes over the entire signal processing of the controller.
  • the control algorithm is repeated with a cycle time of 1 ms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

L'invention concerne un procédé numérique de régulation pour processus de régulation linéaires qui s'utilise notamment pour réguler la position et la vitesse de charges déplacées par un moteur électrique. A cet effet, la vitesse de rotation et la position du moteur sont contrôlées simultanément. La régulation peut également suivre une modification continue de la grandeur de référence, par exemple, dans le cas de commandes continues ou lorsque dans le cas de machines à plusieurs axes, les mouvements dans les différents axes doivent s'effectuer en synchronisme mutuel. Le régulateur calcule, en fonction du temps de réglage alloué pour chaque processus de régulation, une courbe linéaire de la variable réglante (du courant du moteur) qui mène jusqu'à l'objectif sans vibrations. Ce système de régulation s'avère extrêmement précis, rapide, stable et solide. Comparativement aux régulateurs classiques (de type proportionnel et par dérivation, éventuel. de type P.I.D), ce système présente différents avantages: temps de réglage plus courts, absence de tendance aux vibrations, meilleure rigidité, ajustabilité plus aisée et pertes réduites en énergie au niveau du moteur. Ce système présente en outre l'avantage que le but à atteindre en termes de régulation est connu à l'avance. Le régulateur numérique peut être réalisé rapidement et économiquement avec un micro-ordinateur.
PCT/EP1997/002627 1996-05-23 1997-05-22 Procede numerique de regulation pour processus de regulation lineaires, s'utilisant notamment pour reguler rapidement et avec precision la position et la vitesse de rotation de moteurs electriques WO1997044717A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19620706.1 1996-05-23
DE1996120706 DE19620706C1 (de) 1996-05-23 1996-05-23 Numerisches Verfahren zur Regelung für lineare Regelvorgänge, insbesondere geeignet zur schnellen und exakten Lage- und Drehzahlregelung von Elektromotoren

Publications (1)

Publication Number Publication Date
WO1997044717A1 true WO1997044717A1 (fr) 1997-11-27

Family

ID=7795078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/002627 WO1997044717A1 (fr) 1996-05-23 1997-05-22 Procede numerique de regulation pour processus de regulation lineaires, s'utilisant notamment pour reguler rapidement et avec precision la position et la vitesse de rotation de moteurs electriques

Country Status (2)

Country Link
DE (1) DE19620706C1 (fr)
WO (1) WO1997044717A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10108213B2 (en) 2015-06-16 2018-10-23 The Hong Kong University Of Science And Technology Three-dimensional power stage and adaptive pipeline control

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930777A1 (de) * 1999-07-03 2001-01-04 Heidenhain Gmbh Dr Johannes Regelungsanordnung und Verfahren zur schnellen Lageregelung eines Elektromotors
US20230061782A1 (en) * 2021-09-01 2023-03-02 Delphi Technologies Ip Limited System and method for controlling vehicle propulsion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714867A (en) * 1986-09-30 1987-12-22 Design Components Incorporated Method and apparatus for controlling a stepper motor with a programmable parabolic velocity profile
US4734847A (en) * 1985-12-16 1988-03-29 Hunter L Wayne Microstepping motor controller circuit
WO1992015068A1 (fr) * 1991-02-15 1992-09-03 Incontrol, Inc. Systeme de commande par ordinateur destine a produire des configurations geometriques
DE4111804A1 (de) * 1991-04-11 1992-10-15 Berger Lahr Gmbh Verfahren und vorrichtung zur generierung nichtlinearer fahrprofile

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2258661B1 (fr) * 1974-01-18 1977-08-26 Honeywell Bull Soc Ind
GB2166889B (en) * 1984-11-09 1988-01-06 Ferranti Plc Servo positioning system
EP0488350A3 (en) * 1990-11-30 1992-10-21 Mita Industrial Co. Ltd. Method of and device for driving and controlling a motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734847A (en) * 1985-12-16 1988-03-29 Hunter L Wayne Microstepping motor controller circuit
US4714867A (en) * 1986-09-30 1987-12-22 Design Components Incorporated Method and apparatus for controlling a stepper motor with a programmable parabolic velocity profile
WO1992015068A1 (fr) * 1991-02-15 1992-09-03 Incontrol, Inc. Systeme de commande par ordinateur destine a produire des configurations geometriques
DE4111804A1 (de) * 1991-04-11 1992-10-15 Berger Lahr Gmbh Verfahren und vorrichtung zur generierung nichtlinearer fahrprofile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KWOK S T ET AL: "OPTIMAL VELOCITY PROFILE DESIGN IN INCREMENTAL SERVO MOTOR SYSTEMS BASED ON A DIGITAL SIGNAL PROCESSOR", SIGNAL PROCESSING AND SYSTEM CONTROL, FACTORY AUTOMATION, PACIFIC GROVE, NOV. 27 - 30, 1990, vol. 1, 27 November 1990 (1990-11-27), INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, pages 262 - 266, XP000217132 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10108213B2 (en) 2015-06-16 2018-10-23 The Hong Kong University Of Science And Technology Three-dimensional power stage and adaptive pipeline control

Also Published As

Publication number Publication date
DE19620706C1 (de) 1997-07-24

Similar Documents

Publication Publication Date Title
DE102009058443B4 (de) Trägheitsschätzsteuerungseinrichtung und Steuerungssystem
AT518270B1 (de) Verfahren zum Steuern der Bewegung einer Antriebsachse einer Antriebseinheit
CH684965A5 (de) Verfahren und Vorrichtung zur Erhöhung des Wirkungsgrades von Kompressionsvorrichtungen.
DE2807902B1 (de) Steuereinrichtung mit aktiver Kraftrueckfuehrung
EP0309824A1 (fr) Méthode de commande numérique de positionnement d'un axe entraîné par un moteur électrique
DE102006051352C5 (de) Verfahren zum Betreiben einer Windenergieanlage
DE3101360C2 (de) Einrichtung zum Verzögern des Antriebes einer Wickelvorrichtung für Warenbahnen
EP0931283A1 (fr) Procede et structure de regulation pour l'asservissement de couples de systemes multimasses, a commande numerique, elastiques et pouvant donc osciller
DE19620706C1 (de) Numerisches Verfahren zur Regelung für lineare Regelvorgänge, insbesondere geeignet zur schnellen und exakten Lage- und Drehzahlregelung von Elektromotoren
DE3943342C2 (de) Servosteuersystem
EP0340538B1 (fr) Méthode de commande de mouvement d'un élément d'une machine
EP2100196A1 (fr) Procédé pour adapter des paramètres de réglage d'un entraînement à différents états de fonctionnement
EP1229411B1 (fr) Procédé de commande et structure de régulation pour la commande du déplacement, la commande de l'action positive et l'interpolation fine d'objects dans un cycle de régulation de la vitesse angulaire qui est plus rapide que le cycle de régulation de la position
DE3938083C2 (fr)
DE19601232C2 (de) Steller für einen Regelkreis
EP1927906A1 (fr) Procédé et dispositif destinés à la régulation de l'orientation d'au moins une paire d'axes de mobilité d'un moteur
DE19635981C2 (de) Verfahren zur direkten Regelung der Geschwindigkeit eines elektrischen Antriebes
EP2952991A1 (fr) Mouvement à perte minimale dans un système d'axes
DE10226670B4 (de) Regeleinrichtung und -verfahren
EP0455938B1 (fr) Régulateur tout-ou-rien adaptatif
WO2024047193A1 (fr) Procédé de commande du mouvement d'un axe d'entraînement d'une unité d'entraînement
DE4432143A1 (de) Regelung von Spindelachsen bei Werkzeugmaschinen
EP0001269A2 (fr) Procédé pour la commande continue du parcours d'une machine-outil
DE3727369A1 (de) Regelsystem
DE202022104818U1 (de) Vorrichtung zur Schrittmotor-Ansteuerung sowie 3D-Drucker

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97541559

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase