WO1997040357A1 - Automatic extracting equipment and automatic concentration measuring equipment for component substance in liquid sample - Google Patents

Automatic extracting equipment and automatic concentration measuring equipment for component substance in liquid sample Download PDF

Info

Publication number
WO1997040357A1
WO1997040357A1 PCT/JP1997/001366 JP9701366W WO9740357A1 WO 1997040357 A1 WO1997040357 A1 WO 1997040357A1 JP 9701366 W JP9701366 W JP 9701366W WO 9740357 A1 WO9740357 A1 WO 9740357A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
sample
container
dispensing
nozzle
Prior art date
Application number
PCT/JP1997/001366
Other languages
French (fr)
Japanese (ja)
Inventor
Naotaka Sawada
Akiyoshi Baba
Katsuhiko Saito
Yasumasa Hosokawa
Hajime Miyoshi
Shintaro Nishimura
Masayoshi Murata
Original Assignee
Dainippon Seiki Co., Ltd.
Fujisawa Yakuhin Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP12241596A external-priority patent/JPH09288112A/en
Priority claimed from JP8122418A external-priority patent/JP3062082B2/en
Priority claimed from JP12241796A external-priority patent/JP2939180B2/en
Priority claimed from JP08564097A external-priority patent/JP3295014B2/en
Application filed by Dainippon Seiki Co., Ltd., Fujisawa Yakuhin Kogyo Co., Ltd. filed Critical Dainippon Seiki Co., Ltd.
Publication of WO1997040357A1 publication Critical patent/WO1997040357A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0403Sample carriers with closing or sealing means
    • G01N2035/0405Sample carriers with closing or sealing means manipulating closing or opening means, e.g. stoppers, screw caps, lids or covers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing

Definitions

  • the present invention automatically performs a solvent extraction operation of a specific component substance contained in a liquid sample such as a homogenate (refining) such as serum, plasma, whole blood, urine, and biological tissue, and a reaction mixture.
  • a liquid sample such as a homogenate (refining) such as serum, plasma, whole blood, urine, and biological tissue
  • An automatic extraction device capable of automatically extracting all the components contained in a liquid sample and measuring the concentration of the components, and an automatic concentration measurement device capable of automatically performing all operations up to the measurement of the concentration.
  • the present invention also relates to a liquid dispensing device and a centrifugal sedimentation tube used for such a device.
  • an organic solvent is used to measure the concentration of a drug contained in blood.
  • the drug component is dissolved in the organic solvent from blood and separated (solvent extraction), and the drug component is dissolved in the organic solvent.
  • the sample separation liquid is injected into analytical equipment such as high-performance liquid chromatography.
  • This series of measurement operations is to aspirate a blood sample from a sample tube and discharge a blood sample to a centrifuge sedimentation tube (hereinafter referred to as a “centrifuge tube”).
  • Various dispensing operations can be automated by a liquid dispensing device equipped with a dispensing nozzle, a syringe and its driving motor, a dispensing nozzle moving mechanism, and the like.
  • the amount of liquid to be sucked into the dispensing nozzle is controlled by controlling the driving amount of the syringe
  • the specific gravity, viscosity, surface tension, etc. of the liquid to be sucked are different.
  • due to changes in the temperature around the dispensing nozzle it may not be possible to accurately adjust the amount of liquid to be suctioned as desired.
  • the organic solvent such as getyl ether, ethyl acetate, and chloroform is highly volatile and has a high viscosity.
  • Low, low surface tension, and low specific gravity make it easy for liquid to drip from the lower end of the dispensing nozzle when moving the dispensing nozzle from the suction position to the dispensing position.
  • the sample separation liquid separated into the lower layer side which is the organic solvent layer in the centrifuge tube It was very difficult to automate the operation of fractionating only W without causing contamination. For these reasons, dispensing operations in liquid-liquid solvent extraction have conventionally been performed manually, and shakers and centrifugal separators have been used.However, the entire process of solvent extraction has been automated. There was no such device in the past.
  • a large number of samples must be analyzed and processed at once at a clinical laboratory center or a pharmaceutical company's laboratory where the above-mentioned analysis work such as measurement of drug concentration in blood is performed.
  • performing individual operations such as the dispensing operation described above requires a lot of labor and time.
  • a relatively large work space that does not hinder the work of each person is required.
  • the present invention has been made in view of the above circumstances, and solvent extraction of a specific component substance such as a drug contained in a liquid sample such as serum, plasma, whole blood, homogenate, and reaction mixture. Then, when measuring the concentration, a series of operations for solvent extraction can be performed automatically, and all the steps from the solvent extraction to concentration measurement can be performed automatically. In addition to reducing the labor and time required by the operator for the series of operations, it is possible to effectively use the space, and it is also possible to effectively use the space. It is an object of the present invention to provide an automatic extraction device and an automatic concentration measuring device for component substances in a liquid sample, and to provide a liquid dispensing device and a centrifugal sedimentation tube suitably used for those devices. Make it an issue.
  • a first invention is a sample holding unit for holding a plurality of sample containers containing a liquid sample, an extraction container holding unit for holding a plurality of extraction containers, A predetermined amount of a liquid sample is taken out of the sample container taken out of the sample holding unit or held in the sample holding unit, and the sucked liquid sample is taken out of the extracting container holding unit or the extraction container is taken out.
  • Sample dispensing means for discharging into an extraction container held by a holding unit; extraction solvent dispensing means for discharging a predetermined amount of an organic solvent for extraction into the extraction container; A component substance transfer means for transferring the target component substance in the liquid sample into the organic solvent for extraction, a container holding portion for holding a plurality of containers, and the inside of the extraction container A predetermined amount of the sample separation liquid in which the target component substance is dissolved in the organic solvent is separated and then aspirated, and the sucked sample separation liquid is taken out of the storage container holding section or transferred to the storage container holding section.
  • a separation liquid dispensing means for discharging into a held storage container, wherein an automatic extraction device for component substances in the liquid sample is configured.
  • a predetermined amount of the liquid sample is sucked from the inside of the sample container by the sample dispensing means, and the liquid sample is discharged into the extraction container.
  • a predetermined amount of the organic solvent for extraction is discharged into the extraction container by the solvent dispensing means for extraction, and the target component substance in the liquid sample entering the container for extraction is discharged by the component substance transfer means. It is transferred to the organic solvent for extraction.
  • a predetermined amount of the sample separation liquid separated in the extraction container is sucked by the separation liquid dispensing means, and the sample separation liquid is discharged into the storage container. In this way, a sample separation liquid in which the target component substance is dissolved (migrated) in the organic solvent for extraction is automatically obtained.
  • the automatic extraction device having the above configuration can be provided with an evaporation / drying means for evaporating the sample separation liquid contained in the storage container and drying the sample separation liquid, whereby an automatic extraction device can be configured.
  • a dissolving solvent dispensing means for discharging a predetermined amount of the dissolving organic solvent into the receiving vessel; and a dissolving means for dissolving the dried residue in the dissolving organic solvent in the receiving vessel.
  • a motion extraction device can be configured.
  • the dissolving means a shaker for shaking the container may be provided.
  • the evaporating and drying means comprises a heater for ripening the storage container from the periphery thereof, and a nitrogen gas supply means for blowing nitrogen gas into the storage container through an upper opening thereof.
  • the automatic extraction device having the above configuration may be provided with a concentrating means for evaporating a part of the organic solvent of the sample separation solution contained in the storage container and concentrating the sample separation solution, thereby configuring the automatic extraction device.
  • the concentrating means may be constituted by a heater for heating the storage container from the periphery thereof, and a nitrogen gas supply means for blowing nitrogen gas into the storage container through an upper opening thereof.
  • the separation liquid dispensing means holds a dispensing nozzle that sucks a predetermined amount of the sample separation liquid contained in the extraction container from the lower end port and discharges the sample separation liquid from the lower end port, and the dispensing nozzle.
  • a nozzle holding means, the nozzle holding means having a lower position where the lower end of the dispensing nozzle is immersed in the sample separation liquid in the extraction container, and a lower end of the dispensing nozzle which is upward from the extraction container.
  • a syringe for allowing a predetermined amount of the sample separation liquid in the extraction container to be sucked in from the lower end of the syringe, and discharging the sample separation liquid in the dispensing nozzle from the lower end of the dispensing nozzle at the dispensing position; It is preferable to provide a syringe driving means for driving and a syringe control means for controlling the syringe driving means.
  • the separation liquid dispensing means has the following.
  • the separation liquid dispensing means is configured such that when a predetermined amount of the sample separation liquid is sucked into the dispensing nozzle having the lower end immersed in the sample separation liquid in the extraction container, the upper end of the sample separation liquid is Is provided at a height position where is located, and a liquid level sensor that photoelectrically detects whether the upper end of the sample separation liquid has reached the height position is provided, based on a detection signal of the liquid level sensor.
  • the syringe driving means is controlled by the syringe control means to stop driving the syringe.
  • the nozzle raising / lowering means is constituted by a stepping motor whose driving amount is controlled by the number of pulses, and when the dispensing nozzle is lowered in order to immerse the lower end of the dispensing nozzle into the sample separation liquid in the extraction container.
  • a nozzle detecting means for detecting whether the lower end of the dispensing nozzle has reached the reference height position is provided, and the lower end of the dispensing nozzle is set at the reference height by the nozzle detecting means. It is preferable that a signal of a fixed number of pulses is input to the stepping motor from the time when the position is detected.
  • the dispensing nozzle may be configured using a disposable suction pipe.
  • the automatic extraction device having the above-described configuration may be provided with a water or aqueous solution dispensing means for discharging a predetermined amount of water or an aqueous solution into the extraction container, thereby configuring the automatic extraction device.
  • the automatic extraction device having the above configuration can be provided with a cap attaching / detaching means for attaching / detaching the cap to / from the extraction container, thereby configuring the automatic extraction device.
  • the automatic extraction device having the above configuration may be provided with a shaker that shakes the extraction container as a component substance transfer means, to configure the automatic extraction device.
  • the automatic extraction device having the above configuration is provided with a centrifugal separator for centrifuging a liquid in which a target component substance has been transferred from the liquid sample into the organic solvent for extraction by the component substance transfer means, and the automatic extraction is performed.
  • the device can be configured.
  • a second invention is directed to an automatic extraction apparatus having the above-described various configurations, a concentration measuring means for measuring the concentration of a component substance in a liquid sample, and By injecting a component solution obtained by dissolving a target component material in an organic solvent and injecting a predetermined amount of the sucked component solution into the concentration measuring device, the component material in the liquid sample is provided.
  • the automatic concentration measuring device of (1) is constituted.
  • the liquid injecting means may have a measuring tube for holding a predetermined amount of the component solution to be injected into the concentration measuring means.
  • the liquid injection means (4) A component solution (sample separation solution, sample solution or concentrated sample separation solution) obtained by the automatic extraction device and obtained by dissolving the target component substance in an organic solvent is sucked from the container and the component solution is collected. Only the quantitative amount is injected into the concentration measuring means, and the concentration of the component substance in the liquid sample is measured by the concentration measuring means.
  • a sample holding unit for holding a plurality of sample containers containing a liquid sample
  • a container holding unit for holding a plurality of containers
  • a predetermined amount of a liquid sample is sucked out of a sample container held in the sample holding unit or taken out of the holding unit, and the sucked liquid sample is taken out of the container holding unit or the container holding unit is sucked out.
  • Sample dispensing means for discharging into a container held in a container, extracting solvent dispensing means for discharging a predetermined amount of an organic solvent for extraction into the container, and a target in a liquid sample contained in the container.
  • a component substance transfer means for causing the component substances to flow into the extraction organic solvent; a concentration measuring means for measuring the concentration of the component substances in the liquid sample; and a component substance which is separated and intended in the container.
  • a sample separation liquid dissolved in a solvent is sucked, and a predetermined amount of the sample separation liquid thus sucked is injected into the concentration measuring means.
  • An automatic concentration measuring device having such a configuration is provided with a water or aqueous solution dispensing means for discharging a predetermined amount of water or an aqueous solution into a container, whereby the automatic concentration measuring device can be constituted.
  • the automatic concentration measuring device having the above-described configuration is provided with a cap attaching / detaching means for attaching / detaching the cap to / from the container, whereby the automatic concentration measuring device can be constituted.
  • the automatic concentration measuring device having the above-mentioned configuration is visually checked from the liquid sample by the component substance transfer means.
  • An automatic concentration measuring device can be configured by providing a centrifuge for centrifuging a liquid in which a target component substance is transferred into an organic solvent for extraction. In the automatic concentration measuring device according to the third aspect of the present invention, a predetermined amount of the liquid sample is sucked from the sample container and discharged into the container by the sample dispensing means.
  • a predetermined amount of the organic solvent for extraction is discharged into the container by the solvent dispensing means for extraction, and the target component substance in the liquid sample contained in the container is discharged by the component substance transfer means.
  • a predetermined amount of the sample separation liquid separated in the container is aspirated by the separation liquid injection means, and the predetermined amount of the sample separation liquid is injected into the concentration measurement means, and the components in the liquid sample are analyzed by the concentration measurement means. The concentration of the substance is measured.
  • a specific component substance such as a drug contained in the liquid sample is extracted with a solvent and then the solvent is extracted. Since the entire series of operations up to the measurement of the concentration of the component substances can be performed automatically, the labor and time required by the operator for the series of operations have been reduced, while This enables efficient use of space, and allows the operator to simply set the sample container containing the sample in the sample holder, and quickly obtain accurate data on the concentration of the components contained in the sample. can get.
  • a fourth invention provides a dispensing nozzle for sucking a predetermined amount of liquid contained in a liquid container from a lower end port and discharging the liquid from the lower end port, and a nozzle holding means for holding the dispensing nozzle. Raising and lowering the nozzle holding means between a lower position where the lower end of the dispensing nozzle is immersed in the liquid in the liquid container and an upper position where the lower end of the dispensing nozzle is separated upward from the liquid container.
  • a syringe for inhaling only a fixed amount and discharging the liquid in the dispensing nozzle from the lower end of the dispensing position at the dispensing position, a syringe driving means for driving the syringe, and a syringe control for controlling the syringe driving means Means for dispensing the dispensing nozzle, when the lower end of the dispensing nozzle is pulled out of the liquid in the liquid container, when the lower end of the dispensing nozzle comes out of the liquid, the liquid is dispensed into the dispensing nozzle.
  • a small amount of air from the lower end port to continuously generate bubbles inside the liquid in the dispensing nozzle, and keep this state until just before the liquid in the dispensing nozzle is discharged. Characterized by comprising a bubble generator.
  • a control circuit for controlling the syringe driving means so as to drive the syringe by switching at a low speed is provided in the syringe control means, and the bubble generating means is configured. be able to.
  • the low-speed syringe, low-speed syringe driving means for driving the low-speed syringe at a low speed
  • low-speed syringe control means for controlling the low-speed syringe driving means
  • Flow path switching means for selectively connecting the above-mentioned syringe for sucking a liquid into the dispensing nozzle and discharging the liquid from the lower end of the dispensing nozzle and the low-speed syringe to the dispensing nozzle
  • a predetermined amount of liquid is injected into the dispensing nozzle, and the lower end of the dispensing nozzle is pulled out of the liquid in the liquid container.
  • the inside of the dispensing nozzle is continuously suctioned so that a minute flow of air is continuously sucked into the dispensing nozzle from the lower end port, and bubbles are continuously generated in the liquid in the dispensing nozzle.
  • the liquid dispensing device with the above configuration When the liquid dispensing device with the above configuration is used, it is easy to evaporate like an organic solvent, has a low viscosity, has a low surface tension, and dispenses a liquid with a low specific gravity or a liquid with a high specific gravity such as hydrochloric acid. Even in this case, it is possible to reliably prevent liquid dripping from the lower end of the dispensing nozzle without being affected by changes in the surrounding temperature, and to prevent a decrease in dispensing accuracy.
  • a dispensing nozzle for sucking a predetermined amount of liquid contained in a liquid container from a lower end port and discharging the liquid from the lower end port, and a nozzle holding means for holding the dispensing nozzle.
  • the nozzle holding means is moved up and down between a lower position where the lower end of the dispensing nozzle is immersed in the liquid in the liquid container and an upper position where the lower end of the dispensing nozzle is separated upward from the liquid container.
  • a syringe for inhaling only a fixed amount and discharging the liquid in the dispensing nozzle from the lower end of the dispensing position at the dispensing position, a syringe driving means for driving the syringe, and the syringe driving means are controlled.
  • a liquid dispensing apparatus including a syringe control means, when a predetermined amount of liquid is sucked into the dispensing nozzle in a state where a lower end port is immersed in the liquid in the liquid container, an upper end of the liquid is Liquid at the level where it is located
  • a liquid level sensor for photoelectrically detecting whether the upper end of the liquid has reached the height position, and controlling the syringe driving means by the syringe control means based on a detection signal of the liquid level sensor. In this case, the driving of the syringe is stopped.
  • the nozzle elevating means is constituted by a stepping motor whose driving amount is controlled by the number of pulses, and the lower end of the dispensing nozzle is immersed in the liquid in the liquid container.
  • Nozzle detecting means for detecting whether the lower end of the dispensing nozzle has reached the reference height position when lowering the dispensing nozzle is provided, and the lower end of the dispensing nozzle is set at the reference height by the nozzle detecting means. From the point in time when it is detected that the position has been reached, a signal of a fixed number of pulses can be input to the stepping motor.
  • the nozzle detecting unit is configured by a photoelectric sensor that photoelectrically detects a lower end of the dispensing nozzle.
  • the lower end of the dispensing nozzle is immersed in the liquid in the liquid container and the lower end of the dispensing nozzle is closed.
  • the upper end of the liquid sucked into the dispensing nozzle is in a predetermined position.
  • the drive of the syringe is stopped at that point, and the suction operation of the liquid into the dispensing nozzle is stopped. Therefore, when the operation of sucking the liquid into the dispensing nozzle is completed, the upper end position of the liquid sucked into the dispensing nozzle is always at a position higher than the lower end of the dispensing nozzle by a certain distance, and accordingly, the liquid Regardless of the type or ambient temperature, Even if there is a slight leak at the connection part of the pipe, a certain amount of liquid will always be sucked into the dispensing nozzle.
  • the dispensing operation can be performed irrespective of the type of liquid to be dispensed and without being affected by changes in the ambient temperature. Even if there is a slight leak at the nozzle connection, etc., a predetermined amount of liquid can always be drawn into the dispensing nozzle accurately and without variation, improving dispensing accuracy. You.
  • a centrifuge tube comprising a tubular container body having an open upper surface and a cap covering the upper surface opening of the container body, wherein the cap is provided with a through hole at the center.
  • a tightly-sealed plug portion having an outer diameter smaller than the inner diameter of the container body, the upper end portion being connected to a through hole of the sealed plug portion,
  • An inner tube portion having a length such that the lower end is positioned near the inner bottom surface of the container body when the stopper portion is closely fitted to the upper end portion, and a lower end of the inner tube portion is liquid-tightly closed.
  • it is characterized by comprising a closed part which easily falls off or ruptures by a downward pressing force.
  • the closing portion of the cap may be a filling plug inserted into a lower end of the inner tube portion or a thin plate portion integrally formed at a lower end of the inner tube portion of the cap.
  • the inner tube portion of the cap is inserted deeply into the container body and inserted into the liquid.
  • the sealed stopper is tightly fitted to the upper end of the container body, and the container is then centrifuged.
  • the liquid in the centrifuge tube becomes The liquid is separated into an upper liquid and a lower liquid according to the difference between the two.
  • the inner tube of the cap is inserted into the liquid in the container body and its lower end is located near the inner bottom surface of the container body, so that the lower end of the inner tube is liquid-tightly closed and the upper layer is closed.
  • the lower end of the inner tube is inserted into the lower liquid.
  • the lower end of the dispensing nozzle pitta etc. in the case of manual operation. Insert the cap deeply into the inner tube through the through hole in the cap, and press the lower end of the dispensing nozzle at the lower end of the inner tube. As a result, the obstruction that obstructs the lower end of the inner pipe portion falls off or bursts, and the lower end of the dispensing nozzle is inserted into the lower liquid.
  • the lower layer can be formed without any contamination with the upper layer liquid from the two or more liquid phase systems separated into the upper layer liquid and the lower layer liquid by centrifugal force. Only liquid can be extracted.
  • the extraction operation is performed manually, almost no skill is required.
  • the extraction operation is performed automatically, the automation is easy.
  • FIG. 1 shows an embodiment of the present invention, in which an automatic detection of component substances in a liquid sample is performed.
  • FIG. 2 is a perspective view showing the entire configuration of the concentration measuring device.
  • FIG. 2 is a plan layout view of the automatic concentration measuring device shown in FIG.
  • FIG. 3 is a diagram for explaining an example of a series of operation steps for measuring the concentration of a drug contained in a blood sample
  • FIG. 4 is a flowchart of the operation steps shown in FIG.
  • FIG. 5 is a diagram for explaining another example of a series of operation steps for measuring the concentration of a drug contained in a blood sample
  • FIG. 6 is a diagram illustrating a series of steps for measuring the concentration of a drug contained in a blood sample.
  • FIG. 9 is a view for explaining still another example of the operation step of FIG. Fig. 7 is a front view of the dispensing head of the sample dispensing unit, which is one of the components of the automatic concentration measuring device shown in Figs. 1 and 2, and Fig. 8 is shown in Fig. 7.
  • FIG. 9 is a left side view of the dispensing head, and FIG. 9 is a diagram for explaining the configuration and operation of a cap chuck unit provided in the dispensing head shown in FIG.
  • FIG. 10 is a diagram showing a configuration of a solvent dispensing unit which is one of the components of the automatic concentration measuring device shown in FIGS. 1 and 2, and
  • FIG. 11 is a diagram showing a configuration of the solvent dispensing unit shown in FIG.
  • FIG. 12 is a side view of a dispensing head of a separation solution dispensing unit which is one of the components of the automatic concentration measuring device shown in FIGS. 1 and 2.
  • Fig. 13 is a diagram for explaining the configuration and operation of the cap removal unit provided on the separation liquid suction stage, which is one of the components of the automatic concentration measurement device shown in Figs. 1 and 2.
  • FIG. 14 is a front view partially showing the configuration of a centrifuge tube fixing unit provided on the separation liquid suction stage.
  • Fig. 15 is a schematic diagram showing the configuration of the main part of the separation liquid dispensing unit, which is one of the components of the automatic concentration measuring device shown in Figs. 1 and 2.
  • FIG. 6 is a longitudinal sectional view for explaining a method of performing a dispensing operation of a sample separation liquid in a centrifuge tube using the separation liquid dispensing unit shown in FIG. Figure 17
  • FIG. 19 is a longitudinal sectional view for explaining a method of dispensing a sample separation liquid in a centrifuge tube by using the method shown in Fig. 19. It is a longitudinal cross-sectional view for explaining.
  • Fig. 20 shows the centrifuge tube and cap used when a sample separation liquid separated to the lower layer side in the centrifuge tube is sucked into the disposable tip of the dispensing nozzle, and the cap is removed from the centrifuge tube.
  • FIG. 2 is a perspective view
  • FIG. 1 is a perspective view
  • Fig. 1 is a longitudinal sectional view showing a state in which a cap is attached to the centrifuge tube.
  • Method 2 uses a centrifuge tube with the cap shown in Figure 20 and Figure 21 to inhale only the sample separation liquid separated into the lower layer of the liquid separated into the upper liquid and the lower liquid.
  • FIG. 4 is a view for explaining the above, and is a view showing a part in a longitudinal section.
  • FIG. 23 is a longitudinal sectional view showing a configuration example of a centrifuge tube cap different from those shown in FIGS. 20 and 21.
  • Fig. 24 is a front vertical sectional view showing the configuration of the concentration stage, which is one of the components of the automatic concentration measurement device shown in Figs. 1 and 2, and Fig. 25 is shown in Fig. 24.
  • FIG. 4 is a side vertical sectional view of the concentrated stage. Fig.
  • FIG. 26 is a partially cutaway side view showing the structure of the main part of the engine unit, which is one of the components of the automatic concentration measuring device shown in Figs. 1 and 2.
  • Fig. 27 shows the flow path configuration of the injection unit shown in Fig. 26, and the injection unit allows the dispensing of the solvent into the test tube, the inhalation of the sample solution from the test tube, and the HPLC.
  • FIG. 5 is a schematic diagram for explaining a method of performing an operation up to injection of a sample solution into a column.
  • Fig. 28 and Fig. 29 are included in frozen serum by the automatic concentration measurement device shown in Fig. 1 and Fig. 2.
  • 5 is a flowchart showing an example of a series of operations for automatically measuring the concentration of a specific component substance.
  • the blood serum collected by administering a drug to an animal is centrifuged and the frozen serum (specimen) stored in a sample tube 10 with a lid is thawed. After homogenization, remove the cap 12 of the sample tube 10 and put the sample liquid (melt) from the sample tube 10 into the disposable tip (not shown) attached to the tip of the dispensing nozzle of the liquid dispenser. 0.1 ml of serum) (Fig. 3 (b)), discharge the sucked sample solution into the centrifuge tube 14, and further add an organic solvent such as ethyl acetate, for example 4 ml.
  • an organic solvent such as ethyl acetate, for example 4 ml.
  • a centrifuge tube 14 ((c) in FIG. 3).
  • the centrifuge tube 1 is shaken by a shaker ((e) in FIG. 3). Make sure that the target component (drug) in the sample solution is sufficiently transferred into the organic solvent.
  • the centrifuge tube 14 containing the sample solution and the organic solvent is set in the centrifuge 18 and the solution is centrifuged ((f) in Fig. 3).
  • the liquid in the centrifuge tube 14 is separated into the upper layer A and the lower layer B, and the sample separation liquid in which the target component substance is dissolved in the organic solvent forms the upper layer A ( Figure 3 (g)). Therefore, after removing the cap 16 of the centrifuge tube 14, the disposable tip 22 (see (h) in Fig. 3) attached to the tip of the dispensing nozzle (not shown) of the liquid dispensing device. Centrifuge tube 14 to upper layer A For example, 3 ml of the sample separated liquid is inhaled, and the sucked sample separated liquid is discharged into the test tube 24 ((h) in FIG. 3).
  • test tube 24 is heated from the surroundings, and nitrogen gas is blown from the gas supply nozzle 26 into the inside of the test tube 24 through the upper opening thereof, so that the organic liquid of the sample separation liquid in the test tube 24 is removed. Evaporate the solvent to dry the sample separation liquid ((i) in Fig. 3). Finally, an organic solvent, for example, methanol ( ⁇ .lml) is dispensed into the test tube 24 and stirred to dissolve the residue. Then, the sample solution is sucked from the test tube 24 with the nozzle 28. ((J) in Fig. 3) Then, the inhaled sample solution is injected into an analytical device such as high-performance liquid chromatography by, for example, 20 to 30 ⁇ l, and the concentration of the component substance is measured.
  • Figure 4 shows a flowchart of this series of operations.
  • FIG. 6 shows an example of a blood analysis operation using the direct protein removal method.
  • the frozen serum (sample) contained in the sample tube 10 with a lid is thawed and homogenized, and then the sample tube 1 Remove the cap 12 of the sample dispenser and aspirate the sample solution, for example 0.1 m1, from the sample tube 10 into a disposable tip (not shown) attached to the tip of the dispensing nozzle of the liquid dispenser.
  • the sucked sample liquid is discharged into a centrifuge tube 32 with a lid, and a predetermined amount of an organic solvent, for example, 0.2 ml of methanol or 0.5 ml of methanol is added.
  • an organic solvent for example, 0.2 ml of methanol or 0.5 ml of methanol is added.
  • FIG. 1 is a perspective view showing the entire configuration of the automatic concentration measuring device
  • FIG. 2 is a plan layout diagram thereof.
  • This automatic concentration measurement device automatically performs a series of operations to extract a specific component substance (for example, a drug) contained in a sample solution such as blood with a solvent.
  • Syringe pump unit for sending organic solvent, etc. to 6 40 or multiple storage containers for storing organic solvent, etc.
  • Drain section 38 Automatic solvent extraction section 36 Automatically measures the concentration of component substances extracted by solvent It consists of an analytical instrument and, on this side, high-performance liquid chromatography (hereinafter referred to as “HPLC”).
  • HPLC high-performance liquid chromatography
  • the automatic solvent extraction unit 36 is disposed on the upper surface of the apparatus, and the liquid supply / drainage unit 38 and the HPLC 44 are housed in the cabinet below the automatic solvent extraction unit 36, respectively. .
  • An operation panel 46 is provided on the front of the device. Although not shown, the automatic solvent extraction unit 36 is covered with a transparent cover that can be freely opened and closed.
  • a device for automatically extracting the component substances in the liquid sample with a solvent was obtained by the automatic extraction device.
  • the liquid may be injected into an attached analytical instrument or into a separate analytical instrument.
  • the automatic solvent extraction unit 36 includes a circular turntable 48, a processing turntable 50, a sample dispensing unit 52 (the structure is not shown in FIG. 2), a sample suction stage 54, and a solvent dispensing unit. 56, Shaking stage 58, Centrifuge 60, Separation liquid dispensing unit 62 (Structure is not shown in Fig. 2), Separation liquid suction stage 64, Evaporation to dryness stage 66, Solvent content It is composed of a stage 68, an injection unit 70, a disposable chip rack 72, a waste port 73, and the like.
  • the circular turntable 48 has a large number of sample tube holders 74 that hold sample tubes (eg, 1.5 m1 microtubes) 10 with lids containing samples such as frozen serum, and a disposable tip. And a plurality of disposable chip holding portions 76 holding the disposable chips, which are rotated by a rotation drive mechanism (not shown) to control the stop position.
  • the table 50 has a number of centrifuge tube holders 78 holding centrifuge tubes (for example, 7 cc centrifuge tubes) 14 and a number of cap holders 80 holding centrifuge tube caps 16.
  • it has a number of test tube holders 82 that hold the glass test tubes 24 on the outer periphery, and is rotated by a rotation drive mechanism (not shown) to control the stop position. .
  • the sample dispensing unit 52 has an arm 84 that reciprocates in the front-rear direction (Y-axis direction) and a dispensing head that is supported by this arm 84 and moves back and forth in the left-right direction (X-axis direction). (The reciprocating drive mechanism is not shown), and the dispensing head 86 has a sample dispensing nozzle 88 and a chuck unit for cap which reciprocate in the vertical direction (Z-axis direction). 90 are provided.
  • the dispensing nozzle 88 is connected through a tube 89 to a motor-driven syringe (not shown). As shown in the front view in Fig. 7 and the left side view in Fig. 8, the dispensing nozzle 88 has an upper and lower slide member that is supported by being engaged with the dispensing head 86 and reciprocates vertically.
  • reference numeral 100 denotes an ascending limit sensor for detecting the ascending limit position of the dispensing nozzle 88
  • 102 detects an origin position in the upward and downward direction of the dispensing nozzle 888.
  • the upper and lower origin sensor for measuring the dispensing nozzle 108 is a descending limit sensor for detecting the descending limit position of the dispensing nozzle 88.
  • Reference numeral 6 denotes a sensor detection plate
  • reference numeral 108 denotes a compression coil spring. Also the figure
  • Reference number 1 in 8 is 1 1 0 slide bearing, 1 1 2 is vertical slide guide
  • Reference numeral 114 denotes a chip presence / absence sensor for confirming that the disposable chip 116 is attached to the lower end of the dispensing nozzle 88.
  • the cap chuck unit 90 includes a pair of chuck jaws i 18, 1 18 and an opening / closing mechanism for opening and closing the pair of chuck jaws 1 18, 1 18. And a tubular solenoid 122 for driving the opening and closing mechanism 120.
  • the chuck unit 90 is held by an upper and lower slide member 124 that is supported by being engaged with the dispensing head 86 and that reciprocates vertically.
  • the chuck unit 90 is fixed to a dispensing head 88 by a forward / reverse rotatable drive motor (not shown). And rack fixed to upper and lower slide members 1 2 4
  • Reference numeral 13 0 in FIG. 7 denotes an ascending limit sensor for detecting the ascending limit position of the chuck unit 90, and 13 2 denotes a chuck unit 9.
  • Reference numeral 4 denotes a lower limit sensor for detecting the lower limit position of the chuck unit 90
  • reference numeral 1336 denotes a sensor detection plate.
  • the sample suction stage 54 is provided with a cap attaching / detaching mechanism 1 38.
  • the sample tube 10 with the lid containing the sample liquid is taken out from the sample tube holding portion 7 4 of the circular turntable 48, and the sample tube I 0 is placed in the sample suction stage.
  • the cap 12 of the sample tube 10 mounted on the stage 54 and fixed on the stage 54 is removed.
  • a cap 12 is attached to the sample tube 10 after the sample is sucked by the cap attachment / detachment mechanism 13, and the sample tube 10 is held from above the sample suction stage 54 by the sample tube of the circular turn table 48. Returned to Part 7 4.
  • the solvent dispensing unit 56 has a dispensing arm 140 that rotates in a horizontal plane around one end, and as shown in FIG. 10, is attached to the tip of the dispensing arm 140.
  • a nozzle section 142 is provided.
  • Nozzle 1 4 2 has multiple Several, in this example, three liquid transfer tubes 144, 146, 148 are fixed at the tips, as shown in the cross-sectional view of dispensing arm 140 in Figure 11 .
  • the three feeding tubes 1 4 4, 1 4 6, and 1 4 8 are for the liquid supply / drainage section 3 8
  • Syringe pump unit 40 Methanol supply syringe 150, ethyl acetate (organic solvent)
  • the supply syringe 15 2 and the pH buffer supply syringe 15 4 (see Fig. 1) are connected to the respective flow paths via switching valves.
  • the channels 154 are respectively connected to the respective storage containers (not shown) storing the required liquids.
  • the dispensing arm 140 has one end lower surface fixed to the arm support shaft 156.
  • the arm support shaft 156 is connected to the ball spline shaft 158, and is supported so as to be rotatable around a vertical axis and to be movable up and down along the vertical axis. Then, the arm support shaft 156 is reciprocated in the vertical direction by the lifting / lowering drive mechanism, and is rotated by the rotary drive mechanism, whereby the dispensing fixed to the arm support shaft 156 is performed.
  • the arm 140 moves up and down and rotates.
  • the lifting drive mechanism includes a drive motor 16 2 fixed to the upper mounting plate 160, a timing pulley 16 4 fixed to the rotating shaft of the drive motor 16 2, an upper mounting plate 16 0, and a lower mounting.
  • a screw shaft 1688 whose upper and lower ends are rotatably supported on a plate 166, respectively, and a timing tool 170 near the upper end of this screw shaft 168, both timings
  • the timing belt 172 which is stretched between the nipples 1 6 4 and 1 70, the change nut 1 7 4 screwed to the screw shaft 1 6 8, and this change nut 1 7 4
  • An elevating member 176 engaged with the arm support shaft 156 so as to allow its rotation and move integrally in the vertical direction, and an upper mounting plate 160
  • the upper and lower ends are fixed to the lower and lower mounting plates 166, and the guide bars 180 are slidably engaged with the elevating members 176 via the bearings 1-8.
  • an upward limit sensor and a downward limit sensor for detecting the upper limit position and the lower limit position of the dispensing arm 140, respectively, and the vertical direction of the dispensing arm 140.
  • An upper and lower origin sensor for detecting the origin position at, and a sensor detection plate are provided.
  • the rotary drive mechanism includes a drive motor 18 2 fixed to the lower mounting plate 16 6, a timing pulley 18 2 fixed to the rotating shaft of the drive motor 18 2, and a lower mounting plate 16 6
  • the support block 18 4 is fixed to the support block 18 4, and is rotatably supported by the support block 18 4.
  • the key groove allows the ball spline shaft 15 8 to move up and down and rotates integrally therewith.
  • Rotating member 1 8 6 having a boss hole formed with it, this rotating member 1 8 6 and a timing pulley 1 8 8 that rotates physically, and a tie bridged between both timing pulleys 1 8 2 and 1 8 8 And a positioning sensor 192 for detecting the rotation angle position of the dispensing arm 140.
  • the dispensing arm 140 is rotated by the rotary drive mechanism, and as shown by the solid line in FIG. Move the nozzle part 14 2 at the tip to the position immediately above the centrifuge tube 14 held in the centrifuge tube holding part 78 (see Fig. 2) of the processing turntable 50, and then move up and down
  • the dispensing arm 140 is lowered by the drive mechanism, and as shown by the two-dot chain line in Fig. 10, the J-sleeve 144 at the tip of the dispensing arm 140 is placed in the centrifuge tube 14. Insert into Then, each syringe 150, 152, 154 (see Fig.
  • the shaking stage 58 is provided with a shaker 194.
  • the centrifugal separator 60 is installed inside the annular processing turntable 50 in order to use the space effectively and compact the apparatus.
  • the shaker 194 and the centrifuge 60 are conventionally used, and the detailed structure and illustration thereof are omitted.
  • an ultrasonic vibrator or a stirrer may be used instead of the shaker. Also, when the centrifuge tube 14 into which the sample solution and the organic solvent are dispensed is shaken, and the centrifuge tube 14 is allowed to stand still, the liquid in the centrifuge tube 14 is rapidly separated into layers.
  • the centrifuge 60 may not be particularly provided.
  • the separated liquid dispensing unit 62 has an arm 196 that reciprocates in the front-rear direction (Y-axis direction) and an arm 196 that reciprocates in the left-right direction (X-axis direction) supported by the arm 196. It has an injection head 198 (the illustration of each reciprocating drive mechanism is omitted), and the dispensing head 198 has a vertical direction as shown in FIG.
  • a separation liquid dispensing nozzle 200 reciprocating (in the Z-axis direction) is provided, and the dispensing nozzle 200 is driven by a motor (not shown) via a tube 201. (See Figure 15).
  • the nozzle raising / lowering mechanism for reciprocating the dispensing nozzle 200 in the vertical direction includes a drive motor (stepping motor) 204 fixed to the mounting plate 202 fixed to the dispensing head 198, The timing plate 206 fixed to the rotating shaft of the drive motor 204 and the upper mounting plate 208 fixed to the dispensing head 198 and the upper mounting plate 210 fixed to the lower mounting plate 210 And the lower end can be rotated freely.
  • the change nut 2 18 that is screwed into the screw shaft 2 12 and reciprocates up and down with the forward and reverse rotation of the screw shaft 2 1 2, and the change nut 2 18 It is composed of an elevating member 220 that is connected and engages with the dispensing nozzle 200 to move in the vertical direction integrally with the change nut 210 and the dispensing nozzle 200.
  • an ascending limit sensor and a descending limit sensor for detecting the ascending limit position and descending limit position of the dispensing nozzle 200, respectively, and the dispensing nozzle 200
  • An upper / lower origin sensor for detecting the origin position in the vertical direction and a sensor detection plate are provided, and a disposable tip 222 is attached to the lower end of the dispensing nozzle 200.
  • a chip presence / absence sensor is provided to confirm this.
  • the disposable tip 222 attached to the lower end of the dispensing nozzle 200 is held by a large number of disposable tip holding parts 222 of the disposable tip rack 72.
  • the dispensing head 198 has a cap chuck unit 90 provided on the dispensing head 86 of the sample dispensing unit 52 (see FIGS. 7 and 8).
  • a check unit for transferring the centrifuge tubes which has the same configuration as that described in Section 9), is provided.
  • a cap removal unit 22 6 as shown in Fig. 13 and a centrifuge tube fixing unit 2 28 as shown in Fig. 14 are fixed to the mounting base 230.
  • the cap removal unit 2 26 has an arm 2 32 that rotates in a horizontal plane with one end as the center.The tip of the arm 2 32 is horizontal to the centrifuge tube cap 16. Approach from the direction An engaging claw 234 for engaging with the cap 16 is provided.
  • the arm 232 has one end fixed to the upper end of the ball spline shaft 236 and is supported in a horizontal posture.
  • the ball spline shaft 2 36 is reciprocated vertically by a lifting / lowering drive mechanism, and is rotated by a rotary drive mechanism.
  • the structure is such that the fixed arm 2 32 moves up and down and rotates.
  • the centrifuge tube fixing unit 228 has a tube holder 238 into which the centrifuge tube 14 is inserted from above.
  • the lower end of the tube holder 238 is fixed to the upper surface of the mounting substrate 230.
  • a pair of columns 240 and 240 are erected on both left and right sides of the tube holder 238.
  • a portion of the peripheral surface of the pipe holder 238 near the upper end is fitted to an arc-shaped receiving plate 244 attached to a bracket 242 fixed to one of the columns 240.
  • the other side receives a resilient pressing force from a bracket 2464 fixed to the other support column 240 via a compression coil spring 248. Then, the centrifuge tube 14 inserted into the tube holder 2 38 from above is transferred to the tube holder 2 38. Therefore, it is held and fixed resiliently.
  • a sensor mounting plate 250 is fixedly provided at the upper end of the pair of columns 240 and 240, respectively.
  • a tip tip detecting photoelectric sensor for detecting the tip (lower end) of the disposable tip 222 attached to the tip of the dispensing nozzle 200 is mounted on the pair of sensor mounting plates 250 and 250.
  • the upper photoelectric sensor 2554a and 2554b are used to suck the sample separated liquid separated into the upper layer in the centrifuge tube 14, and
  • the photoelectric sensors 255 a and 255 b on the side are used when a sample separated liquid separated to the lower layer side in the centrifuge tube 14 is sucked.
  • the separation liquid dispensing unit 62 has a low Without being affected by the change, it is possible to add a means for reliably preventing the liquid from dripping from the lower end of the separated liquid dispensing nozzle 200 and preventing a decrease in dispensing accuracy. This means is used when the lower end of the dispensing nozzle 200 is pulled out of the sample separation liquid in the centrifuge tube 14 and when the lower end of the dispensing nozzle 200 comes out above the sample separation liquid.
  • FIG. 15 is a schematic diagram showing a configuration of a main part of the separation liquid dispensing unit 62.
  • the dispensing nozzle 200 is lowered, and the distal end of the disposable tip 222 attached to the distal end of the dispensing nozzle 200 is accommodated in the centrifuge tube 14. Then, the liquid is sucked into the disposable chip 222 from the lower end port. Then, the dispensing nozzle 200 is raised and then moved to a position directly above the test tube 24 (dispensing position), and the liquid sucked into the day spot tip 222 is dispensed under the disposable tip 222. Discharge into the test tube 24 from the end opening.
  • the dispensing nozzle 200 is connected by a tube 201 to a flow path connected to a syringe 258 installed in a liquid supply / drainage section 38 (see FIG. 1).
  • the syringe 258 is driven by a motor 260 and is provided with a controller 262 for controlling the driving of the motor 260. Then, by controlling the drive of the motor 260 by the controller 26 2, a predetermined amount of liquid is sucked from the centrifuge tube 14 into the disposable tip 222 of the dispensing nozzle 200, and the dispensing position is adjusted. At, the liquid in the disposable tip 222 is discharged from the lower end port thereof into the test tube 24.
  • the dispensing unit is configured so that the controller 262 can control the driving of the motor 260 to switch the syringe 258 to a low speed.
  • a method of dispensing the sample separation liquid in the centrifuge tube 14 using the dispensing unit having the above configuration will be described with reference to FIG.
  • the sample separation liquid 264 separated into the upper layer side in the centrifuge tube 14 is sucked into the disposable tip 222 of the dispensing nozzle 200.
  • the dispensing nozzle 200 is moved to a position directly above the centrifuge tube 14 and, as shown in FIG. 16 (A) (only the disposable tip 222 of the dispensing nozzle 200 is shown in FIG. 16). ), The dispensing nozzle 200 is lowered. Then, as shown in FIG.
  • the lower end of the disposable tip 222 is immersed in the sample separation liquid 264 stored in the centrifuge tube 14, and then the syringe 258 Is driven at a normal speed, and the sample separation solution 264 in the centrifuge tube 14 is sucked into the disposable tip 222 from the lower end locator.
  • the suction speed at this time depends on the diameter of the lower end of the disposable tip 222 and the viscosity of the sample separation liquid 264.For example, when the lower end of the disposable tip 222 is 1 mm, the sample separation liquid 26 When the organic solvent in (4) is ethyl acetate, getyl ether or a substance having properties similar to those, it is 0.2 to 0.3 cc / sec.
  • the sample floats in the sample separation solution 264 in the step 222 toward the liquid surface and flows to the gas portion above the sample separation solution 264 in the disposable tip 222.
  • the suction speed at this time is suitably, for example, a force of 0.04 to 0.2 cc / sec and about 0.1 cc Z sec.
  • the suction of the minute flow rate into the disposable tip 222 is performed until the dispensing nozzle 200 moves to the position above the centrifuge tube 14 and then to the position above the test tube 24 at the dispensing position, or Further, the dispensing nozzle 200 descends and continues until the lower end of the disc tip 222 is inserted into the test tube 24.
  • the syringe 258 is driven at a normal speed, and the dispensing nozzle 200 is raised in the process of rising.
  • the force that switches the syringe 258 to a low speed is used.
  • a low-speed syringe and a low-speed syringe driven at a low speed may be provided, and a switching valve may be used to selectively connect the normal-speed syringe and the low-speed syringe to the dispensing nozzle 200 through the flow path.
  • a vacuum pump may be used instead of the low-speed syringe.
  • the separation liquid dispensing unit 62 is not affected by the ambient temperature of the separation liquid dispensing nozzle 200, Also, the connection part of disposable chip 2 2 2 etc. Even if there is a slight leak, a means to improve the dispensing accuracy by always inhaling a predetermined amount of the sample separation liquid into the dispensing nozzle 200 accurately and without causing dispersion. can do.
  • This means is to connect the above photoelectric sensors 252a, 252b; 254a, 2554b; 256a, and 256b provided on the centrifuge tube fixing unit 228. It is used to control the drive of the syringe 258. The configuration will be described with reference to FIG. 17 to FIG.
  • FIG. 17 is a schematic block diagram of the separation liquid dispensing unit 62.
  • the controller 26 2 of the motor 260 driving the syringe 258 and the driving motor (stepping motor) 204 driving the raising / lowering member 220 holding the dispensing nozzle 200 12) are connected to the CPU 267, and the control signals from the CPU 267 control the drive of the syringe driving motor 260 and the driving of the stepping motor 204, respectively.
  • the photoelectric sensors 25 2 a and 25 2 b for detecting the tip of the chip and the photoelectric sensors 25 24 a and 25 4 b for detecting the liquid level are connected to the CPU 2667, respectively.
  • the predetermined operation of the stepping motor 204 is controlled based on the detection signal from the light receiving section 255 b of the photoelectric sensor for detection, and based on the detection signal from the light receiving section 255 b of the liquid level detection photoelectric sensor.
  • the predetermined operation of the syringe driving motor 260 is controlled.
  • FIG. 17 shows only the upper photoelectric sensor 2554a and 2 ⁇ 4b of the two sets of photoelectric sensors for liquid level detection.
  • an operation in which the sample separated liquid separated into the upper layer in the centrifuge tube 14 is sucked into the disposable tip 222 of the dispensing nozzle 200 is also exemplified.
  • the operation for inhaling the sample separated liquid separated to the lower side in 4 is also performed by centrifugation.
  • the operation itself is exactly the same, only the structure of the tube cap changes.
  • a method of dispensing the sample separation liquid in the centrifuge tube 14 using the dispensing unit 6 shown in Fig. 17 will be described based on Figs. 18 and 19. .
  • the dispensing nozzle 200 is moved to a position directly above the centrifuge tube 14 and the stepping motor 204 is driven, as shown in FIG. 18 (a) (dispensing in FIGS. 18 and 19). Only the disposable tip 222 of the nozzle 200 is shown), and the dispensing nozzle 200 is lowered. At this time, the light emitted from the light emitting portion 25a of the photoelectric sensor for detecting the tip of the chip is directly incident on the light receiving portion 252b, and a predetermined output signal is output from the light receiving portion 252b of the photoelectric sensor. Sent to CPU 26 7 Then, as shown in FIG.
  • the stepping motor 204 continues to be driven and the dispensing nozzle 200 descends;
  • the number of pulses output from the pulse generation circuit (not shown) is counted from the time when the lower end of the disposable tip 222 reaches the reference height position, and the stepping is performed until the predetermined number of pulses is counted.
  • Motor 204 power; driven. Then, when a predetermined number of pulses are counted in the CPU 267, the driving of the stepping motor 204 is stopped. As shown in (c), the lowering operation of the dispensing nozzle 200 stops.
  • the lower end of the disposable tip 222 is located at a distance L corresponding to a predetermined number of pulses from the installed reference height position.
  • the lower end of the disposable chip 222 is immersed in the sample separation liquid 264 in the centrifuge tube 14.
  • the lower end position of the disposable tip 222 is always a fixed position. The lower end of the disposable chip 222 is located below the liquid level even after a predetermined amount of the sample separation liquid 264 is inhaled.
  • the syringe drive motor 260 is activated.
  • the syringe 255 is actuated, and the sample separation solution 26 4 in the centrifuge tube 14 is sucked into the disposable tip 22 2 from its lower end as shown in Fig. 19 (d). Is done.
  • the light emitted from the light projecting portion 254a of the liquid level detecting photoelectric sensor passes through the disc tip 222, enters the light receiving portion 254b, and enters the light receiving portion 254b.
  • a signal of a predetermined output is sent from the light receiving section 254 b to the CPU 267. Then, as shown in (e) of FIG. 19, the upper end of the sample separation liquid 264 sucked into the disposable tip 222 is provided with the photoelectric sensors 254a and 254b. When the light reaches the predetermined height, the light emitted from the light-emitting unit 25 4 a of the photoelectric sensor is blocked by the sample separation liquid 26 4 in the disposable tip 22 2, and the light-receiving unit 25 4 b When the amount of light incident on the sensor decreases, the output from the light-receiving unit 254b of the photoelectric sensor changes, and the output signal is sent to the CPU 267.
  • the lower end of the disposable tip 2 222 is located at the position where the photoelectric sensors 25 4 a and 25 4 b are installed.
  • the sample separation liquid 264 is sucked up to the corresponding height, and the suction amount of the sample separation liquid 264 into the disposable tip 222 is always constant.
  • the stepping 204 is activated, and the dispensing nozzle 200 is raised as shown in (f) of Fig. 19. Then, the lower end of the disposable tip 2 2 2 is pulled up from the sample separation solution 2 6 4 in the centrifuge tube 14. Then, the dispensing nozzle 200 is moved to a position above the centrifuge tube 14 and then to the position above the test tube 24 at the dispensing position, and then the dispensing nozzle 200 is lowered to disposable tip. The lower end of 222 is inserted into the test tube 24, and then the syringe 258 is driven to discharge the liquid in the disposable tip 222 from the lower end into the test tube 24.
  • the photoelectric sensor is used to detect when the lower end of the disposable tip 222 reaches the reference height position.
  • the detection is performed using a mechanical contact sensor or the like. May be performed.
  • a photoelectric sensor that detects when the upper end of the liquid reaches a predetermined height position when the liquid is sucked into the disposable tip 222 is disposed at a lower end of the disposable tip 222 as a reference height. It may be shared to detect when the position is reached. Stepping motor 20
  • FIG. 20 is a perspective view showing a state in which the cap 30 is extracted from the centrifuge tube 14, and FIG. 21 is a longitudinal sectional view showing a state in which the cap 30 is attached to the centrifuge tube 14.
  • the cap 30 for closing the upper surface opening of the centrifuge tube 14 in a liquid-tight manner is composed of a sealing portion 268, an inner tube portion 270, and a closing portion 272.
  • the hermetic plug portion 268 is inserted into the upper end of the centrifuge tube 14 so that the outer peripheral surface is closely fitted, and a through hole 274 is formed in the center.
  • the inner tube portion 270 has an outer diameter smaller than the inner diameter of the centrifuge tube 14, and has a tubular shape in which the lower portion is gradually made smaller in diameter, and the upper end portion of the inner tube portion 270 penetrates the plug portion 268. It is fixed to the inner peripheral part of the hole 274 and is integrated with the sealing part 268. Also, the inner pipe part 270 When the hermetic plug part 2688 is closely fitted to the upper end of the centrifuge tube 14, the lower end is formed to have a length such that it is located near the inner bottom surface of the centrifuge tube 14.
  • the closing part 272 is formed by a filling plug inserted upward into the lower end of the inner pipe part 270, and closes the lower end of the inner pipe part 270 in a liquid-tight manner. The closing portion 272 made of the filling plug is easily dropped by a downward pressing force, that is, a force pressed downward by the lower end of the disposable tip 222 of the dispensing nozzle 200.
  • the sample solution and the organic solvent are dispensed into the centrifuge tube 14, and then the inner tube portion 270 is inserted deep into the centrifuge tube 14 and inserted into the liquid. Then, the cap 30 is attached to the centrifuge tube 14 so that the sealing plug portion 268 is tightly fitted to the upper end of the centrifuge tube 14. In this state, the components in the sample solution are transferred to the organic solvent layer by shaking the centrifuge tube, and then the centrifuge is centrifuged (see Figs. 1 and 2). As shown in 22, the liquid contained between the inner peripheral surface of the centrifuge tube 14 and the outer peripheral surface of the inner tube part 27 of the cap 30 is filled with the upper liquid 27 6 and the lower liquid.
  • the closed part 272 is dropped from the lower end of the inner pipe part 270, and the lower end of the disposable tip 222 is inserted into the lower liquid 278. Thereafter, the syringe 250 (see FIGS. 15 and 17) connected to the dispensing nozzle 200 is driven to drive the disposable tip through the lower end of the disposable tip 222. 2 Inhale liquid into 2 2. At this time, since the lower end of the disposable tip 222 is inserted into the lower liquid 278, only the lower liquid 278 is sucked into the disposable tip 222, and Since the lower end is located below the boundary surface 280 between the upper liquid 276 and the lower liquid 278, a part of the upper liquid 276 mixes with the lower liquid 278 to form a contour. There is no need to worry about producing minerals.
  • the cap 2 8 2 of the centrifuge tube 14 whose longitudinal section is shown in Fig. 23 is
  • the part is fixed, and the sealed part 284 and the inner pipe part 286 are integrated.
  • a thin plate-like portion is integrally formed at the lower end of the inner tube portion 286 to form a closed portion 288.
  • the closed part 288 consisting of this thin plate-shaped part is dispensed with the dispensing nozzle 200 By being pressed downward by the lower end of the pochip 222, it can easily burst.
  • the sealing portions 268, 284 constituting the caps 30, 282 and the inner tube portions 270, 286 are separate from each other.
  • the inner tube portions 270 and 286 may be fixed to 688 and 284, and the force for integrating them may be integrally formed, and the hermetic plug portion and the inner tube portion may be integrally formed.
  • the configuration of the closing portion which closes the lower end of the inner tube portion in a liquid-tight manner and easily falls or ruptures by a downward pressing force, is as follows.
  • the configuration is not limited to the one formed integrally, and for example, a configuration in which the lower end of the inner tube portion is covered with a film and closed in a liquid-tight manner may be used.
  • the heater block 2 94 is attached to the fixed frame 29 2, as shown in Fig. 24 and Fig. 25, respectively.
  • the heater block 294 has a plurality of vertical holes 296 into which a plurality of test tubes 24 are fitted from above.
  • the vertical hole 296 is formed so that the inner peripheral surface thereof is in close contact with the outer peripheral surface of the test tube 24.
  • the heater block 294 has a through hole 298 communicating with the bottom of each vertical hole 296, and a push rod 300 is provided in each through hole 298.
  • the push-up plate 302 which is slidably penetrated and fixed to the tip end of the push-up bar 300, reciprocates vertically in the vertical hole 296. .
  • each of the plurality of push-up bars 300 is fixed to a common elevating plate 304. Also, above the fixed frame 292, there is a J-Zull head 300 having a plurality of nozzle plugs 300 that abut against the upper end of each test tube 24 to seal the upper end opening hermetically. Has been established. Gas supply for blowing nitrogen gas into the test tube 24 A nozzle 310 and an exhaust hole 312 for discharging waste gas from the inside of the test tube 24 are formed.
  • the nozzle head 306 is connected to the rack 314 and supported by the fixed frame 292.
  • the fixed frame 292 is provided with a motor 3116 for forward and backward rotation, which can be rotated forward and backward.
  • a pinion 318 is fixed to the rotating shaft of the motor 316.
  • the rack 314 is connected to the lifting plate 304 via a hook 322 fixed thereto and a connecting member 322 engaged with the hook 322.
  • the reference numeral 3 2 4 is an elevating guide.
  • the solvent dispensing stage 68 is provided with a force not shown, which is the same as the shaker 194 installed on the shake stage 58.
  • the injection unit 70 has an injection arm 32 6 that rotates in a horizontal plane with one end as a center.
  • a nozzle holding shaft 330 is attached to the distal end of the nozzle 326 via a slide bearing 328, and the nozzle holding shaft 330 is connected to the injection arm 322 by a compression coil spring 332. It is elastically supported at the tip of 6.
  • a chuck 334 is provided at a lower end portion of the nozzle holding shaft 330, and the injection nozzle 336 is held by the chuck 334.
  • One end of the injection arm 326 is fixed to the arm support shaft 338.
  • the arm support shaft 338 is connected to a ball spline shaft (not shown), and is supported so as to be rotatable about a vertical axis and movable vertically along the vertical axis. Have been.
  • the arm support shaft 338 is moved up and down by the elevation drive mechanism and rotated by the rotation drive mechanism, whereby the injection arm 32 fixed to the arm support shaft 338 is moved. 6 moves up and down and rotates.
  • the configuration of the lifting drive mechanism and the rotary drive mechanism is the same as the lift drive mechanism and the rotary drive mechanism of the solvent dispensing unit 56 shown in FIG. 10, so that illustration and description thereof are omitted.
  • the flow path configuration of the injection unit 70 will be described.
  • the injection nozzle 3336 is connected to the b-port of the six-way valve 3442 in a flow path, and the metering tube loop 3440 has both ends of the c-port and the e-port of the six-way valve 3442. Each The flow path is connected.
  • the syringe 344 is connected to the port a of the six-way valve 342 and the liquid storage container 348 via the three-way switching valve 346, respectively.
  • the d port of the six-way valve 342 is connected to the HPLC pump, and the f port is connected to the HPLC column.
  • a syringe 34 4 and an injection nozzle 33 36 are passed through a six-way valve 34 2.
  • the three-way switching valve 3446 is switched and operated, the methanol is sucked into the syringe 344 from the liquid storage container 348, and the methanol is removed from the syringe 344. It is sent to the injection nozzle 336, and then, for example, 0.1 ml of methanol is discharged from the injection nozzle 336 into the test tube 24.
  • the state is such that the HPLC pump and the HPLC column are in communication with each other via 0, and the syringe 344 and the injection nozzle 336 are in communication with each other via the six-way valve 342. Then, a certain amount of the sample solution retained in the measuring tube loop is injected into the column by the HPLC pump.At the same time, the injection nozzle 336 is moved to the washing tank 352, and the three-way switching is performed. Switch valve 3 4 6 and syringe Drive 3 4 to send methanol from the liquid storage container 3 4 8 to the injection nozzle 3 3 6, discharge the methanol from the tip end of the injection nozzle 3 3 6, and perform the injection. Rinse nozzle 3 3 6 and pipes with methanol.
  • a plurality of sample tubes 10 with lids containing frozen serum are set in the sample tube holder 74 of the circular turntable 48 of the automatic solvent extraction unit 36.
  • the sample tube 10 is moved from the top of the circular table 48 to the sample tube suction stage 54 by the cap attaching / detaching mechanism 13, and the sample is sucked.
  • the sample tube 10 is fixed on the stage 54.
  • the cap 12 of the sample tube 10 is removed by the cap attaching / detaching mechanism 1388.
  • the arm 84 of the sample dispensing unit 52 is moved in the Y-axis direction, the dispensing head 86 is moved in the X-axis direction, and the dispensing nozzle 88 is moved in the Z-axis direction. 4 Attach the disposable tip 1 16 held by the disposable tip holding portion 76 at the tip of the dispensing nozzle 88.
  • the arm 84, the dispensing head 86, and the dispensing nozzle 88 of the sample dispensing unit 52 are moved in the Y-axis direction, the X-axis direction, and the Z-axis direction, respectively.
  • the tip (lower end) of the 8 disposable chip 1 16 is immersed in the sample solution (melted serum) in the sample tube 10 fixed on the sample suction stage 54 (see the two-dot chain line in Fig. 7). ) Inhale the sample solution into the disposable tip 1 16. And arm of sample dispensing unit 52, dispensing head 86 and dispensing nozzle The nozzle 8 8 is moved in the Y-axis direction, X-axis direction, and ⁇ -axis direction, and the tip of the dispensing tip 1 16 of the dispensing nozzle 8 8 Insert into the centrifuge tube 14 held in 8 (see the two-dot chain line in FIG. 8), and discharge the sample liquid sucked into the disposable tip 116 into the centrifuge tube 14.
  • the used disposable tip 1 16 is discarded to the dumping port 73, the cap 12 is attached to the re-sample tube 10 by the cap attaching / detaching mechanism 1 38, and then the sample tube 10 is turned circularly. Return to sample tube holder 7 4 of table 4 8.
  • the processing turntable 50 is rotated to move the centrifuge tube 14 held by the centrifuge tube holding unit 78 and containing the sample solution to the solvent dispensing position. Then, the dispensing arm 140 of the solvent dispensing unit 56 is rotated in the ⁇ direction (rotated in a horizontal plane), then lowered, and the liquid sending tube fixed to the nozzle portion 142 is rotated. — Insert the tips of the pieces 144, 144, and i48 into the centrifuge tube 14 held by the centrifuge tube holder 78 of the processing turntable 50 (the two-dot chain line in FIG. 10). Dispense ethyl acetate (organic solvent), methanol and pH buffer into centrifuge tube 14).
  • the arm 84, the dispensing head 86, and the chuck unit 90 of the sample dispensing unit 52 are moved in the Y-axis direction, the X-axis direction, and the Z-axis direction, respectively.
  • the arm 84, the dispensing head 86, and the chuck unit 90 of the sample dispensing unit 52 are moved in the Y-axis direction, the X-axis direction, and the Z-axis direction, respectively, and then the chuck unit 90 is moved.
  • the sample dispensing unit 5 2 is held while holding the cap 16 with the pair of chuck jaws 1 18 and 1 18 of the chuck unit 90.
  • the chuck unit 90 is operated and the processing turn is performed.
  • the centrifuge tube 14 held in the centrifuge tube holder 78 of the table 50 is moved to the shaking stage 58, and the centrifuge tube 14 is set in the shaker 1994. Then, the shaker 1994 is driven to shake the centrifuge tube 14, and the target component substance in the sample solution is transferred into the organic solvent in the centrifuge tube 14.
  • the arm 84, dispensing head 86 and chuck unit 90 of the sample dispensing unit 52 are moved in the Y-axis direction, X-axis direction and Z-axis direction, and the chuck is moved.
  • the unit 90 move the centrifuge tube 14 from the shaking stage 58 to the centrifuge 60, and set the centrifuge tube 14 in the centrifuge 60.
  • the liquid is centrifuged by driving the centrifuge 60.
  • the arm 196 of the separated solution dispensing unit 62, the dispensing head 198 and the chuck unit (not shown) of the centrifuge tube transfer ffi are moved in the Y-axis direction and the X-axis direction.
  • the Z-axis direction and operate the chuck unit to remove the centrifuge tube 14 from the centrifuge 60 and move the centrifuge tube 14 to the separation liquid suction stage 64 to fix the centrifuge tube.
  • the cap 16 is removed from the centrifuge tube 14 by the cap removal unit 22.
  • the sample separation liquid is separated into the upper layer side in the centrifuge tube 14 by centrifugation, and the sample separation liquid is separated into the lower layer side in the centrifuge tube 14 by centrifugation. Do In this case, there is no need to remove the cap 30 from the centrifuge tube 14 as shown in FIGS. 5 and 22.
  • the arm 1 96 of the separation liquid dispensing unit 62 is moved in the Y-axis direction, the dispensing head 198 is moved in the X-axis direction, and the dispensing nozzle 2
  • the disposable tip 22 is held in the disposable tip holder 22 of the disposable tip rack 72 by displacing the disposable tip 22 in the Z-axis direction.
  • the arm 196, the dispensing head 198, and the dispensing nozzle 200 of the separation liquid dispensing unit 62 are moved in the Y-axis direction, the X-axis direction, and the Z-axis direction, respectively.
  • the tip (lower end) of the disposable tip 222 of the dispensing nozzle 200 is connected to the centrifuge tube 14 fixed to the centrifuge tube fixing unit 222 of the separated liquid suction stage 64. Immerse in the pull separation solution and aspirate the sample separation solution into the disposable tip 222 (see Figs. 14 to 16 and Figs. 18 and 19). Subsequently, the arm 196, the dispensing head 198, and the dispensing nozzle 200 of the separation liquid dispensing unit 62 are moved in the Y-axis direction, the X-axis direction, and the Z-axis direction, respectively. The tip of the disposable tip 222 of the dispensing nozzle 200 is placed in the test tube 2 held at the dispensing position A (see FIG.
  • the processing turntable 50 is rotated, and the test tube 24 is moved to the evaporating and drying stage 66, and the test tube 24 is held in the state shown in FIGS. 24 and 25.
  • the test tube 2 is heated from the surroundings by the hot block 294, and the gas supply nozzle 308 of the nozzle head 306 is supplied to the inside of the test tube 224 from the nozzle 310. Nitrogen gas is blown through the opening, and waste gas is exhausted through the exhaust holes 312, thereby evaporating the sample separation liquid in the test tube 24 and drying the sample separation liquid.
  • the arm 196 of the separation liquid dispensing unit 62, the dispensing head 198 and the centrifuge tube transfer tube unit are moved in the Y-axis direction, the X-axis direction, and the Z-axis direction, respectively.
  • the chuck unit is operated to remove the test tube 24 from the removal position B of the test tube holding portion 82 of the processing turntable 50 (see FIG. 2), and transfer the test tube 24 to the solvent dispensing stage 68. And fix it on a machine (not shown).
  • the injection unit 70 is operated, and an organic solvent, for example, methanol is dispensed into the test tube 24 by the operation shown in FIG.
  • the shaker is driven to shake the test tube 24, and the dried residue is dissolved in methanol.
  • the injection unit 70 is operated to activate the injection unit 70.
  • the sample solution in which the component substances are dissolved in the organic solvent is sucked into the injection nozzle 336 from the test tube 24, and the sucked sample solution is sucked.
  • the separation liquid dispensing unit 62 is operated, and the used test tubes are transferred using the chuck unit for transferring the centrifuge tubes.
  • the sample separation liquid dispensed into the container is configured by the apparatus configuration including the evaporating and drying stage 66 and the solvent dispensing stage 68 provided with a shaker. After evaporating to dryness, the organic solvent is dispensed into the container, the container is shaken, and dissolved in an organic solvent to prepare a sample solution to be injected into analytical instruments such as HPLC. With the equipment configuration equipped with a concentration stage without the solvent dispensing stage 68, a part of the organic solvent of the sample separated solution dispensed into the container is evaporated, and the concentrated sample separated solution is evaporated. It may be prepared.
  • the evaporating and drying stage and the concentration stage may not be particularly provided. Furthermore, according to an apparatus configuration provided with an evaporating and drying stage 66 without the solvent dispensing stage 68, all of the organic solvent of the sample separation liquid dispensed into the container is evaporated. An automatic extraction device that finally obtains the dried residue is used to prepare a sample liquid to be injected into analytical equipment such as an HPLC or gas chromatograph from the dried residue obtained by the automatic extraction device. You may.
  • an automatic concentration measuring device is configured without the separation liquid dispensing unit 62 in addition to the evaporating and drying stage 66, the concentration stage and the solvent dispensing stage 68, and the separation liquid dispensing unit 62
  • the sample separated solution separated in a centrifuge tube may be directly sucked from the centrifuge tube and injected into an analytical instrument such as HPLC.
  • the automatic extraction device and the automatic concentration measurement device according to the present invention are used in a clinical test center or a laboratory of a pharmaceutical company which needs to perform a large amount of sample analysis processing at one time. For labs of pharmaceutical companies, for example, this will result in significant improvements in work efficiency and work space.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Equipment, which can automatically perform a series of operations in solvent extraction when subjecting component substances contained in liquid samples to solvent extraction and measuring concentrations of the component substances, attain reduction of an operator's labor and time and make effective use of space. An automatic extracting equipment comprises a table holding a plurality of sample tubes, a table holding a plurality of containers for extraction and a plurality of containers for storage, a sample dispensing unit for sucking liquid samples from the sample tubes to discharge the same into the containers for extraction, a solvent dispensing unit for discharging an organic solvent into the containers for extraction, a shaker for transferring target component substances, in liquid samples contained in the containers for extraction, into the organic solvent, and a separation liquid dispensing unit for sucking sample separation liquids separated in the containers for extraction to discharge the same into the containers for storage.

Description

明 細 書 液体試料中の成分物質の自動抽出装置および自動濃度測定装置 技術分野  Description Automatic extraction device and automatic concentration measurement device for component substances in liquid samples
この発明は、 血清、 血漿、 全血、 尿、 生体組織等のホモジネー 卜 (上 清) 、 反応混合液などの液体試料中に含まれる特定の成分物質を溶媒抽 出する操作を自動的に行うことができる自動抽出装置、 および、 液体試 料中に含まれる特定の成分物質を溶媒抽出して、 その濃度を測定するま での全ての操作を自動的に行うことができる自動濃度測定装置、 ならび に、 それらの装置に使用される液体分注装置および液体の遠心分離用沈 殿管に関する。  The present invention automatically performs a solvent extraction operation of a specific component substance contained in a liquid sample such as a homogenate (refining) such as serum, plasma, whole blood, urine, and biological tissue, and a reaction mixture. An automatic extraction device capable of automatically extracting all the components contained in a liquid sample and measuring the concentration of the components, and an automatic concentration measurement device capable of automatically performing all operations up to the measurement of the concentration. The present invention also relates to a liquid dispensing device and a centrifugal sedimentation tube used for such a device.
背景技術  Background art
例えば、 血液中に含まれる薬物の濃度を測定するには、 有機溶媒を用 い、 血液中から薬物成分を有機溶媒中に溶解させて分離 (溶媒抽出) し、 有機溶媒中に薬物成分が溶解したサンプル分離液を必要により濃縮した 後、 そのサンプル分離液を高速液体クロマ 卜グラフィ一などの分析機器 へ注入するようにしている。 この一連の測定操作の 1例を挙げると、 サ ンプル管からの血液試料の吸入および遠心分離用沈殿管 (以下、 「遠沈 管」 という) への血液試料の吐出 (血液試料の分注) —遠沈管への抽出 用有機溶媒の分注—遠沈管へのキヤップの装着—遠沈管の振盪—遠心分 離—遠沈管からのキヤップの取外し—遠沈管からのサンプル分離液 (有 機溶媒層側に分離し目的とする成分物質が溶解した液) の吸入および濃 縮用試験管へのサンプル分離液の吐出 (サンプル分離液の分注) —濃縮 —試験管からの濃縮サンプル分離液の吸入および高速液体クロマ 卜グラ フィ一への瀵縮サンプル分離液の注入の各操作を順次経ることにより、 血液中の薬物濃度の測定が行われる。 For example, to measure the concentration of a drug contained in blood, an organic solvent is used. The drug component is dissolved in the organic solvent from blood and separated (solvent extraction), and the drug component is dissolved in the organic solvent. After concentrating the sample separation liquid as needed, the sample separation liquid is injected into analytical equipment such as high-performance liquid chromatography. One example of this series of measurement operations is to aspirate a blood sample from a sample tube and discharge a blood sample to a centrifuge sedimentation tube (hereinafter referred to as a “centrifuge tube”). —Dispense the organic solvent for extraction into the centrifuge tube—Attach the cap to the centrifuge tube—Shake the centrifuge tube—Centrifugation—Remove the cap from the centrifuge tube—Sample separation liquid from the centrifuge tube (organic solvent layer) Inhalation of the liquid containing the target component dissolved in the sample side) and discharge of the sample separation liquid into a test tube for concentration (dispensing of the sample separation liquid) —Concentration —The drug concentration in the blood is measured by sequentially performing the operations of inhaling the concentrated sample separated solution from the test tube and injecting the concentrated sample separated solution into the high performance liquid chromatography.
ところで、 従来、 遠沈管の振盪や遠心分離などの操作は、 振盪機や遠 心分離機などを用いて行われているが、 血液試料の分注、 有機溶媒の分 注およびサンプル分離液の分注の各操作は、 使い捨てのデイスポーザブ ルチップ (以下、 「ディスポチップ」 という) を着脱自在に先端部に装 着したマイクロピぺッ 卜やホールピぺッ トなどを使用して人手により行 われていた。 また、 遠沈管に対するキャップの着脱操作や試験管からの 濃縮サンプル分離液の吸入および高速液体ク口マ トグラフィ一への液注 入の各操作も、 人手により行われていた。  By the way, conventionally, operations such as shaking and centrifugation of a centrifuge tube have been performed using a shaker or a centrifuge, but dispensing of a blood sample, dispensing of an organic solvent, and dispensing of a sample separated solution are performed. Each operation in the note was performed manually using a micro- or hole-piped with a disposable disposable tip (hereinafter referred to as “disposal tip”) detachably attached to the tip. In addition, the operations of attaching and detaching the cap to and from the centrifuge tube, inhaling the concentrated sample separation liquid from the test tube, and injecting the liquid into the high-performance liquid mouth chromatography were also performed manually.
なお、 各種の分注操作を、 分注ノズル、 シリ ンジおよびその駆動モー タ、 分注ノズルの移動機構などを備えた液体分注装置により自動化する ことは可能である。 しかしながら、 シリ ンジの駆動量を制御して分注ノ ズル内への液体の吸入量を調節するような一般的な方式では、 吸入しよ うとする液体の比重や粘度、 表面張力などの違いにより、 また、 分注ノ ズルの周辺温度の変化により、 液体の吸入量を所望通リ正確に調節する ことができないことがある。 また、 特にサンプル分離液の分注操作にお けるように有機溶媒を分注ノズル内へ吸入する場合には、 ジェチルエー テル、 酢酸ェチル、 クロ口ホルムなどといった有機溶媒は揮発性が高く, 粘度が低く、 表面張力が小さくて、 比重が小さいため、 吸入位置から分 注位置へ分注ノズルを移動させる間などに分注ノズルの下端口から液垂 れが起こり易い。 さらに、 遠心分離により上層液と下層液とに分離させ た後、 遠沈管内で有機溶媒層である下層側に分離されたサンプル分離液 W だけを、 コンタ ミネーションが生じないように分取する操作を自動化す ることは、 非常に困難であった。 これらの事情から、 従来、 液一液溶媒 抽出における分注操作は手作業で行われており、 また、 振盪機や遠心分 離機などは使用されていたが、 溶媒抽出操作における全工程を自動化し た装置は、 従来無かった。 Various dispensing operations can be automated by a liquid dispensing device equipped with a dispensing nozzle, a syringe and its driving motor, a dispensing nozzle moving mechanism, and the like. However, in a general method in which the amount of liquid to be sucked into the dispensing nozzle is controlled by controlling the driving amount of the syringe, the specific gravity, viscosity, surface tension, etc. of the liquid to be sucked are different. In addition, due to changes in the temperature around the dispensing nozzle, it may not be possible to accurately adjust the amount of liquid to be suctioned as desired. In addition, when an organic solvent is sucked into the dispensing nozzle, particularly in the dispensing operation of the sample separation liquid, the organic solvent such as getyl ether, ethyl acetate, and chloroform is highly volatile and has a high viscosity. Low, low surface tension, and low specific gravity make it easy for liquid to drip from the lower end of the dispensing nozzle when moving the dispensing nozzle from the suction position to the dispensing position. Furthermore, after separating into an upper layer solution and a lower layer solution by centrifugation, the sample separation liquid separated into the lower layer side which is the organic solvent layer in the centrifuge tube It was very difficult to automate the operation of fractionating only W without causing contamination. For these reasons, dispensing operations in liquid-liquid solvent extraction have conventionally been performed manually, and shakers and centrifugal separators have been used.However, the entire process of solvent extraction has been automated. There was no such device in the past.
発明の開示  Disclosure of the invention
上記した血液中の薬物濃度の測定などの分析作業が行われる臨床検査 センターや製薬会社の研究室などにおいては、 大量の検体を一度に分析 処理する必要がある。 このように一度に大量の検体の分析処理を行わな ければならない場合において、 上記したような分注操作などの個々の操 作を人手によって行うのは、 多くの労力と時間とを必要とする。 また、 上記した各操作を複数人の作業者で分担して行うような場合には、 各人 の作業に支障が出ない程度の比較的広い作業スペースを必要とすること になる。  A large number of samples must be analyzed and processed at once at a clinical laboratory center or a pharmaceutical company's laboratory where the above-mentioned analysis work such as measurement of drug concentration in blood is performed. In the case where a large amount of sample must be analyzed at one time, performing individual operations such as the dispensing operation described above requires a lot of labor and time. . Further, in the case where the above-mentioned operations are shared by a plurality of workers, a relatively large work space that does not hinder the work of each person is required.
この発明は、 以上のような事情に鑑みてなされたものであり、 血清、 血漿、 全血、 ホモジネー 卜、 反応混合液などの液体試料中に含まれる薬 剤等の特定の成分物質を溶媒抽出して、 その濃度を測定する場合に、 溶 媒抽出の一連の操作を自動的に行うことができ、 また、 溶媒抽出から濃 度測定までの一連の操作の全工程を自動的に行うことができ、 その一連 の操作に従来要していた作業者の労力の低滅と時間の短縮化を図るとと もに、 スペースの有効的利用を図ることができる、 液体試料中の成分物 質の自動抽出装置および液体試料中の成分物質の自動濃度測定装置を提 供すること、 ならびに、 それらの装置に好適に使用される液体分注装置 および液体の遠心分離用沈殿管を提供することを技術的課題とする。 上記技術的課題を解決する手段として、 第 1 の発明は、 液体試料の入 つたサンプル容器を複数本保持するサンプル保持部と、 複数本の抽出用 容器を保持する抽出用容器保持部と、 前記サンプル保持部から取り出さ れもしくは前記サンプル保持部に保持されたサンプル容器内から所定量 の液体試料を吸入し、 その吸入された液体試料を、 前記抽出用容器保持 部から取り出されもしくは前記抽出用容器保持部に保持された抽出用容 器内へ吐出するサンプル分注手段と、 前記抽出用容器内へ所定量の抽出 用有機溶媒を吐出する抽出用溶媒分注手段と、 前記抽出用容器内に入つ た液体試料中の目的とする成分物質を抽出用有機溶媒中へ移行させる成 分物質移行手段と、 複数本の収容容器を保持する収容容器保持部と、 前 記抽出用容器内において分離し目的とする成分物質が有機溶媒に溶解し たサンプル分離液を所定量だけ吸入し、 その吸入されたサンプル分離液 を、 前記収容容器保持部から取り出されもしくは前記収容容器保持部に 保持された収容容器内へ吐出する分離液分注手段とを備えて、 液体試料 中の成分物質の自動抽出装置を構成したことを特徴とする。 The present invention has been made in view of the above circumstances, and solvent extraction of a specific component substance such as a drug contained in a liquid sample such as serum, plasma, whole blood, homogenate, and reaction mixture. Then, when measuring the concentration, a series of operations for solvent extraction can be performed automatically, and all the steps from the solvent extraction to concentration measurement can be performed automatically. In addition to reducing the labor and time required by the operator for the series of operations, it is possible to effectively use the space, and it is also possible to effectively use the space. It is an object of the present invention to provide an automatic extraction device and an automatic concentration measuring device for component substances in a liquid sample, and to provide a liquid dispensing device and a centrifugal sedimentation tube suitably used for those devices. Make it an issue. As means for solving the above technical problems, a first invention is a sample holding unit for holding a plurality of sample containers containing a liquid sample, an extraction container holding unit for holding a plurality of extraction containers, A predetermined amount of a liquid sample is taken out of the sample container taken out of the sample holding unit or held in the sample holding unit, and the sucked liquid sample is taken out of the extracting container holding unit or the extraction container is taken out. Sample dispensing means for discharging into an extraction container held by a holding unit; extraction solvent dispensing means for discharging a predetermined amount of an organic solvent for extraction into the extraction container; A component substance transfer means for transferring the target component substance in the liquid sample into the organic solvent for extraction, a container holding portion for holding a plurality of containers, and the inside of the extraction container A predetermined amount of the sample separation liquid in which the target component substance is dissolved in the organic solvent is separated and then aspirated, and the sucked sample separation liquid is taken out of the storage container holding section or transferred to the storage container holding section. A separation liquid dispensing means for discharging into a held storage container, wherein an automatic extraction device for component substances in the liquid sample is configured.
上記構成の自動抽出装置では、 サンプル分注手段により、 サンプル容 器内から所定量の液体試料が吸入されてその液体試料が抽出用容器内へ 吐出される。 次に、 抽出用溶媒分注手段により、 抽出用容器内へ所定量 の抽出用有機溶媒が吐出され、 成分物質移行手段により、 抽出用容器内 に入った液体試料中の目的とする成分物質が抽出用有機溶媒中へ移行さ せられる。 そして、 分離液分注手段によ り、 抽出用容器内において分離 したサンプル分離液が所定量だけ吸入されてそのサンプル分離液が収容 容器内へ吐出される。 このようにして、 目的とする成分物質が抽出用有 機溶媒に溶解した (移行した) サンプル分離液が自動で得られる。 そして、 上記構成の自動抽出装置を使用すると、 血清、 血漿、 全血、 ホモジネー ト、 反応混合液などの液体試料中に含まれる薬物等の特定の 成分物質を溶媒抽出するための一連の操作を自動的に行うことができる ので、 その一連の操作に従来要していた作業者の労力の低減と時間の短 縮化を図るとともに、 スペースの有効的利用を図ることができる。 In the automatic extraction device having the above configuration, a predetermined amount of the liquid sample is sucked from the inside of the sample container by the sample dispensing means, and the liquid sample is discharged into the extraction container. Next, a predetermined amount of the organic solvent for extraction is discharged into the extraction container by the solvent dispensing means for extraction, and the target component substance in the liquid sample entering the container for extraction is discharged by the component substance transfer means. It is transferred to the organic solvent for extraction. Then, a predetermined amount of the sample separation liquid separated in the extraction container is sucked by the separation liquid dispensing means, and the sample separation liquid is discharged into the storage container. In this way, a sample separation liquid in which the target component substance is dissolved (migrated) in the organic solvent for extraction is automatically obtained. Using the automatic extraction device having the above configuration, a series of operations for solvent extraction of specific component substances such as drugs contained in liquid samples such as serum, plasma, whole blood, homogenate, and reaction mixture can be performed. Since the operations can be performed automatically, it is possible to reduce the labor and the time required for the operator for the series of operations conventionally, and to effectively use the space.
また、 上記構成の自動抽出装置に、 収容容器内に入ったサンプル分離 液を蒸発させてサンプル分離液を乾固させる蒸発乾固手段を設けて、 自 動抽出装置を構成することができ、 さらに、 収容容器内へ所定量の溶解 用有機溶媒を吐出する溶解用溶媒分注手段と、 前記収容容器内において、 乾固された残渣を溶解用有機溶媒に溶解させる溶解手段とを設けて、 自 動抽出装置を構成することができる。 前記溶解手段としては、 収容容器 を振盪させる振盪機を設置するとよい。 また、 前記蒸発乾固手段は、 収 容容器をその周囲から加熟するヒータと、 収容容器内へその上部開口を 通して窒素ガスを吹き込む窒素ガス供給手段とにより構成するとよい。  In addition, the automatic extraction device having the above configuration can be provided with an evaporation / drying means for evaporating the sample separation liquid contained in the storage container and drying the sample separation liquid, whereby an automatic extraction device can be configured. A dissolving solvent dispensing means for discharging a predetermined amount of the dissolving organic solvent into the receiving vessel; and a dissolving means for dissolving the dried residue in the dissolving organic solvent in the receiving vessel. A motion extraction device can be configured. As the dissolving means, a shaker for shaking the container may be provided. Further, it is preferable that the evaporating and drying means comprises a heater for ripening the storage container from the periphery thereof, and a nitrogen gas supply means for blowing nitrogen gas into the storage container through an upper opening thereof.
また、 上記構成の自動抽出装置に、 収容容器内に入ったサンプル分離 液の有機溶媒の一部を蒸発させてサンプル分離液を濃縮させる濃縮手段 を設けて、 自動抽出装置を構成することができる。 前記濃縮手段は、 収 容容器をその周囲から加熱するヒータと、 収容容器内へその上部開口を 通して窒素ガスを吹き込む窒素ガス供給手段とにより構成するとよい。 前記分離液分注手段は、 抽出用容器内に入ったサンプル分離液を所定 量だけ下端口から吸入し、 そのサンプル分離液を下端口から吐出する分 注ノズルと、 この分注ノズルを保持するノズル保持手段と、 このノズル 保持手段を、 前記分注ノズルの下端口が前記抽出用容器内のサンプル分 離液中に浸漬する下方位置と分注ノズル下端口が抽出用容器から上方へ  In addition, the automatic extraction device having the above configuration may be provided with a concentrating means for evaporating a part of the organic solvent of the sample separation solution contained in the storage container and concentrating the sample separation solution, thereby configuring the automatic extraction device. . The concentrating means may be constituted by a heater for heating the storage container from the periphery thereof, and a nitrogen gas supply means for blowing nitrogen gas into the storage container through an upper opening thereof. The separation liquid dispensing means holds a dispensing nozzle that sucks a predetermined amount of the sample separation liquid contained in the extraction container from the lower end port and discharges the sample separation liquid from the lower end port, and the dispensing nozzle. A nozzle holding means, the nozzle holding means having a lower position where the lower end of the dispensing nozzle is immersed in the sample separation liquid in the extraction container, and a lower end of the dispensing nozzle which is upward from the extraction container.
- 0 - 離間した上方位置との間で昇降させるノ ズル昇降手段と、 前記ノズル保 持手段を、 前記抽出用容器の直上位置と分注位置との間で移動させるノ ズル移動手段と、 前記分注ノズル内へその下端口から前記抽出用容器内 のサンプル分離液を所定量だけ吸入させ、 前記分注位置において分注ノ ズル内のサンプル分離液をその下端口から吐出させるシリ ンジと、 この シリンジを駆動させるシリ ンジ駆動手段と、 このシリ ンジ駆動手段を制 御するシリ ンジ制御手段とを備えることにより構成するとよい。 そのよ うな構成において、 分注ノズルの下端口が抽出用容器内のサンプル分離 液中から引き上げられる際に、 分注ノズル下端口がサンプル分離液上に 出た時に分注ノズル内へその下端口から微小流量の空気を吸入させ続け て、 分注ノズル内のサンプル分離液内部に気泡を発生させ、 この状態を、 分注ノズル内のサンプル分離液が吐出される直前まで継続させる気泡発 生手段を、 前記分離液分注手段が有しているとよい。 また、 分離液分注 手段が、 抽出用容器内のサンプル分離液中に下端口が浸漬させられた状 態の分注ノズル内に所定量のサンプル分離液が吸入された時にサンプル 分離液の上端が位置する高さ位置に配設されてサンプル分離液の上端が その高さ位置に達したかどうかを光電的に検知する液面センサを有して おり、 前記液面センサの検知信号に基づいてシリ ンジ制御手段によ りシ リ ンジ駆動手段を制御して前記シリンジの駆動を停止させるようにする とよい。 前記ノズル昇降手段を、 パルス数によって駆動量を制御される ステッピングモータにより構成し、 分注ノズルの下端口を抽出用容器内 のサンプル分離液中へ浸演させるために分注ノズルを下降させる際に分 注ノズルの下端が基準の高さ位置に達したかどうかを検知するノズル検 知手段を設け、 前記ノ ズル検知手段により、 分注ノズル下端が基準高さ 位置に達したことが検知された時点から、 一定のパルス数の信号を前記 ステッピングモータへ入力させるようにするとよい。 前記分注ノズルは、 使い捨て吸入管を用いて構成するとよい。 -0- A nozzle elevating means for elevating and lowering between the separated upper position, a nozzle moving means for moving the nozzle holding means between a position immediately above the extraction container and a dispensing position, and the dispensing nozzle A syringe for allowing a predetermined amount of the sample separation liquid in the extraction container to be sucked in from the lower end of the syringe, and discharging the sample separation liquid in the dispensing nozzle from the lower end of the dispensing nozzle at the dispensing position; It is preferable to provide a syringe driving means for driving and a syringe control means for controlling the syringe driving means. In such a configuration, when the lower end of the dispensing nozzle is pulled out of the sample separation liquid in the extraction container, the lower end of the dispensing nozzle is inserted into the dispensing nozzle when the lower end of the dispensing nozzle comes out of the sample separation liquid. Means to generate air bubbles inside the sample separation liquid in the dispensing nozzle and continue this state until immediately before the sample separation liquid in the dispensing nozzle is discharged. It is preferable that the separation liquid dispensing means has the following. Also, the separation liquid dispensing means is configured such that when a predetermined amount of the sample separation liquid is sucked into the dispensing nozzle having the lower end immersed in the sample separation liquid in the extraction container, the upper end of the sample separation liquid is Is provided at a height position where is located, and a liquid level sensor that photoelectrically detects whether the upper end of the sample separation liquid has reached the height position is provided, based on a detection signal of the liquid level sensor. Preferably, the syringe driving means is controlled by the syringe control means to stop driving the syringe. The nozzle raising / lowering means is constituted by a stepping motor whose driving amount is controlled by the number of pulses, and when the dispensing nozzle is lowered in order to immerse the lower end of the dispensing nozzle into the sample separation liquid in the extraction container. A nozzle detecting means for detecting whether the lower end of the dispensing nozzle has reached the reference height position is provided, and the lower end of the dispensing nozzle is set at the reference height by the nozzle detecting means. It is preferable that a signal of a fixed number of pulses is input to the stepping motor from the time when the position is detected. The dispensing nozzle may be configured using a disposable suction pipe.
また、 上記構成の自動抽出装置に、 抽出用容器内へ所定量の水または 水溶液を吐出する水または水溶液分注手段を設けて、 自動抽出装置を構 成することができる。  Further, the automatic extraction device having the above-described configuration may be provided with a water or aqueous solution dispensing means for discharging a predetermined amount of water or an aqueous solution into the extraction container, thereby configuring the automatic extraction device.
また、 上記構成の自動抽出装置に、 抽出用容器にキャップを着脱させ るキヤップ着脱手段を設けて、 自動抽出装置を構成することができる。 また、 上記構成の自動抽出装置に、 成分物質移行手段として、 抽出用 容器を振遨させる振盪機を設置して、 自動抽出装置を構成することがで きる。  In addition, the automatic extraction device having the above configuration can be provided with a cap attaching / detaching means for attaching / detaching the cap to / from the extraction container, thereby configuring the automatic extraction device. In addition, the automatic extraction device having the above configuration may be provided with a shaker that shakes the extraction container as a component substance transfer means, to configure the automatic extraction device.
また、 上記構成の自動抽出装置に、 成分物質移行手段によって液体試 料中から目的とする成分物質が抽出用有機溶媒中へ移行させられた液を 遠心分離する遠心分離機を設けて、 自動抽出装置を構成することができ る。  In addition, the automatic extraction device having the above configuration is provided with a centrifugal separator for centrifuging a liquid in which a target component substance has been transferred from the liquid sample into the organic solvent for extraction by the component substance transfer means, and the automatic extraction is performed. The device can be configured.
次に、 上記技術的課題を解決する手段として、 第 2の発明は、 上記し た各種構成の自動抽出装置と、 液体試料中の成分物質の濃度を測定する 濃度測定手段と、 収容容器内から目的とする成分物質が有機溶媒に溶解 した成分溶解液を吸入し、 その吸入された成分溶解液を所定量だけ前記 濃度測定手段に注入する液注入手段と備えることにより、 液体試料中の 成分物質の自動濃度測定装置を構成したことを特徴とする。 前記液注入 手段が、 濃度測定手段に注入される所定量の成分溶解液を保持する計量 管を有した構成とすることができる。  Next, as means for solving the above technical problems, a second invention is directed to an automatic extraction apparatus having the above-described various configurations, a concentration measuring means for measuring the concentration of a component substance in a liquid sample, and By injecting a component solution obtained by dissolving a target component material in an organic solvent and injecting a predetermined amount of the sucked component solution into the concentration measuring device, the component material in the liquid sample is provided. Characterized in that the automatic concentration measuring device of (1) is constituted. The liquid injecting means may have a measuring tube for holding a predetermined amount of the component solution to be injected into the concentration measuring means.
上記構成の第 2の発明に係る自動濃度測定装置では、 液注入手段によ リ、 自動抽出装置によって得られ目的とする成分物質が有機溶媒に溶解 した成分溶解液 (サンプル分離液、 サンプル溶解液または濃縮サンプル 分離液) が収容容器内から吸入されてその成分溶解液が所定量だけ濃度 測定手段に注入され、 濃度測定手段によって液体試料中の成分物質の濃 度が測定される。 In the automatic concentration measuring apparatus according to the second aspect of the present invention, the liquid injection means (4) A component solution (sample separation solution, sample solution or concentrated sample separation solution) obtained by the automatic extraction device and obtained by dissolving the target component substance in an organic solvent is sucked from the container and the component solution is collected. Only the quantitative amount is injected into the concentration measuring means, and the concentration of the component substance in the liquid sample is measured by the concentration measuring means.
また、 上記技術的課題を解決する手段として、 第 3の発明は、 液体試 料の入ったサンプル容器を複数本保持するサンプル保持部と、 複数本の 容器を保持する容器保持部と、 前記サンプル保持部から取り出されもし くは前記サンプル保持部に保持されたサンプル容器内から所定量の液体 試料を吸入し、 その吸入された液体試料を、 前記容器保持部から取り出 されもしくは前記容器保持部に保持された容器内へ吐出するサンプル分 注手段と、 前記容器内へ所定量の抽出用有機溶媒を吐出する抽出用溶媒 分注手段と、 前記容器内に入った液体試料中の目的とする成分物質を抽 出用有機溶媒中へ 行させる成分物質移行手段と、 液体試料中の成分物 質の濃度を測定する濃度測定手段と、 前記容器内において分離し目的と する成分物質が有機溶媒に溶解したサンプル分離液を吸入し、 その吸入 されたサンプル分離液を所定量だけ前記濃度測定手段に注入する分離液 注入手段とを備えることにより、 液体試料中の成分物質の自動濃度測定 装置を構成したことを特徴とする。 このような構成の自動濃度測定装置 に、 容器内へ所定量の水または水溶液を吐出する水または水溶液分注手 段を設けて、 自動濃度測定装置を構成することができる。 また、 前記構 成の自動濃度測定装置に、 容器にキャップを着脱させるキヤップ着脱手 段を設けて、 自動濃度測定装置を構成することができる。 また、 前記構 成の自動濃度測定装置に、 成分物質移行手段によって液体試料中から目 的とする成分物質が抽出用有機溶媒中へ移行させられた液を遠心分離す る遠心分離機を設けて、 自動濃度測定装置を構成することができる。 上記構成の第 3の発明に係る自動濃度測定装置では、 サンプル分注手 段により、 サンプル容器内から所定量の液体試料が吸入されてその液体 試料が容器内へ吐出される。 次に、 抽出用溶媒分注手段により、 容器内 へ所定量の抽出用有機溶媒が吐出され、 成分物質移行手段により、 容器 内に入った液体試料中の目的とする成分物質が抽出用有機溶媒中へ移行 させられる。 そして、 分離液注入手段により、 容器内において分離した サンプル分離液が所定量だけ吸入されてそのサンプル分離液が所定量だ け濃度測定手段に注入され、 濃度測定手段によつて液体試料中の成分物 質の濃度が測定される。 According to a third aspect of the present invention, there is provided a sample holding unit for holding a plurality of sample containers containing a liquid sample, a container holding unit for holding a plurality of containers, A predetermined amount of a liquid sample is sucked out of a sample container held in the sample holding unit or taken out of the holding unit, and the sucked liquid sample is taken out of the container holding unit or the container holding unit is sucked out. Sample dispensing means for discharging into a container held in a container, extracting solvent dispensing means for discharging a predetermined amount of an organic solvent for extraction into the container, and a target in a liquid sample contained in the container. A component substance transfer means for causing the component substances to flow into the extraction organic solvent; a concentration measuring means for measuring the concentration of the component substances in the liquid sample; and a component substance which is separated and intended in the container. A sample separation liquid dissolved in a solvent is sucked, and a predetermined amount of the sample separation liquid thus sucked is injected into the concentration measuring means. Is constituted. An automatic concentration measuring device having such a configuration is provided with a water or aqueous solution dispensing means for discharging a predetermined amount of water or an aqueous solution into a container, whereby the automatic concentration measuring device can be constituted. In addition, the automatic concentration measuring device having the above-described configuration is provided with a cap attaching / detaching means for attaching / detaching the cap to / from the container, whereby the automatic concentration measuring device can be constituted. In addition, the automatic concentration measuring device having the above-mentioned configuration is visually checked from the liquid sample by the component substance transfer means. An automatic concentration measuring device can be configured by providing a centrifuge for centrifuging a liquid in which a target component substance is transferred into an organic solvent for extraction. In the automatic concentration measuring device according to the third aspect of the present invention, a predetermined amount of the liquid sample is sucked from the sample container and discharged into the container by the sample dispensing means. Next, a predetermined amount of the organic solvent for extraction is discharged into the container by the solvent dispensing means for extraction, and the target component substance in the liquid sample contained in the container is discharged by the component substance transfer means. Moved inside. Then, a predetermined amount of the sample separation liquid separated in the container is aspirated by the separation liquid injection means, and the predetermined amount of the sample separation liquid is injected into the concentration measurement means, and the components in the liquid sample are analyzed by the concentration measurement means. The concentration of the substance is measured.
そして、 上記構成の第 2の発明および第 3の発明に係る各自動濃度測 定装置を使用すると、 液体試料中に含まれる薬物等の特定の成分物質を 溶媒抽出してからその溶媒抽出された成分物質の濃度を測定するまでの —連の操作の全工程を自動的に行うことができるので、 その一連の操作 に従来要していた作業者の労力の低減と時間の短縮化を図るとともに、 スペースの有効的利用を図ることができ、 作業者は試料の入ったサンプ ル容器をサンプル保持部にセッ 卜するだけで、 試料中に含まれる成分物 質の濃度の正確なデータが速やかに得られる。  When each of the automatic concentration measuring devices according to the second and third aspects of the present invention is used, a specific component substance such as a drug contained in the liquid sample is extracted with a solvent and then the solvent is extracted. Since the entire series of operations up to the measurement of the concentration of the component substances can be performed automatically, the labor and time required by the operator for the series of operations have been reduced, while This enables efficient use of space, and allows the operator to simply set the sample container containing the sample in the sample holder, and quickly obtain accurate data on the concentration of the components contained in the sample. can get.
次に、 第 4の発明は、 液体容器内に収容された液体を所定量だけ下端 口から吸入し、 その液体を下端口から吐出する分注ノズルと、 この分注 ノズルを保持するノズル保持手段と、 このノズル保持手段を、 前記分注 ノズルの下端口が前記液体容器内の液体中に浸漬する下方位置と分注ノ ズル下端口が液体容器から上方へ離間した上方位置との間で昇降させる ノズル昇降手段と、 前記ノズル保持手段を、 前記液体容器の直上位置と 分注位置との間で移動させるノズル移動手段と、 前記分注ノズル内へそ の下端口から前記液体容器内の液体を所定量だけ吸入させ、 前記分注位 置において分注ノズル内の液体をその下端口から吐出させるシリ ンジと、 このシリ ンジを駆動させるシリ ンジ駆動手段と、 このシリンジ駆動手段 を制御するシリ ンジ制御手段とを備えた液体分注装置において、 前記分 注ノズルの下端口が前記液体容器内の液体中から引き上げられる際に、 分注ノズル下端口が液体上に出た時に分注ノズル内へその下端口から微 小流量の空気を吸入させ続けて、 分注ノズル内の液体内部に気泡を連続 して発生させ、 この状態を、 分注ノズル内の液体が吐出される直前まで 継続させる気泡発生手段を備えたことを特徴とする。 Next, a fourth invention provides a dispensing nozzle for sucking a predetermined amount of liquid contained in a liquid container from a lower end port and discharging the liquid from the lower end port, and a nozzle holding means for holding the dispensing nozzle. Raising and lowering the nozzle holding means between a lower position where the lower end of the dispensing nozzle is immersed in the liquid in the liquid container and an upper position where the lower end of the dispensing nozzle is separated upward from the liquid container. Let A nozzle elevating means, a nozzle moving means for moving the nozzle holding means between a position immediately above the liquid container and a dispensing position, and a liquid in the liquid container from the lower end of the dispensing nozzle. A syringe for inhaling only a fixed amount and discharging the liquid in the dispensing nozzle from the lower end of the dispensing position at the dispensing position, a syringe driving means for driving the syringe, and a syringe control for controlling the syringe driving means Means for dispensing the dispensing nozzle, when the lower end of the dispensing nozzle is pulled out of the liquid in the liquid container, when the lower end of the dispensing nozzle comes out of the liquid, the liquid is dispensed into the dispensing nozzle. Continue to inhale a small amount of air from the lower end port to continuously generate bubbles inside the liquid in the dispensing nozzle, and keep this state until just before the liquid in the dispensing nozzle is discharged. Characterized by comprising a bubble generator.
また、 上記構成の液体分注装置において、 上記シリ ンジを低速に切り 換えて駆動させるように上記シリ ンジ駆動手段を制御する制御回路を上 記シリ ンジ制御手段に設けて気泡発生手段を構成することができる。  Further, in the liquid dispensing apparatus having the above configuration, a control circuit for controlling the syringe driving means so as to drive the syringe by switching at a low speed is provided in the syringe control means, and the bubble generating means is configured. be able to.
また、 上記構成の液体分注装置において、 低速シリ ンジと、 この低速 シリ ンジを低速で駆動させる低速シリンジ駆動手段と、 この低速シリ ン ジ駆動手段を制御する低速シリ ンジ制御手段と、 上記分注ノズル内へ液 体を吸入させその液体を分注ノズルの下端口から吐出させる上記シリ ン ジと前記低速シリ ンジとを分注ノズルに択一的に流路接続させる流路切 換え手段とから気泡発生手段を構成することができる。  Further, in the liquid dispensing apparatus having the above configuration, the low-speed syringe, low-speed syringe driving means for driving the low-speed syringe at a low speed, low-speed syringe control means for controlling the low-speed syringe driving means, Flow path switching means for selectively connecting the above-mentioned syringe for sucking a liquid into the dispensing nozzle and discharging the liquid from the lower end of the dispensing nozzle and the low-speed syringe to the dispensing nozzle; Thus, the bubble generating means can be constituted.
上記構成の液体分注装置を使用して液体の分注操作を行なうときは、 分注ノズル内に所定量の液体が注入されて、 分注ノズルの下端口が液体 容器内の液体中から引き上げられる際に、 分注ノズル下端口が液体上に 出た時から分注位置で分注ノズル内の液体が吐出される直前までの間、 分注ノズル内へその下端口から微小流量の空気が吸入され続けて、 分注 ノズル内の液体内部に気泡が連続して発生するように、 分注ノズル内部 が吸引され続けられる。 このため、 分注ノズルの下端口付近には、 上向 きの僅かな吸引力が常に作用することになるので、 ジェチルェ一テル等 の有機溶媒や塩酸などの液体を分注する場合であっても、 分注ノズルの 下端口から液体が垂れ落ちることが防止される。 When performing a liquid dispensing operation using the liquid dispensing device with the above configuration, a predetermined amount of liquid is injected into the dispensing nozzle, and the lower end of the dispensing nozzle is pulled out of the liquid in the liquid container. Between the time when the lower end of the dispensing nozzle is above the liquid and the time immediately before the liquid in the dispensing nozzle is discharged at the dispensing position. The inside of the dispensing nozzle is continuously suctioned so that a minute flow of air is continuously sucked into the dispensing nozzle from the lower end port, and bubbles are continuously generated in the liquid in the dispensing nozzle. For this reason, a slight upward suction force always acts near the lower end of the dispensing nozzle, and this is a case when dispensing liquids such as hydrochloric acid and organic solvents such as getyl ether. Also, the liquid is prevented from dripping from the lower end of the dispensing nozzle.
そして、 上記構成の液体分注装置を使用すると、 有機溶媒のように蒸 発し易く、 低粘度で、 表面張力が小さく、 比重の小さい液体や塩酸のよ うに比重の大きい液体などを分注する場合であっても、 周辺温度の変化 に影響されたりすることなく、 分注ノズルの下端口からの液垂れを確実 に防止して、 分注精度の低下を防ぐことができる。  When the liquid dispensing device with the above configuration is used, it is easy to evaporate like an organic solvent, has a low viscosity, has a low surface tension, and dispenses a liquid with a low specific gravity or a liquid with a high specific gravity such as hydrochloric acid. Even in this case, it is possible to reliably prevent liquid dripping from the lower end of the dispensing nozzle without being affected by changes in the surrounding temperature, and to prevent a decrease in dispensing accuracy.
また、 第 5の発明は、 液体容器内に収容された液体を所定量だけ下端 口から吸入し、 その液体を下端口から吐出する分注ノズルと、 この分注 ノズルを保持するノズル保持手段と、 このノズル保持手段を、 前記分注 ノズルの下端口が前記液体容器内の液体中に浸漬する下方位置と分注ノ ズル下端口が液体容器から上方へ離間した上方位置との間で昇降させる ノズル昇降手段と、 前記ノズル保持手段を、 前記液体容器の直上位置と 分注位置との間で移動させるノズル移動手段と、 前記分注ノズル内へそ の下端口から前記液体容器内の液体を所定量だけ吸入させ、 前記分注位 置において分注ノズル内の液体をその下端口から吐出させるシリ ンジと、 このシリ ンジを駆動させるシリ ンジ駆動手段と、 このシリ ンジ駆動手段 を制御するシリンジ制御手段とを備えた液体分注装置において、 前記液 体容器内の液体中に下端口が浸漬させられた状態の前記分注ノズル内に 所定量の液体が吸入された時に液体の上端が位置する高さ位置に、 液体 の上端がその高さ位置に達したかどうかを光電的に検知する液面センサ を配設し、 前記液面センサの検知信号に基づいて前記シリ ンジ制御手段 により前記シリ ンンジ駆動手段を制御して前記シリ ンジの駆動を停止さ せるようにすることを特徴とする。 According to a fifth aspect of the present invention, there is provided a dispensing nozzle for sucking a predetermined amount of liquid contained in a liquid container from a lower end port and discharging the liquid from the lower end port, and a nozzle holding means for holding the dispensing nozzle. The nozzle holding means is moved up and down between a lower position where the lower end of the dispensing nozzle is immersed in the liquid in the liquid container and an upper position where the lower end of the dispensing nozzle is separated upward from the liquid container. A nozzle elevating means, a nozzle moving means for moving the nozzle holding means between a position immediately above the liquid container and a dispensing position, and a liquid in the liquid container from the lower end of the dispensing nozzle. A syringe for inhaling only a fixed amount and discharging the liquid in the dispensing nozzle from the lower end of the dispensing position at the dispensing position, a syringe driving means for driving the syringe, and the syringe driving means are controlled. In a liquid dispensing apparatus including a syringe control means, when a predetermined amount of liquid is sucked into the dispensing nozzle in a state where a lower end port is immersed in the liquid in the liquid container, an upper end of the liquid is Liquid at the level where it is located A liquid level sensor for photoelectrically detecting whether the upper end of the liquid has reached the height position, and controlling the syringe driving means by the syringe control means based on a detection signal of the liquid level sensor. In this case, the driving of the syringe is stopped.
上記構成の液体分注装置において、 上記ノズル昇降手段を、 パルス数 によって駆動量を制御されるステツビングモータにより構成し、 分注ノ ズルの下端口を液体容器内の液体中へ浸漬させるために分注ノズルを下 降させる際に分注ノズルの下端が基準の高さ位置に達したかどうかを検 知するノズル検知手段を設けて、 前記ノズル検知手段により、 分注ノズ ル下端が基準高さ位置に達したことが検知された時点から、 一定のパル ス数の信号が前記ステッピングモータへ入力されるようにすることがで きる。  In the liquid dispensing apparatus having the above configuration, the nozzle elevating means is constituted by a stepping motor whose driving amount is controlled by the number of pulses, and the lower end of the dispensing nozzle is immersed in the liquid in the liquid container. Nozzle detecting means for detecting whether the lower end of the dispensing nozzle has reached the reference height position when lowering the dispensing nozzle is provided, and the lower end of the dispensing nozzle is set at the reference height by the nozzle detecting means. From the point in time when it is detected that the position has been reached, a signal of a fixed number of pulses can be input to the stepping motor.
また、 上記構成の液体分注装置において、 上記ノズル検知手段を、 分 注ノズルの下端を光電的に検知する光電センサによって構成するとよい。 上記構成の第 5の発明に係る液体分注装置を使用して液体の分注操作 を行なうときは、 分注ノズルの下端口が液体容器内の液体中に浸漬させ られ分注ノズルの下端が一定位置に停止した状態で、 シリンジを駆動さ せて分注ノズル内へその下端口から液体容器内の液体を吸入する過程に おいて、 分注ノズル内に吸入された液体の上端が所定の高さ位置に達し たことが光電的に検知されると、 その時点でシリ ンジの駆動が停止させ られて分注ノズル内への液体の吸入動作が止められる。 このため、 分注 ノズル内への液体の吸入動作が終わった時、 分注ノズル内に吸入された 液体の上端位置は、 分注ノズル下端から常に一定の距離だけ高い位置と なり、 従って、 液体の種類や周辺温度に関係無く、 また、 例え分注ノズ ルの接続部分などに僅かなリークがあつたとしても、 分注ノズル内には 常に一定量の液体が吸入されることになる。 Further, in the liquid dispensing device having the above configuration, it is preferable that the nozzle detecting unit is configured by a photoelectric sensor that photoelectrically detects a lower end of the dispensing nozzle. When performing a liquid dispensing operation using the liquid dispensing apparatus according to the fifth aspect of the present invention, the lower end of the dispensing nozzle is immersed in the liquid in the liquid container and the lower end of the dispensing nozzle is closed. In the process where the syringe is driven and the liquid in the liquid container is sucked into the dispensing nozzle from the lower end of the dispensing nozzle while stopped at a fixed position, the upper end of the liquid sucked into the dispensing nozzle is in a predetermined position. If it is photoelectrically detected that the height position has been reached, the drive of the syringe is stopped at that point, and the suction operation of the liquid into the dispensing nozzle is stopped. Therefore, when the operation of sucking the liquid into the dispensing nozzle is completed, the upper end position of the liquid sucked into the dispensing nozzle is always at a position higher than the lower end of the dispensing nozzle by a certain distance, and accordingly, the liquid Regardless of the type or ambient temperature, Even if there is a slight leak at the connection part of the pipe, a certain amount of liquid will always be sucked into the dispensing nozzle.
そして、 上記構成の第 5の発明に係る液体分注装置を使用すると、 分 注しようとする液体の種類に関係無く、 また、 周辺温度の変化に影響さ れたりすることなく、 さらに、 分注ノズルの接続部分などに僅かなリー クがあったとしても、 分注ノズル内へ所定量通りの液体を常に正確に、 ばらつきを生じることなく吸入して、 分注精度の向上を図ることができ る。  When the liquid dispensing apparatus according to the fifth aspect of the present invention is used, the dispensing operation can be performed irrespective of the type of liquid to be dispensed and without being affected by changes in the ambient temperature. Even if there is a slight leak at the nozzle connection, etc., a predetermined amount of liquid can always be drawn into the dispensing nozzle accurately and without variation, improving dispensing accuracy. You.
また、 第 6の発明は、 上面が開口 した管状をなす容器本体と、 この容 器本体の上面開口部に被されるキャップとからなる遠沈管において、 前 記キャップを、 中央部に貫通孔を有し前記容器本体の上端部に密嵌する 密栓部と、 前記容器本体の内径寸法より小さい外径寸法を有する管状を なし、 上端部が前記密栓部の貫通孔部に連接し、 容器本体の上端部に密 栓部を密嵌させたときに下端が容器本体の内底面付近に位置する程度の 長さに形成された内管部と、 この内管部の下端を液密に閉塞し、 かつ、 下向きの押圧力によって容易に脱落もしくは破裂する閉塞部とから構成 したことを特徴とする。  According to a sixth aspect of the present invention, there is provided a centrifuge tube comprising a tubular container body having an open upper surface and a cap covering the upper surface opening of the container body, wherein the cap is provided with a through hole at the center. A tightly-sealed plug portion having an outer diameter smaller than the inner diameter of the container body, the upper end portion being connected to a through hole of the sealed plug portion, An inner tube portion having a length such that the lower end is positioned near the inner bottom surface of the container body when the stopper portion is closely fitted to the upper end portion, and a lower end of the inner tube portion is liquid-tightly closed. In addition, it is characterized by comprising a closed part which easily falls off or ruptures by a downward pressing force.
上記構成の遠沈管において、 上記キャップの閉塞部を、 上記内管部の 下端口に差し込まれる詰め栓またはキャップの内管部の下端に一体形成 された薄板状部とすることができる。  In the centrifuge tube having the above configuration, the closing portion of the cap may be a filling plug inserted into a lower end of the inner tube portion or a thin plate portion integrally formed at a lower end of the inner tube portion of the cap.
上記構成の遠沈管は、 その容器本体内に遠心力で分離しょうとする液 体を注入した後、 キヤップの内管部が容器本体内に深く差し入れられ液 体中に挿入されるようにして、 密栓部を容器本体の上端部に密嵌させ、 この状態で遠心機にかけられる。 これにより、 遠沈管内の液体は、 比重 の差によって上層液と下層液とに分離される。 このとき、 キャップの内 管部は、 容器本体内の液体中に挿入されてその下端が容器本体の内底面 付近に位置しているので、 内管部の下端は、 液密に閉塞されて上層液と 下層液との境界面より下方に位置し、 内管部の下端付近は下層液中に挿 入された状態になっている。 このような状態の遠沈管から下層液だけを 抽出するには、 分注ノズル (手作業による場合はピぺッタ等。 以下では、 分注ノズルを用いたとして説明する) の下端部を、 キャップの密栓部の 貫通孔を通り内管部の内方へ深く差し入れ、 分注ノズルの下端で内管部 下端の閉塞部を下向きに押圧する。 これにより、 内管部の下端を閉塞し ている閉塞部が脱落もしくは破裂し、 分注ノズルの下端が下層液中に挿 入される。 この後、 シリ ンジを駆動させるなどして分注ノズル内へ液体 を吸入すると、 分注ノズルの下端は下層液中に挿入されているため、 下 層液だけが分注ノズル内へ吸入される。 そして、 内管部の下端、 従って 分注ノズルの下端は上層液と下層液との境界面よリ下方に位置している ため、 上層液の一部が下層液と混ざり合って下層液にコンタ ミネーショ ンを生じる心配が全く無い。 In the centrifuge tube having the above configuration, after the liquid to be separated is centrifugally injected into the container body, the inner tube portion of the cap is inserted deeply into the container body and inserted into the liquid. The sealed stopper is tightly fitted to the upper end of the container body, and the container is then centrifuged. As a result, the liquid in the centrifuge tube becomes The liquid is separated into an upper liquid and a lower liquid according to the difference between the two. At this time, the inner tube of the cap is inserted into the liquid in the container body and its lower end is located near the inner bottom surface of the container body, so that the lower end of the inner tube is liquid-tightly closed and the upper layer is closed. It is located below the boundary between the liquid and the lower liquid, and the lower end of the inner tube is inserted into the lower liquid. In order to extract only the lower layer liquid from the centrifuge tube in such a state, the lower end of the dispensing nozzle (pitta etc. in the case of manual operation. Insert the cap deeply into the inner tube through the through hole in the cap, and press the lower end of the dispensing nozzle at the lower end of the inner tube. As a result, the obstruction that obstructs the lower end of the inner pipe portion falls off or bursts, and the lower end of the dispensing nozzle is inserted into the lower liquid. After this, when the liquid is sucked into the dispensing nozzle by driving the syringe, etc., only the lower layer liquid is sucked into the dispensing nozzle because the lower end of the dispensing nozzle is inserted into the lower layer liquid. . Since the lower end of the inner tube, and thus the lower end of the dispensing nozzle, is located just below the boundary between the upper liquid and the lower liquid, a part of the upper liquid mixes with the lower liquid and contaminates the lower liquid. There is no worry about mining.
そして、 上記構成の遠沈管を使用すると、 遠心力により上層液と下層 液とに分離された 2液相系或いはそれ以上の液相系から、 上層液とのコ ンタ ミネーシヨンを全く生じることなく下層液だけを抽出することがで きる。 そして、 その抽出操作を手作業によって行なう場合には、 殆んど 熟練度を要することが無く、 一方、 その抽出操作を自動的に行なおうと する場合には、 その自動化が容易である。  When the centrifugal tube having the above configuration is used, the lower layer can be formed without any contamination with the upper layer liquid from the two or more liquid phase systems separated into the upper layer liquid and the lower layer liquid by centrifugal force. Only liquid can be extracted. When the extraction operation is performed manually, almost no skill is required. On the other hand, when the extraction operation is performed automatically, the automation is easy.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 この発明の 1 実施形態を示し、 液体試料中の成分物質の自動 濃度測定装置の全体の構成を示す斜視図であり、 図 2は、 図 1 に示した 自動濃度測定装置の平面配置図である。 図 3は、 血液試料中に含まれる 薬物の濃度を測定する一連の操作工程の 1 例を説明するための図であり、 図 4は、 図 3に示した操作工程のフローチャー トである。 図 5は、 血液 試料中に含まれる薬物の濃度を測定する一連の操作工程の別の例を説明 するための図であり、 図 6は、 血液試料中に含まれる薬物の濃度を測定 する一連の操作工程のさらに別の例を説明するための図である。 図 7は、 図 1 および図 2に示した自動濃度測定装置の構成要素の 1つであるサン プル分注ユニッ トの分注ヘッ ドの正面図であり、 図 8は、 図 7に示した 分注ヘッ ドの左側面図であり、 図 9は、 図 7に示した分注ヘッ ドに設け られたキャップ用チャックュニッ 卜の構成および動作を説明するための 図である。 図 1 0は、 図 1 および図 2に示した自動濃度測定装置の構成 要素の 1 つである溶媒分注ユニッ トの構成を示す図であり、 図 1 1 は、 図 1 0に示した溶媒分注ユニッ トの分注アームの横断面図である。 図 1 2は、 図 1 および図 2に示した自動濃度測定装置の構成要素の 1 つであ る分離液分注ユニッ トの分注ヘッ ドの側面図である。 図 1 3は、 図 1 お よび図 2に示した自動濃度測定装置の構成要素の 1 つである分離液吸入 ステージに設けられたキャップ取外しュニッ 卜の構成および動作を説明 するための図であり、 図 1 4は、 同じく分離液吸入ステージに設けられ た遠沈管固定ユニッ トの構成を一部断面で示す正面図である。 図 1 5は, 図 1 および図 2に示した自動濃度測定装置の構成要素の 1 つである分離 液分注ユニッ トの要部の構成を示す概略図であり、 図 1 6は、 図 1 5に 示した分離液分注ュニッ 卜を使用して遠沈管内のサンプル分離液の分注 操作を行なう方法を説明するための縦断面図である。 図 1 7は、 図 1 お FIG. 1 shows an embodiment of the present invention, in which an automatic detection of component substances in a liquid sample is performed. FIG. 2 is a perspective view showing the entire configuration of the concentration measuring device. FIG. 2 is a plan layout view of the automatic concentration measuring device shown in FIG. FIG. 3 is a diagram for explaining an example of a series of operation steps for measuring the concentration of a drug contained in a blood sample, and FIG. 4 is a flowchart of the operation steps shown in FIG. FIG. 5 is a diagram for explaining another example of a series of operation steps for measuring the concentration of a drug contained in a blood sample, and FIG. 6 is a diagram illustrating a series of steps for measuring the concentration of a drug contained in a blood sample. FIG. 9 is a view for explaining still another example of the operation step of FIG. Fig. 7 is a front view of the dispensing head of the sample dispensing unit, which is one of the components of the automatic concentration measuring device shown in Figs. 1 and 2, and Fig. 8 is shown in Fig. 7. FIG. 9 is a left side view of the dispensing head, and FIG. 9 is a diagram for explaining the configuration and operation of a cap chuck unit provided in the dispensing head shown in FIG. FIG. 10 is a diagram showing a configuration of a solvent dispensing unit which is one of the components of the automatic concentration measuring device shown in FIGS. 1 and 2, and FIG. 11 is a diagram showing a configuration of the solvent dispensing unit shown in FIG. It is a cross-sectional view of the dispensing arm of the dispensing unit. FIG. 12 is a side view of a dispensing head of a separation solution dispensing unit which is one of the components of the automatic concentration measuring device shown in FIGS. 1 and 2. Fig. 13 is a diagram for explaining the configuration and operation of the cap removal unit provided on the separation liquid suction stage, which is one of the components of the automatic concentration measurement device shown in Figs. 1 and 2. FIG. 14 is a front view partially showing the configuration of a centrifuge tube fixing unit provided on the separation liquid suction stage. Fig. 15 is a schematic diagram showing the configuration of the main part of the separation liquid dispensing unit, which is one of the components of the automatic concentration measuring device shown in Figs. 1 and 2. FIG. 6 is a longitudinal sectional view for explaining a method of performing a dispensing operation of a sample separation liquid in a centrifuge tube using the separation liquid dispensing unit shown in FIG. Figure 17
- is - よび図 2に示した自動濃度測定装置の構成要素の 1つである分離液分注 ュニッ 卜の概略ブロック図であり、 図 1 8は、 図 1 7に示した分離液分 注ユニッ トを使用して遠沈管内のサンプル分離液の分注操作を行なう方 法を説明するための縦断面図であり、 図 1 9は、 同じく、 遠沈管内のサ ンプル分離液の分注操作を行なう方法を説明するための縦断面図である。 図 2 0は、 遠沈管内で下層側に分離したサンプル分離液を分注ノズルの ディスポチップ内へ吸入する場合に使用される遠沈管およびキャップを 示し、 遠沈管からキャップを抜き出した状態を示す斜視図であり、 図 2-is- 2 is a schematic block diagram of a separation solution dispensing unit, which is one of the components of the automatic concentration measuring apparatus shown in FIG. 2 and FIG. 2, and FIG. 18 uses the separation solution dispensing unit shown in FIG. Fig. 19 is a longitudinal sectional view for explaining a method of dispensing a sample separation liquid in a centrifuge tube by using the method shown in Fig. 19. It is a longitudinal cross-sectional view for explaining. Fig. 20 shows the centrifuge tube and cap used when a sample separation liquid separated to the lower layer side in the centrifuge tube is sucked into the disposable tip of the dispensing nozzle, and the cap is removed from the centrifuge tube. FIG. 2 is a perspective view, and FIG.
1 は、 同じく、 遠沈管にキャップを装着した状態の縦断面図である。 図Fig. 1 is a longitudinal sectional view showing a state in which a cap is attached to the centrifuge tube. Figure
2 2は、 図 2 0および図 2 1 に示したキャップを有する遠沈管を使用し、 上層液と下層液とに分離された液体のうち下層側に分離したサンプル分 離液のみを吸入する方法を説明するための図であって、 一部を縦断面で 示す図である。 図 2 3は、 遠沈管のキヤップの、 図 2 0および図 2 1 に 示したものと異なる構成例を示す縦断面図である。 図 2 4は、 図 1 およ び図 2に示した自動濃度測定装置の構成要素の 1 つである濃縮ステージ の構成を示す正面縦断面図であり、 図 2 5は、 図 2 4に示した濃縮ステ ージの側面縦断面図である。 図 2 6は、 図 1 および図 2に示した自動濃 度測定装置の構成要素の 1 つであるィ ンジヱクシヨンュニッ 卜の要部の 構成を示す一部破断側面図であり、 図 2 7は、 図 2 6に示したイ ンジェ クシヨンュニッ 卜の流路構成を示すとともに、 そのイ ンジェクションュ ニッ トにより、 試験管内への溶媒分注から、 試験管内からのサンプル溶 解液の吸入および H P L Cのカラムへのサンプル溶解液の注入までの操 作を行う方法を説明するための模式図である。 図 2 8および図 2 9は、 図 1 および図 2に示した自動濃度測定装置により凍結血清中に含まれる 特定の成分物質の濃度を自動的に測定するための一連の動作の 1例を示 すフローチヤ一 卜である。 Method 2 uses a centrifuge tube with the cap shown in Figure 20 and Figure 21 to inhale only the sample separation liquid separated into the lower layer of the liquid separated into the upper liquid and the lower liquid. FIG. 4 is a view for explaining the above, and is a view showing a part in a longitudinal section. FIG. 23 is a longitudinal sectional view showing a configuration example of a centrifuge tube cap different from those shown in FIGS. 20 and 21. Fig. 24 is a front vertical sectional view showing the configuration of the concentration stage, which is one of the components of the automatic concentration measurement device shown in Figs. 1 and 2, and Fig. 25 is shown in Fig. 24. FIG. 4 is a side vertical sectional view of the concentrated stage. Fig. 26 is a partially cutaway side view showing the structure of the main part of the engine unit, which is one of the components of the automatic concentration measuring device shown in Figs. 1 and 2. Fig. 27 shows the flow path configuration of the injection unit shown in Fig. 26, and the injection unit allows the dispensing of the solvent into the test tube, the inhalation of the sample solution from the test tube, and the HPLC. FIG. 5 is a schematic diagram for explaining a method of performing an operation up to injection of a sample solution into a column. Fig. 28 and Fig. 29 are included in frozen serum by the automatic concentration measurement device shown in Fig. 1 and Fig. 2. 5 is a flowchart showing an example of a series of operations for automatically measuring the concentration of a specific component substance.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
最初に、 図 3ないし図 6に基づいて、 液体試料、 例えば血液中に含ま れる薬物の濃度を測定する一連の操作工程の 3つの例を説明する。  First, three examples of a series of operation steps for measuring the concentration of a drug contained in a liquid sample, for example, blood, will be described with reference to FIGS.
まず、 図 3の ( a ) に示すように、 例えば動物に薬物を投与して採取 した血液を遠心分離して得られ蓋付きサンプル管 1 0に収容された凍結 血清 (検体) を解凍して均一化させた後、 サンプル管 1 0のキャップ 1 2 を取り外し、 液体分注装置の分注ノズルの先端部に装着されたディス ポチップ (図示せず) 内へサンプル管 1 0からサンプル液 (融解血清) を、 例えば 0. 1 m l吸入し (図 3の ( b ) ) 、 その吸入されたサンプ ル液を遠沈管 1 4内へ吐出し、 さらに、 有機溶媒、 例えば酢酸ェチルを、 例えば 4 m l と p H緩衝液 ( 0. 5 m l ) およびメタノール ( 0. l m 1 ) とを遠沈管 1 4内へ分注する (図 3の ( c ) ) 。 次に、 遠沈管 1 4 にキャップ 1 6 を装着した後 (図 3の ( d ) ) 、 振籩機により遠沈管 1 を振盪させて (図 3の ( e ) ) 、 遠沈管 1 4内においてサンプル液中 の目的とする成分物質 (薬物) が有機溶媒中へ十分に移行するようにす る。 続いて、 サンプル液と有機溶媒とが入った遠沈管 1 4 を遠心分離機 1 8にセッ ト して、 液を遠心分離する (図 3の ( f ) ) 。 この遠心分離 により、 遠沈管 1 4内の液は上層部 Aと下層部 Bとに分離し、 目的とす る成分物質が有機溶媒に溶解したサンプル分離液が上層部 Aを成すこと になる (図 3の ( g ) ) 。 そこで、 遠沈管 1 4のキャップ 1 6 を取り外 した後、 液体分注装置の分注ノズル (図示省略) の先端部に装着された ディスポチップ 2 2 (図 3の ( h ) 参照) 内へ遠沈管 1 4から上層部 A のサンプル分離液を、 例えば 3 m l 吸入し、 その吸入されたサンプル分 離液を試験管 2 4内へ吐出する (図 3の ( h ) ) 。 次に、 試験管 2 4 を その周囲から加熱するとともに、 ガス供給ノズル 2 6から試験管 2 4の 内部へその上部開口を通して窒素ガスを吹き込むことにより、 試験管 2 4内のサンプル分離液の有機溶媒を蒸発させて、 サンプル分離液を乾固 させる (図 3の ( i ) ) 。 そして最後に、 有機溶媒、 例えばメタノール (〇 . l m l ) を試験管 2 4内へ分注し撹拌して残渣を溶解した後、 ノ ズル 2 8により試験管 2 4内からサンプル溶解液を吸入し (図 3の ( j ) ) 、 その吸入されたサンプル溶解液を、 例えば 2 0〜 3 0 μ 1 だけ高速 液体クロマ トグラフィ一などの分析機器へ注入して、 成分物質の濃度を 測定する。 図 4に、 この一連の操作のフローチャー トを示す。 First, as shown in Fig. 3 (a), for example, the blood serum collected by administering a drug to an animal is centrifuged and the frozen serum (specimen) stored in a sample tube 10 with a lid is thawed. After homogenization, remove the cap 12 of the sample tube 10 and put the sample liquid (melt) from the sample tube 10 into the disposable tip (not shown) attached to the tip of the dispensing nozzle of the liquid dispenser. 0.1 ml of serum) (Fig. 3 (b)), discharge the sucked sample solution into the centrifuge tube 14, and further add an organic solvent such as ethyl acetate, for example 4 ml. And 0.5 ml of pH buffer and 0.5 ml of methanol are dispensed into a centrifuge tube 14 ((c) in FIG. 3). Next, after attaching the cap 16 to the centrifuge tube 14 ((d) in FIG. 3), the centrifuge tube 1 is shaken by a shaker ((e) in FIG. 3). Make sure that the target component (drug) in the sample solution is sufficiently transferred into the organic solvent. Subsequently, the centrifuge tube 14 containing the sample solution and the organic solvent is set in the centrifuge 18 and the solution is centrifuged ((f) in Fig. 3). By this centrifugation, the liquid in the centrifuge tube 14 is separated into the upper layer A and the lower layer B, and the sample separation liquid in which the target component substance is dissolved in the organic solvent forms the upper layer A ( Figure 3 (g)). Therefore, after removing the cap 16 of the centrifuge tube 14, the disposable tip 22 (see (h) in Fig. 3) attached to the tip of the dispensing nozzle (not shown) of the liquid dispensing device. Centrifuge tube 14 to upper layer A For example, 3 ml of the sample separated liquid is inhaled, and the sucked sample separated liquid is discharged into the test tube 24 ((h) in FIG. 3). Next, the test tube 24 is heated from the surroundings, and nitrogen gas is blown from the gas supply nozzle 26 into the inside of the test tube 24 through the upper opening thereof, so that the organic liquid of the sample separation liquid in the test tube 24 is removed. Evaporate the solvent to dry the sample separation liquid ((i) in Fig. 3). Finally, an organic solvent, for example, methanol (〇.lml) is dispensed into the test tube 24 and stirred to dissolve the residue. Then, the sample solution is sucked from the test tube 24 with the nozzle 28. ((J) in Fig. 3) Then, the inhaled sample solution is injected into an analytical device such as high-performance liquid chromatography by, for example, 20 to 30 µl, and the concentration of the component substance is measured. Figure 4 shows a flowchart of this series of operations.
次に、 図 5に示した例は、 遠心分離によって遠沈管 1 4内の液を上層 部 Αと下層部 Βとに分離させたときに、 目的とする成分物質が有機溶媒 に溶解したサンプル分離液が下層部 Bを成し、 遠沈管 1 4から下層部 B のサンプル分離液を吸入し、 その吸入されたサンプル分離液を試験管 2 4内へ吐出する場合の操作例である。 遠沈管 1 4から下層部 Bのサンプ ル分離液を分注する以外の操作は、 図 3に示した例と同様である。 また、 この図 4に示した操作例では、 遠沈管 1 4からキャップ 3 0を取り外さ ずに、 下層部 Bのサンプル分離液を吸入するようにする。 この場合には、 遠沈管 1 4に装着するキャップと して特殊な構造のキャップ 3 0を用い るようにするが、 これについては後に詳しく説明する。  Next, in the example shown in Fig. 5, when the liquid in the centrifuge tube 14 is separated into the upper layer Α and the lower layer Β by centrifugation, the target component substance is dissolved in the organic solvent. This is an operation example in which the liquid forms the lower layer B, the sample separated liquid in the lower layer B is sucked from the centrifuge tube 14, and the sucked sample separated liquid is discharged into the test tube 24. The operation other than dispensing the sample separation liquid in the lower part B from the centrifuge tube 14 is the same as the example shown in FIG. In the operation example shown in FIG. 4, the sample separation liquid in the lower layer B is sucked without removing the cap 30 from the centrifuge tube 14. In this case, a cap 30 having a special structure is used as a cap to be attached to the centrifuge tube 14, which will be described later in detail.
また、 図 6に示したものは、 直接除タンパク法による血液の分析操作 例である。 まず、 図 6の ( a ) に示すように、 蓋付きサンプル管 1 0に 収容された凍結血清 (検体) を解凍して均一化させた後、 サンプル管 1 0のキャップ 1 2 を取り外し、 液体分注装置の分注ノズルの先端部に装 着されたディスポチップ (図示せず) 内へサンプル管 1 0からサンプル 液を、 例えば 0 . 1 m 1吸入し (図 6の ( b ) ) 、 その吸入されたサン プル液を蓋付き遠沈管 3 2内へ吐出し、 さらに、 所定量の有機溶媒、 例 えば 0 . 2 m l のメタノールまたは 0 . 5 m l のァセトニ ト リルを遠沈 管 3 2内へ分注する (図 6の ( c ) ) 。 次に、 遠沈管 3 2にキャップ 3 4 を装着した後 (図 6の ( d ) ) 、 振盪機により遠沈管 3 2 を振盪させ る (図 6の ( e ) ) 。 続いて、 サンプル液と有機溶媒とが入った遠沈管FIG. 6 shows an example of a blood analysis operation using the direct protein removal method. First, as shown in Fig. 6 (a), the frozen serum (sample) contained in the sample tube 10 with a lid is thawed and homogenized, and then the sample tube 1 Remove the cap 12 of the sample dispenser and aspirate the sample solution, for example 0.1 m1, from the sample tube 10 into a disposable tip (not shown) attached to the tip of the dispensing nozzle of the liquid dispenser. ((B) of FIG. 6), the sucked sample liquid is discharged into a centrifuge tube 32 with a lid, and a predetermined amount of an organic solvent, for example, 0.2 ml of methanol or 0.5 ml of methanol is added. Dispense the acetonitrile into the centrifuge tube 32 (Fig. 6, (c)). Next, after attaching the cap 34 to the centrifuge tube 32 (FIG. 6 (d)), the centrifuge tube 32 is shaken with a shaker (FIG. 6 (e)). Next, a centrifuge tube containing the sample solution and organic solvent
3 2 を遠心分離機 1 8にセッ ト して、 液を遠心分離する (図 6の ( f ) ) 。 この遠心分離により、 遠沈管 3 2内の液は液層と沈殿部とに分離する。 そして、 目的とする成分物質は、 液層中に溶解した状態となるので、 遠 沈管 3 2のキャップ 3 4 を取り外した後、 ノズル 2 8によ り遠沈管 3 2 内の液層からサンプル分離液を吸入し (図 6の ( g ) ) 、 その吸入され たサンプル分離液を、 例えば 2 0〜 5 0 μ 1 だけ高速液体クロマ トグラ フィ一などの分析機器へ注入して、 成分物質の濃度を測定する。 Set 32 in the centrifuge 18 and centrifuge the solution (Fig. 6, (f)). By this centrifugation, the liquid in the centrifuge tube 32 is separated into a liquid layer and a sedimentation part. Then, since the target component substance is dissolved in the liquid layer, after removing the cap 34 of the centrifuge tube 32, the sample is separated from the liquid layer in the centrifuge tube 32 by the nozzle 28. The liquid is inhaled ((g) in Fig. 6), and the inhaled sample separation liquid is injected into an analytical device such as high-performance liquid chromatography by, for example, 20 to 50 µl, to obtain the concentration of the component substances. Is measured.
次に、 液体試料中の成分物質の自動濃度測定装置の構成例について説 明する。 図 1 は、 自動濃度測定装置の全体の構成を示す斜視図であり、 図 2は、 その平面配置図である。  Next, a configuration example of an automatic concentration measuring device for a component substance in a liquid sample will be described. FIG. 1 is a perspective view showing the entire configuration of the automatic concentration measuring device, and FIG. 2 is a plan layout diagram thereof.
この自動濃度測定装置は、 血液などのサンプル液中に含まれる特定の 成分物質 (例えば薬物) を溶媒抽出する一連の操作を自動的に行う 自動 溶媒抽出部 3 6 と、 この自動溶媒抽出部 3 6へ有機溶媒などを送液する シリンジポンプュニッ 卜 4 0や有機溶媒などを貯留する複数の貯液容器 This automatic concentration measurement device automatically performs a series of operations to extract a specific component substance (for example, a drug) contained in a sample solution such as blood with a solvent. Syringe pump unit for sending organic solvent, etc. to 6 40 or multiple storage containers for storing organic solvent, etc.
4 2、 廃液タンク (図示せず) などが設けられた給液 ' 排液部 3 8 と、 自動溶媒抽出部 3 6で溶媒抽出された成分物質の濃度を自動的に測定す る分析機器、 この側では高速液体クロマ トグラフィー (以下、 「 H P L C」 という) 4 4 とから構成されている。 自動溶媒抽出部 3 6は、 装置 の上面部に配設され、 給液 · 排液部 3 8および H P L C 4 4が、 自動溶 媒抽出部 3 6の下方のキャビネッ 卜内にそれぞれ収納されている。 また、 装置の前面には操作パネル 4 6が設けられている。 また、 自動溶媒抽出 部 3 6は、 図示を省略したが、 開閉自在の透明カバ一によって覆われて いる。 4 2, Supply liquid with waste liquid tank (not shown) etc. Drain section 38 Automatic solvent extraction section 36 Automatically measures the concentration of component substances extracted by solvent It consists of an analytical instrument and, on this side, high-performance liquid chromatography (hereinafter referred to as “HPLC”). The automatic solvent extraction unit 36 is disposed on the upper surface of the apparatus, and the liquid supply / drainage unit 38 and the HPLC 44 are housed in the cabinet below the automatic solvent extraction unit 36, respectively. . An operation panel 46 is provided on the front of the device. Although not shown, the automatic solvent extraction unit 36 is covered with a transparent cover that can be freely opened and closed.
なお、 図示例のような H P L Cなどの分析機器を一体型として設けず に、 液体試料中の成分物質を自動的に溶媒抽出するための装置とし、 そ の自動抽出装置によって最終的に得られた液を、 併設された分析機器へ 注入し或いは別置きの分析機器へ注入するような構成とすることもでき る。  It should be noted that, instead of providing an integrated analytical instrument such as HPLC as shown in the figure, a device for automatically extracting the component substances in the liquid sample with a solvent was obtained by the automatic extraction device. The liquid may be injected into an attached analytical instrument or into a separate analytical instrument.
自動溶媒抽出部 3 6は、 円形ターンテーブル 4 8、 処理ターンテープ ル 5 0、 サンプル分注ュニッ 卜 5 2 (図 2では構造の図示を省略) 、 サ ンプル吸入ステージ 5 4、 溶媒分注ユニッ ト 5 6、 振盪ステージ 5 8 、 遠心分離機 6 0、 分離液分注ユニッ ト 6 2 (図 2では構造の図示を省略) 、 分離液吸入ステージ 6 4、 蒸発乾固ステージ 6 6、 溶媒分注ステージ 6 8、 イ ンジェクションュニッ 卜 7 0、 ディスポチップ用ラック 7 2 、 廃棄ポッ 卜 7 3などから構成されている。  The automatic solvent extraction unit 36 includes a circular turntable 48, a processing turntable 50, a sample dispensing unit 52 (the structure is not shown in FIG. 2), a sample suction stage 54, and a solvent dispensing unit. 56, Shaking stage 58, Centrifuge 60, Separation liquid dispensing unit 62 (Structure is not shown in Fig. 2), Separation liquid suction stage 64, Evaporation to dryness stage 66, Solvent content It is composed of a stage 68, an injection unit 70, a disposable chip rack 72, a waste port 73, and the like.
円形ターンテーブル 4 8には、 凍結血清などのサンプルが収容された 蓋付きサンプル管 (例えば 1 . 5 m 1マイクロチューブ) 1 0 を保持す る多数のサンプル管保持部 7 4、 および、 ディスポチップが保持された 多数のディスポチップ保持部 7 6 を有し、 図示しない回転駆動機構によ り回動させられ停止位置が制御されるようになっている。 また、 処理タ 一ンテーブル 5 0には、 遠沈管 (例えば 7 c c遠沈管) 1 4 を保持する 多数の遠沈管保持部 7 8、 および、 遠沈管用キャップ 1 6が保持された 多数のキャップ保持部 8 0 を有し、 また、 外周にガラス試験管 2 4 を保 持する多数の試験管保持部 8 2 を有し、 図示しない回転駆動機構により 回動させられ停止位置が制御されるようになっている。 The circular turntable 48 has a large number of sample tube holders 74 that hold sample tubes (eg, 1.5 m1 microtubes) 10 with lids containing samples such as frozen serum, and a disposable tip. And a plurality of disposable chip holding portions 76 holding the disposable chips, which are rotated by a rotation drive mechanism (not shown) to control the stop position. In addition, The table 50 has a number of centrifuge tube holders 78 holding centrifuge tubes (for example, 7 cc centrifuge tubes) 14 and a number of cap holders 80 holding centrifuge tube caps 16. In addition, it has a number of test tube holders 82 that hold the glass test tubes 24 on the outer periphery, and is rotated by a rotation drive mechanism (not shown) to control the stop position. .
サンプル分注ュニッ 卜 5 2は、 前後方向 (Y軸方向) に往復移動する アーム 8 4 と、 このアーム 8 4に支持されて左右方向 (X軸方向) に往 復移動する分注へッ ド 8 6 とを有し (それぞれの往復駆動機構の図示は 省略) 、 分注ヘッ ド 8 6には、 それぞれ鉛直方向 ( Z軸方向) に往復移 動するサンプル分注ノズル 8 8およびキャップ用チャックュニッ 卜 9 0 が設けられている。 分注ノズル 8 8は、 チューブ 8 9 を介して、 モータ によって駆動されるシリ ンジ (図示せず) に流路接続されている。 分注 ノズル 8 8は、 図 7に正面図を、 図 8に左側面図を示すように、 分注へ ッ ド 8 6に係合して支持され上下方向に往復移動する上下スライ ド部材 The sample dispensing unit 52 has an arm 84 that reciprocates in the front-rear direction (Y-axis direction) and a dispensing head that is supported by this arm 84 and moves back and forth in the left-right direction (X-axis direction). (The reciprocating drive mechanism is not shown), and the dispensing head 86 has a sample dispensing nozzle 88 and a chuck unit for cap which reciprocate in the vertical direction (Z-axis direction). 90 are provided. The dispensing nozzle 88 is connected through a tube 89 to a motor-driven syringe (not shown). As shown in the front view in Fig. 7 and the left side view in Fig. 8, the dispensing nozzle 88 has an upper and lower slide member that is supported by being engaged with the dispensing head 86 and reciprocates vertically.
9 2に保持されている。 そして、 分注ノズル 8 8は、 分注へッ ド 8 8に 固着された正 · 逆回転可能な駆動モータ 9 4により、 そのモータ回転軸 に固着されたピニオン 9 6および上下スライ ド部材 9 2に固着されたラ ック 9 8 を介し駆動力が伝達されて、 上下方向に往復移動するようにな つている。 図 7中の符号 1 0 0は、 分注ノズル 8 8の上昇限度位置を検 知するための上昇リ ミツ 卜センサ、 1 0 2は、 分注ノズル 8 8の上下方 向における原点位置を検知するための上下原点センサ、 1 0 4は、 分注 ノズル 8 8の下降限度位置を検知するための下降リ ミ ッ 卜センサ、 1 09 is held in two. The dispensing nozzle 88 is driven by a forward / reverse drive motor 94 fixed to the dispensing head 88, with a pinion 96 fixed to the motor rotating shaft and a vertical slide member 92. Driving force is transmitted through a rack 98 fixed to the fin, and the cradle reciprocates up and down. In FIG. 7, reference numeral 100 denotes an ascending limit sensor for detecting the ascending limit position of the dispensing nozzle 88, and 102 detects an origin position in the upward and downward direction of the dispensing nozzle 888. The upper and lower origin sensor for measuring the dispensing nozzle 108 is a descending limit sensor for detecting the descending limit position of the dispensing nozzle 88.
6はセンサ用検知板であり、 1 0 8は圧縮コイルばねである。 また、 図Reference numeral 6 denotes a sensor detection plate, and reference numeral 108 denotes a compression coil spring. Also the figure
8中の符号 1 1 0はスライ ドベアリ ング、 1 1 2は上下スライ ドガイ ド であり、 1 1 4は、 分注ノズル 8 8の下端部にディスポチップ 1 1 6が 取着されていることを確認するためのチップ有無センサである。 Reference number 1 in 8 is 1 1 0 slide bearing, 1 1 2 is vertical slide guide Reference numeral 114 denotes a chip presence / absence sensor for confirming that the disposable chip 116 is attached to the lower end of the dispensing nozzle 88.
また、 キャップ用チャックユニッ ト 9 0は、 図 9に示すように、 一対 のチャック爪 i 1 8、 1 1 8、 この一対のチャック爪 1 1 8、 1 1 8 を 開閉させるための開閉機構部 1 2 0、 および、 開閉機構部 1 2 0を駆動 させるチューブラソレノ イ ド 1 2 2から構成されている。 このチャック ュニッ 卜 9 0は、 図 7に示すように、 分注へッ ド 8 6に係合して支持さ れ上下方向に往復移動する上下スライ ド部材 1 2 4に保持されている。 そして、 チャックユニッ ト 9 0は、 分注へッ ド 8 8に固着された正 . 逆 回転可能な駆動モータ (図示せず) により、 そのモータ回転軸に固着さ れたピ二オン 1 2 6および上下スライ ド部材 1 2 4に固着されたラック Further, as shown in FIG. 9, the cap chuck unit 90 includes a pair of chuck jaws i 18, 1 18 and an opening / closing mechanism for opening and closing the pair of chuck jaws 1 18, 1 18. And a tubular solenoid 122 for driving the opening and closing mechanism 120. As shown in FIG. 7, the chuck unit 90 is held by an upper and lower slide member 124 that is supported by being engaged with the dispensing head 86 and that reciprocates vertically. The chuck unit 90 is fixed to a dispensing head 88 by a forward / reverse rotatable drive motor (not shown). And rack fixed to upper and lower slide members 1 2 4
1 2 8 を介し駆動力が伝達されて、 上下方向に往復移動するようになつ ている。 図 7 中の符号 1 3 0は、 チャックユニッ ト 9 0の上昇限度位置 を検知するための上昇リ ミツ 卜センサ、 1 3 2は、 チャックュニッ ト 9The driving force is transmitted via 1 2 8, so that it reciprocates up and down. Reference numeral 13 0 in FIG. 7 denotes an ascending limit sensor for detecting the ascending limit position of the chuck unit 90, and 13 2 denotes a chuck unit 9.
〇の上下方向における原点位置を検知するための上下原点センサ、 1 3Vertical origin sensor for detecting the origin position in the vertical direction of 、, 1 3
4は、 チャックュニッ ト 9 0の下降限度位置を検知するための下降リ ミ ッ 卜センサ、 1 3 6はセンサ用検知板である。 Reference numeral 4 denotes a lower limit sensor for detecting the lower limit position of the chuck unit 90, and reference numeral 1336 denotes a sensor detection plate.
チャックュニッ 卜 9 0により遠沈管 1 4にキャップ 1 6 を装着する動 作を図 9に基づいて説明すると、 まず、 図 9の ( a ) に示したように、 一対のチャック爪 1 1 8、 1 1 8 を開いた状態で、 アーム 8 4 を Y軸方 向に、 分注へッ ド 8 8 を X軸方向に、 チャックュニッ 卜 9 0を Z軸方向 にそれぞれ移動させて、 処理タ一ンテーブル 5 0のキヤップ保持部 8 0 The operation of attaching the cap 16 to the centrifuge tube 14 by the chuck unit 90 will be described with reference to Fig. 9. First, as shown in Fig. 9 (a), a pair of chuck claws 1 18 and 1 18 With the arm open, move the arm 84 in the Y-axis direction, move the dispensing head 88 in the X-axis direction, and move the chuck unit 90 in the Z-axis direction. 5 0 cap holder 8 0
(図 2参照) に保持されたキヤップ 1 6がー対のチヤック爪 1 1 8、 1(See Fig. 2) Cap 16 held by the pair of jaws 1 18 and 1
1 8の間に位置するようにチャックユニッ ト 9 0を移動させる。 次に、 チューブラソレノ イ ド 1 2 2 を駆動させて、 図 9の ( b ) に示したよう に一対のチャック爪 1 1 8 、 1 1 8を閉じ、 一対のチャック爪 1 1 8 、 1 1 8によってキャップ 1 6 を把持する。 そして、 チャックユニッ ト 9 0 を上昇させた後、 分注へッ ド 8 8 を X軸方向に、 アーム 8 4 を Y軸方 向にそれぞれ移動させて、 処理ターンテーブル 5 0の遠沈管保持部 7 8 (図 2参照) に保持された遠沈管 1 4の直上位置へ、 チャック爪 1 1 8 、 1 1 8に把持されたキャップ 1 6 を移動させる。 次に、 チャックュニッ 卜 9 0を下降させて、 図 9の ( c ) に示すように、 チャック爪 1 1 8 、 1 1 8に把持されたキヤップ 1 6 を遠沈管 1 4の上端開口へ押し入れる。 そして、 チューブラソレノイ ド 1 2 2 を駆動させて、 図 9の ( d ) に示 したように一対のチャック爪 1 1 8 、 1 1 8 を開き、 その後に、 チヤッ クユニッ ト 9 0を上昇させる。 Move the chuck unit 90 so that it is located between 18. next, By driving the tubular solenoid 122, the pair of chuck jaws 111, 118 are closed as shown in FIG. 9 (b), and the cap is closed by the pair of chuck jaws 111, 118. 1 Hold 6. Then, after raising the chuck unit 90, the dispensing head 88 is moved in the X-axis direction and the arm 84 is moved in the Y-axis direction, and the centrifuge tube holding part of the processing turntable 50 is moved. Move the cap 16 gripped by the chuck jaws 1 18 and 1 18 to the position immediately above the centrifuge tube 14 held at 7 8 (see Fig. 2). Next, the chuck unit 90 is lowered, and as shown in FIG. 9 (c), the cap 16 held by the chuck claws 118, 118 is pushed into the upper end opening of the centrifuge tube 14. . Then, the tubular solenoid 122 is driven to open the pair of chuck claws 111, 118 as shown in FIG. 9 (d), and then the chuck unit 90 is raised. .
図 1 および図 2に示すように、 サンプル吸入ステージ 5 4には、 キヤ ップ着脱機構 1 3 8が設けられている。 このキヤップ着脱機構 1 3 8に より、 円形タ一ンテーブル 4 8のサンプル管保持部 7 4からサンプル液 の入った蓋付きサンプル管 1 0が取り出されて、 そのサンプル管 I 0が サンプル吸入ステージ 5 4上に載 gされ、 ステージ 5 4上に固定された サンプル管 1 0のキャップ 1 2が取り外される。 また、 キャップ着脱機 構 1 3 8により、 サンプル吸入後のサンプル管 1 0にキャップ 1 2が装 着され、 そのサンプル管 1 0がサンプル吸入ステージ 5 4上から円形タ ーンテーブル 4 8のサンプル管保持部 7 4へ戻される。  As shown in FIGS. 1 and 2, the sample suction stage 54 is provided with a cap attaching / detaching mechanism 1 38. With this cap attaching / detaching mechanism 13 8, the sample tube 10 with the lid containing the sample liquid is taken out from the sample tube holding portion 7 4 of the circular turntable 48, and the sample tube I 0 is placed in the sample suction stage. The cap 12 of the sample tube 10 mounted on the stage 54 and fixed on the stage 54 is removed. A cap 12 is attached to the sample tube 10 after the sample is sucked by the cap attachment / detachment mechanism 13, and the sample tube 10 is held from above the sample suction stage 54 by the sample tube of the circular turn table 48. Returned to Part 7 4.
溶媒分注ュニッ ト 5 6は、 一端部を中心として水平面内で回動する分 注アーム 1 4 0を有しており、 図 1 0に示すように、 分注アーム 1 4 0 の先端部にノズル部 1 4 2が設けられている。 ノズル部 1 4 2には、 複 数本、 この例では、 図 1 1 に分注アーム 1 4 0の横断面図を示すように 3本の送液チューブ 1 4 4、 1 4 6、 1 4 8の先端部が固定されている。 3本の送液チューブ 1 4 4、 1 4 6、 1 4 8は、 給液 · 排液部 3 8のシ リ ンジポンプュニッ 卜 4 0のメタノール供給用シリンジ 1 5 0、 酢酸ェ チル (有機溶媒) 供給用シリ ンジ 1 5 2および p H緩衝液供給用シリ ン ジ 1 5 4 (図 1 参照) にそれぞれ切換弁を介して流路接続されており、 各シリ ンジ 1 5 0、 1 5 2 , 1 5 4は、 それぞれ所要の液が貯液された 各貯液容器 (図示せず) にそれぞれ流路接続されている。 The solvent dispensing unit 56 has a dispensing arm 140 that rotates in a horizontal plane around one end, and as shown in FIG. 10, is attached to the tip of the dispensing arm 140. A nozzle section 142 is provided. Nozzle 1 4 2 has multiple Several, in this example, three liquid transfer tubes 144, 146, 148 are fixed at the tips, as shown in the cross-sectional view of dispensing arm 140 in Figure 11 . The three feeding tubes 1 4 4, 1 4 6, and 1 4 8 are for the liquid supply / drainage section 3 8 Syringe pump unit 40 Methanol supply syringe 150, ethyl acetate (organic solvent) The supply syringe 15 2 and the pH buffer supply syringe 15 4 (see Fig. 1) are connected to the respective flow paths via switching valves. The channels 154 are respectively connected to the respective storage containers (not shown) storing the required liquids.
分注アーム 1 4 0は、 図 1 0に示すように、 その一端部下面がアーム 支持軸 1 5 6に固着されている。 アーム支持軸 1 5 6は、 ボールスプラ イ ン軸 1 5 8に連結されていて、 鉛直軸線回りに回転自在にかつ鉛直軸 線に沿って上下方向に移動自在に支持されている。 そして、 アーム支持 軸 1 5 6は、 昇降駆動機構によって上下方向に往復移動させられるとと もに、 回転駆動機構によって回動させられ、 これにより、 アーム支持軸 1 5 6に固着された分注アーム 1 4 0が昇降および回動するようになつ ている。 昇降駆動機構は、 上部取付板 1 6 0に固設された駆動モータ 1 6 2、 この駆動モータ 1 6 2の回転軸に固着されたタイ ミングプーリ 1 6 4、 上部取付板 1 6 0および下部取付板 1 6 6に上端部および下端部 がそれぞれ回転自在に支持されたねじ軸 1 6 8、 このねじ軸 1 6 8の上 端付近に固着されたタイ ミ ングプ一リ 1 7 0、 両タイ ミ ングプ一リ 1 6 4、 1 7 0間に掛け渡されたタイ ミングベル卜 1 7 2、 ねじ軸 1 6 8に 螺合したチェンジナツ 卜 1 7 4、 このチェンジナツ 卜 1 7 4に連結し、 アーム支持軸 1 5 6に、 その回転を許容しかつ上下方向に一体的に移動 するように係合した昇降部材 1 7 6、 ならびに、 上部取付板 1 6 0およ び下部取付板 1 6 6に上端部および下端部が固着され、 ベアリ ング 1 Ί 8 を介して摺接自在に昇降部材 1 7 6に係合したガイ ド棒 1 8 0から構 成されている。 また、 図示していないが、 分注アーム 1 4 0の上昇限度 位置および下降限度位置をそれぞれ検知するための上昇リ ミツ 卜センサ および下降リ ミ ツ 卜センサ、 分注アーム 1 4 0の上下方向における原点 位置を検知するための上下原点センサ、 ならびに、 センサ用検知板が設 けられている。 また、 回転駆動機構は、 下部取付板 1 6 6に固設された 駆動モータ 1 8 2、 この駆動モータ 1 8 2の回転軸に固着されたタィ ミ ングプーリ 1 8 2、 下部取付板 1 6 6に固設された支持ブロック 1 8 4、 この支持プロック 1 8 4に回転自在に支持され、 ボールスプライ ン軸 1 5 8の上下方向の移動を許容しかつそれと一体的に回転するようにキー 溝が形成されたボス穴を有する回転部材 1 8 6、 この回転部材 1 8 6 と —体的に回転するタイ ミングプーリ 1 8 8、 両タイ ミングプーリ 1 8 2 , 1 8 8間に掛け渡されたタイ ミングベルト 1 9 0、 および、 分注アーム 1 4 0の回転角度位置を検知する位置決め用センサ 1 9 2から構成され ている。 As shown in FIG. 10, the dispensing arm 140 has one end lower surface fixed to the arm support shaft 156. The arm support shaft 156 is connected to the ball spline shaft 158, and is supported so as to be rotatable around a vertical axis and to be movable up and down along the vertical axis. Then, the arm support shaft 156 is reciprocated in the vertical direction by the lifting / lowering drive mechanism, and is rotated by the rotary drive mechanism, whereby the dispensing fixed to the arm support shaft 156 is performed. The arm 140 moves up and down and rotates. The lifting drive mechanism includes a drive motor 16 2 fixed to the upper mounting plate 160, a timing pulley 16 4 fixed to the rotating shaft of the drive motor 16 2, an upper mounting plate 16 0, and a lower mounting. A screw shaft 1688 whose upper and lower ends are rotatably supported on a plate 166, respectively, and a timing tool 170 near the upper end of this screw shaft 168, both timings The timing belt 172, which is stretched between the nipples 1 6 4 and 1 70, the change nut 1 7 4 screwed to the screw shaft 1 6 8, and this change nut 1 7 4 An elevating member 176 engaged with the arm support shaft 156 so as to allow its rotation and move integrally in the vertical direction, and an upper mounting plate 160 The upper and lower ends are fixed to the lower and lower mounting plates 166, and the guide bars 180 are slidably engaged with the elevating members 176 via the bearings 1-8. . Also, although not shown, an upward limit sensor and a downward limit sensor for detecting the upper limit position and the lower limit position of the dispensing arm 140, respectively, and the vertical direction of the dispensing arm 140. An upper and lower origin sensor for detecting the origin position at, and a sensor detection plate are provided. The rotary drive mechanism includes a drive motor 18 2 fixed to the lower mounting plate 16 6, a timing pulley 18 2 fixed to the rotating shaft of the drive motor 18 2, and a lower mounting plate 16 6 The support block 18 4 is fixed to the support block 18 4, and is rotatably supported by the support block 18 4. The key groove allows the ball spline shaft 15 8 to move up and down and rotates integrally therewith. Rotating member 1 8 6 having a boss hole formed with it, this rotating member 1 8 6 and a timing pulley 1 8 8 that rotates physically, and a tie bridged between both timing pulleys 1 8 2 and 1 8 8 And a positioning sensor 192 for detecting the rotation angle position of the dispensing arm 140.
以上のような構成の溶媒分注ュニッ 卜 5 6では、 回転駆動機構により 分注アーム 1 4 0を回動させて、 図 1 0に実線で示したように分注ァー ム 1 4 0の先端部のノズル部 1 4 2 を、 処理タ一ンテーブル 5 0の遠沈 管保持部 7 8 (図 2参照) に保持された遠沈管 1 4の直上位置へ移動さ せ、 次に、 昇降駆動機構によリ分注アーム 1 4 0を下降させて、 図 1 0 に二点鎖線で示したように分注アーム 1 4 0の先端部の Jズル部 1 4 2 を遠沈管 1 4内へ挿入する。 そして、 シリンジポンプユニッ ト 4 0の各 シリンジ 1 5 0、 1 5 2、 1 5 4 (図 1参照) を駆動させ、 各送液チュ —ブ I 4 4 、 1 4 6 、 1 4 8の先端の吐出口からメタノール、 酢酸ェチ ル (有機溶媒) および P H緩衝液を遠沈管 1 4内へ吐出するようにする。 振盪ステージ 5 8には、 振盪機 1 9 4が設置されている。 また、 遠心 分離機 6 0は、 スペースの有効利用を図って装置をコンパク 卜化するた めに、 環状の処理ターンテーブル 5 0の内側に設置されている。 振盪機 1 9 4や遠心分離機 6 0は、 従来から使用されており、 その詳細な構造 の図示および説明を省略する。 なお、 遠沈管 1 4内においてサンプル液 中の目的とする成分物質を有機溶媒中へ移行させる手段として、 振盪機 の代わりに超音波振動装置や撹拌機などを使用するようにしてもよい。 また、 サンプル液と有機溶媒とが分注された遠沈管 1 4 を振盪させた後 に遠沈管 1 4 を静置するだけで、 遠沈管 1 4の液が速やかに層分離する ような場合には、 遠心分離機 6 0を特に設けなくてもよい。 In the solvent dispensing unit 56 configured as described above, the dispensing arm 140 is rotated by the rotary drive mechanism, and as shown by the solid line in FIG. Move the nozzle part 14 2 at the tip to the position immediately above the centrifuge tube 14 held in the centrifuge tube holding part 78 (see Fig. 2) of the processing turntable 50, and then move up and down The dispensing arm 140 is lowered by the drive mechanism, and as shown by the two-dot chain line in Fig. 10, the J-sleeve 144 at the tip of the dispensing arm 140 is placed in the centrifuge tube 14. Insert into Then, each syringe 150, 152, 154 (see Fig. 1) of the syringe pump unit 40 is driven, and each liquid feeding tube is turned on. —Methanol, ethyl acetate (organic solvent) and PH buffer should be discharged into the centrifuge tube 14 from the discharge ports at the tips of the tubes I 44, 146, and 148. The shaking stage 58 is provided with a shaker 194. The centrifugal separator 60 is installed inside the annular processing turntable 50 in order to use the space effectively and compact the apparatus. The shaker 194 and the centrifuge 60 are conventionally used, and the detailed structure and illustration thereof are omitted. As a means for transferring the target component substance in the sample liquid into the organic solvent in the centrifuge tube 14, an ultrasonic vibrator or a stirrer may be used instead of the shaker. Also, when the centrifuge tube 14 into which the sample solution and the organic solvent are dispensed is shaken, and the centrifuge tube 14 is allowed to stand still, the liquid in the centrifuge tube 14 is rapidly separated into layers. The centrifuge 60 may not be particularly provided.
分離液分注ュニッ 卜 6 2は、 前後方向 (Y軸方向) に往復移動するァ —ム 1 9 6 と、 こ アーム 1 9 6に支持されて左右方向 (X軸方向) に 往復移動する分注へッ ド 1 9 8 とを有し (それぞれの往復駆動機構の図 示は省略) 、 分注へッ ド 1 9 8には、 図 1 2に示すように、 鉛直方向 The separated liquid dispensing unit 62 has an arm 196 that reciprocates in the front-rear direction (Y-axis direction) and an arm 196 that reciprocates in the left-right direction (X-axis direction) supported by the arm 196. It has an injection head 198 (the illustration of each reciprocating drive mechanism is omitted), and the dispensing head 198 has a vertical direction as shown in FIG.
( Z軸方向) に往復移動する分離液分注ノズル 2 0 0が設けられておリ、 分注ノズル 2 0 0は、 チューブ 2 0 1 を介して、 モータによって駆動さ れるシリ ンジ (図示せず) に流路接続されている (図 1 5参照) 。 分注 ノズル 2 0 0 を鉛直方向に往復移動させるノズル昇降機構は、 分注へッ ド 1 9 8に固着された取付板 2 0 2に固設された駆動モータ (ステツピ ングモータ) 2 0 4、 この駆動モータ 2 0 4の回転軸に固着されたタイ ミ ングプ一リ 2 0 6、 分注へッ ド 1 9 8に固着された上部取付板 2 0 8 および下部取付板 2 1 0に上端部および下端付近がそれぞれ回転自在に 支持されたねじ軸 2 1 2、 このねじ軸 2 1 2の下端部に固着されたタイ ミ ングプーリ 2 1 4、 両タイ ミ ングプーリ 2 0 6 、 2 1 4間に掛け渡さ れたタイ ミングベルト 2 1 6、 ねじ軸 2 1 2に螺合して、 ねじ軸 2 1 2 の正 . 逆回転に伴って上下方向へ往復移動するチェンジナツ 卜 2 1 8 、 ならびに、 このチェンジナツ 卜 2 1 8に連結するとともに分注ノズル 2 0 0に係合して、 チェンジナッ ト 2 1 8および分注ノズル 2 0 0と一体 的に上下方向に移動する昇降部材 2 2 0から構成されている。 また、 図 示していないが、 分注ノズル 2 0 0の上昇限度位置および下降限度位置 をそれぞれ検知するための上昇リ ミ ッ 卜センサおよび下降リ ミ ッ 卜セン サ、 分注ノズル 2 0 0の上下方向における原点位置を検知するための上 下原点センサ、 ならびに、 センサ用検知板が設けられており、 また、 分 注ノズル 2 0 0の下端部にディスポチップ 2 2 2が取着されていること を確認するためのチップ有無センサが設けられている。 分注ノズル 2 0 0の下端部に取着されるディスポチップ 2 2 2は、 ディスポチップ用ラ ック 7 2の多数のディスポチップ保持部 2 2 4に保持されている。 A separation liquid dispensing nozzle 200 reciprocating (in the Z-axis direction) is provided, and the dispensing nozzle 200 is driven by a motor (not shown) via a tube 201. (See Figure 15). The nozzle raising / lowering mechanism for reciprocating the dispensing nozzle 200 in the vertical direction includes a drive motor (stepping motor) 204 fixed to the mounting plate 202 fixed to the dispensing head 198, The timing plate 206 fixed to the rotating shaft of the drive motor 204 and the upper mounting plate 208 fixed to the dispensing head 198 and the upper mounting plate 210 fixed to the lower mounting plate 210 And the lower end can be rotated freely. Supported screw shaft 2 1 2, Timing pulley 2 14 fixed to the lower end of this screw shaft 2 1 2, Timing belt 2 stretched between both timing pulleys 2 0 6 and 2 14 16 The change nut 2 18 that is screwed into the screw shaft 2 12 and reciprocates up and down with the forward and reverse rotation of the screw shaft 2 1 2, and the change nut 2 18 It is composed of an elevating member 220 that is connected and engages with the dispensing nozzle 200 to move in the vertical direction integrally with the change nut 210 and the dispensing nozzle 200. Although not shown, an ascending limit sensor and a descending limit sensor for detecting the ascending limit position and descending limit position of the dispensing nozzle 200, respectively, and the dispensing nozzle 200 An upper / lower origin sensor for detecting the origin position in the vertical direction and a sensor detection plate are provided, and a disposable tip 222 is attached to the lower end of the dispensing nozzle 200. A chip presence / absence sensor is provided to confirm this. The disposable tip 222 attached to the lower end of the dispensing nozzle 200 is held by a large number of disposable tip holding parts 222 of the disposable tip rack 72.
また、 分注ヘッ ド 1 9 8には、 図示していないが、 サンプル分注ュニ ッ 卜 5 2の分注へッ ド 8 6に設けられたキャップ用チャックュニッ 卜 9 0 (図 7および図 9参照) と同様の構成を備えた遠沈管移載用のチヤッ クュニッ トが設けられている。  Although not shown, the dispensing head 198 has a cap chuck unit 90 provided on the dispensing head 86 of the sample dispensing unit 52 (see FIGS. 7 and 8). A check unit for transferring the centrifuge tubes, which has the same configuration as that described in Section 9), is provided.
分離機吸入ステージ 6 4には、 図 1 3に示すようなキヤップ取外しュ ニッ ト 2 2 6 と図 1 4に示すような遠沈管固定ュニッ 卜 2 2 8が取付基 板 2 3 0に固設されている。 キャップ取外しユニッ ト 2 2 6は、 一端部 を中心として水平面内で回動するアーム 2 3 2 を有しており、 アーム 2 3 2の先端部には、 遠沈管用のキャップ 1 6に対し水平方向から接近し てキャップ 1 6に係合する係合爪 2 3 4が設けられている。 アーム 2 3 2は、 その一端部がボールスプライ ン軸 2 3 6の上端部に固着されて水 平姿勢に支持されている。 そして、 ボールスプライン軸 2 3 6は、 図示 していないが、 昇降駆動機構によって上下方向に往復移動させられると ともに、 回転駆動機構によって回動させられ、 これにより、 ボールスプ ライ ン軸 2 3 6に固着されたアーム 2 3 2が昇降および回動するような 構成となっている。 At the separator suction stage 64, a cap removal unit 22 6 as shown in Fig. 13 and a centrifuge tube fixing unit 2 28 as shown in Fig. 14 are fixed to the mounting base 230. Have been. The cap removal unit 2 26 has an arm 2 32 that rotates in a horizontal plane with one end as the center.The tip of the arm 2 32 is horizontal to the centrifuge tube cap 16. Approach from the direction An engaging claw 234 for engaging with the cap 16 is provided. The arm 232 has one end fixed to the upper end of the ball spline shaft 236 and is supported in a horizontal posture. Although not shown, the ball spline shaft 2 36 is reciprocated vertically by a lifting / lowering drive mechanism, and is rotated by a rotary drive mechanism. The structure is such that the fixed arm 2 32 moves up and down and rotates.
キヤップ取外しュニッ 卜 2 2 6により遠沈管 1 4からキャップ 1 6 を 取り外す動作を説明すると、 アーム 2 3 2が下降位置にある状態でァ一 ム 2 3 2 を回動させて、 遠沈管固定ュニッ 卜 2 2 8に固定された遠沈管 1 4 (図 1 4参照) に装着されたキャップ 1 6にアーム 2 3 2の係合爪 2 3 4 を係合させる。 次に、 図 1 3に二点鎖線で示すようにアーム 2 3 2 を上昇させて、 遠沈管 1 4の上端開口からキャップ 1 6 を抜き出す。 そして、 アーム 2 3 2 を 1 8 0 ° 回動させた後下降させ、 図 1 3に実線 で示した位置にアーム 2 3 2 を停止させる。  The operation of removing the cap 16 from the centrifuge tube 14 by the cap removal unit 2 26 will be described. When the arm 2 32 is in the lowered position, the arm 2 32 is rotated to set the centrifuge tube fixing unit. Engage the engaging claw 23 of the arm 23 with the cap 16 attached to the centrifuge tube 14 (see Fig. 14) fixed to the rack 2 28. Next, as shown by a two-dot chain line in FIG. 13, the arm 2 32 is raised, and the cap 16 is pulled out from the upper end opening of the centrifuge tube 14. Then, the arm 2 32 is turned by 180 ° and then lowered, and the arm 2 32 is stopped at the position shown by the solid line in FIG.
遠沈管固定ュニッ ト 2 2 8は、 上方から遠沈管 1 4が挿入する管保持 具 2 3 8 を有している。 管保持具 2 3 8は、 下端部が取付基板 2 3 0の 上面に固着されている。 また、 取付基板 2 3 0上には、 管保持具 2 3 8 の左右両側に一対の支柱 2 4 0、 2 4 0が立設されている。 そして、 管 保持具 2 3 8の上端付近は、 一方の支柱 2 4 0に固着されたブラケッ 卜 2 4 2に取着された円弧状受け板 2 4 4に周面の一部が嵌合しており、 その反対側の面が、 他方の支柱 2 4 0に固着されたブラケッ 卜 2 4 6か ら圧縮コイルばね 2 4 8 を介して弾発的な押圧力を受けている。 そして, 上方から管保持具 2 3 8へ挿入された遠沈管 1 4が、 管保持具 2 3 8に よって弾発的に保持され固定されるようになっている。 The centrifuge tube fixing unit 228 has a tube holder 238 into which the centrifuge tube 14 is inserted from above. The lower end of the tube holder 238 is fixed to the upper surface of the mounting substrate 230. Further, on the mounting substrate 230, a pair of columns 240 and 240 are erected on both left and right sides of the tube holder 238. A portion of the peripheral surface of the pipe holder 238 near the upper end is fitted to an arc-shaped receiving plate 244 attached to a bracket 242 fixed to one of the columns 240. The other side receives a resilient pressing force from a bracket 2464 fixed to the other support column 240 via a compression coil spring 248. Then, the centrifuge tube 14 inserted into the tube holder 2 38 from above is transferred to the tube holder 2 38. Therefore, it is held and fixed resiliently.
また、 一対の支柱 2 4 0、 2 4 0の上端部には、 センサ取付板 2 5 0 がそれぞれ固設されている。 そして、 一対のセンサ取付板 2 5 0、 2 5 0に、 分注ノズル 2 0 0の先端部に取着されたディスポチップ 2 2 2の 先端 (下端) を検知するためのチップ先端検出用光電センサ 2 5 2 a 、 2 5 2 b、 および、 遠沈管 1 4内からディスポチップ 2 2 2内へ吸入さ れたサンプル分離液の上端を検知するための 2組の液面検出用光電セン サ 2 5 4 a、 2 5 4 b ; 2 5 6 a、 2 5 6 b力;、 それぞれ分注ノズル 2 0 0のディスポチップ 2 2 2の移動路を挾んで投光部と受光部とが対向 するように取着されている。 2組の液面検出用光電センサのうち、 上側 の光電センサ 2 5 4 a、 2 5 4 bは、 遠沈管 1 4内で上層側に分離した サンプル分離液を吸入する場合に用いられ、 下側の光電センサ 2 5 6 a , 2 5 6 bは、 遠沈管 1 4内で下層側に分離したサンプル分離液を吸入す る場合に用いられる。  Further, a sensor mounting plate 250 is fixedly provided at the upper end of the pair of columns 240 and 240, respectively. A tip tip detecting photoelectric sensor for detecting the tip (lower end) of the disposable tip 222 attached to the tip of the dispensing nozzle 200 is mounted on the pair of sensor mounting plates 250 and 250. Sensors 25 2 a, 25 2 b, and two sets of liquid level detection photoelectric sensors for detecting the upper end of the sample separation liquid sucked into the disposable tip 22 from the centrifuge tube 14 254a, 254b; 258a, 256b force; respectively, the light projecting part and the light receiving part oppose each other across the movement path of the dispensing tip 222 of the dispensing nozzle 200 It is attached to be. Of the two sets of photoelectric sensors for liquid level detection, the upper photoelectric sensor 2554a and 2554b are used to suck the sample separated liquid separated into the upper layer in the centrifuge tube 14, and The photoelectric sensors 255 a and 255 b on the side are used when a sample separated liquid separated to the lower layer side in the centrifuge tube 14 is sucked.
さらに、 分離液分注ユニッ ト 6 2には、 蒸発し易く、 低粘度で、 表面 張力が小さく、 比重の小さいサンプル分離液 (有機溶媒) を分注する場 合であっても、 周辺温度の変化に影響されたりすることなく、 分離液分 注ノズル 2 0 0の下端口からの液垂れを確実に防止して、 分注精度の低 下を防ぐための手段を付加することができる。 この手段は、 分注ノズル 2 0 0の下端口が遠沈管 1 4内のサンプル分離液中から引き上げられる 際に、 分注ノズル 2 0 0下端口がサンプル分離液上に出た時に分注ノズ ル 2 0 0内へその下端口から微小流量の空気を吸入させ続けて、 分注ノ ズル 2 0 0内のサンプル分離液内部に気泡を発生させ、 この状態を、 分 注ノズル 2 0 0内のサンプル分離液が吐出される直前まで継続させる気 泡発生手段である。 図 1 5および図 1 6 を参照しながら、 その構成につ いて説明する。 Furthermore, even when dispensing a sample separation liquid (organic solvent) that is easy to evaporate, has low viscosity, low surface tension, and low specific gravity, the separation liquid dispensing unit 62 has a low Without being affected by the change, it is possible to add a means for reliably preventing the liquid from dripping from the lower end of the separated liquid dispensing nozzle 200 and preventing a decrease in dispensing accuracy. This means is used when the lower end of the dispensing nozzle 200 is pulled out of the sample separation liquid in the centrifuge tube 14 and when the lower end of the dispensing nozzle 200 comes out above the sample separation liquid. Continue to inhale a small amount of air into the sample 200 from its lower end, and generate air bubbles inside the sample separation liquid in the dispensing nozzle 200. To continue until just before the sample separation liquid is discharged. It is a foam generating means. The configuration will be described with reference to FIG. 15 and FIG.
図 1 5は、 分離液分注ユニッ ト 6 2の要部の構成を示す概略図である。 この分注ュニッ 卜 6 2において、 分注ノズル 2 0 0を下降させて、 分注 ノズル 2 0 0の先端部に装着されたディスポチップ 2 2 2の先端部を、 遠沈管 1 4内に収容された液体中へ浸漬させ、 その下端口から液体をデ イスポチップ 2 2 2内へ吸入させる。 そして、 分注ノズル 2 0 0を上昇 させてから試験管 2 4の直上位置 (分注位置) へ移動させ、 デイ スポチ ップ 2 2 2内に吸入された液体をディスポチップ 2 2 2の下端口から試 験管 2 4内へ吐出させる。  FIG. 15 is a schematic diagram showing a configuration of a main part of the separation liquid dispensing unit 62. In the dispensing unit 62, the dispensing nozzle 200 is lowered, and the distal end of the disposable tip 222 attached to the distal end of the dispensing nozzle 200 is accommodated in the centrifuge tube 14. Then, the liquid is sucked into the disposable chip 222 from the lower end port. Then, the dispensing nozzle 200 is raised and then moved to a position directly above the test tube 24 (dispensing position), and the liquid sucked into the day spot tip 222 is dispensed under the disposable tip 222. Discharge into the test tube 24 from the end opening.
分注ノズル 2 0 0は、 チューブ 2 0 1 により給液 · 排液部 3 8 (図 1 参照) に設置されたシリンジ 2 5 8に流路接続されている。 シリ ンジ 2 5 8は、 モータ 2 6 0によって駆動され、 モータ 2 6 0の駆動を制御す るためのコン トローラ 2 6 2が設けられている。 そして、 コン トローラ 2 6 2によってモータ 2 6 0を駆動制御することにより、 分注ノズル 2 0 0のディスポチップ 2 2 2内へ遠沈管 1 4から所定量の液体を吸入さ せ、 分注位置においてディスポチップ 2 2 2内の液体をその下端口から 試験管 2 4内へ吐出させる。 また、 この分注ユニッ トでは、 コン トロー ラ 2 6 2により、 モータ 2 6 0の駆動を制御してシリ ンジ 2 5 8 を低速 に切り換えることができるように構成されている。  The dispensing nozzle 200 is connected by a tube 201 to a flow path connected to a syringe 258 installed in a liquid supply / drainage section 38 (see FIG. 1). The syringe 258 is driven by a motor 260 and is provided with a controller 262 for controlling the driving of the motor 260. Then, by controlling the drive of the motor 260 by the controller 26 2, a predetermined amount of liquid is sucked from the centrifuge tube 14 into the disposable tip 222 of the dispensing nozzle 200, and the dispensing position is adjusted. At, the liquid in the disposable tip 222 is discharged from the lower end port thereof into the test tube 24. In addition, the dispensing unit is configured so that the controller 262 can control the driving of the motor 260 to switch the syringe 258 to a low speed.
上記構成の分注ュニッ 卜を使用して遠沈管 1 4内のサンプル分離液の 分注操作を行なう方法を、 図 1 6に基づいて説明する。 この例は、 遠沈 管 1 4内において上層側に分離したサンプル分離液 2 6 4 を、 分注ノズ ル 2 0 0のディスポチップ 2 2 2内へ吸入する場合のものである。 分注ノズル 2 0 0 を遠沈管 1 4の直上位置へ移動させ、 図 1 6の (A) に示すように (図 1 6では分注ノズル 2 0 0のディ スポチップ 2 2 2の みを図示している) 、 分注ノズル 2 0 0 を下降させる。 そして、 図 1 6 の ( B) に示すように、 ディ スポチップ 2 2 2の下端口を、 遠沈管 1 4 内に収容されたサンプル分離液 2 6 4中へ浸漬させた後、 シリンジ 2 5 8 を普通の速度で駆動させて、 ディスポチップ 2 2 2内へその下端ロカ、 ら遠沈管 1 4内のサンプル分離液 2 6 4 を吸入する。 この際の吸入速度 は、 ディスポチップ 2 2 2の下端口の径ゃサンプル分離液 2 6 4の粘性 によって変わるが、 例えば、 ディスポチップ 2 2 2の下端口径が 1 m m で、 サンプル分離液 2 6 4の有機溶媒が酢酸ェチル、 ジェチルェ一テル またはそれらに近い特性を持つものであるときは、 0. 2〜 0. 3 c c / s e cである。 A method of dispensing the sample separation liquid in the centrifuge tube 14 using the dispensing unit having the above configuration will be described with reference to FIG. In this example, the sample separation liquid 264 separated into the upper layer side in the centrifuge tube 14 is sucked into the disposable tip 222 of the dispensing nozzle 200. The dispensing nozzle 200 is moved to a position directly above the centrifuge tube 14 and, as shown in FIG. 16 (A) (only the disposable tip 222 of the dispensing nozzle 200 is shown in FIG. 16). ), The dispensing nozzle 200 is lowered. Then, as shown in FIG. 16 (B), the lower end of the disposable tip 222 is immersed in the sample separation liquid 264 stored in the centrifuge tube 14, and then the syringe 258 Is driven at a normal speed, and the sample separation solution 264 in the centrifuge tube 14 is sucked into the disposable tip 222 from the lower end locator. The suction speed at this time depends on the diameter of the lower end of the disposable tip 222 and the viscosity of the sample separation liquid 264.For example, when the lower end of the disposable tip 222 is 1 mm, the sample separation liquid 26 When the organic solvent in (4) is ethyl acetate, getyl ether or a substance having properties similar to those, it is 0.2 to 0.3 cc / sec.
ディスポチップ 2 2 2内に所定量のサンプル分離液 2 6 4が吸入され ると、 シリ ンジ 2 β 8 を一旦停止させ、 分注ノズル 2 0 0を上昇させる。 分注ノズル 2 0 0のディスポチップ 2 2 2の下端口を遠沈管 1 4内のサ ンプル分離液 2 6 4中から引き上げる過程で、 図 1 6の (C) に示すよ うにディスポチップ 2 2 2の下端口が液面上に出た時に、 シリ ンジ 2 5 8 を低速に切り換えて駆動させる。 これにより、 ディスポチップ 2 2 2 内へその下端口を通して微小流量の空気が吸入され続け、 その空気は、 図 1 6の ( D ) に示すように、 微細な気泡 2 6 6 となってデイ スポチッ プ 2 2 2内のサンプル分離液 2 6 4 中を液面に向かって浮上し、 デイ ス ポチップ 2 2 2内のサンプル分離液 2 6 4上部の気体部分へ流動する。 この際の吸入速度は、 上記と同様の条件下において、 例えば 0. 0 4〜 0. 2 c cノ s e cである力 、 0. l c c Z s e c程度が適当である。 ディスポチップ 2 2 2内への微小流量の吸入は、 分注ノズル 2 0 0が 遠沈管 1 4の上方位置へ移動した後分注位置の試験管 2 4の上方位置へ 移動するまで、 或いは、 さらに分注ノズル 2 0 0が下降してデイスポチ ップ 2 2 2の下端部が試験管 2 4内へ挿入されるまで継続するようにす る。 この間、 ディスポチップ 2 2 2の下端付近には上向きの吸引力が常 に作用することになるので、 サンプル分離液 2 6 4が液垂れを起こし易 い種類のものであっても、 ディ スポチップ 2 2 2の下端口からサンプル 分離液 2 6 4が垂れ落ちるようなことがない。 ディスポチップ 2 2 2の 下端口が試験管 2 4内へ挿入されると、 シリ ンジ 2 5 8 を普通の速度に 切り換えて駆動させ、 シリ ンジ 2 5 8からチューブ 2 0 1 を通して分注 ノズル 2 0 0へ空気を送り込み、 ディスポチップ 2 2 2内のサンプル分 離液 2 6 4 を押し下げてその下端口から試験管 2 4内へ吐出させる。 なお、 上記説明では、 ディスポチップ 2 2 2内へサンプル分離液 2 6 4 を吸入する際にはシリンジ 2 5 8 を普通の速度で駆動させ、 分注ノズ ル 2 0 0 を上昇させる過程でディスポチップ 2 2 2の下端口が遠沈管 1 4内のサンプル分離液 2 6 4の液面上に出た時にシリ ンジ 2 5 8 を低速 に切り換えるようにしている力 、 普通の速度で駆動するシリ ンジと低速 で駆動する低速シリ ンジとを設けておき、 切換え弁により、 普通速度の シリ ンジと低速シリンジとを分注ノズル 2 0 0に択一的に流路接続させ るような構成としてもよい。 また、 その場合に、 低速シリ ンジに代えて 真空ポンプを使用するようにしてもよい。 When a predetermined amount of the sample separation liquid 264 is sucked into the disposable tip 222, the syringe 2β8 is temporarily stopped, and the dispensing nozzle 200 is raised. In the process of pulling the lower end of the disposable tip 220 of the dispensing nozzle 200 out of the sample separation liquid 26 4 in the centrifuge tube 14, as shown in (C) of FIG. When the lower end of 2 is above the liquid level, the syringe 258 is switched to low speed and driven. As a result, a small amount of air continues to be sucked into the disposable chip 222 through its lower end, and the air becomes fine bubbles 266 as shown in FIG. 16 (D). The sample floats in the sample separation solution 264 in the step 222 toward the liquid surface and flows to the gas portion above the sample separation solution 264 in the disposable tip 222. Under the same conditions as described above, the suction speed at this time is suitably, for example, a force of 0.04 to 0.2 cc / sec and about 0.1 cc Z sec. The suction of the minute flow rate into the disposable tip 222 is performed until the dispensing nozzle 200 moves to the position above the centrifuge tube 14 and then to the position above the test tube 24 at the dispensing position, or Further, the dispensing nozzle 200 descends and continues until the lower end of the disc tip 222 is inserted into the test tube 24. During this time, an upward suction force is always applied to the vicinity of the lower end of the disposable tip 2 2 2, so that even if the sample separation liquid 2 64 There is no drip of sample separation solution 2 64 from the lower end of 22. When the lower end of the disposable tip 222 is inserted into the test tube 24, the syringe 258 is switched to a normal speed and driven, and the syringe 258 is dispensed through the tube 201 from the nozzle 250. Air is fed into the sample tube 0, and the sample separation liquid 2 64 in the disposable tip 222 is pushed down and discharged into the test tube 24 from its lower end. In the above description, when the sample separation solution 264 is sucked into the disposable tip 222, the syringe 258 is driven at a normal speed, and the dispensing nozzle 200 is raised in the process of rising. When the lower end of the tip 222 comes above the liquid level of the sample separation liquid 2664 in the centrifuge tube 14, the force that switches the syringe 258 to a low speed is used. A low-speed syringe and a low-speed syringe driven at a low speed may be provided, and a switching valve may be used to selectively connect the normal-speed syringe and the low-speed syringe to the dispensing nozzle 200 through the flow path. Good. In that case, a vacuum pump may be used instead of the low-speed syringe.
また、 分離液分注ュニッ 卜 6 2には、 分注しょうとするサンプル分離 液の種類の如何に拘らず、 分離液分注ノズル 2 0 0の周辺温度によつて 影響を受けることもなく、 また、 ディスポチップ 2 2 2の接続部分など に僅かなリークがあつたとしても、 分注ノズル 2 0 0内へ所定量通りの サンプル分離液を常に正確にばらつきを生じることなく吸入して、 分注 精度の向上を図るための手段を付加することができる。 この手段は、 遠 沈管固定ュニッ 卜 2 2 8に設けられた上記の光電センサ 2 5 2 a、 2 5 2 b ; 2 5 4 a、 2 5 4 b ; 2 5 6 a、 2 5 6 b を使用してシリ ンジ 2 5 8の駆動を制御するものである。 図 1 7ないし図 1 9 を参照しながら、 その構成について説明する。 In addition, regardless of the type of sample separation liquid to be dispensed, the separation liquid dispensing unit 62 is not affected by the ambient temperature of the separation liquid dispensing nozzle 200, Also, the connection part of disposable chip 2 2 2 etc. Even if there is a slight leak, a means to improve the dispensing accuracy by always inhaling a predetermined amount of the sample separation liquid into the dispensing nozzle 200 accurately and without causing dispersion. can do. This means is to connect the above photoelectric sensors 252a, 252b; 254a, 2554b; 256a, and 256b provided on the centrifuge tube fixing unit 228. It is used to control the drive of the syringe 258. The configuration will be described with reference to FIG. 17 to FIG.
図 1 7は、 分離液分注ュニッ 卜 6 2の概略プロヅク図である。 シリ ン ジ 2 5 8 を駆動させるモータ 2 6 0のコン トローラ 2 6 2、 および、 分 注ノズル 2 0 0 を保持する昇降部材 2 2 0を昇降駆動させる駆動モータ (ステッピングモータ) 2 04 (図 1 2参照) は、 それぞれ C P U 2 6 7に接続されており、 C P U 2 6 7からの制御信号によってシリ ンジ駆 動用モータ 2 6 0およびステツビングモータ 2 0 4の駆動がそれぞれ制 御される。 また、 チップ先端検出用光電センサ 2 5 2 a、 2 5 2 bおよ び液面検出用光電センサ 2 5 4 a、 2 5 4 bカ\ それぞれ C P U 2 6 7 に接続されており、 チップ先端検出用光電センサの受光部 2 5 2 bから の検知信号に基づいてステッピングモータ 2 0 4の所定動作が制御され、 液面検出用光電センサの受光部 2 5 4 bからの検知信号に基づいてシリ ンジ駆動用モータ 2 6 0の所定動作が制御される。 なお、 図 1 7には、 2組の液面検出用光電センサのうち、 上側の光電センサ 2 5 4 a、 2 δ 4 bだけを図示している。 また、 以下の説明においても、 遠沈管 1 4内 で上層側に分離したサンプル分離液を分注ノズル 2 0 0のデイスポチッ プ 2 2 2内へ吸入する場合における操作を例示するが、 遠沈管 1 4内で 下層側に分離したサンプル分離液を吸入する場合における操作も、 遠沈 管のキャップの構造が変わるだけで、 操作自体は全く同じである。 FIG. 17 is a schematic block diagram of the separation liquid dispensing unit 62. The controller 26 2 of the motor 260 driving the syringe 258 and the driving motor (stepping motor) 204 driving the raising / lowering member 220 holding the dispensing nozzle 200 12) are connected to the CPU 267, and the control signals from the CPU 267 control the drive of the syringe driving motor 260 and the driving of the stepping motor 204, respectively. In addition, the photoelectric sensors 25 2 a and 25 2 b for detecting the tip of the chip and the photoelectric sensors 25 24 a and 25 4 b for detecting the liquid level are connected to the CPU 2667, respectively. The predetermined operation of the stepping motor 204 is controlled based on the detection signal from the light receiving section 255 b of the photoelectric sensor for detection, and based on the detection signal from the light receiving section 255 b of the liquid level detection photoelectric sensor. The predetermined operation of the syringe driving motor 260 is controlled. FIG. 17 shows only the upper photoelectric sensor 2554a and 2δ4b of the two sets of photoelectric sensors for liquid level detection. In the following description, an operation in which the sample separated liquid separated into the upper layer in the centrifuge tube 14 is sucked into the disposable tip 222 of the dispensing nozzle 200 is also exemplified. The operation for inhaling the sample separated liquid separated to the lower side in 4 is also performed by centrifugation. The operation itself is exactly the same, only the structure of the tube cap changes.
図 1 7に示した構成の分注ュニッ 卜.6 2 を使用して遠沈管 1 4内のサ ンプル分離液の分注操作を行なう方法を、 図 1 8および図 1 9に基づい て説明する。  A method of dispensing the sample separation liquid in the centrifuge tube 14 using the dispensing unit 6 shown in Fig. 17 will be described based on Figs. 18 and 19. .
分注ノズル 2 0 0 を遠沈管 1 4の直上位置へ移動させ、 ステッピング モータ 2 0 4 を駆動させて、 図 1 8の ( a ) に示すように (図 1 8及び 図 1 9では分注ノズル 2 0 0のディスポチップ 2 2 2のみを図示してい る) 、 分注ノズル 2 0 0を下降させる。 この際、 チップ先端検出用光電 センサの投光部 2 5 2 aから照射された光はそのまま受光部 2 5 2 bへ 入射し、 光電センサの受光部 2 5 2 bから所定の出力の信号が C P U 2 6 7へ送られている。 そして、 図 1 8の ( b ) に示すように、 ディスポ チップ 2 2 2の下端が、 光電センサ 2 5 2 a、 2 5 2 bが配設された基 準の高さ位置に達すると、 光電センサの投光部 2 5 2 aから照射された 光がディスポチップ 2 2 2の下端部によって遮られ、 受光部 2 5 2 bへ 入射する光量が減少して、 光電センサの受光部 2 5 2 bからの出力が変 化し、 その出力信号が C P U 2 6 7へ送られて、 ディスポチップ 2 2 2 の下端が基準の高さ位置に達したことが検知される。 ディスポチップ 2 2 2の下端が基準の高さ位置に達した後も、 引き続いてステッピングモ —タ 2 0 4が駆動して、 分注ノズル 2 0 0は下降する力;、 C P U 2 6 7 において、 パルス発生回路 (図示せず) から出力されるパルス数をディ スポチップ 2 2 2の下端が基準の高さ位置に達した時点からカウン 卜 し、 所定のパルス数がカウン 卜される時点までステツビングモータ 2 0 4力; 駆動される。 そして、 C P U 2 6 7において所定のパルス数がカウン ト された時点でステツビングモータ 2 0 4の駆動が停止させられ、 図 1 8 の ( c ) に示すように、 分注ノズル 2 0 0の下降動作が停止する。 この 時、 ディスポチップ 2 2 2の下端は、 光電センサ 2 5 2 a、 2 5 2 b力; 設置された基準の高さ位置から、 所定パルス数に相当する距離 Lだけ下 方に位置して停止することになり、 ディスポチップ 2 2 2の下端口は遠 沈管 1 4内のサンプル分離液 2 6 4中に浸漬させられる。 このように、 ディスポチップ 2 2 2の下端が、 光電センサ 2 5 2 a、 2 5 2 bが設置 された基準の高さ位置から所定パルス数に相当する距離 L分だけ下降し た時に、 分注ノズル 2 0 0が停止するので、 デイスポチップ 2 2 2の下 端位置は常に一定位置となる。 このディスポチップ 2 2 2の下端は、 所 定量のサンプル分離液 2 6 4 を吸入した後も液面下に位置している。 The dispensing nozzle 200 is moved to a position directly above the centrifuge tube 14 and the stepping motor 204 is driven, as shown in FIG. 18 (a) (dispensing in FIGS. 18 and 19). Only the disposable tip 222 of the nozzle 200 is shown), and the dispensing nozzle 200 is lowered. At this time, the light emitted from the light emitting portion 25a of the photoelectric sensor for detecting the tip of the chip is directly incident on the light receiving portion 252b, and a predetermined output signal is output from the light receiving portion 252b of the photoelectric sensor. Sent to CPU 26 7 Then, as shown in FIG. 18 (b), when the lower end of the disposable chip 22 reaches the standard height position where the photoelectric sensors 25a and 25b are arranged, The light emitted from the light emitting part 25 2 a of the sensor is blocked by the lower end of the disposable chip 22 2, and the amount of light incident on the light receiving part 25 2 b decreases. The output from b changes and the output signal is sent to the CPU 267 to detect that the lower end of the disposable chip 222 has reached the reference height position. Even after the lower end of the disposable tip 222 reaches the reference height position, the stepping motor 204 continues to be driven and the dispensing nozzle 200 descends; The number of pulses output from the pulse generation circuit (not shown) is counted from the time when the lower end of the disposable tip 222 reaches the reference height position, and the stepping is performed until the predetermined number of pulses is counted. Motor 204 power; driven. Then, when a predetermined number of pulses are counted in the CPU 267, the driving of the stepping motor 204 is stopped. As shown in (c), the lowering operation of the dispensing nozzle 200 stops. At this time, the lower end of the disposable tip 222 is located at a distance L corresponding to a predetermined number of pulses from the installed reference height position. As a result, the lower end of the disposable chip 222 is immersed in the sample separation liquid 264 in the centrifuge tube 14. In this way, when the lower end of the disposable tip 2 22 descends from the reference height position where the photoelectric sensors 25 2 a and 25 2 b are installed by the distance L corresponding to the predetermined number of pulses, the minute Since the injection nozzle 200 stops, the lower end position of the disposable tip 222 is always a fixed position. The lower end of the disposable chip 222 is located below the liquid level even after a predetermined amount of the sample separation liquid 264 is inhaled.
分注ノズル 2 0 0の下降動作が停止し、 ディスポチップ 2 2 2の下端 口が遠沈管 1 4内のサンプル分離液 2 6 4 中に浸漬させられると、 シリ ンジ駆動用モータ 2 6 0が作動し、 シリ ンジ 2 5 8が駆動されて、 図 1 9の ( d ) に示すように、 ディスポチップ 2 2 2内へその下端口から遠 沈管 1 4内のサンプル分離液 2 6 4が吸入される。 この吸入動作の際、 液面検出用光電センサの投光部 2 5 4 aから照射された光はデイ スポチ ップ 2 2 2 を透過して受光部 2 5 4 bへ入射し、 光電センサの受光部 2 5 4 bから所定の出力の信号が C P U 2 6 7へ送られている。 そして、 図 1 9の ( e ) に示すように、 ディスポチップ 2 2 2内に吸入されたサ ンプル分離液 2 6 4の上端が、 光電センサ 2 5 4 a、 2 5 4 bが配設さ れた所定の高さ位置に達すると、 光電センサの投光部 2 5 4 aから照射 された光がディ スポチップ 2 2 2内のサンプル分離液 2 6 4によって遮 られ、 受光部 2 5 4 bへ入射する光量が滅少して、 光電センサの受光部 2 5 4 bからの出力が変化し、 その出力信号が C P U 2 6 7へ送られて、 ディスポチップ 2 2 2内のサンプル分離液 2 6 4の上端が所定の高さ位 置に達したことが検知される。 この検知信号に基づいて、 C P U 2 6 7 からの制御信号がコン トローラ 2 6 2へ送られ、 コン トローラ 2 6 2力、 らの信号によりシリ ンジ駆動用モータ 2 6 0の駆動が停止させられて、 シリ ンジ 2 5 8が停止し、 ディスポチップ 2 2 2内への液体の吸入動作 が止まる。 このように、 ディスポチップ 2 2 2内に吸入されたサンプル 分離液 2 6 4の上端が、 光電センサ 2 5 4 a、 2 5 4 bが設置された所 定の高さ位置に達した時に、 ディスポチップ 2 2 2内へのサンプル分離 液 2 6 4の吸入動作が停止するので、 ディスポチップ 2 2 2内には、 そ の下端から光電センサ 2 5 4 a、 2 5 4 bの設置位置に対応する高さ位 置までサンプル分離液 2 6 4が吸入されることになり、 ディスポチップ 2 2 2内へのサンプル分離液 2 6 4の吸入量が常に一定となる。 When the dispensing nozzle 200 stops descending and the lower end of the disposable tip 222 is immersed in the sample separation liquid 2664 in the centrifuge tube 14, the syringe drive motor 260 is activated. The syringe 255 is actuated, and the sample separation solution 26 4 in the centrifuge tube 14 is sucked into the disposable tip 22 2 from its lower end as shown in Fig. 19 (d). Is done. At the time of this suction operation, the light emitted from the light projecting portion 254a of the liquid level detecting photoelectric sensor passes through the disc tip 222, enters the light receiving portion 254b, and enters the light receiving portion 254b. A signal of a predetermined output is sent from the light receiving section 254 b to the CPU 267. Then, as shown in (e) of FIG. 19, the upper end of the sample separation liquid 264 sucked into the disposable tip 222 is provided with the photoelectric sensors 254a and 254b. When the light reaches the predetermined height, the light emitted from the light-emitting unit 25 4 a of the photoelectric sensor is blocked by the sample separation liquid 26 4 in the disposable tip 22 2, and the light-receiving unit 25 4 b When the amount of light incident on the sensor decreases, the output from the light-receiving unit 254b of the photoelectric sensor changes, and the output signal is sent to the CPU 267. It is detected that the upper end of the sample separation solution 264 in the disposable tip 222 has reached a predetermined height. Based on this detection signal, a control signal from the CPU 267 is sent to the controller 262, and the drive of the syringe drive motor 260 is stopped by a signal from the controller 262. As a result, the syringe 258 stops, and the suction operation of the liquid into the disposable tip 222 stops. As described above, when the upper end of the sample separation liquid 26 4 sucked into the disposable tip 22 2 reaches the predetermined height position where the photoelectric sensors 25 4 a and 25 4 b are installed, Since the suction operation of the sample separation solution 2 64 into the disposable tip 2 222 stops, the lower end of the disposable tip 2 222 is located at the position where the photoelectric sensors 25 4 a and 25 4 b are installed. The sample separation liquid 264 is sucked up to the corresponding height, and the suction amount of the sample separation liquid 264 into the disposable tip 222 is always constant.
ディスポチップ 2 2 2内に所定量のサンプル分離液 2 6 4が吸入され ると、 ステッピング 2 0 4が作動し、 図 1 9の ( f ) に示すように、 分 注ノズル 2 0 0を上昇させてディ スポチップ 2 2 2の下端口を遠沈管 1 4内のサンプル分離液 2 6 4中から引き上げる。 そして、 分注ノズル 2 0 0 を遠沈管 1 4の上方位置へ移動させてから分注位置の試験管 2 4の 上方位置へ移動させた後、 分注ノズル 2 0 0を下降させてデイスポチッ プ 2 2 2の下端部を試験管 2 4内へ挿入させ、 その後にシリ ンジ 2 5 8 を駆動させて、 ディスポチップ 2 2 2内の液体をその下端口から試験管 2 4内へ吐出させる。  When a predetermined amount of the sample separation solution 264 is sucked into the disposable tip 222, the stepping 204 is activated, and the dispensing nozzle 200 is raised as shown in (f) of Fig. 19. Then, the lower end of the disposable tip 2 2 2 is pulled up from the sample separation solution 2 6 4 in the centrifuge tube 14. Then, the dispensing nozzle 200 is moved to a position above the centrifuge tube 14 and then to the position above the test tube 24 at the dispensing position, and then the dispensing nozzle 200 is lowered to disposable tip. The lower end of 222 is inserted into the test tube 24, and then the syringe 258 is driven to discharge the liquid in the disposable tip 222 from the lower end into the test tube 24.
なお、 上記説明では、 ディスポチップ 2 2 2の下端が基準の高さ位置 に達した時点を検知するのに光電センサを用いるようにしたカ^ その検 知を、 機械接触式のセンサなどを用いて行なうようにしてもよい。 また、 光電センサを用いるときには、 デイスポチップ 2 2 2内への液体の吸入 に際して液体の上端が所定の高さ位置に達する時点を検知する光電セン サを、 ディスポチップ 2 2 2の下端が基準の高さ位置に達した時点を検 知するのに共用するようにしてもよい。 また、 ステッピングモータ 2 0In the above description, the photoelectric sensor is used to detect when the lower end of the disposable tip 222 reaches the reference height position.The detection is performed using a mechanical contact sensor or the like. May be performed. Also, When a photoelectric sensor is used, a photoelectric sensor that detects when the upper end of the liquid reaches a predetermined height position when the liquid is sucked into the disposable tip 222 is disposed at a lower end of the disposable tip 222 as a reference height. It may be shared to detect when the position is reached. Stepping motor 20
4 を精密に制御して、 ディスポチップ 2 2 2の下端位置が常に正確に一 定位置となるように調整することができるのであれば、 ディスポチップIf the lower end position of the disposable tip 2 2 2 can be adjusted to always be exactly the same position by precisely controlling the
2 2 2の下端が基準の高さ位置に達したことを検知するセンサを設けな くてもよい。 It is not necessary to provide a sensor for detecting that the lower end of 222 has reached the reference height position.
以上の説明は、 遠沈管 1 4内で上層側に分離したサンプル分離液を分 注ノズル 2 0 0のディスポチップ 2 2 2内へ吸入する場合についてのも のであるが、 遠沈管 1 4内で下層側に分離したサンプル分離液を分注ノ ズル 2 0 0のディスポチップ 2 2 2内へ吸入する場合において、 全くコ ンタ ミネ一シヨンを生じることなく下層側のサンプル分離液だけを吸入 できるようにするために好適な遠沈管について、 図 2 0ないし図 2 3に より説明する。  The above explanation is for the case where the sample separated liquid separated into the upper layer side in the centrifuge tube 14 is sucked into the disposable tip 220 of the dispensing nozzle 200. When the sample separated liquid separated into the lower layer side is drawn into the dispensing tip 222 of the dispensing nozzle 200, only the sample separated liquid on the lower layer side can be sucked in without causing any contamination. A preferred centrifuge tube for this purpose will be described with reference to FIGS. 20 to 23.
図 2 0は、 遠沈管 1 4からキャップ 3 0を抜き出した状態を示す斜視 図であり、 図 2 1 は、 遠沈管 1 4にキャップ 3 0 を装着した状態の縦断 面図である。 この遠沈管 1 4の上面開口を液密に閉塞するキャップ 3 0 は、 密栓部 2 6 8 と内管部 2 7 0と閉塞部 2 7 2 とから構成されている。 密栓部 2 6 8は、 遠沈管 1 4の上端部に差し込まれて外周面が密嵌し、 中央部に貫通孔 2 7 4が形成されている。 内管部 2 7 0は、 遠沈管 1 4 の内径寸法より小さい外径寸法を有し下部が次第に細径に形成された管 状をなしており、 その上端部が密栓部 2 6 8の貫通孔 2 7 4の内周部に 固着されて密栓部 2 6 8 と一体化されている。 また、 内管部 2 7 0は、 遠沈管 1 4の上端部に密栓部 2 6 8 を密嵌させたときに下端が遠沈管 1 4の内底面付近に位置する程度の長さに形成されている。 閉塞部 2 7 2 は、 内管部 2 7 0の下端口に上向きに差し込まれる詰め栓によって形成 されており、 内管部 2 7 0の下端を液密に閉塞している。 この詰め栓か らなる閉塞部 2 7 2は、 下向きの押圧力、 すなわち分注ノズル 2 0 0の ディスポチップ 2 2 2の下端によって下向きに押し付けられる力により 容易に脱落するようになっている。 FIG. 20 is a perspective view showing a state in which the cap 30 is extracted from the centrifuge tube 14, and FIG. 21 is a longitudinal sectional view showing a state in which the cap 30 is attached to the centrifuge tube 14. The cap 30 for closing the upper surface opening of the centrifuge tube 14 in a liquid-tight manner is composed of a sealing portion 268, an inner tube portion 270, and a closing portion 272. The hermetic plug portion 268 is inserted into the upper end of the centrifuge tube 14 so that the outer peripheral surface is closely fitted, and a through hole 274 is formed in the center. The inner tube portion 270 has an outer diameter smaller than the inner diameter of the centrifuge tube 14, and has a tubular shape in which the lower portion is gradually made smaller in diameter, and the upper end portion of the inner tube portion 270 penetrates the plug portion 268. It is fixed to the inner peripheral part of the hole 274 and is integrated with the sealing part 268. Also, the inner pipe part 270 When the hermetic plug part 2688 is closely fitted to the upper end of the centrifuge tube 14, the lower end is formed to have a length such that it is located near the inner bottom surface of the centrifuge tube 14. The closing part 272 is formed by a filling plug inserted upward into the lower end of the inner pipe part 270, and closes the lower end of the inner pipe part 270 in a liquid-tight manner. The closing portion 272 made of the filling plug is easily dropped by a downward pressing force, that is, a force pressed downward by the lower end of the disposable tip 222 of the dispensing nozzle 200.
次に、 上記した構成のキヤップ 3 0を有する遠沈管 1 4 を使用し、 上 層液と下層液とに分離された液体のうち下層側に分離したサンプル分離 液 (下層液) のみを吸入する方法について、 図 2 2 を参照しながら説明 する。  Next, using the centrifuge tube 14 having the cap 30 having the above configuration, only the sample separation liquid (lower liquid) separated into the lower layer of the liquid separated into the upper liquid and the lower liquid is sucked. The method will be described with reference to FIG.
まず、 キャップ 3 0を外した状態で遠沈管 1 4内にサンプル液と有機 溶媒とを分注した後、 内管部 2 7 0が遠沈管 1 4内に深く差し入れられ て液体中に挿入されるようにし、 密栓部 2 6 8が遠沈管 1 4の上端部に 密嵌されるようにして、 キャップ 3 0を遠沈管 1 4に装着する。 この状 態で、 遠沈管を振盪させてサンプル液中の成分物質を有機溶媒層へ移行 させた後、 遠沈管を遠心分離機 6 0 (図 1 および図 2参照) にかけるこ とにより、 図 2 2に示すように、 遠沈管 1 4の内周面とキャップ 3 0の 内管部 2 7 0の外周面との間に収容された液体が上層液 2 7 6 と下層液 First, with the cap 30 removed, the sample solution and the organic solvent are dispensed into the centrifuge tube 14, and then the inner tube portion 270 is inserted deep into the centrifuge tube 14 and inserted into the liquid. Then, the cap 30 is attached to the centrifuge tube 14 so that the sealing plug portion 268 is tightly fitted to the upper end of the centrifuge tube 14. In this state, the components in the sample solution are transferred to the organic solvent layer by shaking the centrifuge tube, and then the centrifuge is centrifuged (see Figs. 1 and 2). As shown in 22, the liquid contained between the inner peripheral surface of the centrifuge tube 14 and the outer peripheral surface of the inner tube part 27 of the cap 30 is filled with the upper liquid 27 6 and the lower liquid.
(サンプル分離液) 2 7 8 とに分離される。 このとき、 図 2 2の ( a ) に示すように、 キャップ 3 0の内管部 2 7 0は、 その下端が遠沈管 1 4 の内底面付近に位置しているので、 内管部 2 7 0の下端は、 上層液 2 7(Sample Separation Solution) At this time, as shown in (a) of FIG. 22, since the lower end of the inner pipe portion 27 of the cap 30 is located near the inner bottom surface of the centrifuge tube 14, the inner pipe portion 27 The lower end of 0 is the upper liquid 2 7
6 と下層液 2 7 8 との境界面 2 8 0より下方に位置している。 このため、 内管部 2 7 0の下端付近は、 下層液 2 7 8中に挿入された状態になって いる。 It is located below the boundary surface 280 between 6 and the lower liquid 278. For this reason, the vicinity of the lower end of the inner pipe part 270 is inserted into the lower layer liquid 278. I have.
次に、 分注ノズル 2 0 0のディスポチップ 2 2 2内へ遠沈管 1 4から 下層液 2 7 8だけを吸入するには、 図 2 2の ( a ) に示すように分注ノ ズル 2 0 0 を下降させ、 図 2 2の ( b ) に示すように分注ノズル 2 0 0 のディスポチップ 2 2 2 を、 遠沈管 1 4のキャップ 3 0の密栓部 2 6 8 の貫通孔 2 7 4 を通って内管部 2 7 0の内方へ深く差し入れる。 そして、 ディスポチップ 2 2 2の下端で内管部 2 7 0下端の閉塞部 2 7 2 を下向 きに押圧することにより、 図 2 2の ( c ) に示すように、 詰め栓からな る閉塞部 2 7 2 を内管部 2 7 0の下端から脱落させ、 ディスポチップ 2 2 2の下端を下層液 2 7 8中に挿入させる。 この後、 分注ノズル 2 0 0 に接続されているシリンジ 2 5 8 (図 1 5および図 1 7参照) を駆動さ せることによ り、 ディスポチップ 2 2 2の下端口を通ってデイスポチッ プ 2 2 2内に液体を吸入する。 この際、 ディスポチップ 2 2 2の下端は 下層液 2 7 8中に挿入されているため、 下層液 2 7 8だけがディスポチ ップ 2 2 2内へ吸入され、 また、 ディスポチップ 2 2 2の下端は上層液 2 7 6 と下層液 2 7 8 との境界面 2 8 0よりずつと下方に位置している ため、 上層液 2 7 6の一部が下層液 2 7 8 と混ざり合ってコンタ ミネ一 シヨンを生じる、 といった心配は全く無い。  Next, in order to inhale only the lower layer liquid 278 from the centrifuge tube 14 into the disposable tip 222 of the dispensing nozzle 200, as shown in (a) of FIG. Then, lower the dispensing tip 2 of the dispensing nozzle 200 as shown in (b) of Fig. 22 and insert the through-hole 2 7 of the sealing plug 2 68 of the cap 30 of the centrifuge tube 14. 4 and insert it deeply into the inner pipe section 270. Then, the lower end of the disposable tip 222 presses the closed part 272 at the lower end of the inner pipe part 270 downward, thereby forming a plug as shown in (c) of FIG. The closed part 272 is dropped from the lower end of the inner pipe part 270, and the lower end of the disposable tip 222 is inserted into the lower liquid 278. Thereafter, the syringe 250 (see FIGS. 15 and 17) connected to the dispensing nozzle 200 is driven to drive the disposable tip through the lower end of the disposable tip 222. 2 Inhale liquid into 2 2. At this time, since the lower end of the disposable tip 222 is inserted into the lower liquid 278, only the lower liquid 278 is sucked into the disposable tip 222, and Since the lower end is located below the boundary surface 280 between the upper liquid 276 and the lower liquid 278, a part of the upper liquid 276 mixes with the lower liquid 278 to form a contour. There is no need to worry about producing minerals.
図 2 3に縦断面図を示した遠沈管 1 4のキャップ 2 8 2は、 密栓部 2 The cap 2 8 2 of the centrifuge tube 14 whose longitudinal section is shown in Fig. 23 is
8 4力 遠沈管 1 4の上端に被せられて液密に外嵌する構造を有し、 そ の密栓部 2 8 4の貫通孔 2 9 0の内周部に内管部 2 8 6の上端部が固着 されて、 密栓部 2 8 4 と内管部 2 8 6 とが一体化されている。 また、 内 管部 2 8 6の下端に薄板状部が一体形成されて閉塞部 2 8 8 を成してい る。 この薄板状部からなる閉塞部 2 8 8は、 分注ノズル 2 0 0のディス ポチップ 2 2 2の下端によって下向きに押し付けられることにより、 容 易に破裂するようになっている。 8 4 force A structure that is placed over the upper end of the centrifuge tube 14 and fits externally in a liquid-tight manner, and the upper end of the inner tube portion 28 6 The part is fixed, and the sealed part 284 and the inner pipe part 286 are integrated. Further, a thin plate-like portion is integrally formed at the lower end of the inner tube portion 286 to form a closed portion 288. The closed part 288 consisting of this thin plate-shaped part is dispensed with the dispensing nozzle 200 By being pressed downward by the lower end of the pochip 222, it can easily burst.
なお、 上記した各実施形態では、 キャップ 3 0 、 2 8 2 を構成する密 栓部 2 6 8 、 2 8 4 と内管部 2 7 0 、 2 8 6 とが別体とされ、 密栓部 2 6 8 、 2 8 4に内管部 2 7 0 、 2 8 6 を固着してそれらを一体化してい る力'、 密栓部と内管部とを一体形成するようにしてもよい。 また、 内管 部の下端を液密に閉塞し下向きの押圧力によって容易に脱落もしくは破 裂する閉塞部の構成は、 上記実施形態で示した詰め栓ゃ内管部下端に薄 板状部を一体形成したものに限らず、 例えば内管部の下端口をフィルム で被覆して液密に閉塞するような構成であってもよい。  In each of the embodiments described above, the sealing portions 268, 284 constituting the caps 30, 282 and the inner tube portions 270, 286 are separate from each other. The inner tube portions 270 and 286 may be fixed to 688 and 284, and the force for integrating them may be integrally formed, and the hermetic plug portion and the inner tube portion may be integrally formed. Further, the configuration of the closing portion, which closes the lower end of the inner tube portion in a liquid-tight manner and easily falls or ruptures by a downward pressing force, is as follows. The configuration is not limited to the one formed integrally, and for example, a configuration in which the lower end of the inner tube portion is covered with a film and closed in a liquid-tight manner may be used.
蒸発乾固ステージ 6 6には、 図 2 4に正面縦断面図を、 図 2 5に側面 縦断面図をそれぞれ示すように、 固定フレーム 2 9 2にヒータブロック 2 9 4が取着されており、 ヒータブロック 2 9 4には、 複数本の試験管 2 4が上方から嵌入される複数個の縦孔 2 9 6が形設されている。 縦孔 2 9 6は、 その内周面が試験管 2 4の外周面に密接する形状に形成され ている。 また、 ヒータブロック 2 9 4には、 各縦孔 2 9 6の底部に連通 する貫通孔 2 9 8がそれぞれ穿設されており、 各貫通孔 2 9 8には突上 げ棒 3 0 0が摺動自在にそれぞれ貫挿されていて、 突上げ棒 3 0 0の先 端部に固着された押上げ板 3 0 2が縦孔 2 9 6内で上下方向に往復移動 するようになつている。 複数本の突上げ棒 3 0 0のそれぞれの下端部は、 共通の昇降板 3 0 4に固着されている。 また、 固定フレーム 2 9 2の上 方には、 各試験管 2 4の上端にそれぞれ当接して上端開口を気密に塞ぐ 複数のノズル栓 3 0 8 を有する Jズルへッ ド 3 0 6が配設されている。 ノズル栓 3 0 8には、 試験管 2 4の内部へ窒素ガスを吹き込むガス供給 ノズル 3 1 0、 および、 試験管 2 4の内部からの廃ガスを排出する排気 孔 3 1 2が形設されている。 ノズルへッ ド 3 0 6は、 ラック 3 1 4に連 結されて固定フレーム 2 9 2に支持されている。 また、 固定フレーム 2 9 2には、 正 · 逆回転可能な昇降駆動用モータ 3 1 6が固設されており、 そのモータ 3 1 6の回転軸にピニオン 3 1 8が固着され、 ピニオン 3 1 8 とラック 3 1 4が螺合している。 さらに、 ラック 3 1 4は、 それに固 着されたフック 3 2 0およびフック 3 2 0に係合した連結部材 3 2 2 を 介して昇降板 3 0 4に連結されている。 符号 3 2 4は、 昇降用ガイ ドで ある。 そして、 昇降駆動用モータ 3 1 6 を駆動させることによリ、 ノズ ルへッ ド 3 0 6 と昇降板 3 0 4、 突上げ棒 3 0 0および押上げ板 3 0 2 とが一体に上昇および下降するようになっている。 The heater block 2 94 is attached to the fixed frame 29 2, as shown in Fig. 24 and Fig. 25, respectively. The heater block 294 has a plurality of vertical holes 296 into which a plurality of test tubes 24 are fitted from above. The vertical hole 296 is formed so that the inner peripheral surface thereof is in close contact with the outer peripheral surface of the test tube 24. Further, the heater block 294 has a through hole 298 communicating with the bottom of each vertical hole 296, and a push rod 300 is provided in each through hole 298. The push-up plate 302, which is slidably penetrated and fixed to the tip end of the push-up bar 300, reciprocates vertically in the vertical hole 296. . The lower end of each of the plurality of push-up bars 300 is fixed to a common elevating plate 304. Also, above the fixed frame 292, there is a J-Zull head 300 having a plurality of nozzle plugs 300 that abut against the upper end of each test tube 24 to seal the upper end opening hermetically. Has been established. Gas supply for blowing nitrogen gas into the test tube 24 A nozzle 310 and an exhaust hole 312 for discharging waste gas from the inside of the test tube 24 are formed. The nozzle head 306 is connected to the rack 314 and supported by the fixed frame 292. The fixed frame 292 is provided with a motor 3116 for forward and backward rotation, which can be rotated forward and backward. A pinion 318 is fixed to the rotating shaft of the motor 316. 8 and the rack 3 1 4 are screwed together. Further, the rack 314 is connected to the lifting plate 304 via a hook 322 fixed thereto and a connecting member 322 engaged with the hook 322. The reference numeral 3 2 4 is an elevating guide. By driving the lifting drive motor 3 16, the nozzle head 300, the lifting plate 304, the push-up bar 300, and the push-up plate 302 are integrally raised. And descend.
溶媒分注ステージ 6 8には、 図示していない力^ 前記振盪ステージ 5 8に設置された振盪機 1 9 4 と同様の振盪機が設けられている。  The solvent dispensing stage 68 is provided with a force not shown, which is the same as the shaker 194 installed on the shake stage 58.
イ ンジェクションュニッ 卜 7 0は、 図 2 6に示すように、 一端部を中 心と して水平面内で回動するイ ンジェクションアーム 3 2 6 を有してお り、 イ ンジェクションアーム 3 2 6の先端部には、 スライ ドベアリ ング 3 2 8 を介してノズル保持軸 3 3 0が取着されており、 ノズル保持軸 3 3 0は、 圧縮コイルばね 3 3 2によってインジェクションアーム 3 2 6 の先端部に弾発的に支持されている。 ノズル保持軸 3 3 0の下端部には チャック 3 3 4が設けられており、 そのチャック 3 3 4にイ ンジェクシ ヨンノズル 3 3 6が保持されている。 インジェクションアーム 3 2 6 は その一端部がアーム支持軸 3 3 8に固着されている。 アーム支持軸 3 3 8は、 図示していないがボールスプライ ン軸に連結されていて、 鉛直軸 線回りに回転自在にかつ鉛直軸線に沿って上下方向に移動自在に支持さ れている。 アーム支持軸 3 3 8は、 昇降駆動機構によって上下方向に往 復移動させられるとともに、 回転駆動機構によって回動させられ、 これ により、 アーム支持軸 3 3 8に固着されたイ ンジェクションアーム 3 2 6が昇降および回動するようになっている。 昇降駆動機構および回転駆 動機構の構成は、 図 1 0に示した溶媒分注ュニッ 卜 5 6の昇降駆動機構 および回転駆動機構と同様であるので、 その図示および説明を省略する。 試験管 2 4内に分注されたサンプル分離液を蒸発乾固させた後にその 残渣を溶解させて分析機器へ注入するための有機溶媒、 例えばメタノ ー ルを試験管 2 4内に分注する溶媒分注ュニッ 卜と、 その後に試験管 2 4 内からサンプル分離液を吸入するイ ンジヱクシヨンュニッ 卜とを別々に 設けるようにしてもよいが (図 3および図 4に示した操作工程を参照) 、 この実施形態では、 インジェクションュニッ 卜 7 0により、 試験管 2 4 内への有機溶媒の分注操作も行うようになつている。 このイ ンジェクシ ヨンユニッ ト 7 0により、 試験管 2 4内への溶媒分注から、 試験管 2 4 内からのサンプル分離液の吸入および H P L Cのカラムへのサンプル分 離液の注入までの操作方法を、 図 2 7 に基づいて説明する。 As shown in FIG. 26, the injection unit 70 has an injection arm 32 6 that rotates in a horizontal plane with one end as a center. A nozzle holding shaft 330 is attached to the distal end of the nozzle 326 via a slide bearing 328, and the nozzle holding shaft 330 is connected to the injection arm 322 by a compression coil spring 332. It is elastically supported at the tip of 6. A chuck 334 is provided at a lower end portion of the nozzle holding shaft 330, and the injection nozzle 336 is held by the chuck 334. One end of the injection arm 326 is fixed to the arm support shaft 338. The arm support shaft 338 is connected to a ball spline shaft (not shown), and is supported so as to be rotatable about a vertical axis and movable vertically along the vertical axis. Have been. The arm support shaft 338 is moved up and down by the elevation drive mechanism and rotated by the rotation drive mechanism, whereby the injection arm 32 fixed to the arm support shaft 338 is moved. 6 moves up and down and rotates. The configuration of the lifting drive mechanism and the rotary drive mechanism is the same as the lift drive mechanism and the rotary drive mechanism of the solvent dispensing unit 56 shown in FIG. 10, so that illustration and description thereof are omitted. After evaporating the sample separation liquid dispensed in the test tube 24 to dryness, dissolve the residue and inject the organic solvent such as methanol for injection into the analytical instrument into the test tube 24 Although a solvent dispensing unit and an injection unit for aspirating the sample separation liquid from the test tube 24 after that may be provided separately, it is also possible to provide a separate unit (see the operation shown in FIGS. 3 and 4). In this embodiment, the operation of dispensing the organic solvent into the test tube 24 is performed by the injection unit 70 in this embodiment. With this injection unit 70, the operation method from dispensing the solvent into the test tube 24 to inhaling the sample separated solution from the test tube 24 and injecting the sample separated solution into the HPLC column is performed. Explanation will be given based on FIG.
最初に、 イ ンジェクションユニッ ト 7 0の流路構成を説明すると、 ィ ンジェクシヨンュニッ ト 7 0は、 イ ンジェクションノズル 3 3 6の他、 計量管ループ 3 4 0、 六方バルブ 3 4 2、 溶媒分注用シリ ンジ 3 4 4 、 三方切換バルブ 3 4 6、 乾固された残渣を溶解させて H P L Cのカラム へ注入するためのメタノール 3 5 0が収容された貯液容器 3 4 8、 およ び配管類から流路構成されている。 イ ンジェクションノズル 3 3 6は、 六方バルブ 3 4 2の bポ一 卜と流路接続しており、 計量管ループ 3 4 0 は、 その両端が六方バルブ 3 4 2の cポー 卜および eポー トにそれぞれ 流路接続している。 シリ ンジ 3 4 4は、 三方切換バルブ 3 4 6 を介して 六方バルブ 3 4 2の aポー 卜および貯液容器 3 4 8にそれぞれ流路接続 している。 また、 六方バルブ 3 4 2の dポ一 卜は H P L Cのポンプに、 f ポー 卜は H P L Cのカラムにそれぞれ流路接続されている。 First, the flow path configuration of the injection unit 70 will be described. In addition to the injection nozzle 33, the injection unit 70, the measuring pipe loop 34, and the hexagonal valve 34 2, Syringe for solvent dispensing 3 4 4, 3-way switching valve 3 4 6, Storage container 3 4 8 containing methanol 350 for dissolving the dried residue and injecting it into the HPLC column The flow path is composed of, and pipes. The injection nozzle 3336 is connected to the b-port of the six-way valve 3442 in a flow path, and the metering tube loop 3440 has both ends of the c-port and the e-port of the six-way valve 3442. Each The flow path is connected. The syringe 344 is connected to the port a of the six-way valve 342 and the liquid storage container 348 via the three-way switching valve 346, respectively. The d port of the six-way valve 342 is connected to the HPLC pump, and the f port is connected to the HPLC column.
まず、 試験管 2 4内へメタノ ールを分注するには、 図 2 7の ( a ) に 示すように、 六方バルブ 3 4 2 を経てシリ ンジ 3 4 4 とイ ンジェクショ ンノズル 3 3 6 とが連通した状態で、 三方切換バルブ 3 4 6 を切換え操 作して、 貯液容器 3 4 8からメタノールをシリ ンジ 3 4 4内へ吸い込み, シリ ンジ 3 4 4内からメタ ノ ーゾレをイ ンジェクションノズル 3 3 6へ送 り、 イ ンジェクションノズル 3 3 6から試験管 2 4内へメタノールを、 例えば 0 . 1 m 1吐出する。 次に、 六方バルブ 3 4 2 を切り換えて、 図 First, in order to dispense methanol into the test tube 24, as shown in (a) of FIG. 27, a syringe 34 4 and an injection nozzle 33 36 are passed through a six-way valve 34 2. When the three-way switching valve 3446 is switched and operated, the methanol is sucked into the syringe 344 from the liquid storage container 348, and the methanol is removed from the syringe 344. It is sent to the injection nozzle 336, and then, for example, 0.1 ml of methanol is discharged from the injection nozzle 336 into the test tube 24. Next, switch the 6-way valve 3 4 2
2 7の ( b ) に示すように、 六方バルブ 3 4 2および計量管ループ 3 427 As shown in (b), 7-way valve 3 4 2 and metering tube loop 3 4
0を経てインジェクションノズル 3 3 6 とシリンジ 3 4 とが連通した 状態にし、 振盪機 .(図示せず) によって試験管 2 4内の液を撹拌した後. シリ ンジ 3 4 4 を駆動させてイ ンジェクションノズル 3 3 6内へ試験管After the injection nozzle 3336 and the syringe 34 are in communication with each other through 0, the liquid in the test tube 24 is agitated with a shaker (not shown). Test tube into injection nozzle 3 3 6
2 4内のサンプル溶解液を吸入し、 計量管ループ 3 4 0内へ一定量のサ ンプル溶解液を導入する。 続いて、 六方バルブ 3 4 2 を切り換えて、 図Aspirate the sample lysis solution in 24 and introduce a fixed amount of sample lysis solution into the metering tube loop 340. Next, switch the 6-way valve 3 4 2
2 7の ( c ) に示すように、 六方バルブ 3 4 2および計量管ループ 3 42 As shown in (c) of 7, the hexagonal valve 3 4 2 and the metering tube loop 3 4
0を経て H P L Cポンプと H P L Cカラムとが連通した状態にするとと もに、 六方バルブ 3 4 2 を経てシリ ンジ 3 4 4 とイ ンジェクションノズ ル 3 3 6 とが連通した状態にする。 そして、 H P L Cのポンプにより計 量管ループ内に保持された一定量のサンプル溶解液をカラムへ注入する また、 それと併行して、 インジェクションノズル 3 3 6 を洗浄槽 3 5 2 へ移動させ、 三方切換バルブ 3 4 6 を切換え操作するとともにシリンジ 3 4 を駆動させて、 貯液容器 3 4 8からインジェクションノズル 3 3 6へメタノ ールを送り、 イ ンジェクションノズル 3 3 6の先端口からメ タ ノ ールを吐出して、 イ ンジェクションノズル 3 3 6および配管内をメ タノールで洗浄する。 The state is such that the HPLC pump and the HPLC column are in communication with each other via 0, and the syringe 344 and the injection nozzle 336 are in communication with each other via the six-way valve 342. Then, a certain amount of the sample solution retained in the measuring tube loop is injected into the column by the HPLC pump.At the same time, the injection nozzle 336 is moved to the washing tank 352, and the three-way switching is performed. Switch valve 3 4 6 and syringe Drive 3 4 to send methanol from the liquid storage container 3 4 8 to the injection nozzle 3 3 6, discharge the methanol from the tip end of the injection nozzle 3 3 6, and perform the injection. Rinse nozzle 3 3 6 and pipes with methanol.
次に、 以上説明したような構成を有する自動濃度測定装置によ りサン プル、 例えば凍結血清中に含まれる特定の成分物質 (例えば薬物) の濃 度を自動的に測定する動作の 1例について説明する。  Next, an example of an operation of automatically measuring the concentration of a specific component substance (for example, a drug) contained in a sample, for example, a frozen serum, by an automatic concentration measuring device having the above-described configuration will be described. explain.
まず、 凍結血清が入った蓋付きサンプル管 1 0を複数本、 自動溶媒抽 出部 3 6の円形ターンテ一ブル 4 8のサンプル管保持部 7 4にセッ 卜す る。 そして、 凍結血清を解凍して均一化させた後、 キャップ着脱機構 1 3 8により、 サンプル管 1 0 を円形タ一ンテ一ブル 4 8上からサンプル 管吸入ステージ 5 4上へ移動させ、 サンプル吸入ステージ 5 4上にサン プル管 1 0を固定する。 そして、 キヤップ着脱機構 1 3 8によ りサンプ ル管 1 0のキャップ 1 2 を取り外す。 次に、 サンプル分注ュニッ 卜 5 2 のアーム 8 4 を Y軸方向に、 分注ヘッ ド 8 6 を X軸方向に、 分注ノズル 8 8 を Z軸方向にそれぞれ移動させて、 円形ターンテーブル 4 8のディ スポチップ保持部 7 6に保持されたディスポチップ 1 1 6 を分注ノズル 8 8の先端部に装着する。 次いで、 サンプル分注ュニッ 卜 5 2のアーム 8 4、 分注ヘッ ド 8 6および分注ノズル 8 8を Y軸方向、 X軸方向およ び Z軸方向にそれぞれ移動させて、 分注ノズル 8 8のディスポチップ 1 1 6の先端部 (下端部) を、 サンプル吸入ステージ 5 4上に固定された サンプル管 1 0内のサンプル液 (融解血清) 中に浸漬させ (図 7の二点 鎖線参照) 、 ディスポチップ 1 1 6内へサンプル液を吸入する。 そして . サンプル分注ュニッ 卜 5 2のアーム 8 4、 分注へッ ド 8 6および分注ノ ズル 8 8 を Y軸方向、 X軸方向および Ζ軸方向にそれぞれ移動させて、 分注ノズル 8 8のディスポチップ 1 1 6の先端部を、 処理タ一ンテープ ル 5 0の遠沈管保持部 7 8に保持された遠沈管 1 4内へ挿入し (図 8の 二点鎖線参照) 、 ディスポチップ 1 1 6内に吸入されたサンプル液を遠 沈管 1 4内へ吐出する。 その後、 使用済みのディ スポチップ 1 1 6 を投 棄ポッ 卜 7 3へ廃棄し、 キヤップ着脱機構 1 3 8によリサンプル管 1 0 にキャップ 1 2 を装着した後、 サンプル管 1 0を円形ターンテーブル 4 8のサンプル管保持部 7 4へ戻す。 First, a plurality of sample tubes 10 with lids containing frozen serum are set in the sample tube holder 74 of the circular turntable 48 of the automatic solvent extraction unit 36. After the frozen serum is thawed and homogenized, the sample tube 10 is moved from the top of the circular table 48 to the sample tube suction stage 54 by the cap attaching / detaching mechanism 13, and the sample is sucked. The sample tube 10 is fixed on the stage 54. Then, the cap 12 of the sample tube 10 is removed by the cap attaching / detaching mechanism 1388. Next, the arm 84 of the sample dispensing unit 52 is moved in the Y-axis direction, the dispensing head 86 is moved in the X-axis direction, and the dispensing nozzle 88 is moved in the Z-axis direction. 4 Attach the disposable tip 1 16 held by the disposable tip holding portion 76 at the tip of the dispensing nozzle 88. Next, the arm 84, the dispensing head 86, and the dispensing nozzle 88 of the sample dispensing unit 52 are moved in the Y-axis direction, the X-axis direction, and the Z-axis direction, respectively. The tip (lower end) of the 8 disposable chip 1 16 is immersed in the sample solution (melted serum) in the sample tube 10 fixed on the sample suction stage 54 (see the two-dot chain line in Fig. 7). ) Inhale the sample solution into the disposable tip 1 16. And arm of sample dispensing unit 52, dispensing head 86 and dispensing nozzle The nozzle 8 8 is moved in the Y-axis direction, X-axis direction, and Ζ-axis direction, and the tip of the dispensing tip 1 16 of the dispensing nozzle 8 8 Insert into the centrifuge tube 14 held in 8 (see the two-dot chain line in FIG. 8), and discharge the sample liquid sucked into the disposable tip 116 into the centrifuge tube 14. After that, the used disposable tip 1 16 is discarded to the dumping port 73, the cap 12 is attached to the re-sample tube 10 by the cap attaching / detaching mechanism 1 38, and then the sample tube 10 is turned circularly. Return to sample tube holder 7 4 of table 4 8.
次に、 処理ターンテーブル 5 0を回動させて、 遠沈管保持部 7 8に保 持されサンプル液の入った遠沈管 1 4 を溶媒分注位置へ移動させる。 そ して、 溶媒分注ュニッ ト 5 6の分注アーム 1 4 0 を Θ方向に回動 (水平 面内で回動) させた後下降させ、 ノズル部 1 4 2に固定された送液チュ —ブ 1 4 4 、 1 4 6 、 i 4 8の先端部を、 処理ターンテーブル 5 0の遠 沈管保持部 7 8に保持された遠沈管 1 4内へ挿入し (図 1 0の二点鎖線 参照) 、 遠沈管 1 4内へ酢酸ェチル (有機溶媒) 、 メタノールおよび p H緩衝液を分注する。 次に、 サンプル分注ユニッ ト 5 2のアーム 8 4 、 分注へッ ド 8 6およびチャックュニッ 卜 9 0を Y軸方向、 X軸方向およ び Z軸方向にそれぞれ移動させた後、 チャックュニッ 卜 9 0を作動させ て、 処理ターンテーブル 5 0のキャップ保持部 8 0に保持された遠沈管 用キャップ 1 6 を一対のチヤック爪 1 1 8 、 1 1 8で把持し、 キャップ 保持部 8 0からキャップ 1 6 を取り出す。 そして、 サンプル分注ュニッ 卜 5 2のアーム 8 4、 分注へッ ド 8 6およびチャックュニッ 卜 9 0を Y 軸方向、 X軸方向および Z軸方向にそれぞれ移動させた後、 チヤツクユ ニッ 卜 9 0を作動させて、 処理ターンテーブル 5 0の遠沈管保持部 7 8 に保持された遠沈管 1 4にキャップ 1 6 を装着する。 Next, the processing turntable 50 is rotated to move the centrifuge tube 14 held by the centrifuge tube holding unit 78 and containing the sample solution to the solvent dispensing position. Then, the dispensing arm 140 of the solvent dispensing unit 56 is rotated in the Θ direction (rotated in a horizontal plane), then lowered, and the liquid sending tube fixed to the nozzle portion 142 is rotated. — Insert the tips of the pieces 144, 144, and i48 into the centrifuge tube 14 held by the centrifuge tube holder 78 of the processing turntable 50 (the two-dot chain line in FIG. 10). Dispense ethyl acetate (organic solvent), methanol and pH buffer into centrifuge tube 14). Next, the arm 84, the dispensing head 86, and the chuck unit 90 of the sample dispensing unit 52 are moved in the Y-axis direction, the X-axis direction, and the Z-axis direction, respectively. Activate 90 to grip the centrifuge tube cap 16 held in the cap holding section 80 of the processing turntable 50 with a pair of chuck claws 1 18, 1 18, and from the cap holding section 80 Remove cap 16. Then, the arm 84, the dispensing head 86, and the chuck unit 90 of the sample dispensing unit 52 are moved in the Y-axis direction, the X-axis direction, and the Z-axis direction, respectively, and then the chuck unit 90 is moved. To operate the centrifuge tube holder of the processing turntable 50 Attach cap 16 to centrifuge tube 14 held in.
遠沈管 1 4にキャップ 1 6が装着されると、 チャックユニッ ト 9 0の 一対のチャック爪 1 1 8、 1 1 8でキャップ 1 6 を把持したままの状態 で、 サンプル分注ュニッ 卜 5 2のアーム 8 4、 分注へッ ド 8 6およびチ ャツクユニッ 卜 9 0を Y軸方向、 X軸方向および Z軸方向にそれぞれ移 動させた後、 チャックユニッ ト 9 0を作動させて、 処理ターンテーブル 5 0の遠沈管保持部 7 8に保持された遠沈管 1 4 を振盪ステージ 5 8へ 移動させ、 振盪機 1 9 4に遠沈管 1 4 をセッ 卜する。 そして、 振盪機 1 9 4 を駆動させて遠沈管 1 4 を振盪させ、 遠沈管 1 4内でサンプル液中 の目的とする成分物質を有機溶媒中へ移行させる。 振盪が終わると、 サ ンプル分注ュニッ ト 5 2のアーム 8 4、 分注へッ ド 8 6およびチヤック ユニッ ト 9 0を Y軸方向、 X軸方向および Z軸方向にそれぞれ移動させ るとともにチャックユニッ ト 9 0を作動させて、 遠沈管 1 4 を振盪ステ ージ 5 8から遠心分離機 6 0へ移動させ、 遠心分離機 6 0に遠沈管 1 4 をセッ トする。 そして、 遠心分離機 6 0 を駆動させて液を遠心分離する。 遠心分離が終わると、 分離液分注ュニッ 卜 6 2のアーム 1 9 6、 分注 ヘッ ド 1 9 8および遠沈管移載 ffiのチャックユニッ ト (図示せず) を Y 軸方向、 X軸方向および Z軸方向にそれぞれ移動させるとともにチヤッ クュニッ トを作動させて、 遠沈管 1 4 を遠心分離機 6 0から取り出し、 遠沈管 1 4 を分離液吸入ステージ 6 4へ移動させて遠沈管固定ュニッ 卜 When the cap 16 is attached to the centrifuge tube 14, the sample dispensing unit 5 2 is held while holding the cap 16 with the pair of chuck jaws 1 18 and 1 18 of the chuck unit 90. After moving the arm 84, dispensing head 86 and chuck unit 90 in the Y-axis direction, X-axis direction and Z-axis direction, the chuck unit 90 is operated and the processing turn is performed. The centrifuge tube 14 held in the centrifuge tube holder 78 of the table 50 is moved to the shaking stage 58, and the centrifuge tube 14 is set in the shaker 1994. Then, the shaker 1994 is driven to shake the centrifuge tube 14, and the target component substance in the sample solution is transferred into the organic solvent in the centrifuge tube 14. After shaking, the arm 84, dispensing head 86 and chuck unit 90 of the sample dispensing unit 52 are moved in the Y-axis direction, X-axis direction and Z-axis direction, and the chuck is moved. Activate the unit 90, move the centrifuge tube 14 from the shaking stage 58 to the centrifuge 60, and set the centrifuge tube 14 in the centrifuge 60. Then, the liquid is centrifuged by driving the centrifuge 60. After the centrifugation is completed, the arm 196 of the separated solution dispensing unit 62, the dispensing head 198 and the chuck unit (not shown) of the centrifuge tube transfer ffi are moved in the Y-axis direction and the X-axis direction. And the Z-axis direction, and operate the chuck unit to remove the centrifuge tube 14 from the centrifuge 60 and move the centrifuge tube 14 to the separation liquid suction stage 64 to fix the centrifuge tube.
2 2 8に固定する。 続いて、 キヤップ取外しュニッ 卜 2 2 6により遠沈 管 1 4からキャップ 1 6 を取り外す。 なお、 この操作例は、 遠心分離に より遠沈管 1 4内でサンプル分離液が上層側に分離した場合のものであ り、 遠心分離により遠沈管 1 4内でサンプル分離液が下層側に分離する 場合には、 図 5および図 2 2に示したように、 遠沈管 1 4からキャップ 3 0 を取り外す必要は無い。 Fix to 2 2 8 Subsequently, the cap 16 is removed from the centrifuge tube 14 by the cap removal unit 22. In this operation example, the sample separation liquid is separated into the upper layer side in the centrifuge tube 14 by centrifugation, and the sample separation liquid is separated into the lower layer side in the centrifuge tube 14 by centrifugation. Do In this case, there is no need to remove the cap 30 from the centrifuge tube 14 as shown in FIGS. 5 and 22.
遠沈管 1 4からキャップ 1 6が取り外されると、 分離液分注ュニッ 卜 6 2のアーム 1 9 6 を Y軸方向に、 分注へッ ド 1 9 8 を X軸方向に、 分 注ノズル 2 0 0 を Z軸方向にそれぞれ移動させて、 ディスポチップ用ラ ック 7 2のディスポチップ保持部 2 2 4に保持されたディスポチップ 2 2 2 を分注ノズル 2 0 0の先端部に装着する。 次いで、 分離液分注ュニ ッ 卜 6 2のアーム 1 9 6、 分注へッ ド 1 9 8および分注ノズル 2 0 0を Y軸方向、 X軸方向および Z軸方向にそれぞれ移動させて、 分注ノズル 2 0 0のディスポチップ 2 2 2の先端部 (下端部) を、 分離液吸入ステ —ジ 6 4の遠沈管固定ュニッ 卜 2 2 8に固定された遠沈管 1 4内のサン プル分離液中に浸漬させ、 ディスポチップ 2 2 2内へサンプル分離液を 吸入する (図 1 4ないし図 1 6ならびに図 1 8および図 1 9参照) 。 続 いて、 分離液分注ユニッ ト 6 2のアーム 1 9 6、 分注ヘッ ド 1 9 8およ び分注ノズル 2 0 0を Y軸方向、 X軸方向および Z軸方向にそれぞれ移 動させて、 分注ノズル 2 0 0のディスポチップ 2 2 2の先端部を、 処理 ターンテーブル 5 0の試験管保持部 8 2の分注位置 A (図 2参照) に保 持された試験管 2 内へ挿入し (図 1 5参照) 、 ディスポチップ 2 2 2 内に吸入されたサンプル分離液を試験管 2 4内へ吐出する。 その後、 使 用済みのディスポチヅプ 2 2 2 を投棄ポッ ト 7 3へ廃棄する。 また、 ィ ンジェクシヨンュニッ ト 7 0 を作動させ、 遠沈管 1 4内に残存した液を イ ンジェクショ ンノ ズル 3 3 6内へ吸入した後洗浄槽 3 5 2へ廃棄する。 続いて、 分離液分注ユニッ ト 6 2 を作動させ、 遠沈管移載用のチャック ユニッ トを用いて遠沈管 1 4にキャップ 1 6 を装着した後、 使用済みの 遠沈管 1 4 を投棄ポッ 卜 7 3へ廃棄する。 When the cap 16 is removed from the centrifuge tube 14, the arm 1 96 of the separation liquid dispensing unit 62 is moved in the Y-axis direction, the dispensing head 198 is moved in the X-axis direction, and the dispensing nozzle 2 The disposable tip 22 is held in the disposable tip holder 22 of the disposable tip rack 72 by displacing the disposable tip 22 in the Z-axis direction. . Next, the arm 196, the dispensing head 198, and the dispensing nozzle 200 of the separation liquid dispensing unit 62 are moved in the Y-axis direction, the X-axis direction, and the Z-axis direction, respectively. The tip (lower end) of the disposable tip 222 of the dispensing nozzle 200 is connected to the centrifuge tube 14 fixed to the centrifuge tube fixing unit 222 of the separated liquid suction stage 64. Immerse in the pull separation solution and aspirate the sample separation solution into the disposable tip 222 (see Figs. 14 to 16 and Figs. 18 and 19). Subsequently, the arm 196, the dispensing head 198, and the dispensing nozzle 200 of the separation liquid dispensing unit 62 are moved in the Y-axis direction, the X-axis direction, and the Z-axis direction, respectively. The tip of the disposable tip 222 of the dispensing nozzle 200 is placed in the test tube 2 held at the dispensing position A (see FIG. 2) of the test tube holder 82 of the processing turntable 50. Into the test tube 24 (see Fig. 15), and discharge the sample separation liquid sucked into the disposable tip 222 into the test tube 24. After that, the used disposable tip 222 is discarded to the dumping pot 73. Further, the injection unit 70 is operated, and the liquid remaining in the centrifuge tube 14 is sucked into the injection nozzle 336, and then discarded into the washing tank 352. Subsequently, the separation liquid dispensing unit 62 was operated, and the cap 16 was attached to the centrifuge tube 14 using the chuck unit for transferring the centrifuge tube. Discard centrifuge tube 14 to dumping port 73.
次に、 処理ターンテーブル 5 0を回転させて、 試験管 2 4 を蒸発乾固 ステージ 6 6へ移動させ、 図 2 4および図 2 5に示したような状態に試 験管 2 4 を保持して、 ヒ一タブロヅク 2 9 4により試験管 2 を周囲か ら加熱するとともに、 ノズルへッ ド 3 0 6のノズル栓 3 0 8のガス供給 ノズル 3 1 0から試験管 2 4の内部へその上部開口を通して窒素ガスを 吹き込み、 廃ガスを排気孔 3 1 2 を通って排出することにより、 試験管 2 4内のサンプル分離液を蒸発させて、 サンプル分離液を乾固させる。 次いで、 分離液分注ュニッ 卜 6 2のアーム 1 9 6、 分注へッ ド 1 9 8 および遠沈管移載用のチヤヅ クュニッ 卜を Y軸方向、 X軸方向および Z 軸方向にそれぞれ移動させるとともにチャックュニッ トを作動させて、 試験管 2 4 を処理ターンテーブル 5 0の試験管保持部 8 2の取出し位置 B (図 2参照) から取り出し、 試験管 2 4 を溶媒分注ステージ 6 8へ移 動させて振遨機 (図示せず) に固定する。 そして、 インジェクションュ ニッ ト 7 0を作動させ、 図 2 7の ( a ) に示したような操作で有機溶媒、 例えばメタノールを試験管 2 4内へ分注する。 続いて、 振盪機を駆動さ せて試験管 2 4 を振盪させ、 乾固された残渣をメタノールに溶解させる c 振遨が終わると、 イ ンジェクションユニッ ト 7 0を作動させて、 図 2 7 の ( b ) に示したような操作により、 試験管 2 4内から成分物質が有機 溶媒に溶解したサンプル溶解液をイ ンジェクションノズル 3 3 6内へ吸 入してその吸入されたサンプル溶解液の所定量を H P L Cのカラムへ注 入し、 成分物質の濃度を測定する。 そして、 分離液分注ユニッ ト 6 2 を 作動させ、 遠沈管移載用のチャックュニッ トを用いて使用済みの試験管 Next, the processing turntable 50 is rotated, and the test tube 24 is moved to the evaporating and drying stage 66, and the test tube 24 is held in the state shown in FIGS. 24 and 25. The test tube 2 is heated from the surroundings by the hot block 294, and the gas supply nozzle 308 of the nozzle head 306 is supplied to the inside of the test tube 224 from the nozzle 310. Nitrogen gas is blown through the opening, and waste gas is exhausted through the exhaust holes 312, thereby evaporating the sample separation liquid in the test tube 24 and drying the sample separation liquid. Next, the arm 196 of the separation liquid dispensing unit 62, the dispensing head 198 and the centrifuge tube transfer tube unit are moved in the Y-axis direction, the X-axis direction, and the Z-axis direction, respectively. At the same time, the chuck unit is operated to remove the test tube 24 from the removal position B of the test tube holding portion 82 of the processing turntable 50 (see FIG. 2), and transfer the test tube 24 to the solvent dispensing stage 68. And fix it on a machine (not shown). Then, the injection unit 70 is operated, and an organic solvent, for example, methanol is dispensed into the test tube 24 by the operation shown in FIG. Subsequently, the shaker is driven to shake the test tube 24, and the dried residue is dissolved in methanol. C When the shaking is completed, the injection unit 70 is operated to activate the injection unit 70. By the operation shown in (b) of (a), the sample solution in which the component substances are dissolved in the organic solvent is sucked into the injection nozzle 336 from the test tube 24, and the sucked sample solution is sucked. Inject a predetermined amount of へ into an HPLC column and measure the concentration of the component substances. Then, the separation liquid dispensing unit 62 is operated, and the used test tubes are transferred using the chuck unit for transferring the centrifuge tubes.
2 4 を投棄ポッ ト 7 3へ廃棄する。 また、 イ ンジェクションユニッ ト 7 0を作動させ、 図 2 7の ( c ) に示したような操作でイ ンジェクション ノズル 3 3 6および配管内をメタノール洗浄する。 図 2 8および図 2 9 に、 この一連の動作のフローチャー トを示す。 Discard 2 4 to dumping port 73. In addition, the injection unit 7 0 is operated, and the injection nozzle 3336 and the inside of the pipe are washed with methanol by the operation shown in (c) of Fig. 27. Figures 28 and 29 show flowcharts of this series of operations.
なお、 上記した実施形態では、 蒸発乾固ステージ 6 6および振盪機が 設けられた溶媒分注ステージ 6 8 を備えた装置構成により、 容器 (試験 管 2 4 ) に分注されたサンプル分離液を蒸発乾固させた後、 容器内へ有 機溶媒を分注し、 容器を振遨させて、 有機溶媒に溶解させることにより , H P L Cなどの分析機器へ注入するサンプル溶解液を調製するようにし ている力 溶媒分注ステージ 6 8 を設けないで濃縮ステージを備えた装 置構成により、 容器に分注されたサンプル分離液の有機溶媒の一部を蒸 発させて、 濃縮されたサンプル分離液を調製するようにしてもよい。 ま た、 溶媒抽出により得られるサンプル分離液が、 必要とする程度の濃度 を有しているときは、 蒸発乾固ステージや濃縮ステージを特に設けなく てもよい。 さらに、 .溶媒分注ステージ 6 8 を設けないで蒸発乾固ステ一 ジ 6 6 を備えた装置構成によ リ、 容器に分注されたサンプル分離液の有 機溶媒の全部を蒸発させて、 乾固された残渣が最終的に得られる自動抽 出装置とし、 その自動抽出装置により得られた乾固残渣から、 H P L C やガスクロマ トグラフ分析装置などの分析機器へ注入するサンプル液を 調製するようにしてもよい。 また、 蒸発乾固ステージ 6 6や濃縮ステー ジおよび溶媒分注ステージ 6 8の他に分離液分注ュニッ 卜 6 2も設けな いで自動濃度測定装置を構成し、 分離液分注ュニッ 卜 6 2のような機能 を備えたインジェクションュニッ 卜により、 遠沈管内で層分離したサン プル分離液を、 遠沈管内から直接に吸入して H P L Cなどの分析機器へ 注入するようにしてもよい。 産業上の利用の可能性 In the above-described embodiment, the sample separation liquid dispensed into the container (test tube 24) is configured by the apparatus configuration including the evaporating and drying stage 66 and the solvent dispensing stage 68 provided with a shaker. After evaporating to dryness, the organic solvent is dispensed into the container, the container is shaken, and dissolved in an organic solvent to prepare a sample solution to be injected into analytical instruments such as HPLC. With the equipment configuration equipped with a concentration stage without the solvent dispensing stage 68, a part of the organic solvent of the sample separated solution dispensed into the container is evaporated, and the concentrated sample separated solution is evaporated. It may be prepared. When the sample separation liquid obtained by the solvent extraction has a necessary concentration, the evaporating and drying stage and the concentration stage may not be particularly provided. Furthermore, according to an apparatus configuration provided with an evaporating and drying stage 66 without the solvent dispensing stage 68, all of the organic solvent of the sample separation liquid dispensed into the container is evaporated. An automatic extraction device that finally obtains the dried residue is used to prepare a sample liquid to be injected into analytical equipment such as an HPLC or gas chromatograph from the dried residue obtained by the automatic extraction device. You may. In addition, an automatic concentration measuring device is configured without the separation liquid dispensing unit 62 in addition to the evaporating and drying stage 66, the concentration stage and the solvent dispensing stage 68, and the separation liquid dispensing unit 62 By using an injection unit having a function as described above, the sample separated solution separated in a centrifuge tube may be directly sucked from the centrifuge tube and injected into an analytical instrument such as HPLC. Industrial applicability
この発明に係る自動抽出装置および自動濃度測定装置は、 大量の検体 の分析処理を一度に行う必要のある臨床検査センターや製薬会社の研究 室などにおいて使用され、 この発明によれば、 臨床検査センタ一や製薬 会社の研究室などにとって、 作業効率や作業スペース面での大幅な改善 がもたらされることとなる。  INDUSTRIAL APPLICABILITY The automatic extraction device and the automatic concentration measurement device according to the present invention are used in a clinical test center or a laboratory of a pharmaceutical company which needs to perform a large amount of sample analysis processing at one time. For labs of pharmaceutical companies, for example, this will result in significant improvements in work efficiency and work space.

Claims

請 求 の 範 囲 . 液体試料の入ったサンプル容器を複数本保持するサンプル保持部と、 複数本の抽出用容器を保持する抽出用容器保持部と、 前記サンプル保持部から取り出されもしくは前記サンプル保持部に 保持されたサンプル容器内から所定量の液体試料を吸入し、 その吸入 された液体試料を、 前記抽出用容器保持部から取り出されもしくは前 記抽出用容器保持部に保持された抽出用容器内へ吐出するサンプル分 注手段と、 前記抽出用容器内へ所定量の抽出用有機溶媒を吐出する抽出用溶媒 分注手段と、 前記抽出用容器内に入った液体試料中の目的とする成分物質を抽出 用有機溶媒中へ移行させる成分物質移行手段と、 複数本の収容容器を保持する収容容器保持部と、 前記抽出用容器内において分離し目的とする成分物質が有機溶媒に 溶解したサンプル分離液を所定量だけ吸入し、 その吸入されたサンプ ル分離液を、 前記収容容器保持部から取り出されもしくは前記収容容 器保持部に保持された収容容器内へ吐出する分離液分注手段と、 を備えた、 液体試料中の成分物質の自動抽出装置。 . 収容容器内に入ったサンプル分離液を蒸発させてサンプル分離液を 乾固させる蒸発乾固手段が設けられた請求の範囲第 1記載の、 液体試 料中の成分物質の自動抽出装置。 . 収容容器内へ所定量の溶解用有機溶媒を吐出する溶解用溶媒分注手 段と、 前記収容容器内において、 乾固された残渣を溶解用有機溶媒に 溶解させる溶解手段とが設けられた請求の範囲第 2項記載の、 液体試 料中の成分物質の自動抽出装置。. 溶解手段が、 収容容器を振盪させる振!!機である請求の範囲第 3項 記載の、 液体試料中の成分物質の自動抽出装置。. 蒸発乾固手段が、 収容容器をその周囲から加熱するヒータと、 収容 容器内へその上部開口を通して窒素ガスを吹き込む窒素ガス供給手段 とから構成された請求の範囲第 2項記載の、 液体試料中の成分物質の 自動抽出装置。 . 収容容器内に入ったサンプル分離液の有機溶媒の一部を蒸発させて サンプル分離液を濃縮させる濃縮手段が設けられた請求の範囲第 1 項 記載の、 液体試料中の成分物質の自動抽出装置。 . 濃縮手段が、 収容容器をその周囲から加熱するヒータと、 収容容器 内へその上部開口を通して窒素ガスを吹き込む窒素ガス供給手段とか ら構成された請求の範囲第 6項記載の、 液体試料中の成分物質の自動 抽出装置。 . 分離液分注手段が、 抽出用容器内に入ったサンプル分離液を所定量だけ下端口から吸入 し、 そのサンプル分離液を下端口から吐出する分注ノズルと、 この分注ノズルを保持するノズル保持手段と、 このノズル保持手段を、 前記分注ノズルの下端口が前記抽出用容器 内のサンプル分離液中に浸漬する下方位置と分注ノズル下端口が抽出 用容器から上方へ離間した上方位置との間で昇降させるノズル昇降手 段と、 前記ノズル保持手段を、 前記抽出用容器の直上位置と分注位置との 間で移動させるノズル移動手段と、 前記分注ノズル内へその下端口から前記抽出用容器内のサンプル分 離液を所定量だけ吸入させ、 前記分注位置において分注ノズル内のサ ンプル分離液をその下端口から吐出させるシリ ンジと、 このシリンジを駆動させるシリンジ駆動手段と、 このシリ ンジ駆動手段を制御するシリ ンジ制御手段と、 を備えて構成された請求の範囲第 1項記載の、 液体試料中の成分物質 の自動抽出装置。 . 分離液分注手段が、 分注ノズルの下端口が抽出用容器内のサンプル分離液中から引き上 げられる際に、 分注ノズル下端口がサンプル分離液上に出た時に分注 ノズル内へその下端口から微小流量の空気を吸入させ続けて、 分注ノ ズル内のサンプル分離液内部に気泡を発生させ、 この状態を、 分注ノ ズル内のサンプル分離液が吐出される直前まで継続させる気泡発生手 段を有した請求の範囲第 8項高記載の、 液体試料中の成分物質の自動 抽出装置。 0 . 分離液分注手段が、 抽出用容器内のサンプル分離液中に下端口が 浸漬させられた状態の分注ノズル内に所定量のサンプル分離液が吸入 された時にサンプル分離液の上端が位置する高さ位置に配設されてサ ンプル分離液の上端がその高さ位置に達したかどうかを光電的に検知 する液面センサを有し、 前記液面センサの検知信号に基づいてシリ ン ジ制御手段によりシリンジ駆動手段を制御して前記シリ ンジの駆動を 停止させるようにする請求の範囲第 8項記載の、 液体試料中の成分物 質の自動抽出装置。 Scope of the request. A sample holding unit for holding a plurality of sample containers containing a liquid sample, an extraction container holding unit for holding a plurality of extraction containers, and taken out of the sample holding unit or holding the sample. A predetermined amount of a liquid sample is sucked from the sample container held in the extracting portion, and the sucked liquid sample is taken out of the extracting container holding portion or the extracting container held in the extracting container holding portion. Sample dispensing means for discharging into the extraction container, extraction solvent dispensing means for discharging a predetermined amount of the organic solvent for extraction into the extraction container, and a target component in the liquid sample contained in the extraction container A component substance transfer means for transferring the substance into the organic solvent for extraction; a storage container holding section for holding a plurality of storage containers; A predetermined amount of the sample separated liquid dissolved in the container is sucked, and the sucked sample separated liquid is taken out of the holding container holding portion or discharged into the holding container held by the holding container holding portion. An automatic extraction device for a component substance in a liquid sample, comprising: a dispensing means; 2. The automatic extraction device for component substances in a liquid sample according to claim 1, further comprising evaporating and drying means for evaporating the sample separated liquid contained in the storage container to dry the sample separated liquid. A dissolving solvent dispensing means for discharging a predetermined amount of the organic solvent for dissolution into the storage container, and dissolving means for dissolving the dried residue in the organic solvent for dissolution in the storage container are provided. 3. The automatic extraction device for a component substance in a liquid sample according to claim 2. The dissolution means shakes the container! The automatic extraction device for component substances in a liquid sample according to claim 3, which is a machine. 3. The liquid sample according to claim 2, wherein the evaporating and drying means comprises a heater for heating the container from the periphery thereof, and nitrogen gas supply means for blowing nitrogen gas into the container through an upper opening of the container. Automatic extraction device for constituent substances inside. The automatic extraction of the component substances in the liquid sample according to claim 1, wherein a concentration means for evaporating a part of the organic solvent of the sample separated liquid contained in the container and concentrating the sample separated liquid is provided. apparatus. 7. The liquid sample according to claim 6, wherein the concentrating means comprises a heater for heating the container from the periphery thereof, and nitrogen gas supply means for blowing nitrogen gas into the container through an upper opening thereof. Automatic extraction equipment for component substances. The separation liquid dispensing means sucks a predetermined amount of the sample separation liquid contained in the extraction container from the lower end port, and holds the dispensing nozzle for discharging the sample separation liquid from the lower end port, and the dispensing nozzle. A nozzle holding means, and a lower position where the lower end of the dispensing nozzle is immersed in the sample separation liquid in the extraction container and an upper position where the lower end of the dispensing nozzle is separated upward from the extraction container. A nozzle elevating means for elevating and lowering between the positions, a nozzle moving means for moving the nozzle holding means between a position immediately above the extraction container and a dispensing position, and a lower end opening into the dispensing nozzle. A syringe for allowing a predetermined amount of the sample separation liquid in the extraction container to be sucked from the container, discharging the sample separation liquid in the dispensing nozzle from the lower end port at the dispensing position, and driving the syringe. A syringe drive means, the silicate and Syringe control means for controlling the Nji driving means, the configured claims preceding claim provided with an automatic extractor component material in a liquid sample. When the lower end of the dispensing nozzle rises above the sample separation liquid when the lower end of the dispensing nozzle is pulled up from the sample separation liquid in the extraction container, the dispensing nozzle Continue to inhale a small amount of air from the lower end of the navel to generate air bubbles inside the sample separation liquid in the dispensing nozzle. 9. The automatic extraction device for component substances in a liquid sample according to claim 8, further comprising a means for generating bubbles. 0. When the predetermined amount of the sample separation liquid is sucked into the dispensing nozzle with the lower end immersed in the sample separation liquid in the extraction container, the upper end of the sample separation liquid A liquid level sensor, which is disposed at a height position where the upper end of the sample separation liquid has reached the height position, and photoelectrically detects whether the upper end of the sample separation liquid has reached the height position. 9. The apparatus for automatically extracting a component substance in a liquid sample according to claim 8, wherein the syringe control means controls the syringe driving means to stop driving the syringe.
1 . ノズル昇降手段が、 パルス数によって駆動量を制御されるステツ ビングモータにより構成され、 分注ノズルの下端口を抽出用容器内の サンプル分離液中へ浸濱させるために分注ノズルを下降させる際に分 注ノズルの下端が基準の高さ位置に達したかどうかを検知するノズル 検知手段が設けられ、 前記ノズル検知手段により、 分注-ノ ズル下端が 基準高さ位置に達したことが検知された時点から、 一定のパルス数の 信号が前記ステッピングモータへ入力されるようにする請求の範囲第1. The nozzle raising / lowering means is composed of a stepping motor whose driving amount is controlled by the number of pulses, and lowers the dispensing nozzle to immerse the lower end of the dispensing nozzle into the sample separation liquid in the extraction container. A nozzle detecting means is provided for detecting whether the lower end of the dispensing nozzle has reached the reference height position when the dispensing-nozzle has reached the reference height position. A signal having a certain number of pulses is input to the stepping motor from the time point when is detected.
1 0項記載の、 液体試料中の成分物質の自動抽出装置。 10. The automatic extraction device for component substances in a liquid sample according to item 10.
2 . 分注ノズルが、 使い捨て吸入管を用いて構成された請求の範囲第 8項記載の、 液体試料中の成分物質の自動抽出装置。  2. The automatic extraction device for component substances in a liquid sample according to claim 8, wherein the dispensing nozzle is configured using a disposable suction pipe.
3 . 抽出用容器内へ所定量の水または水溶液を吐出する水または水溶 液分注手段が設けられた請求の範囲第 1項記載の、 液体試料中の成分 物質の自動抽出装置。 3. The apparatus for automatically extracting a component substance in a liquid sample according to claim 1, further comprising a water or aqueous solution dispensing means for discharging a predetermined amount of water or an aqueous solution into the extraction container.
4 . 抽出用容器にキャップを着脱させるキヤップ着脱手段が設けられ た請求の範囲第 1項記載の、 液体試料中の成分物質の自動抽出装置。 4. The automatic extraction device for component substances in a liquid sample according to claim 1, wherein a cap attaching / detaching means for attaching / detaching a cap to / from the extraction container is provided.
5 . 成分物質移行手段が、 抽出用容器を振盪させる振籩機である請求 の範囲第 1項記載の、 液体試料中の成分物質の自動抽出装置。 5. The apparatus for automatically extracting a component substance in a liquid sample according to claim 1, wherein the component substance transfer means is a shaker that shakes the extraction container.
6 . 成分物質移行手段によって液体試料中から目的とする成分物質が 抽出用有機溶媒中へ移行させられた液を遠心分離する遠心分離機が設 けられた請求の範囲第 1 項記載の、 液体試料中の成分物質の自動抽出 装置。  6. The liquid according to claim 1, wherein a centrifugal separator is provided for centrifuging the liquid in which the target component substance is transferred from the liquid sample into the organic solvent for extraction by the component substance transfer means. Automatic extraction equipment for component substances in samples.
7 . 請求の範囲第 1 項または請求の範囲第 3項ないし第 1 6項のいず れかに記載の、 液体試料中の成分物質の自動抽出装置と、  7. An automatic extraction device for a component substance in a liquid sample according to any one of claims 1 or 3 to 16;
液体試料中の成分物質の濃度を測定する濃度測定手段と、 収容容器内から目的とする成分物質が有機溶媒に溶解した成分溶解 液を吸入し、 その吸入された成分溶解液を所定量だけ前記濃度測定手 段に注入する液注入手段と、 Concentration measuring means for measuring the concentration of the component substances in the liquid sample, A liquid injecting means for inhaling a component solution obtained by dissolving a target component substance in an organic solvent from the container, and injecting the inhaled component solution by a predetermined amount into the concentration measuring means;
を備えた、 液体試料中の成分物質の自動濃度測定装置。 An automatic concentration measuring device for a component substance in a liquid sample, comprising:
8 . 液注入手段が、 濃度測定手段に注入される所定量の成分溶解液を 保持する計量管を有した請求の範囲第 1 7項記載の、 液体試料中の成 分物質の自動濃度測定装置。  8. The automatic concentration measuring apparatus for a component substance in a liquid sample according to claim 17, wherein the liquid injection means has a measuring tube for holding a predetermined amount of the component solution to be injected into the concentration measuring means. .
9 . 液体試料の入ったサンプル容器を複数本保持するサンプル保持部 と、  9. A sample holder for holding a plurality of sample containers containing a liquid sample,
複数本の容器を保持する容器保持部と、  A container holding unit for holding a plurality of containers,
前記サンプル保持部から取り出されもしくは前記サンプル保持部に 保持されたサンプル容器内から所定量の液体試料を吸入し、 その吸入 された液体試料を、 前記容器保持部から取り出されもしくは前記容器 保持部に保持された容器内へ吐出するサンプル分注手段と、  A predetermined amount of a liquid sample is sucked from a sample container taken out of the sample holding unit or held in the sample holding unit, and the sucked liquid sample is taken out of the container holding unit or transferred to the container holding unit. Sample dispensing means for discharging into the held container,
前記容器内へ所定量の抽出用有機溶媒を吐出する抽出用溶媒分注手 段と、  Extraction solvent dispensing means for discharging a predetermined amount of the organic solvent for extraction into the container,
前記容器内に入った液体試料中の目的とする成分物質を抽出用有機 溶媒中へ移行させる成分物質移行手段と、  Component substance transfer means for transferring the target component substance in the liquid sample contained in the container into the organic solvent for extraction,
液体試料中の成分物質の濃度を測定する濃度測定手段と、 前記容器内において分離し目的とする成分物質が有機溶媒に溶解し たサンプル分離液を吸入し、 その吸入されたサンプル分離液を所定量 だけ前記濃度測定手段に注入する分離液注入手段と、  A concentration measuring means for measuring the concentration of the component substance in the liquid sample; and a sample separation liquid in which the target component substance is dissolved in an organic solvent separated in the container, and the sucked sample separation liquid is collected. Separation liquid injection means for injecting only a fixed amount into the concentration measurement means;
を備えた、 液体試料中の成分物質の自動濃度測定装置。  An automatic concentration measuring device for a component substance in a liquid sample, comprising:
0 . 容器内へ所定量の水または水溶液を吐出する水または水溶液分注 手段が設けられた請求の範囲第 1 9項記載の、 液体試料中の成分物質 の自動濃度測定装置。 0. Dispense water or aqueous solution to discharge a predetermined amount of water or aqueous solution into the container The apparatus for automatically measuring the concentration of a component substance in a liquid sample according to claim 19, wherein means is provided.
1 . 容器にキヤップを着脱させるキヤップ着脱手段が設けられた請求 の範囲第 1 9項記載の、 液体試料中の成分物質の自動濃度測定装置。  10. The automatic concentration measuring device for component substances in a liquid sample according to claim 19, wherein a cap attaching / detaching means for attaching / detaching the cap to / from the container is provided.
2 . 成分物質移行手段によつて液体試料中から目的とする成分物質が 抽出用有機溶媒中へ移行させられた液を遠心分離する遠心分離機が設 けられた請求の範囲第 1 9項記載の、 液体試料中の成分物質の自動濃 度測定装置。 2. The method according to claim 19, wherein a centrifuge is provided for centrifuging a liquid in which a target component substance is transferred from the liquid sample into the organic solvent for extraction by the component substance transfer means. Automatic concentration measuring device for component substances in liquid samples.
3 . 液体容器内に収容された液体を所定量だけ下端口から吸入し、 そ の液体を下端口から吐出する分注ノズルと、 3. A dispensing nozzle that sucks a predetermined amount of liquid contained in the liquid container from the lower end port and discharges the liquid from the lower end port;
この分注ノズルを保持するノズル保持手段と、  Nozzle holding means for holding the dispensing nozzle,
このノズル保持手段を、 前記分注ノズルの下端口が前記液体容器内 の液体中に浸漬する下方位置と分注ノズル下端口が液体容器から上方 へ離間した上方位置との間で昇降させるノズル昇降手段と、  A nozzle elevating means for raising and lowering the nozzle holding means between a lower position where the lower end of the dispensing nozzle is immersed in the liquid in the liquid container and an upper position where the lower end of the dispensing nozzle is separated upward from the liquid container. Means,
前記ノズル保持手段を、 前記液体容器の直上位置と分注位置との間 で移動させるノズル移動手段と、  A nozzle moving means for moving the nozzle holding means between a position immediately above the liquid container and a dispensing position;
前記分注ノズル内へその下端口から前記液体容器内の液体を所定量 だけ吸入させ、 前記分注位置において分注ノズル内の液体をその下端 口から吐出させるシリンジと、  A syringe for sucking a predetermined amount of the liquid in the liquid container into the dispensing nozzle from a lower end thereof, and discharging the liquid in the dispensing nozzle from the lower end of the dispensing nozzle at the dispensing position;
このシリ ンジを駆動させるシリ ンジ駆動手段と、  Syringe driving means for driving the syringe;
このシリ ンジ駆動手段を制御するシリ ンジ制御手段と、  Syringe control means for controlling the syringe drive means;
を備えた液体分注装置において、  In a liquid dispensing device equipped with
前記分注ノ ズルの下端口が前記液体容器内の液体中から引き上げら れる際に、 分注ノズル下端口が液体上に出た時に分注ノズル内へその 下端口から微小流量の空気を吸入させ続けて、 分注ノズル内の液体内 部に気泡を発生させ、 この状態を、 分注ノズル内の液体が吐出される 直前まで継続させる気泡発生手段を備えたことを特徴とする液体分注 装置。 When the lower end of the dispensing nozzle is pulled out of the liquid in the liquid container, the lower end of the dispensing nozzle is moved into the dispensing nozzle when the lower end of the dispensing nozzle comes out of the liquid. Equipped with an air bubble generating means that keeps inhaling a small amount of air from the lower end port to generate air bubbles inside the liquid inside the dispensing nozzle and keep this state until just before the liquid inside the dispensing nozzle is discharged. Liquid dispensing device characterized by the above-mentioned.
4 . 気泡発生手段が、 シリ ンジ制御手段に設けられシリ ンジを低速に 切り換えて駆動させるようにシリ ンジ駆動手段を制御する制御回路で ある請求の範囲第 2 3項記載の液体分注装置。 4. The liquid dispensing device according to claim 23, wherein the bubble generating means is a control circuit provided in the syringe control means and controlling the syringe driving means so as to drive the syringe at a low speed.
5 . 気泡発生手段が、  5. The bubble generation means
低速シリンジ、 この低速シリ ンジを低速で駆動させる低速シリ ンジ 駆動手段、 および、 この低速シリ ンジ駆動手段を制御する低速シリ ン ジ制御手段と、  A low-speed syringe, low-speed syringe driving means for driving the low-speed syringe at low speed, and low-speed syringe control means for controlling the low-speed syringe driving means;
分注ノズル内へ液体を吸入させその液体を分注ノズルの下端口から 吐出させるシリンジと前記低速シリンジとを分注ノズルに択一的に流 路接続させる流路切換え手段と、  Flow path switching means for selectively connecting a syringe for sucking a liquid into the dispensing nozzle and discharging the liquid from the lower end of the dispensing nozzle and the low-speed syringe to the dispensing nozzle;
から構成された請求の範囲第 2 3項記載の液体分注装置。 The liquid dispensing device according to claim 23, comprising:
6 . 液体容器内に収容された液体を所定量だけ下端口から吸入し、 そ の液体を下端口から吐出する分注ノズルと、  6. A dispensing nozzle that sucks a predetermined amount of liquid stored in the liquid container from the lower end port and discharges the liquid from the lower end port.
この分注ノズルを保持するノズル保持手段と、  Nozzle holding means for holding the dispensing nozzle,
このノズル保持手段を、 前記分注ノズルの下端口が前記液体容器内 の液体中に浸漬する下方位置と分注ノズル下端口が液体容器から上方 へ離間した上方位置との間で昇降させるノズル昇降手段と、  A nozzle elevating means for raising and lowering the nozzle holding means between a lower position where the lower end of the dispensing nozzle is immersed in the liquid in the liquid container and an upper position where the lower end of the dispensing nozzle is separated upward from the liquid container. Means,
前記ノズル保持手段を、 前記液体容器の直上位置と分注位置との間 で移動させるノズル移動手段と、  A nozzle moving means for moving the nozzle holding means between a position immediately above the liquid container and a dispensing position;
前記分注ノズル内へその下端口から前記液体容器内の液体を所定量 だけ吸入させ、 前記分注位置において分注ノズル内の液体をその下端 口から吐出させるシリ ンジと、 A predetermined amount of liquid in the liquid container is introduced into the dispensing nozzle from a lower end port thereof. A syringe for discharging the liquid in the dispensing nozzle from the lower end port at the dispensing position,
このシリ ンジを駆動させるシリ ンジ駆動手段と、  Syringe driving means for driving the syringe;
このシリ ンジ駆動手段を制御するシリ ンジ制御手段と、  Syringe control means for controlling the syringe drive means;
を備えた液体分注装置において、 In a liquid dispensing device equipped with
前記液体容器内の液体中に下端口が浸漬させられた状態の前記分注 ノ ズル内に所定量の液体が吸入された時に液体の上端が位置する高さ 位置に、 液体の上端がその高さ位置に達したかどうかを光電的に検知 する液面センサを配設し、 前記液面センサの検知信号に基づいて前記 シリ ンジ制御手段により前記シリンンジ駆動手段を制御して前記シリ ンジの駆動を停止させるようにすることを特徴とする液体分注装置。 7 . ノズル昇降手段が、 パルス数によって駆動量を制御されるステツ ビングモータにより構成され、 分注ノズルの下端口を液体容器内の液 体中へ浸漬させるために分注ノズルを下降させる際に分注ノズルの下 端が基準の高さ位懨に達したかどうかを検知するノズル検知手段が設 けられ、 前記ノズル検知手段により、 分注ノズル下端が基準高さ位置 に達したことが検知された時点から、 一定のパルス数の信号が前記ス テツビングモータへ入力されるようにする請求の範囲第 2 6項記載の 液体分注装置。  The upper end of the liquid is at the height where the upper end of the liquid is located when a predetermined amount of liquid is sucked into the dispensing nozzle in a state where the lower end is immersed in the liquid in the liquid container. A liquid level sensor that photoelectrically detects whether or not the liquid has reached the position, and controls the syringe driving means by the syringe control means based on a detection signal of the liquid level sensor to drive the syringe. A liquid dispensing device characterized by stopping the operation. 7. The nozzle raising / lowering means is composed of a stepping motor whose driving amount is controlled by the number of pulses, and is used to lower the dispensing nozzle to lower the lower end of the dispensing nozzle into the liquid in the liquid container. Nozzle detecting means is provided to detect whether the lower end of the dispensing nozzle has reached the reference height 懨, and the nozzle detecting means detects that the lower end of the dispensing nozzle has reached the reference height position. 27. The liquid dispensing device according to claim 26, wherein a signal having a fixed number of pulses is input to said steving motor from the time when said liquid is dispensed.
8 . ノズル検知手段が、 分注ノ ズルの下端を光電的に検知する光電セ ンサによって構成された請求の範囲第 2 7項記載の液体分注装置。 9 . 上面が開口した管状をなす容器本体と、 この容器本体の上面開口 部に被されるキャップとからなる、 液体の遠心分離用沈殿管において、 前記キヤップを、 中央部に貫通孔を有し、 前記容器本体の上端部に密嵌する密栓部と、 前記容器本体の内径寸法より小さい外径寸法を有する管状をなし、 上端部が前記密栓部の貫通孔部に連接し、 容器本体の上端部に密栓部 を密嵌させたときに下端が容器本体の内底面付近に位置する程度の長 さに形成された内管部と、 8. The liquid dispensing apparatus according to claim 27, wherein the nozzle detecting means is configured by a photoelectric sensor that photoelectrically detects a lower end of the dispensing nozzle. 9. In a sedimentation tube for centrifugal separation of a liquid, comprising: a container body having a tubular shape with an open upper surface; and a cap covering the upper surface opening of the container body, A hermetic plug having a through hole at the center thereof and closely fitting to the upper end of the container main body; a tubular having an outer diameter smaller than the inner diameter of the container main body; an upper end having a through hole of the hermetic plug; An inner tube portion having a length such that the lower end is located near the inner bottom surface of the container body when the sealing portion is closely fitted to the upper end portion of the container body;
この内管部の下端を液密に閉塞し、 かつ、 下向きの押圧力によって 容易に脱落もしくは破裂する閉塞部とから構成したことを特徴とする、 液体の遠心分離用沈殿管。  A sedimentation tube for centrifugal separation of liquid, characterized in that the inner tube has a lower end liquid-tightly closed and a closing part which easily falls off or ruptures by a downward pressing force.
0 . 閉塞部が、 キャップの内管部の下端口に差し込まれる詰め栓また はキャップの内管部の下端に一体形成された薄板状部である請求の範 囲第 2 9項記載の、 液体の遠心分離用沈殿管。 0. The liquid according to claim 29, wherein the closing portion is a plug inserted into the lower end of the inner tube portion of the cap or a thin plate portion integrally formed at the lower end of the inner tube portion of the cap. Centrifuge sedimentation tube.
PCT/JP1997/001366 1996-04-19 1997-04-18 Automatic extracting equipment and automatic concentration measuring equipment for component substance in liquid sample WO1997040357A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP8/122415 1996-04-19
JP8/122418 1996-04-19
JP12241596A JPH09288112A (en) 1996-04-19 1996-04-19 Method and apparatus for dispensing of liquid
JP8/122417 1996-04-19
JP8122418A JP3062082B2 (en) 1996-04-19 1996-04-19 Settling tube for liquid centrifugation
JP12241796A JP2939180B2 (en) 1996-04-19 1996-04-19 Liquid dispensing method and device
JP9/85640 1997-03-19
JP08564097A JP3295014B2 (en) 1997-03-19 1997-03-19 Automatic extraction device for component substances in liquid samples and automatic concentration measurement device for component substances in liquid samples

Publications (1)

Publication Number Publication Date
WO1997040357A1 true WO1997040357A1 (en) 1997-10-30

Family

ID=27467143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001366 WO1997040357A1 (en) 1996-04-19 1997-04-18 Automatic extracting equipment and automatic concentration measuring equipment for component substance in liquid sample

Country Status (1)

Country Link
WO (1) WO1997040357A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000030756A1 (en) * 1998-11-26 2000-06-02 Dainippon Seiki Co., Ltd. Precipitation tube for centrifugal separation
CN106990110A (en) * 2017-04-06 2017-07-28 王美芹 A kind of integrated micrography device of Nephrology dept.'s arena
CN113063648A (en) * 2021-04-21 2021-07-02 北京莱伯泰科仪器股份有限公司 Ice bath sample holder device for homogenization and homogenization platform thereof
CN114111981A (en) * 2021-12-07 2022-03-01 中国计量科学研究院 Automatic weighing device and method for alternately weighing syringes
CN115463587A (en) * 2022-10-10 2022-12-13 湖南金代科技发展有限公司 Pretreatment instrument for extracting starch from rice with cadmium exceeding standard by alkaline method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664639A (en) * 1979-09-10 1981-06-01 Becton Dickinson Co Liquid collection vessel for shifting and distributing dangerous biological liquid
JPS5798862A (en) * 1980-12-12 1982-06-19 Olympus Optical Co Ltd Distributor
JPS5968675A (en) * 1982-10-13 1984-04-18 Yamasa Shoyu Co Ltd Determination method of lipid peroxide
JPS63149561A (en) * 1986-12-12 1988-06-22 Hitachi Ltd Analysis of prostaglandin
JPH03110468A (en) * 1989-09-26 1991-05-10 Anariiteikaru Instr:Kk Centrifugal type automatic deciding device for immune agglutination
JPH03125972A (en) * 1989-10-12 1991-05-29 Seiko Instr Inc Dna extractor/refiner
JPH04274764A (en) * 1991-03-01 1992-09-30 Mitsubishi Kasei Eng Co Method for controlling dispensing in sample dispensing device
JPH0560769A (en) * 1991-09-04 1993-03-12 Hitachi Ltd Method for sampling minute amount of specimen for automatic analyzer
JPH05232122A (en) * 1992-02-22 1993-09-07 Horiba Ltd Preprocessor for analysis
JPH07198728A (en) * 1993-12-28 1995-08-01 Olympus Optical Co Ltd Sucking and discharging device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664639A (en) * 1979-09-10 1981-06-01 Becton Dickinson Co Liquid collection vessel for shifting and distributing dangerous biological liquid
JPS5798862A (en) * 1980-12-12 1982-06-19 Olympus Optical Co Ltd Distributor
JPS5968675A (en) * 1982-10-13 1984-04-18 Yamasa Shoyu Co Ltd Determination method of lipid peroxide
JPS63149561A (en) * 1986-12-12 1988-06-22 Hitachi Ltd Analysis of prostaglandin
JPH03110468A (en) * 1989-09-26 1991-05-10 Anariiteikaru Instr:Kk Centrifugal type automatic deciding device for immune agglutination
JPH03125972A (en) * 1989-10-12 1991-05-29 Seiko Instr Inc Dna extractor/refiner
JPH04274764A (en) * 1991-03-01 1992-09-30 Mitsubishi Kasei Eng Co Method for controlling dispensing in sample dispensing device
JPH0560769A (en) * 1991-09-04 1993-03-12 Hitachi Ltd Method for sampling minute amount of specimen for automatic analyzer
JPH05232122A (en) * 1992-02-22 1993-09-07 Horiba Ltd Preprocessor for analysis
JPH07198728A (en) * 1993-12-28 1995-08-01 Olympus Optical Co Ltd Sucking and discharging device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000030756A1 (en) * 1998-11-26 2000-06-02 Dainippon Seiki Co., Ltd. Precipitation tube for centrifugal separation
CN106990110A (en) * 2017-04-06 2017-07-28 王美芹 A kind of integrated micrography device of Nephrology dept.'s arena
CN106990110B (en) * 2017-04-06 2019-07-26 孔令波 A kind of Nephrology dept.'s arena integration micrography device
CN113063648A (en) * 2021-04-21 2021-07-02 北京莱伯泰科仪器股份有限公司 Ice bath sample holder device for homogenization and homogenization platform thereof
CN113063648B (en) * 2021-04-21 2024-05-14 北京莱伯泰科仪器股份有限公司 Ice bath sample rack device for homogenization and homogenization platform thereof
CN114111981A (en) * 2021-12-07 2022-03-01 中国计量科学研究院 Automatic weighing device and method for alternately weighing syringes
CN114111981B (en) * 2021-12-07 2024-04-16 中国计量科学研究院 Automatic weighing device and method for alternately weighing syringes
CN115463587A (en) * 2022-10-10 2022-12-13 湖南金代科技发展有限公司 Pretreatment instrument for extracting starch from rice with cadmium exceeding standard by alkaline method

Similar Documents

Publication Publication Date Title
JP3295014B2 (en) Automatic extraction device for component substances in liquid samples and automatic concentration measurement device for component substances in liquid samples
JP4406643B2 (en) Liquid sampling probe and cleaning fluidics system
US5380486A (en) Apparatus for taking liquid content for use in analysis out of container
US5163582A (en) Apparatus and method for aliquotting blood serum or blood plasma
JP3413355B2 (en) Automatic analysis system
JP4570120B2 (en) Improved method and apparatus for aspirating and dispensing liquids
US4387076A (en) Sample feeding arrangement
JP6647288B2 (en) Automatic analyzer and method
CN109975565B (en) Sample measurement method and sample measurement device
JP2641986B2 (en) A new and improved liquid sample aspiration and dispensing probe
DK173539B1 (en) Method and apparatus for taking a sample from a closed sample container
JP7423722B2 (en) Sample measuring device and sample measuring method
ES2895448T3 (en) Preprocessing apparatus and an analysis system including the preprocessing apparatus
WO1997040357A1 (en) Automatic extracting equipment and automatic concentration measuring equipment for component substance in liquid sample
WO2001024904A1 (en) Automatic extraction apparatus, automatic concentration measuring instrument and method for extraction of component material in liquid sample
US5322192A (en) Pipetting apparatus
JP5363604B2 (en) Chemical analyzer
JP2015161528A (en) Analytical sample pretreatment device
DK165305B (en) APPARATUS AND PROCEDURE FOR APPLYING SAMPLES TO A SAMPLE ANALYSIS
JPH0783807A (en) Serum dispensing device
JP2883347B2 (en) Automatic immunoassay device cartridge washing device
JP7333569B2 (en) Automatic pretreatment device for test samples
JP4576340B2 (en) Automatic analyzer
US11090645B2 (en) Solution jetting device and method of controlling jet of solution
JPS6350735A (en) Method for sampling liquid specimen from capillary liquid specimen container

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase